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We consider fðRÞ gravity theories in the presence of a scalar field minimally coupled to gravity with a
self-interacting potential in (2þ 1)-dimensions. Without specifying the form of the fðRÞ function, we first
obtain an exact black hole solution dressed with scalar hair with the scalar charge to appear in the fðRÞ
function and we discuss its thermodynamics. This solution at large distances gives a hairy Bañados,
Teitelboim, and Zanelli (BTZ) black hole, and it reduces to the BTZ black hole when the scalar field
decouples. In a pure fðRÞ gravity supported by the scalar field, we find an exact hairy black hole similar to
the BTZ black hole with phantom hair and an analytic fðRÞ form and discuss its thermodynamics.
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I. INTRODUCTION

In three-dimensions one of the first exact black holes
with a negative cosmological constant was discussed by
Bañados, Teitelboim, and Zanelli (BTZ) [1,2]. This sol-
ution came as a surprise in the scientific community, since
in three dimensions the Weyl tensor, describing the dis-
tortion of the shape of a body in the presence of tidal
gravitational force, vanishes by definition while the Ricci
tensor, describing how the volume of the body changes
due to this tital force, vanishes in the absence of matter.
Therefore, since Riemann ¼ Weylþ Ricci we can only
have flat spacetime. In this solution, the existence of a
cosmological constant term and the electromagnetic field
results to a nonzero Ricci tensor allowing in this way the
existence of a black hole solution.
After the discovery of this solution, scalar fields min-

imally and nonminimally coupled to gravity were intro-
duced as matter fields. In [3,4] three dimensional black
holes with a conformally coupled scalar field, being regular
everywhere, were discussed. After these first results other
hairy black holes in three-dimensions were discussed
[5–10]. In [11] three-dimensional gravity with negative
cosmological constant in the presence of a scalar field and
an Abelian gauge field was introduced. Both fields are
conformally coupled to gravity, the scalar field through a
nonminimal coupling with the curvature and the gauge field

by means of a Lagrangian given by a power of the Maxwell
one. A sixth-power self-interaction potential, which does
not spoil conformal invariance is also included in the
action, resulting in a very simple relation between the
scalar curvature and the cosmological constant. In [12,13]
(2þ 1) dimensional charged black holes with scalar hair
where derived, where the scalar potential is not fixed ad hoc
but instead derived from Einstein’s equations. In [14] exact
three dimensional black holes with nonminimal scalar field
were discussed. Finally, in [15,16], static black holes in
three dimensional dilaton gravity and modifications of the
BTZ black hole by a dilaton/scalar were investigated.
In four dimensions, the first black hole solution with a

scalar field as a matter field was derived by Bocharova,
Bronnikov and Melnikov and independently by
Bekenstein, called BBMB black hole [17]. The scalar field
is conformally coupled to gravity, resulting to the vanishing
of scalar curvature, the metric takes the form of the
extremal Reissner-Nordstrom spacetime and the scalar
field diverges at the horizon. It was also shown at [18]
that this solution is unstable under scalar perturbations.
Later, a scale was introduced to the theory via a cosmo-
logical constant at [19] and also a quartic scalar potential
that does not break the conformal invariance of the action,
resulting at a very simple relation between the scalar
curvature and the cosmological constant. The scalar field
does not diverge at the horizon, but the solution is found
to be unstable [20]. In [21] asymptotically (anti) de Sitter
black holes and wormholes with a self-interacting scalar
field in four dimensions were discussed. Regarding the
minimal coupling case, the first exact black hole solution
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was presented at [22], the MTZ black hole. The scalar
potential is fixed ad hoc, the geometry of the solution is
hyperbolic and the scalar field remains finite at the black
hole horizons. In [23] the electrically charged case is
discussed. In [24], a potential that breaks the conformal
invariance of the action of the MTZ black hole in the Jordan
frame was considered and new black hole solutions where
derived. In [25] the scalar field is fixed ad hoc and novel
black hole solutions are investigated, letting the scalar
potential to be determined from the equations and in [26]
the electrically charged case is considered. In [27,28] black
holes with nonminimal derivative coupling were studied.
However, the scalar field which was coupled to Einstein
tensor should be considered as a particle living outside the
horizon of the black hole because it blows up on the
horizon. Finally, in [29] Plebanski-Demianski solutions in
quadratic gravity with conformally coupled scalar fields
were investigated.
The fðRÞ theories of gravity were mainly introduced in

