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The spacetime of a boosted Bondi-Sachs rotating black hole is considered as a proper background to
examine electromagnetic configurations connected to analytic solutions of Maxwell equations. In our
analysis, we first use the Bondi-Sachs transformations in order to bring the boosted rotating black hole
metric into the Kerr-Schild form, from which zero angular momentum observers (ZAMOs) are constructed
via the ADM formalism. In Kerr-Schild coordinates, we obtain the Killing fields as sources of Maxwell
electrodynamics, and we fix a ZAMO in order to evaluate the components of the electric and magnetic
fields, from which we obtain nonsingular patterns of an eventual momentum-energy emission of a boosted
Kerr-Schild black hole. Distinct patterns are examined and discussed in the case of variations of the boost
parameter γ. We extend our analysis by considering the nonsingular electromagnetic emission in the
framework of a boosted Bondi-Sachs rotating black hole, as it moves at relativistic speeds. We also discuss
possible mechanisms that may resemble magnetospheres of rotating boosted black holes and give rise to
hydromagnetic flows from accretion discs and to the production of jets.
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I. INTRODUCTION

The recent direct observations of the gravitational wave
emission from binary black hole mergers by the LIGO
Scientific Collaboration and the Virgo Collaboration [1–4]
established that the initial black holes of each binary had
mass ratios α’s ranging from α ≃ 0.8 to ≃0.53. In this sense,
the remnant black hole description must contain additional
parameters—boost parameters—connected to its motion
relative to the observation frame [5].
The boosted black hole solution can actually be a natural

set for astrophysical processes related to the asymmetry of
the ergosphere and to the electrodynamics effects that result
from the rotating black hole moving at relativistic speeds in
a direction coinciding or not with the rotation axis. This is
the case of an astrophysical configuration in which external
gas can support electric currents that create large-scale
magnetic fields. Motion of black holes in this externally
supplied magnetic field can then lead to an electromagnetic
extraction of energy.
Qualitatively, there are two distinct possibilities for the

electromagnetic extraction of energy from spiraling black
holes. In the first, the system of two orbiting black holes
possesses nonzero angular momentum, which induces

rotation of spacetime. Rotating spacetimes can generate
electromagnetic outflows, in a manner similar to the
classical Faraday disk. This is the physics behind the
Blandford-Znajek process [6] of extracting the rotational
power of a black hole. This mechanism is also known as the
Faraday disk mechanism. It has also been considered by
Lyutikov [7], where the total energy loss from a system of
merging black holes is a sum of two components, one due
to the rotation of spacetime driven by the nonzero angular
momentum in the system, and the other due to the linear
motion of the black holes through the magnetic field. In the
second, Morozova et al. [8] derived analytic solutions of
the Maxwell equations for a rotating black hole moving at
constant speed in an asymptotically uniform magnetic test
field; electromagnetic energy losses computed from
charged particles accelerated along the magnetic field lines
constitute a numerical estimate that approximates numeri-
cal relativity calculations in a force-free magnetosphere.
Apart from the above mentioned processes, it has also

been shown [9] that black holes can also power jets as long
as they carry linear momentum and/or orbital momentum.
Such jets are proportional to the black hole’s velocity, mass,
and magnetic flux. It is argued that such jets extract kinetic
energy stored in the black hole’s motion and that this
mechanism is analogous to that of the energy extraction
from Kerr black holes.
In the vein of the above calculations, we intend here to

examine how efficiently the rotational energy of an isolated
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boosted Kerr black hole can be extracted by a magnetic
field even in the absence of currents and charges. The boost
can annulate the Meissner effect [10], allowing instead for
jets connected to the mechanism of Blandford and
Znajek [6].
The spacetime of the boosted Kerr black hole is here

described as a solution of Einstein’s equations at the future
null infinity, in the Bondi-Sachs (B-S) coordinates [11], as
well as in Robinson-Trautman and Kerr-Schild (K-S)
coordinates [5,12]. We organize the paper as follows. In
Sec. II, we bring the boosted rotating black hole metric [11]
into the Kerr-Schild form in order to fix a proper observer
[zero angular momentum observer (ZAMO)]. In Sec. III,
we build a Maxwell test field based on spacetime isometries
using Killing vectors. All the components of the electro-
magnetic field—with respect to the ZAMO—are evaluated.
Section IV is devoted to numerical simulations of magnetic
fields in boosted rotating black holes in the K-S frame.
Analogous simulations for the case of a B-S frame are
carried out in Sec. V. Final remarks and discussions on
future developments are the object of Sec. VI.

