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We construct a toy model for isothermal spheres in Hořava gravity, which includes Einstein’s gravity if a
parameter is appropriately chosen. The equations for the isothermal spheres are derived from the partition
function of the gravitating particle system. We confirm that the Newtonian limit of the system coincides
with the model of the well-known isothermal sphere. The stability of the isothermal sphere is found to be
sensitive to the energy density at the center of the sphere.
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I. INTRODUCTION

An isothermal sphere is an ideal object, which, for a
long time, has been considered as a Newtonian body of a
self-gravitating gas as a model for a star [1], as well as
for a stellar cluster and a galaxy [2]. The isothermal
sphere has asymptotic density proportional to r−2 where r
is the distance from the center of a sphere, if the distance
is sufficiently large.1 At the same time, the isothermal
sphere is a nice theoretical laboratory for the self-
gravitational system, which has a novel thermodynamical
behavior [3–7].
The dark matter problem in the Universe has been widely

discussed, and several proposals have appeared with
candidates from particle physics [8,9]. On the other hand,
modified gravity has been proposed as an alternative to
dark matter [10,11]. Attempts to reproduce the density
profiles of galaxies have been made with both approaches,
but at present, they have not been firmly resolved. Both
modified gravity and unknown matter have the potential to
solve the problem.
Modification of the theory of gravity is also required

because of its consistency as a complete quantum theory,
and various attempts have been made, focusing on the
behavior of gravity in the UV region. In this paper, we
investigate the properties of the isothermal sphere in
Hořava gravity [12,13], which is one of the modified
gravity theories expected to be a UV complete theory.
By considering the isothermal gas sphere, it is easy to
understand whether the relativistic or modified theory of
gravity will be crucial for certain features of the isothermal

sphere, which have mainly2 been investigated in Newtonian
systems.3 The present study allows us to better understand,
in addition to the structure and nature of self-gravitational
systems, the modified gravity theories and the nature of
coupling to matter in a particular situation.4

One may suspect that the density profile of spheres at
large scales can be affected by the modification, which is
only expected at high energy regions. However, it has been
reported [20] that the structure of isothermal spheres in the
“softened” gravity is very different from the Newtonian
isothermal spheres. Softened Newton gravity has a small
constant scale in the gravitational potential. Thus, aside
from the magnitude of deviations, it is worth trying to
figure out whether some difference appears in the structure
of isothermal spheres in general relativity and modified
theories of gravity. Furthermore, it should be mentioned
that analyses of models of celestial bodies and galaxies
according to the fractional law of gravitation have also
appeared recently [21–26], and that the higher-derivative
modification of Newton’s law has also been considered
more recently [27].
The present paper is organized as follows: In Sec. II we

introduce the Hořava-type gravity that we consider in this
paper; in Sec. III the partition function of relativistic
particles coupled with the metric is discussed; in Sec. IV
we extract the classical equations of motion for isothermal
spheres from the total partition function of the gravitating
system; in Sec. V we illustrate the results for the isothermal

*kan@gifu-nct.ac.jp
†shiraish@yamaguchi-u.ac.jp
1Such a density profile can explain the flat rotation curves

found in many galaxies.

2Recently, thermodynamics of isothermal spheres in general
relativity has been reported in Ref. [14].

3Ultrarelativistic isothermal fluid models in the framework of
general relativity and a modified theory have been studied in
Refs. [15–18].

4The studies on stellar structure models in modified gravita-
tional theories are reviewed in [19].
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spheres in Einstein gravity and in Hořava gravity; Sec. VI
gives our conclusions.