an attempt to describe the early and late cosmological
history of our Universe [30–40]. In particular, following the
recent cosmological observational results the fðRÞ gravity
cosmological models were used to explain the deceleration-
acceleration transition. This requirement imposed con-
straints on the fðRÞ models allowing viable choices of
fðRÞ [41]. These theories exclude contributions from any
curvature invariants other than R and they avoid the
Ostrogradski instability [42] which usually is present in
higher derivative theories [43]. Several black hole solutions
in these theories were found and they either are deviations
of the known black hole solutions of general relativity, or
they possess new properties that should be investigated.
Static and spherically symmetric black hole solutions were
derived in (3þ 1) and (2þ 1) dimensions [44–47], while in
[48–53] charged and rotating solutions were discussed.
Static and spherically symmetric black hole solutions were
investigated with constant curvature, with and without
electric charge and cosmological constant in [54–56]. In
[57] curvature scalarization of black holes in fðRÞ gravity
was discussed and it was shown that the presence of a scalar
field minimally coupled to gravity with a self-interacting
potential can generate a rich structure of scalarized black
hole solutions, while in [58] exact charged black hole
solutions with dynamic curvature in D-dimensions were
obtained in Maxwell-f(R) gravity theories.
In this work we present, to the best of our knowledge, the

first exact black hole solution in (2þ 1)-dimensions of a
scalar field minimally coupled to gravity in the context of
fðRÞ gravity. Without specifying the form of the fðRÞ
function, we first obtain an exact black hole solution
dressed with a scalar hair with the scalar charge to appear
in the metric and in the fðRÞ function and discuss its
thermodynamics. This solution at large distances gives a
hairy BTZ black hole, and it reduces to the BTZ black hole
when the scalar field decouples. In a pure fðRÞ gravity

supported by the scalar field, we find an exact hairy black
hole similar to the BTZ black hole with phantom hair and
discuss its thermodynamics.
The work is organized as follows. In Sec. II we derive the

field equations with and without a self-interacting potential
for the scalar field. In Section III we discuss hairy black
hole solutions of the field equations when we have the
Einstein-Hilbert term with curvature corrections and also
black hole solutions when the fðRÞ is purely supported by
the scalar field. Finally we conclude in Sec. IV.

II. THE SETUP-DERIVATION OF THE
FIELD EQUATIONS

We will consider the fðRÞ gravity theory with a scalar
field minimally coupled to gravity in the presence of a self-
interacting potential. Varying this action we will look for
hairy black hole solutions. We will show that if this scalar
field decouples, we recover fðRÞ gravity. First we will
consider the case in which the scalar field does not have
self-interactions.

A. Without self-interacting potential

Consider the action

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κ
fðRÞ − 1

2
gμν∂μϕ∂νϕ

�
; ð1Þ

where κ is the Newton gravitational constant κ ¼ 8πG.
The Einstein equations read

fRRμν −
1

2
gμνfðRÞ þ gμν□fR −∇μ∇νfR ¼ κTμν; ð2Þ

where f0ðRÞ ¼ fR and the energy-momentum tensor Tμν is
given by

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμνgαβ∂αϕ∂βϕ: ð3Þ

The Klein-Gordon equation reads

□ϕ ¼ 0: ð4Þ

We consider a spherically symmetric ansatz for the metric

ds2 ¼ −bðrÞdt2 þ 1

bðrÞ dr
2 þ r2dθ2: ð5Þ

For the metric above, the Klein-Gordon equation becomes

□ϕ ¼ bðrÞϕ00ðrÞ þ ϕ0ðrÞ
�
b0ðrÞ þ bðrÞ

r

�
¼ 0; ð6Þ

and takes the form of a total derivative
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bðrÞϕ0ðrÞr ¼ C; ð7Þ

where C is a constant of integration. In order to have
a black hole, we require at the horizon to have
r ¼ rH → bðrHÞ ¼ 0. Then, C ¼ 0. This means that either
bðrÞ ¼ 0 for any r > 0 and no geometry can be formed, or
the scalar field is constant ϕðrÞ ¼ c. We indeed expected
this behavior, which cannot be cured with the addition of a
second degree of freedom in the metric (5). From the no-
hair theorem [59] we know that the scalar field should
satisfy its equation of motion for the black hole geometry,
thus if we multiply the Klein-Gordon equation by ϕ and
integrate over the black hole region we have

Z
d3x

ffiffiffiffiffiffi
−g

p ðϕ□ϕÞ ≈
Z

d3x
ffiffiffiffiffiffi
−g

p ∇μϕ∇μϕ ¼ 0; ð8Þ

where ≈ means equality modulo total derivative terms.
From Eq. (8) one can see that the scalar field is constant.