II. THE BOOSTED ROTATING BLACK HOLE
METRIC IN THE KERR-SCHILD FORM

Let us consider the metric of a boosted rotating black
hole in which the boost is along the axis of rotation with
respect to an asymptotic Lorentz frame at future null
infinity. In its original form [11], the line element in
Bondi-Sachs coordinates ðU;R;Θ;ΦÞ is expressed as

ds2 ¼ ðR2 þ Σ2ðΘÞÞðdΘ2 þ sin2ΘdΦ2Þ

− 2ðdU þ ωbðΘÞsin2ΘdΦÞ
�
dR −

ωbðΘÞsin2Θ
K2ðΘÞ dΦ

�

− ðdU þ ωbðΘÞsin2ΘdΦÞ2
�

1

K2ðΘÞ −
2mbðΘÞR
R2 þ Σ2ðΘÞ

�

þO
�
1

R2

�
; ð1Þ

where

KðΘÞ ¼ cosh γ þ sinh γ cosΘ; ð2Þ

ΣðΘÞ ¼ ωbðΘÞ
KðΘÞ ðsinh γ þ cosh γ cosΘÞ; ð3Þ

ωbðΘÞ ¼
w

KðΘÞ ; mbðΘÞ ¼
m0

K3ðΘÞ : ð4Þ

Here KðΘÞ defines the Lorentz boost of the Bondi-Sachs
group [13,14] and γ is the boost parameter. Also, ω is the
rotation parameter andm0 is the black hole mass. From (1),
it is easy to see that the leading components of the Einstein
tensor are of the order OðR−2Þ or higher so that at future
null infinity Gμν ≃ 0.
Applying the Bondi-Sachs transformations [15,16]

dU=du ∼ KðΘÞ;
R ∼ r=KðΘÞ;

dR=dr ∼ 1=KðΘÞ; ð5Þ

so that asymptotic Bondi-Sachs conditions are satisfied, the
metric (1) can be rewritten in terms of the Robinson-
Trautman coordinates ðu; r;Θ;ΦÞ as

ds2 ¼ −
�
1 −

2rmbðΘÞK3ðΘÞ
r2 þ Σ̃2ðΘÞ

�
du2 − 2dudr

þ 4rmbðΘÞK2ðΘÞωbðΘÞsin2Θ
r2 þ Σ̃2ðΘÞ dudΦ

−
2ωbðΘÞsin2Θ

KðΘÞ drdΦþ r2 þ Σ̃2ðΘÞ
K2ðΘÞ dΘ2

þ sin2Θ
�
r2 þ Σ̃2ðΘÞ þ sin2ΘωbðΘÞ

K2ðΘÞ

þ 2rKðΘÞmbðΘÞωbðΘÞsin2Θ
r2 þ Σ̃2ðΘÞ

�
dΦ2 þO

�
1

r2

�
; ð6Þ

where Σ̃ðΘÞ≡ KðΘÞΣðΘÞ. Finally, in order to fix a
preferred (1þ 3) foliation of the spacetime via the ADM
formalism, we take into account the transformation
u ¼ t − r. In this case, the geometry (6) can be rewritten
in Kerr-Schild coordinates ðt; r;Θ;ΦÞ as

ds2 ¼ −
�
1 −

2rmbðΘÞK3ðΘÞ
r2 þ Σ̃2ðΘÞ

�
dt2 −

4rK3ðΘÞmbðΘÞ
r2 þ Σ̃2ðΘÞ dtdrþ 4rmbðΘÞK2ðΘÞωbðΘÞsin2Θ

r2 þ Σ̃2ðΘÞ dtdΦ

þ
�
1þ 2rmbðΘÞK3ðΘÞ

r2 þ Σ̃2ðΘÞ
�
dr2 − 2ωbðΘÞsin2Θ

�
1

KðΘÞ þ
2rK2ðΘÞmbðΘÞ
r2 þ Σ̃2ðΘÞ

�
drdΦ

þ r2 þ Σ̃2ðΘÞ
K2ðΘÞ dΘ2 þ sin2Θ

�
r2 þ Σ̃2ðΘÞ þ sin2ΘωbðΘÞ

K2ðΘÞ þ 2rKðΘÞmbðΘÞωbðΘÞsin2Θ
r2 þ Σ̃2ðΘÞ

�
dΦ2 þO

�
1

r2

�
: ð7Þ
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The leading components of the Einstein tensor of (7) are of
the orderOðr−2Þ or higher so that at future infinity Gμν ≃ 0,
as should be expected.
In Fig. 1, we plot, respectively, the sections of the

ergosphere Rstat (black line) and of the event horizon RH
(blue line) by a plane containing the z-axis. In the second
case, the ergosphere is deformed due to a nonvanishing
Lorentz boost present in (7).