II. HOŘAVA-TYPE GRAVITY

Since its proposal by Hořava [12,13], there have been
various versions of the Hořava gravity model [28,29].5 In
this paper, we pick out the simplest model among them
[31–33]. We study an ideal isothermal model in this first
step, and thus deal with the simplified Hořava gravity
model in this paper. However, its generalization will be
straightforward. The model can be regarded as a lowest-
order corrected, higher-derivative theory of gravity beyond
Einstein gravity.
The Hamiltonian formalism is adopted for the system

in the present analysis. We start with the ADM line
element [34],

ds2 ¼ −N2dt2 þ g̃ijðdxi þ NidtÞðdxj þ NjdtÞ; ð2:1Þ

where N is the lapse function, Ni (i, j ¼ 1, 2, 3) is the shift
vector, and g̃ij is the spatial metric. The Hamiltonian is then
written in the form

H ¼
Z

d3x
ffiffiffĩ
g

p
ðNHþ NiHiÞ; ð2:2Þ

where g̃ is the determinant of the matrix elements g̃ij. Here,
the Hamiltonian constraintH and the momentum constraint
Hi are given in the z ¼ 2model6 of Hořava gravity [12,31],

H ¼ κ2

2
ffiffiffĩ
g

p
�
πijπij −

λ

3λ − 1
ðπiiÞ2

�
− μ3R̃ −

κ2μ2ð4λ − 1Þ
32ð3λ − 1Þ R̃2

þ κ2μ2

8
R̃ijR̃ij; ð2:3Þ

Hi ¼ −2∇jπij; ð2:4Þ

with πij being the conjugate momentum of g̃ij, and R̃ and
R̃ij being the scalar curvature and the Ricci tensor con-
structed from g̃ij, respectively. Here, ∇i denotes the three-
dimensional covariant derivative, and the parameters κ and
λ are constants.7 In the case of λ ¼ 1, the Hamiltonian
density H becomes [31–33]

H¼ κ2

2
ffiffiffĩ
g

p
�
πijπij−

1

2
ðπiiÞ2

�
−μ3

�
R̃−

2

ω

�
R̃ijR̃ij−

3

8
R̃2

��
;

ð2:5Þ

with ω≡ 16μ
κ2
. Hereafter, we consider this Hořava-type

gravity model.
The higher-order terms are important when discussing

UV completion of quantum gravity, in general. We focus on
the lowest-order deviation from the general theory of
relativity in this model by considering the z ¼ 2 model.

III. GRAND CANONICAL PARTITION
FUNCTION FOR RELATIVISTIC PARTICLES

IN CURVED SPACETIME

We consider the constituent of isothermal spheres as an
ideal gas of noninteracting classical particles (which may
be celestial bodies). One can write the Hamiltonian of the
n-particle system in the background spacetime as

Hn ¼ N
Xn
a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃ijpa

i p
a
j þm2

q
; ð3:1Þ

where m is the common mass of the particles and pa
i

denotes the momentum of the ath particle located at qa.
Let us consider the grand canonical formalism for the

isothermal system. Then, the grand canonical partition
function at temperature T is written as [35]

ZG ¼
X∞
n¼0

zn

n!

Z Z Yn
a¼1

d3pad3qa
ð2πÞ3 e−βHn

¼
X∞
n¼0

zn

n!

Z Yn
a¼1

d3qa
ffiffiffĩ
g

p m3

2π2
K2ðβmNÞ
βmN

¼
X∞
n¼0

zn

n!

�Z
d3q

ffiffiffĩ
g

p m3

2π2
K2ðβmNÞ
βmN

�
n

¼ exp

�Z
d3x

ffiffiffĩ
g

p zm3

2π2
K2ðβmNÞ
βmN

�
; ð3:2Þ

where β ¼ 1=T and z is the activity. The special function
KνðzÞ is the modified Bessel function of the second kind.
Here, the background metric is assumed to be fixed or
nearly constant, as we consider only the adiabatic situation
or local equilibrium. It should be noted that, in the limiting
cases, the expression reduces to

zm3

2π2
K2ðβmNÞ
βmN

≈

8>><
>>:
z

�
m

2πβN

�
3=2

e−βmN βmN≫ 1

z
π2ðβNÞ3 βmN≪ 1.