B. With self-interacting potential

We shown that if the matter does not have self-
interactions then there are no hairy black holes in the
fðRÞ gravity. We then have to introduce self-interactions
for the scalar field. Consider the action

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κ
fðRÞ − 1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð9Þ

The scalar field and the scalar potential obey the following
conditions

ϕðr → ∞Þ ¼ 0; Vðr → ∞Þ ¼ 0; Vjϕ¼0 ¼ 0: ð10Þ

Varying the action (9) using the metric ansatz (5) we get the
tt; rr; θθ components of Einstein’s equations (for κ ¼ 1)
and the Klein-Gordon equation

rðb0ðrÞf0RðrÞ − fRðrÞb00ðrÞ − fðrÞ þ bðrÞð2f00RðrÞ
þ ϕ0ðrÞ2Þ þ 2VðϕÞÞ − fRðrÞb0ðrÞ þ 2bðrÞf0RðrÞ ¼ 0;

ð11Þ

bðrÞðrð−b0ðrÞf0RðrÞ þ fRðrÞb00ðrÞ þ fðrÞ þ bðrÞϕ0ðrÞ2
− 2VðϕÞÞ þ fRðrÞb0ðrÞ − 2bðrÞf0RðrÞÞ ¼ 0; ð12Þ

− rð2b0ðrÞf0RðrÞ þ bðrÞð2f00RðrÞ þ ϕ0ðrÞ2Þ þ 2VðϕÞÞ
þ 2fRðrÞb0ðrÞ þ rfðrÞ ¼ 0; ð13Þ

ðrb0ðrÞ þ bðrÞÞϕ0ðrÞ
r

þ bðrÞϕ00ðrÞ − V 0ðrÞ
ϕ0ðrÞ ¼ 0: ð14Þ

The Ricci curvature for the metric (5) reads

RðrÞ ¼ −
2b0ðrÞ

r
− b00ðrÞ: ð15Þ

From (11) and (12) equations we obtain the relation
between fRðrÞ and ϕðrÞ

f00RðrÞ þ ϕ0ðrÞ2 ¼ 0; ð16Þ

while the (11) and (13) equations yield the relation between
the metric function bðrÞ and fRðrÞ

ð2bðrÞ − rb0ðrÞÞf0RðrÞ þ fRðrÞðb0ðrÞ − rb00ðrÞÞ ¼ 0: ð17Þ

Both equations (16), (17) can be immediately integrated
to yield

fRðrÞ ¼ c1 þ c2r −
Z Z

ϕ0ðrÞ2drdr; ð18Þ

bðrÞ ¼ c3r2 − r2
Z

K
r3fRðrÞ

dr ð19Þ

where c1, c2, c3 and K are constants of integration. We can
also integrate the Klein-Gordon equation

VðrÞ

¼V0þ
Z

rb0ðrÞϕ0ðrÞ2þrbðrÞϕ0ðrÞϕ00ðrÞþbðrÞϕ0ðrÞ2
r

dr:

ð20Þ

Equation (18) is the central equation of this work. First of
all, we recover general relativity for the vanishing of scalar
field and for c1 ¼ 1, c2 ¼ 0. We stress the fact that in fðRÞ
gravity we are able to derive nontrivial configurations for
the scalar field with one degree of freedom as can be seen in
the metric (5). This is not the case in the context of general
relativity, as it is discussed in [16]. There we can see that a
second degree of freedom (Eq. (4) in [16]) must be added
for the existence of nontrivial solutions for the scalar field.
Here, the fact of nonlinear gravity makes fR ≠ const, and
therefore we can have a one degree of freedom metric. The
integration constants c1 and c2 have physical meaning. c1 is
related with the Einstein-Hilbert term, while c2 is related to
possible (if c2 ≠ 0) geometric corrections to general rela-
tivity that are encoded in fðRÞ gravity. The last term of this
equation is related directly to the scalar field. This means
that the matter not only modifies the curvature scalar R but
also the gravitational model fðRÞ.

III. BLACK HOLE SOLUTIONS

In this section we will discuss the cases where c1 ¼ 1,
c2 ¼ 0 and c1 ¼ c2 ¼ 0 for a given scalar field configu-
ration. For the second case to satisfy observational and
thermodynamical constraints we will introduce a phantom
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scalar field and wewill reconstruct the fðRÞ theory, looking
for black hole solutions.

A. c1 = 1, c2 = 0

Equations (18), (19) and (20) are three independent
equations for the four unknown functions of our system,
fR;ϕ; V; b, hence we have the freedom to fix one of
them and solve for the others. We fix the scalar field
configuration as