In order to fix a ZAMO, we evaluate the lapse function
N, the shift Ni, and the spatial metric γij of (7). Writing the
ADM decomposition of (7) as

ds2 ¼ −N2dt2 þ γijðdxi − NidtÞðdxj − NjdtÞ; ð8Þ

the lapse function, the shift, and the spatial metric read

N ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rK3ðΘÞmbðΘÞ

�
1

r2 þ 2rK3ðΘÞmbðΘÞ þ Σ̃2ðΘÞ −
2

r2 þ Σ̃2ðΘÞ
�s
; ð9Þ

Ni ¼ 2rK3ðΘÞmbðΘÞ
r2 þ 2rK3ðΘÞmbðΘÞ þ Σ̃2ðΘÞ δ

i
r; ð10Þ

γij ¼ 1þ 2rK3ðΘÞmbðΘÞ
r2 þ Σ̃2ðΘÞ δriδ

r
j − ωbðΘÞsin2Θ

�
1

KðΘÞ þ
2rK2ðΘÞmbðΘÞ
r2 þ Σ̃2ðΘÞ

�
δriδ

Φ
j þ

r2 þ Σ̃2ðΘÞ
K2ðΘÞ δΘiδ

Θ
j

þ sin2ðΘÞ
�
r2 þ ω2

bðΘÞsin2Θþ Σ̃2ðΘÞ
K2ðΘÞ þ 2rKðΘÞmbðΘÞω2

bðΘÞsin2Θ
r2 þ Σ̃2ðΘÞ

�
δΦiδ

Φ
j: ð11Þ

For the case of a radially falling ZAMO [17], the 4-
velocity uμ is given by

uμ ¼
�
1

N
;
Nr

N
; 0; 0

�
: ð12Þ

In the following section, we will examine electrodynamic
configurations in a boosted black hole as measured by
ZAMO observers assuming a Maxwell test field in the
background (7). However, at the final part of the paper, we

will approach the electrodynamics of the boosted BH as
described by Bondi-Sachs asymptotic observers at the
future null infinity of (1).

III. KILLING VECTORS AS A TEST
MAXWELL FIELD

It is well known that Killing vectors are solutions of
Maxwell equations for vacuum spacetimes [18,19]. In fact,
letKμ be the vector potential that defines the Faraday tensor
Fμν, namely,

FIG. 1. Plots of the sections of the ergospheres (black) and the horizons (blue) of a K-S black hole (7), by a plane containing the z-axis,
which is the rotation axis of the black holes. The parameters used in the plots are m0 ¼ 200, w0 ¼ 195 with γ ¼ 0 (left) and γ ¼ 1.0
(right). We note the deformation of the ergosphere for a nonzero boost parameter γ.
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Fμν ¼ ∇νKμ −∇μKν: ð13Þ

Assuming that Kμ is also a Killing vector, we obtain

Fμν ¼ −2∇μKν; ð14Þ

so that Maxwell equations in vacuum spacetime read

∇νFμν ¼ □Kμ ¼ 0: ð15Þ

However,

∇γ∇μKν −∇μ∇γKν ¼ −Rσ
νμγKσ; ð16Þ

where Rσ
νμγ is the Riemann tensor. Now, cyclic permuta-

tions of (16) yield

∇μ∇νKγ −∇ν∇μKγ ¼ −Rσ
γνμKσ ð17Þ

and

∇ν∇γKμ −∇γ∇νKμ ¼ −Rσ
μγνKσ: ð18Þ

Therefore, after subtracting (18) from the sum of (16) with
(17), we obtain

2∇μ∇νKγ ¼ −ðRσ
νμγ þ Rσ

γνμ − Rσ
μγνÞKσ

≡ 2Rσ
μγνKσ: ð19Þ

Hence,

□Kγ ¼ Rσ
γKσ; ð20Þ

and for a vacuum, spacetime equation (15) is automatically
satisfied.
The above geometry (7) allows us to identify the two