ð3:3Þ

It is also noteworthy that the inverse temperature β appears
only as the combination βN ¼ β

ffiffiffiffiffiffiffiffiffiffi−g00
p

, as advocated by
Tolman [36].
Using the partition function, we find that the particle

number density is given by

5In addition, there are many modifications and extensions of
Hořava gravity, which are intended to improve the IR instability
in the original case. Please see Ref. [30] and references therein.

6The dynamical critical exponent z indicates that the mass
dimension of time is equal to −z [12,28].

7Hereafter, we use the traditional notation as in [31–33].
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np ¼ z
∂
∂z

�
zm3

2π2
K2ðβmNÞ
βmN

�
¼ zm3

2π2
K2ðβmNÞ
βmN

; ð3:4Þ

while the pressure of the gas is given by

P ¼ zm3

2π2
K2ðβmNÞ
β2mN2

¼ np
βN

; ð3:5Þ

and the energy density is given by

ρ ¼ −
1

N
∂
∂β

�
zm3

2π2
K2ðβmNÞ
βmN

�

¼ zm3

2π2βN

�
K1ðβmNÞ þ 3K2ðβmNÞ

βmN

�
: ð3:6Þ

It is easy to see that, in the well-known relativistic limit
βm ≪ 1, the equation of state becomes ρ ¼ 3P. Note that
P=ρ ≈ 0.01 for βmN ¼ 100, P=ρ ≈ 0.08 for βmN ¼ 10,
and P=ρ ≈ 0.1 for βmN ¼ 6.

IV. EQUATIONS FOR ISOTHERMAL SPHERES
FROM THE PARTITION FUNCTION

We consider the total adiabatic system of gravity coupled
to isothermal gas. The partition function can be represented
by the path integral of the variables if the spacetime is
approximately static. We assume that the shift vector

vanishes for nonrotating bodies, and the integration over
conjugate momentum πij is omitted.8 Then, the grand
canonical partition function in this system is written as

ZG¼
Z

½DN�½Dg̃ij�

×exp

�Z �
−βNH̄þzm3

2π2
K2ðβmNÞ
βmN

� ffiffiffĩ
g

p
d3x

�
; ð4:1Þ

where

H̄ ¼ −μ3
�
R̃ −

2

ω

�
R̃ijR̃ij −

3

8
R̃2

��
: ð4:2Þ

We can derive equations for the static equilibrium
configuration. Such equations are obtained by the evalu-
ation of the steepest descent or the variation of the total
Hamiltonian, which is described by the exponential in
(4.2). One can obtain the following classical equations of
motion from the variational principle:

R̃ −
2

ω

�
R̃ijR̃ij −

3

8
R̃2

�

¼ zm
μ3

m3

2π2
1

βmN

�
K1ðβmNÞ þ 3

βmN
K2ðβmNÞ

�

¼ 1

μ3
ρ; ð4:3Þ

N

�
R̃ij−

1

2
R̃g̃ij−

2

ω

�
2R̃ikR̃k

j −
1

2
R̃klR̃klg̃ij−

3

8

�
2R̃R̃ij−

1

2
R̃2g̃ij

���

−∇i∇jNþ∇2Ng̃ij−
2

ω

�
−∇k∇iðNR̃jkÞ−∇k∇jðNR̃ikÞþ∇k∇lðNR̃klÞþ∇2ðNR̃ijÞ−

3

8
ð−2∇i∇jðNR̃Þþ2∇2ðNR̃Þg̃ijÞ

�

¼ z
2βμ3

m3

2π2
K2ðβmNÞ
βmN

g̃ij ¼
N
2μ3

Pg̃ij; ð4:4Þ

where ∇2 ≡∇k∇k. Incidentally, the trace of (4.4) gives

−
1

2
NR̃þ 2∇2N −

2

ω

�
1

2
N

�
R̃ijR̃ij −

3

8
R̃2

�
þ ð∇k∇lNÞ

�
R̃kl −

1

2
R̃g̃kl

��
¼ 3z

2βμ3
m3

2π2
K2ðβmNÞ
βmN

¼ 3N
2μ3

P: ð4:5Þ

Note that the general relativistic case can be obtained if 2
ω → 0. Then, Eqs. (4.3) and (4.5) give the formal “classical”

equation for N:

1

N
∇2N ¼ z

4μ3
m4

2π2ðβmNÞ
�
K1ðβmNÞ þ 6

βmN
K2ðβmNÞ

�
¼ 1

4μ3
ðρþ 3PÞ: ð4:6Þ

The Newtonian limit is attained if N2 ≈ 1þ 2ϕ, g̃ij ≈ δij, βm ≫ 1, and μ3 ¼ 1
16πG, where G is Newton’s constant. Keeping

the lowest order terms, Eq. (4.6) leads to

8In other words, the graviton degrees of freedom are out of thermal equilibrium.
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∇2ϕ ¼ 4πGρ0e−βmϕ; ð4:7Þ

where we set ρ0 ≡ ze−βmmð m
2πβÞ3=2. This equation is already

known for the Newtonian isothermal gas [1–7].
Now, we discuss the case with spherical symmetry. If we

assume static, spherically symmetric space, we can take
Ni ¼ 0 in the ADM line element (2.1). Then, the metric
becomes

ds2¼−N2ðrÞdt2þ dr2

1− 2GMðrÞ
r

þr2ðdθ2þsin2θdφ2Þ; ð4:8Þ

where G ¼ 1
16πμ3

is Newton’s constant. The function MðrÞ
describes the mass inside the sphere with radius r.9

Substituting the metric (4.8), the equations of motion are
reduced to

G
r2

�
1þ 2

ω

GMðrÞ
r3

�
dMðrÞ
dr

−
2

ω

3G2M2ðrÞ
2r6

¼4πGρðrÞ; ð4:9Þ

1

r

�
1−

2GMðrÞ
r

��
1þ 2

ω

GMðrÞ
r3

�
dNðrÞ
dr

−
G
r3

�
1−

2

ω

GMðrÞ
2r3

�
MðrÞNðrÞ¼ 4πGNPðrÞ; ð4:10Þ

where ρðrÞ and PðrÞ are defined by (3.6) and (3.5) with
N → NðrÞ. Note that the second or higher derivatives of the
functions are eliminated. In order to simplify the equations
further, we rescale the variables,

x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρc

p
r; y≡ βmN;

M̃ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρc

p
GM; α≡ 4πGρc

2

ω
; ð4:11Þ

with

ρc ≡ zm4

2π2y0

�
K1ðy0Þ þ

3K2ðy0Þ
y0

�
; y0 ≡ yð0Þ: ð4:12Þ

Then, the equations for yðxÞ and M̃ðxÞ become

1

x2

�
1þ α

M̃
x3

�
M̃0 − α

3M̃2

2x6
¼ y0

y

K1ðyÞ þ 3K2ðyÞ
y

K1ðy0Þ þ 3K2ðy0Þ
y0

; ð4:13Þ

1

x

�
1 −

2M̃
x

��
1þ α

M̃
x3

�
y0 −

1

x3

�
1 − α

M̃
2x3

�
M̃y

¼ y0
y

K2ðyÞ
K1ðy0Þ þ 3K2ðy0Þ

y0

; ð4:14Þ

where the prime ( 0) means the derivative with respect to x.
We must find solutions satisfying the boundary conditions

M̃ð0Þ ¼ 0; yð0Þ ¼ y0: ð4:15Þ

In the next section, we exhibit the numerical results.