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A

rþ B

r
; ð21Þ

where A and B are some constants with unit [L], the scalar
charges. We now obtain from Eq. (18) fRðrÞ

fRðrÞ ¼ 1 −
A

8ðBþ rÞ ; ð22Þ

where we have set c2 ¼ 0 and c1 ¼ 1. Therefore, we
expect that, at least in principle, a pure Einstein-Hilbert
term will be generated if we integrate fR with respect to the
Ricci scalar. Now, from Eq. (19) we obtain the metric
function

bðrÞ ¼ c3r2 −
4BK

A − 8B
−

8AKr
ðA − 8BÞ2

−
64AKr2

ðA − 8BÞ3 ln
�
8ðBþ rÞ − A

r

�
: ð23Þ

The metric function is always continuous for positive r
when the scalar charges satisfy 0 < A < 8B. Here we show
its asymptotic behaviors at the origin and space infinity

bðr → 0Þ ¼ −
4BK

A − 8B
−

8AKr
ðA − 8BÞ2 þ c3r2

þ 64AKr2

ðA − 8BÞ3 ln
�
−

r
A − 8B

�
þOðr3Þ; ð24Þ

bðr → ∞Þ ¼ K
2
þ AK
24r

− r2Λeff þOðr−2Þ; ð25Þ

where the effective cosmological constant of this solution is
generated from the equations can be read off

Λeff ¼ −c3 þ
192AK lnð2Þ
ðA − 8BÞ3 : ð26Þ

It is important to discuss the asympotic behaviors of the
metric function. At large distances, we can see that we
obtain the BTZ black hole where the scalar charges appear
in the effective cosmological constant of the solution.
Corrections in the structure of the metric appear as
Oðr−nÞ (where n ≥ 1) terms and are completely supported
by the scalar field. At small distances we can see that the
metric function has a completely different behavior from
the BTZ black hole. Besides the constant and Oðr2Þ terms
there are present OðrÞ and Oðr2 lnðrÞÞ terms that have an
impact on the metric for small r. Our findings are in
agreement with the work [57] where in four dimensions
Schwarzchild black holes are obtained at infinity with a
scalarized mass term while at small distances a rich
structure of black holes is unveiled. This is expected since
at small distances the Ricci curvature becomes strong and
therefore changing the form of spacetime. The Ricci scalar
and the Kretschmann scalar are both divergent at the origin

Rðr → 0Þ ¼ 16AK
rðA − 8BÞ2 þOðln rÞ; ð27Þ

Kðr → 0Þ ¼ 128K2A2

r2ðA − 8BÞ4 þO
�
1

r
ln r

�
; ð28Þ

indicating a singularity at r ¼ 0. As a consistency check for
A ¼ 0 we indeed obtain the BTZ [1] black hole solution

bðrÞ ¼ c3r2 þ
K
2
; ð29Þ

which means that for vanishing scalar field we go back to
general relativity. Hence the solution (23) can be regarded
as a scalarized version of the BTZ black hole in the context
of fðRÞ gravity.
Now we solve the expression of the potential from the

Klein-Gordon equation

VðrÞ¼ 1

8AB2ðA−8BÞ3ðBþrÞ3
�
Bð4A4ð−B2ðK−18c3r2Þþ36B3c3rþ12B4c3−4BKr−2Kr2Þ−64A3Bðr2ð9B2c3þKÞ

þBrð18B2c3þKÞþ6B4c3Þþ256A2BðBð6r2ðB2c3þKÞþ2Brð6B2c3þ5KÞþ4B4c3þ3B2KÞ

þ30K lnð2ÞðBþrÞ3Þ−A5Bc3ð2B2þ6Brþ3r2Þþ64BKð−A3ð2B2þ6Brþ3r2Þ ln
�

r
8ðBþrÞ−A

�

−8ð5A2−32ABþ64B2ÞðBþrÞ3 lnð8ðBþrÞ−AÞÞ−4096AB2KðBþrÞ2ð12lnð2ÞðBþrÞþBÞ

þ98304B3K lnð2ÞðBþrÞ3Þ−8A2KðA2−32ABþ64B2ÞðBþrÞ3 lnðrÞþ8KðA−8BÞ4ðBþrÞ3 lnðBþrÞ
�
; ð30Þ
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the asymptotic behaviors of which are

Vðr → 0Þ ¼ −
K lnðrÞ

B2ðA − 8BÞ þOðr0Þ; ð31Þ

Vðr → ∞Þ ¼ 3Að24A2Bc3 − A3c3 − 192AðB2c3 − K lnð2ÞÞ þ 512B3c3Þ
8rðA − 8BÞ3 þO

�
1

r2

�
: ð32Þ

To ensure that the potential vanishes at space infinity, we need to set the integration constant V0 at (20) equal to