Killing vectors Γμ ¼ δμt and Ψμ ¼ δμΦ. We now evaluate
the Faraday tensor for both Killing vectors in Kerr-Schild
coordinates. In the present section, primes denote the
derivative with respect to Θ.
For the Killing vector Γμ, the nonvanishing components

of Fμν are given by [see (14)]

tF02 ≃ −tF12 ≃
2

r
ðK3mbÞ0; ð21Þ

tF23 ≃ −
4mbωbK sinΘ

r
ðsinΘKÞ0: ð22Þ

On the other hand, for the Killing vector Ψμ, the non-
vanishing components of Fμν read

ΦF02 ≃ 2
mbωb

r
ðK2sin2ΘÞ0; ð23Þ

ΦF12 ≃
2ωbsin2Θ

K2
ðK0 − K cotΘÞ

−
4mbωb sinΘ

r
ðK sinΘÞ0; ð24Þ

ΦF13 ≃ −
2rsin2Θ

K2
; ð25Þ

ΦF23 ≃
2r2sin2Θ

K3
ðK0 − K cotΘÞ

−
2 sinΘ
K5

½K3ω2
b sinΘ sin 2Θ − 2K2K0ω2

bsin
3Θ

þ K5ΣðΣ cosΘþ Σ0 sinΘÞ�

þ 8mbω
2
bsin

4Θ
r

ðK0 − K cotΘÞ: ð26Þ

By defining the Hodge dual by F μν ¼ 1
2
ϵμναβFαβ, we

obtain their correspondence,

tF 01 ≃ tF23; ð27Þ

tF 03 ≃ tF12; ð28Þ

tF 13 ≃ −tF02; ð29Þ

and

ΦF 01 ≃ ΦF23; ð30Þ

ΦF 02 ≃ −ΦF13; ð31Þ

ΦF 03 ≃ ΦF12; ð32Þ

ΦF 13 ≃ −ΦF02: ð33Þ

We are now in a position to evaluate the electric and
magnetic fields using their usual definitions, Eμ ¼ Fμ

νuν

and Bμ ¼ F μ
νuν. We obtain

tEμ ≃ ΦEμ ≃ 0: ð34Þ

On the other hand, for the magnetic fields, the leading
components are

tBr ≃ −
2K sinΘ

r
fωb½2mbðK sinΘÞ0

þ Km0
b sinΘ� þ Kmbω

0
b sinΘg; ð35Þ

tBΦ ≃ −
2K2

r
ð3mbK0 þm0

bKÞ; ð36Þ

and
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ΦBr ≃
2r2sin2Θ

K3
ðK0 − cotΘKÞ þ 2rmb sinΘðK cosΘ − K0 sinΘÞ

−
sinΘ
K3

½11m2
bK

6ðK cosΘ − K0 sinΘÞ − 2ω2
bK

0sin3Θþ 2Kωbsin2Θ × ð2ωb cosΘþ ω0
b sinΘÞ þ 2K3ΣðΣ sinΘÞ0�

þ sinΘ
r

f13K6m3
bðK0 sinΘ − K cosΘÞ þ 4mbω

2
bK

0sin3Θ − 2K2K0mbΣ2 sinΘ

þ 2Kωbsin2Θ½ωbm0
b sinΘþmbð2 cosΘωb þ ω0

b sinΘÞ� − K3mb sinΘðΣ2Þ0g; ð37Þ

ΦBΘ ≃
2r sinΘ
K2

− 2Kmbsin2Θþ 11K4m2
bsin

2Θ
r

; ð38Þ

ΦBΦ≃
sinΘ
K2

½ωbK0 sinΘ−Kð2ωb cosΘþω0
b sinΘÞ�−

K sinΘ
r

f5mbωbK0 sinΘþK½2ωbðmb sinΘÞ0 þmbω
0
b sinΘ�g: ð39Þ

It is worth remarking that the components of the electric
field of the boosted Kerr black holes, given in (1), (6), and
(7), fall with powers of Oðr−2Þ or higher. In this sense, the
electric field can be safely neglected. We must also notice
that the coordinate transformations ðu; r;Θ;ΦÞ →
ðt; r;Θ;ΦÞ corresponding, respectively, to (6) and (7) act
as a frame transformation.