V0 ¼
192K ln 2ð5A2 − 32ABþ 64B2Þ

AðA − 8BÞ3 : ð33Þ

In addition, there is a mass term in the potential that has the same sign with the effective cosmological constant

m2 ¼ V 00ðϕ ¼ 0Þ ¼ 3

4

�
192AK lnð2Þ
ðA − 8BÞ3 − c3

�
¼ 3

4
Λeff ; ð34Þ

which satisfies the Breitenlohner-Freedman bound in three dimensions [60,61], ensuring the stability of AdS spacetime
under perturbations if we are working in the AdS spacetime.
Substituting the obtained configurations into one of the Einstein equations we can solve for fðrÞ

fðrÞ ¼ 1

AB2rðA − 8BÞ3ðA − 8ðBþ rÞÞ
�
Bð192BKr lnð2Þð5A2 − 32ABþ 64B2ÞðA − 8ðBþ rÞÞ

þ AðA − 8BÞ2ð16Bc3r2ðA − 8BÞ − 2Bc3rðA − 8BÞ2 þ 8KrðAþ 8BÞ − AKðA − 8BÞÞÞ
þ A2Krð−ðA2 − 32ABþ 64B2ÞÞ lnðrÞðA − 8ðBþ rÞÞ

þ Krð8ðBþ rÞ − AÞ
�
64B2

�
ð5A2 − 32ABþ 64B2Þ lnð8ðBþ rÞ − AÞ þ 2A2 ln

�
r

8ðBþ rÞ − A

��

− ðA − 8BÞ4 lnðBþ rÞ
��

: ð35Þ

On the other side, the Ricci scalar can be calculated from
the metric function

RðrÞ ¼ 16AKð−36rðA − 8BÞ þ ðA − 8BÞ2 þ 192r2Þ
rðA − 8BÞ2ðA − 8ðBþ rÞÞ2

þ 384AK
ðA − 8BÞ3 ln

�
8ðBþ rÞ − A

r

�
− 6c3: ð36Þ

As one can see it is difficult to invert the Ricci scalar and
solve the exact form of fðRÞ, though we have the
expressions of RðrÞ, fðrÞ and fRðrÞ. Nevertheless we
can still obtain the asymptotic fðRÞ forms by studying
their asymptotic behaviors

fðr → ∞Þ ¼ −
AKðA − 8BÞ

128r4
þ 768AK lnð2Þ

ðA − 8BÞ3

− 4c3 þO
�
1

r5

�
; ð37Þ

Rðr → ∞Þ ¼ −
AKðA − 8BÞ

128r4
þ 1152AK lnð2Þ

ðA − 8BÞ3

− 6c3 þO
�
1

r5

�
; ð38Þ

fðr → 0Þ ¼ −
2AK

ðA − 8BÞBrþOðln rÞ; ð39Þ

Rðr → 0Þ ¼ 16AK
rðA − 8BÞ2 þOðln rÞ; ð40Þ

which leads to

fðRÞ ≃ Rþ 2c3 −
384AK lnð2Þ
ðA − 8BÞ3 ¼ R − 2Λeff ; r → ∞;

ð41Þ

fðRÞ ≃ R

�
1 −

A
8B

�
; r → 0: ð42Þ
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The fact that the Ricci scalar contains logarithmic terms
prevents us from obtaining the nonlinear corrections near the
origin, where we expect the modified part of the fðRÞmodel
to be stronger, since it is supported by the existence of the
scalar field and the scalar field takes its maximum value for
r ¼ 0 → ϕð0Þ ¼ ffiffiffiffiffiffiffiffiffi

A=B
p

. To avoid the tachyonic instability,
we check the Dolgov-Kawasaki stability criterion [47] which
states that the second derivative of the gravitational model
fRR must be always positive [30–32]. Using the chain rule

fRR ¼ dfRðRÞ
dR

¼ dfRðrÞ
dr

dr
dR

¼ f0RðrÞ
R0ðrÞ

¼ −
r2ðA − 8ðBþ rÞÞ3

128KðA − 8BÞðBþ rÞ2 ; ð43Þ

we can see that the above expression is always positive
for K < 0 when the continuity condition 0 < A < 8B is
considered. So far we have not imposed any condition on c3,
therefore the spacetime might be asymptotically AdS or dS
depending on the value of parameter c3

c3 >
192AK lnð2Þ
ðA − 8BÞ3 > 0 asymptotically AdS; ð44Þ

c3 <
192AK lnð2Þ
ðA − 8BÞ3 asymptotically dS: ð45Þ

We can prove that the metric function has at most one root,
which cannot describe a dS black hole. For the asymptoti-
cally AdS spacetime, the condition K < 0 gives an AdS
black hole solution while the condition K > 0 gives the pure
AdS spacetime with a naked singularity at origin. For the
asymptotically dS spacetime, the condition K > 0 gives a
pure dS spacetime with a cosmological horizon. Therefore
pure AdS or dS spacetime described by this solution suffers
from the tachyonic instability, only AdS black holes can
survive from this instability. We plot all the physical
quantities of the AdS black holes in Figs. 1 and 2. In
Fig. 1 we plot the metric function, the potential, the scalar
field, the Ricci scalar, the fðrÞ and fR functions along
with the A ¼ 0 (BTZ black hole) case in order to compare
them. In Fig. 2 we plot the fðRÞ model along with
fðRÞ ¼ R − 2Λeff in order to compare our model with
Einstein’s gravity. For Fig. 2 we used the expression for
the Ricci scalar (36) for the horizontal axes and the
expression for fðrÞ (35) for the vertical axes.
From Figs. 1 and 2 we can see that the existence of scalar

charge A makes the solution deviate from the GR solution,
and the stronger the scalar charge is, the larger it deviates.
The figure of the metric function shows that the hairy
solution with stronger scalar charge has larger radius of the
event horizon, while its influence on the curvature is
qualitative, from constant to dynamic, with a divergence
appearing at origin. The scalar charge also modifies the

fðRÞ model and the potential to support such hairy
structures, where the potential develops a well near the
origin to trap the scalar field providing the right matter
concentration for a hairy black hole to be formed. For the
fðRÞ model, the scalar charge only sets aside a small
distance with the Einstein gravity while the slope changes
little, indicating our fðRÞ model is very close to Einstein
gravity. We can see that even slight deviations from
general relativity can support hairy structures. The asymp-
totic expressions (41) (42) tell us that at large scale the
scalar field only modifies the effective cosmological con-
stant while at small scale the slope of fðRÞ can also be
modified, which agrees with the figure of fðRÞ.
Next we study the thermodynamics of this solution. The

Hawking temperature and Bekenstein-Hawking entropy are
defined as [62,63]

TðrþÞ ¼
b0ðrþÞ
4π

¼ 2KðBþ rþÞ
πrþðA − 8ðBþ rþÞÞ

; ð46Þ

SðrþÞ ¼
A
4G

fRðrþÞ

¼ 4π2rþfRðrþÞ ¼ 4π2rþ

�
1 −

A
8ðBþ rþÞ

�
; ð47Þ

where rþ is the radius of the event horizon of the AdS black
hole and A ¼ 2πrþ is the area of the event horizon, where
the gravitational constant G equals 1=8π since we’ve set
8πG ¼ 1. Here in the first expression we have already used
rþ to replace the parameter c3. It is clear that the Hawking
temperature and Bekenstein-Hawking entropy are both
positive for K < 0 and 0 < A < 8B. We present their
figures in Fig. 3. Figure 3 shows that for the same radius
of the event horizon, the hairy black hole solution owns
higher Hawking temperature but lower Bekenstein-
Hawking entropy. However, with fixed parameters B; c3
and K, the hairy black hole solution has larger radius of the
event horizon, therefore, we plot the entropy inside the
event horizon as a function of the scalar charge A in Fig. 4
to confirm if the hairy solution is thermodynamically
preferred or not. The fact is that hairy black hole solution
is thermodynamically preferred, which owns higher
entropy than its corresponding GR solution, BTZ black
hole, and the entropy grows with the increase of the scalar
charge A. It can be easily understood that the participation
of the scalar field gains more entropy for the black hole.

B. Exact black hole solution with phantom hair

In the previous section, we have set c1 ¼ 1 and c2 ¼ 0,
therefore the fðRÞ model consists of the pure Einstein-
Hilbert term and corrections that arise from the existence of
the scalar field. We have shown that with the vanishing of
scalar field, we obtain the well known results of general
relativity, the BTZ black hole [1].
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We will now discuss the possibility that the scalar field,
purely supports the fðRÞ model by setting c1 ¼ c2 ¼ 0.
From Eq. (18) we can see that due to the Oðr−nÞ (where

n > 0) nature of the scalar field and the double integration,
there will be regions where fR < 0. For example for our
scalar profile (21) the fR turns out to be

FIG. 2. The fðRÞ function. The black dashed line represents the Einstein gravity fðRÞ ¼ R − 2Λeff, where other parameters have been
fixed as B ¼ 1, K ¼ −5 and c3 ¼ 1.

FIG. 1. All the physical quantities of the AdS black holes are plotted with different scalar charges A, where other parameters have been
fixed as B ¼ 1, K ¼ −5 and c3 ¼ 1.
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fRðrÞ ¼ −
A

8ðBþ rÞ ; ð48Þ

which is always negative for A;B > 0. With this form of fR
one can derive an exact hairy black hole solution similar to
a hairy BTZ black hole which however has negative
entropy as can be seen from the relation (47).
It is clear that a sign reversal of fðRÞ can fix the

negative entropy problem. As a result, the sign reversal of
other terms in the action is also required, which leads to a
phantom scalar field instead of the regular one. This
comes in agrement with recent observational results
which they require that at the early universe to explain
the equation of state w < −1 phantom energy is needed to
support the cosmological evolution [64–66]. As it will be
shown in the following, in the pure fðRÞ gravity theory
the curvature acquires nonlinear correction terms which
makes the curvature stronger as it is expected in the early
universe.
Hence, we consider the following action