IV. THE MAGNETIC FIELDS IN BOOSTED
ROTATING BLACK HOLES

We are now ready to discuss the physical issues of
electromagnetic test fields in the gravitational background
of a boosted rotating black hole. In the present section, we
are restricted to the K-S metric (7) with coordinates
ðt; r;Θ;ΦÞ. As discussed previously, these electromagnetic
fields are connected to the two Killing vectors of the
geometry of the black hole, namely, ð∂=∂tÞ and ð∂=∂ΦÞ,
cf. [17,18]. As mentioned above, the associated electric
fields can be safely neglected so that the electromagnetic
field generated by the geometry (7) is purely magnetic—the
components of such magnetic fields are given by (35)–(39).
It is worth noticing that the magnetic field connected to

the Killing vector ð∂=∂tÞ is planar, corresponding to
components in the plane ðr;ΘÞ only; see (35) and (36).
Furthermore, remembering that mb ¼ m0

K3ðΘÞ, from (36), we

obtain

tBΦ ¼ −2
K2

r

�
3m0K0

K3
− 3

m0K0

K4
K

�
¼ 0:

Hence, the only non-null component of the magnetic field
tB is therefore tBr. A further simplification results in

tBr ¼ −
4m0w0 sinðΘÞðcoshðγÞ cosðΘÞ þ sinhðγÞÞ

rðsinhðγÞ cosðΘÞ þ coshðγÞÞ3 : ð40Þ

In Fig. 2, we show the behavior of electromagnetic
configurations in a boosted Kerr-Schild black hole (7) as

measured by ZAMO observers. As seen from above, the
electromagnetic field generated by the background geom-
etry is purely magnetic. The top and the bottom rows are
distinguished by boost parameters. In fact, the parameters
used in these plots are m0 ¼ 200, w0 ¼ 195, with boosts,
respectively, γ ¼ 0 (top) and γ ¼ 1.0 (bottom). On the left
panels, we show the magnetic field (40). The small arrows
indicate the direction of the magnetic lines flowing asymp-
totically along the z-axis in the direction opposite to that of
the boost. The arrows plotted in the figures also vary in
length and width according to the intensity of the magnetic
field at its location. It is to mention that for a boosted
configuration (bottom panel, γ ¼ 1) there is a collimation
of the magnetic field, marked by bold arrows pointing
outward. A change in their direction (inward/outward) is
verified when Θ satisfies

cosðΘÞ ¼ − tanhðγÞ;

which happens at approximately 3π=4 and 5π=4. For γ ¼ 0,
this change occurs in the equatorial plane. In the middle
column of Fig. 2, we display the modulus of the magnetic
fields jtBj2 contained purely in the plane ðr;ΘÞ. For γ ¼ 0,
the square of the magnetic field presents four intense
symmetric lobes, the intensity of which is dominant in
the ergosphere. For the boosted case γ ¼ 1.0 (bottom
panel), we observe two intense lobes about the direction
opposite to the boost. This remarkable structure can be
responsible for a mechanism by which the BH possibly
ejects magnetic energy from the ergosphere. Finally, for
effect of comparison, we plot the modulus jΦBj2 (left
column). We remark that the modulus of the amplitude
jΦBj2 is 6 orders of magnitude higher than the amplitude of
jtBj2 in both cases: nonboosted γ ¼ 0 (top) and boosted
γ ¼ 1 (bottom). This highest intensity of the magnetic field
is collimated about the opposite direction of the boost (case
of a K-S black hole). We finally remark that the magnetic
flux lines can be analytically extended beyond the event
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horizon. We did not examine this possibility as the interior
is a black hole.
In Fig. 3, we show the plots of the intensity of the

magnetic field scalar ðΦFμν
ΦFμνÞ for the parameters

m0 ¼ 200, w0 ¼ 195. The respective boost parameters
are γ ¼ 0 (left plot), γ ¼ 0.5 (middle plot), and (γ ¼ 1.0)
(right plot). We can see that the magnetic field scalar
separates domains of intensity in the plots. For γ ¼ 0, the