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κ
fðRÞ þ 1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð49Þ

which is the action (9) but the kinetic energy of the scalar
field comes with the positive sign which corresponds to a
phantom scalar field instead of the regular one. Under the
same metric ansatz (5), Eq. (16) now becomes

f00RðrÞ − ϕ0ðrÞ2 ¼ 0; ð50Þ

and by integration

fRðrÞ ¼
Z Z

ϕ0ðrÞ2drdr; ð51Þ

having set c1 ¼ 0 and c2 ¼ 0. With the same profile of the
scalar field, the solution of this action becomes

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A

Bþ r

r
; ð52Þ

fRðrÞ ¼
A

8ðBþ rÞ ; ð53Þ

bðrÞ ¼ 4BK
A

þ 8Kr
A

− Λr2; ð54Þ

RðrÞ ¼ 6Λ −
16K
Ar

; ð55Þ

VðrÞ ¼ BðABΛþ 4KÞ
8ðBþ rÞ3 −

3ABΛþ 8K
8BðBþ rÞ −

K
B2

ln

�
Bþ r
r

�
;

ð56Þ

fðrÞ ¼ −
2K
Br

þ 2K
B2

ln
�
Bþ r
r

�
; ð57Þ

fðRÞ ¼ AR
8B

−
3AΛ
4B

þ 2K
B2

ln

�
6ABΛ − ABRþ 16K

16K

�
;

ð58Þ

FIG. 3. The Hawking temperature and Bekenstein-Hawking entropy are plotted with different scalar charges A, where other
parameters have been fixed as B ¼ 1 and K ¼ −5.

FIG. 4. The Bekenstein-Hawking entropy as a function of the
scalar charge A, where other parameters have been fixed as
B ¼ 1, K ¼ −5 and c3 ¼ 1.
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VðϕÞ ¼ −
Kϕ2

AB
−
3Λϕ2

8
þ B2Λϕ6

8A2
þ BKϕ6

2A3

þ K
B2

ln

�
A

A − Bϕ2

�
: ð59Þ

The fðRÞ model avoids the aforementioned tachyonic
instability when fRR > 0, and for the obtained fðRÞ
function we have

fRR ¼ −
A2r2

128KðBþ rÞ2 > 0 ⇒ K < 0: ð60Þ

For a particular combination of the scalar charges:
B ¼ A=8, the fðRÞ model is simplified and takes the form:

fðRÞ ¼ R − 6Λþ 128K
A2

ln

�
1 −

A2ðR − 6ΛÞ
128K

�
ð61Þ

The metric function (54) as we can see, is similar to the
BTZ black hole with the addition of aOðrÞ term because of
the presence of the scalar field, and this term gives Ricci
scalar its dynamical behavior. The potential satisfies the
conditions

Vðr → ∞Þ ¼ Vðϕ → 0Þ ¼ 0; ð62Þ

and also V 0ðϕ ¼ 0Þ ¼ 0. It has a mass term which is
given by

m2 ¼ V 00ðϕ ¼ 0Þ ¼ −
3

4
Λ: ð63Þ

The metric function for Λ ¼ −1=l2 (AdS spacetime) and
for A;B > 0 has a positive root, since K < 0. For Λ ¼ 1=l2

(dS spacetime) the metric function is always negative
provided for A;B > 0 and K < 0, therefore we will discuss
only the AdS case.
The horizon is located at

rþ ¼ 2lð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð4Kl2 − ABÞ

p
− 2KlÞ

A
; ð64Þ

where we have set Λ ¼ −1=l2. As we can see, in this fðRÞ
gravity theory we have a hairy black hole supported by a
phantom scalar field.
In Fig. 5 we show the behavior of the metric function

bðrÞ, the potential VðrÞ, the dynamical Ricci scalar RðrÞ
and the fðRÞ function. As can be seen in the case of
B ¼ A=8, the scalar charge A plays an important role on the
behavior of the above functions. For example if the scalar
charge A is getting smaller values the radius of the horizon
of the black hole is getting larger. This means that even a
small distribution of phantom matter can support a hairy
black hole.
Looking at the thermodynamic properties of the model

the Hawking temperature at the horizon is given by

FIG. 5. We plot the metric function, the potential, the Ricci scalar and the fðRÞ function of the phantom black hole for different scalar
charge A, where other parameters have been fixed as B ¼ A=8, K ¼ −1 and Λ ¼ −1.
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TðrþÞ ¼
2K
πA

þ rþ
2πl2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð4Kl2 − ABÞ

p
πAl

; ð65Þ

which is always positive for A; B > 0 and K < 0, while the
Bekenstein-Hawking entropy is given by

SðrþÞ ¼
A
4G

fRðrþÞ ¼ 4π2rþfRðrþÞ

¼ Aπ2rþ
2ðBþ rþÞ

¼ −
π2AKlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kð4Kl2 − ABÞ
p > 0: ð66Þ

For the thermodynamic behavior of the hairy black hole
we can see from Fig. 6 that for larger scalar charge Awe are
getting smaller temperatures, while the entropy has the
opposite behavior.

IV. CONCLUSIONS

In this work, we considered (2þ 1)-dimensional fðRÞ
gravity with a self interacting scalar field as a matter
field. Without specifying the form of the fðRÞ function
we derived the field equations and we showed that
the fðRÞ model has a direct contribution from the scalar
field. At first we considered the case, where fRðrÞ ¼
1 −

R R
ϕ0ðrÞ2drdr, which indicates that if we integrate

with respect to the Ricci scalar we will obtain a pure
Einstein-Hilbert term and another term that depends on the
scalar field. The asymptotic analysis of the metric function
unveiled the physical meaning of our results. At infinity we
obtain a scalarized BTZ black hole. The scalar charges
appear in the effective cosmological constant that is
generated from the equations. Corrections in the form of
spacetime appear as Oðr−nÞ (where n ≥ 1) terms that
depend purely on the scalar charges. At the origin we
obtain a different solution from the BTZ black hole, where
OðrÞ and Oðr2 lnðrÞÞ terms change the form of spacetime.
The scalar curvature is dynamical and due to its com-

plexity it was difficult to obtain an exact form of the fðRÞ
function. Using asymptotic approximations, we show that
the scalar charges make our theory to deviate form

Einstein’s Gravity. In the obtained results we considered
the Dolgov-Kawasaki stability ctiterion [47] to ensure
that our theory avoids tachyonic instabilities [30–32].
We then calculated the Bekenstein-Hawking entropy and
the Hawking temperature of the solution and we showed
that the hairy solution is thermodynamically preferred since
it has higher entropy.
We then considered a pure fðRÞ theory supported by the

scalar field. We showed that thermodynamic and observa-
tional constraints require that the pure fðRÞ theory should
be builded with a phantom scalar field. The black hole
solution we found has a metric function which is similar to
the BTZ solution with the addition of a OðrÞ term. The
scalar charge is the one that determines the behavior of the
solution. For bigger scalar charge, the horizon radius is
getting smaller meaning that the black hole is formed closer
to the origin. The OðrÞ term is the one that gives to the
Ricci scalar its dynamical behavior. The obtained fðRÞ
model is free from tachyonic instabilities. We computed
the Hawking temperature and the Bekenstein-Hawking
entropy to find out that they are both positive, with the
temperature getting smaller with the increase of the scalar
charge while the entropy behaves the opposite way, grow-
ing with the increase of the scalar charge.
In the fðRÞ gravity theories if a conformal transforma-

tion is applied from the original Jordan frame to the
Einstein frame then, a new scalar field appears which is
coupled minimally to the conformal metric and also a scalar
potential is generated. The resulted theory can be consid-
ered as a scalar-tensor theory with a geometric (gravita-
tional) scalar field. Then it was shown in [67,68], that this
geometric scalar field cannot dress a fðRÞ black hole with
hair. On the other hand on cosmological grounds, it was
shown in [41] that dark energy can be considered as a
geometrical fluid that adds to the conventional stress-
energy tensor, which means that the determination of the
dark energy equation of state depends on the understanding
of which fðRÞ theory better fits current data. In our study
we have introduced real matter parametrized by a scalar
field coupled to gravity, therefore, it would be interesting to
study the interplay of the geometric scalar field with the

FIG. 6. The temperature and the entropy at the horizon of the black hole, as functions of the scalar charge A while changing scalar
charge B.
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matter scalar field and see what are their implications to
cosmology. However, to study this effect we have to extend
this work to a study of (3þ 1)-dimensional fðRÞ gravity
theories. The main difficulty of constructing such theories
is the complexity of their resulting equations. Nevertheless,
even numerically we can get important information of how
matter is coupled to fðRÞ gravity and what are the
cosmological implications.
It would be interesting to extent this theory including an

electromagnetic field. In three dimensions the electric
charge makes a contribution to the Ricci scalar, therefore

we expect, like in the BTZ black hole, to find a charged
hairy black hole in fðRÞ gravity. One could also study the
properties of the boundary CFT, consider a rotationally
symmetric metric anstaz to find rotating hairy black holes
or study hairy axially symmetric solutions from hairy
spherically symmetric solutions [69].
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