FIG. 2. Electromagnetic configurations in a boosted Kerr-Schild black hole (7) as measured by ZAMO observers, assuming a Maxwell
test field in the metric background (7). The parameters used in these plots arem0 ¼ 200, w0 ¼ 195, with boosts, respectively, γ ¼ 0 (top
row) and γ ¼ 1.0 (bottom row). A nonzero γ deforms the ergosphere as should be expected. On the left column, we show the magnetic
field (40). The small arrows indicate the direction of the magnetic lines flowing asymptotically along the z-axis in the direction opposite
to that of the boost. In the middle column, we display the modulus of the magnetic fields jtBj2 which is contained purely in the plane
ðr;ΘÞ. For the boosted case γ ¼ 1.0 (top panel), we observe two intense lobes about the direction opposite to that of the boost. In the
right column, we plot the modulus of jΦBj2 for effect of comparison. In these plots, the color scales characterize the intensity of the
modulus of the respective magnetic fields in the plane ðr;ΘÞ. We can see that the maximum of the flows for both cases γ ¼ 0 and γ ¼ 1.0
are of the same order. However, for increasing γ’s, the maximum of the modulus of the intensity is more collimated about the z-axis, in
the direction opposite to that of the boost. Although the magnetic flux lines can be analytically extended beyond the event horizon, we
did not examine this possibility as the interior is a black hole.

FIG. 3. Plots of the intensity of the magnetic field scalar ðΦFμν
ΦFμνÞ in the case of a Kerr-Schild black hole. The parameters used for

the three plots are m0 ¼ 200, w0 ¼ 195, with respective boost parameters γ ¼ 0 (left plot), γ ¼ 0.5 (middle plot), and (γ ¼ 1.0) (right
plot). We can see that the magnetic field scalar separates domains of intensity in the plots.
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magnetic field scalar ðΦFμν
ΦFμνÞ presents two symmetric

lobes. As can be seen from the middle and right panels,
apart from the ergosphere deformation, such lobes are also
bended due to an increasing boost parameter.

V. THE MAGNETIC FIELDS IN BONDI-SACHS
BOOSTED ROTATING BLACK HOLES

Our previous discussions were based on the Kerr-Schild
black hole metric (7) where we examined nonsingular
electromagnetic configurations as measured by ZAMOs.
There we evaluated the Faraday tensor for both Killing
vectors in the Kerr-Schild metric, which turned out to be
nonsingular and purely magnetic. As already discussed, the
Kerr-Schild metric resulted from applying the Bondi-Sachs
transformations (5) leading (1)–(7), modulo a transforma-
tion from Robinson-Trautman coordinates (6) to the Kerr-
Schild coordinates of (7).

In this section, we apply these same transformations in
the components of electromagnetic fields. Again, the
background geometry generates purely magnetic fields
[electric fields fall with power OðR−2Þ or higher]. In this
sense, we are in a position to examine the electromagnetic
test fields of a Bondi-Sachs boosted rotating black hole (1)
described by Bondi-Sachs asymptotic observers at the
future null infinity. In other words, since ZAMOs cannot
be defined in the Bondi-Sachs spacetime (1), we use the
transformations (5) in evaluating the respective equivalents
of the electric and magnetic fields in B-S spacetime. Since
the Killing vectors ∂=∂U and ∂=∂t differ only by a KðΘÞ
factor, and the azimutal vector fields in both coordinates are
the same, we are able to apply (5) to transform the magnetic
field from Kerr-Shild to Bondi-Sachs coordinates [20].
Thus, the magnetic fields associated to the Killing vectors
∂=∂t and ∂=∂Φ in B-S coordinates result as

tBU ¼ 2 sinðΘÞKðωbð2mbðsinðΘÞK0 þ cosðΘÞKÞ þ sinðΘÞKm0
bÞ þ sinðΘÞKmbω

0
bÞ

R
; ð41Þ

tBR ¼ −
2 sinðΘÞðωbð2mbðsinðΘÞK0 þ cosðΘÞKÞ þ sinðΘÞKm0

bÞ þ sinðΘÞKmbω
0
bÞ

RK
; ð42Þ

and

ΦBU ¼ −11sin2ðΘÞK4m2
bK

0 þ 2ΣðΘÞ2sin2ðΘÞK2mbK0

R
−
13sin2ðΘÞK6m3

bK
0

R
þ 2Rsin2ðΘÞK2mbK0

−
4sin4ðΘÞmbω

2
bK

0

R
− 2R2sin2ðΘÞK0 −

2sin4ðΘÞω2
bK

0

K2
þ 2ΣðΘÞsin2ðΘÞKΣ0ðΘÞ þ 2ΣðΘÞ2 sinðΘÞ cosðΘÞK

−
2sin4ðΘÞKω2

bm
0
b

R
þ 11 sinðΘÞ cosðΘÞK5m2

b þ
2ΣðΘÞsin2ðΘÞK3mbΣ0ðΘÞ

R
þ 13 sinðΘÞ cosðΘÞK7m3

b

R

− 2R sinðΘÞ cosðΘÞK3mb −
2sin4ðΘÞKmbωbω

0
b

R
−
4sin3ðΘÞ cosðΘÞKmbω

2
b

R
þ 2R2 sinðΘÞ cosðΘÞK

þ 2sin4ðΘÞωbω
0
b

K
þ 4sin3ðΘÞ cosðΘÞω2

b

K
; ð43Þ

ΦBR ¼ 11sin2ðΘÞK2m2
bK

0 −
2ΣðΘÞ2sin2ðΘÞmbK0

R
þ 13sin2ðΘÞK4m3

bK
0

R
− 2Rsin2ðΘÞmbK0

þ 4sin4ðΘÞmbω
2
bK

0

RK2
þ 2R2sin2ðΘÞK0

K2
þ 2sin4ðΘÞω2

bK
0

K4
−
2ΣðΘÞsin2ðΘÞΣ0ðΘÞ

K
−
2ΣðΘÞ2 sinðΘÞ cosðΘÞ

K

þ 2sin4ðΘÞω2
bm

0
b

RK
− 11 sinðΘÞ cosðΘÞK3m2

b −
2ΣðΘÞsin2ðΘÞKmbΣ0ðΘÞ

R
−
13 sinðΘÞ cosðΘÞK5m3

b

R

þ 2R sinðΘÞ cosðΘÞKmb þ
2sin4ðΘÞmbωbω

0
b

RK
þ 4sin3ðΘÞ cosðΘÞmbω

2
b

RK
−
2R2 sinðΘÞ cosðΘÞ

K
−
2sin4ðΘÞωbω

0
b

K3

−
4sin3ðΘÞ cosðΘÞω2

b

K3
; ð44Þ

ΦBΘ ¼ −2sin2ðΘÞKmb þ
11sin2ðΘÞK3m2

b

R
þ 2R sinðΘÞ

K
; ð45Þ

ΦBΦ ¼ −5sin2ðΘÞmbωbK0 − 2sin2ðΘÞKωbω
0
b − sin2ðΘÞKmbω

0
b − 2 sinðΘÞ cosðΘÞKmbωb

R

þ sin2ðΘÞωbK0 − sin2ðΘÞKω0
b − 2 sinðΘÞ cosðΘÞKωb

K2
: ð46Þ
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To start, let us consider the Kerr-Schild metric (7) in
which the event horizon is defined as grr ¼ 0. It is a
straightforward result that the B-S transformations (5) lead
the Kerr-Schild metric (7) to the Bondi-Sachs geometry (1),
where the two-dimensional event horizon reads gRR ¼ 0. In
this case, the ergosphere and the event horizon are
deformed by the presence of the boost as illustrated in
Fig. 4. In this figure, we illustrate electromagnetic con-
figurations in a boosted Bondi-Sachs black hole (1) with a

Maxwell test field. Apart from the horizon deformation,
here we observe the same qualitative behavior as in the K-S
case. We remark that in our approach we considered the
separatrix surface in which the arrows change their direc-
tion and obey the same rule as the K-S case. In Fig. 5, we
plot the intensity of the magnetic field scalar ðΦFμν

ΦFμνÞ in
the case of a Bondi-Sachs black hole. The parameters used
for the three plots arem0 ¼ 200, w0 ¼ 195, with respective
boost parameters γ ¼ 0 (left plot), γ ¼ 0.5 (middle plot),

FIG. 4. Electromagnetic configurations in a boosted Bondi-Sachs black hole (1) with a Maxwell test field. Analogous to the case in (7)
the background geometry is purely magnetic. The parameters used in these plots are m0 ¼ 200, w0 ¼ 195, with boosts, respectively,
γ ¼ 0 (top row) and γ ¼ 1.0 (bottom row). The qualitative behavior is analogous to that of the K-S case apart from the fact that a nonzero
γ deforms the event horizon as well. Again, the magnetic flux lines can be analytically extended beyond the event horizon.

FIG. 5. Plots of the intensity of the magnetic field scalar ðΦFμν
ΦFμνÞ in the case of a Bondi-Sachs black hole. The parameters used for

the three plots are m0 ¼ 200, w0 ¼ 195, with respective boost parameters γ ¼ 0 (left plot), γ ¼ 0.5 (middle plot), and (γ ¼ 1.0) (right
plot). We can see that the magnetic field scalar separates domains of intensity in the plots.
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and (γ ¼ 1.0) (right plot). We can see that the magnetic
field scalar separates domains of intensity in the plots. For
γ ¼ 0, the magnetic field scalar ðΦFμν

ΦFμνÞ presents two
symmetric lobes. As can be seen from the middle and right
panels, apart from the ergosphere and horizon deformation,
such lobes are also bended due to an increasing boost
parameter.
At this stage, we must call attention to the following

point. It is well known that general relativity is a theory of
gravitation invariant under diffeomorphisms and this is the
reason why quantities like FμνFμν are called invariants.
However, it is worth noticing that transformations (5)
leading (1)–(7) are not diffeomorphisms so that quantities
like FμνFμν are not invariant under general coordinate
transformations. On the other hand, it can be easily seen
from Figs. 3 and 5 that apart from the event horizon
deformation, the overall pattern is slightly the same. Such a
feature could be expected once the metric (7) satisfies
Einstein field equations in the same scale of energy/
curvature as that of (1).

VI. FINAL REMARKS

In this paper, we develop a study concerning the
electromagnetic fields in the presence of a Kerr-boosted
black hole. Here we use a method through the choice of a
Kerr-boosted metric [11] written in different coordinate
systems, namely, Bondi-Sachs, Robinson-Trautman, and
Kerr-Schild coordinates, in this order. These options gave
us a flexible analysis where the several features could be
explored. The transformation from B-S into K-S coordi-
nates is necessary to make possible to define a ZAMO.
These are the proper observers which measure Maxwell
fields around the black hole. Such electromagnetic fields
are engendered from Killing vectors which arise from
spacetime isometries. It is also important to note that this
method considers a metric which comes originally from a
general twisting spacetime whose boost (along the sym-
metry rotation axis) is given by the BMS group [11] as it
should be in the context of the characteristic initial value
problem.
The spacetime considered is expanded in a 1=r series

and, up to the first order, the metric can be shown as a
solution of the Einstein equations. Through this spacetime,
we constructed the Maxwell fields via isometries up to the
order considered and show that all electric field compo-
nents are null differently of its magnetic counterparts. In

this sense, we can say we have a case, up to this order,
similar to a quasineutrality regime as seen in some plasmas.
We will explore this in a future work.
For this purely magnetic field written in K-S coordinates,

the vector fields are planar and we plot several figures in
which some features can be displayed. There is a separatrix
which divides the vector field in two regions, each one with
opposite directed vectors flowing asymptotically toward
the opposite direction of the boost along the z-axis. This
separatrix changes its direction as one changes the values of
the boost parameter from the equatorial plane, where the
boost parameter is equal to zero. In a similar manner, we
plot the square of the magnetic vector (for both Killing
vectors ∂=∂t and ∂=∂ϕ) and we observe that the direction
of the lobes depend on the boost parameters, similar to the
case mentioned above. The same separatrix discussion can
be made again for this second case.
Although it is not possible to obtain the ZAMO in B-S

coordinates, it is possible to obtain the components of the
magnetic fields through a direct transformation from its
K-S components. The electromagnetic scalars (not invar-
iants) are plotted and the magnetic field behaves in a similar
manner as seen for the K-S counterparts. The presence of
lobes is also noted and its distortion due to the boost
parameter is remarkable.
In the near future, we plan to investigate more features of

our method concerning both electromagnetic aspects and
some astrophysical scenarios. In this sense, we have
interest on the description of accelerated particles in this
background and analyze the electromagnetic waves emitted
in a process via Newman-Penrose formalism in a similar
way as seen in [21] and some characterization of electro-
magnetic potentials as in [22]. In the astrophysical envi-
ronment, we are also interested in few effects such as the
Meissner [10] and the Blandford-Znajek [6] processes—
already examined for the Kerr case. It would be also worth
to compare our method to some numerical results on
plasma simulations of black hole jets [23].
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