V. NUMERICAL CALCULATIONS

A. Isothermal spheres in Einstein gravity

First, we consider isothermal spheres in Einstein gravity,
i.e., in the case with α ¼ 0. We define two functions:

u≡d lnMðrÞ
d lnr

¼x
M̃0ðxÞ
M̃ðxÞ ; v≡βm

dNðrÞ
dlnr

¼xy0ðxÞ: ð5:1Þ

Note that the Newtonian limit of v yields

v ¼ βmr
dNðrÞ
dr

¼ ðβmNÞ r
NðrÞ

dNðrÞ
dr

→
ρðrÞ
PðrÞ r

dϕðrÞ
dr

≈
ρðrÞ
PðrÞ

GMðrÞ
r

; ð5:2Þ

where ϕ denotes the Newtonian gravitational potential.
In Fig. 1, we show the solutions for various initial

conditions in the ðu; vÞ plane. The black dashed curve

FIG. 1. The ðu; vÞ curves for y0 ¼ 100 (red), y0 ¼ 10 (blue),
and y0 ¼ 6 (cyan). The black dashed curve indicates the New-
tonian isothermal sphere.

9Since the equation from the variation of N gives M0, M is
proportional to the volume integral of the 00 component of the
energy-momentum tensor, which appears in the right-hand side of
the Einstein equation.
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indicates the Newtonian isothermal sphere [1]. The curves
in red, blue, and cyan correspond to the boundary con-
ditions y0 ¼ 100, 10, and 6, respectively. All the curves
start at the point ðu; vÞ ¼ ð3; 0Þ, which represents the center
of the isothermal sphere, and they approach the fixed point

ðu; vÞ ≈ ð1; 2Þ, which corresponds to x → ∞. In our present
model, since the equation of state in the asymptotic region
x ≫ 1 becomes nonrelativistic as the density decreases, the
behavior MðrÞ ∝ r is the same as in the case of the
Newtonian isothermal sphere [1–7].
The behavior of curves near ðu; vÞ ¼ ð3; 0Þ is found

to be

u ¼ 3þ bv ðv ≪ 1Þ; ð5:3Þ
where

b ¼ −
3½ 3y0 K1ðy0Þ þ ð1þ 12

y2
0

ÞK2ðy0Þ�
5½K1ðy0Þ þ 3

y0
K2ðy0Þ�

≈
�− 3

5
ðy0 ≫ 1Þ

− 12
5y0

ðy0 ≪ 1Þ:
ð5:4Þ

Figure 2 shows b plotted against y0.
Figure 3 shows the density profiles ρðxÞ=ρc as func-

tions of x ∝ r, where the curves in red, blue, and cyan
correspond to the boundary conditions y0 ¼ 100, 10, and 6,
respectively. In all of these cases, we find the asymptotic
behavior ρ ∝ 1=r2, similarly to that of the Newtonian
isothermal sphere which extends to infinity. Incidentally,
it turns out that the asymptotics v ≈ 2 read y ≈ 2 ln x.

B. Isothermal spheres in Hořava gravity

Next, we consider the isothermal spheres in Hořava
gravity.
The spirals of solutions in the ðu; vÞ plane are shown in

Fig. 4. The fixed point ðu; vÞ ≈ ð1; 2Þ is almost unchanged.
Near the starting point, ðu; vÞ ¼ ð3; 0Þ, the curve is

approximated as

u ¼ 3þ bv ðv ≪ 1Þ; ð5:5Þ

where

FIG. 2. Slope coefficient b versus y0.

FIG. 3. Density profiles ρðxÞ=ρc of general relativistic isothermal
spheres for y0 ¼ 100 (red), y0 ¼ 10 (blue), and y0 ¼ 6 (cyan).

(a) (b) (c)

FIG. 4. Plots of spirals in the ðu; vÞ plane. (a) y0 ¼ 100, (b) y0 ¼ 10, and (c) y0 ¼ 6. From the inner spiral to the outer spiral, α ¼ 0,
α ¼ 0.5, and α ¼ 1 in each plot.
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b ¼ −
3
	
1þ 2α

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α

3

q 

10ð1þ 2α

3
Þ

3
y0
K1ðy0Þ þ ð1þ 12

y2
0

ÞK2ðy0Þ
K1ðy0Þ þ 3

y0
K2ðy0Þ

≈

8>>>>>>>><
>>>>>>>>:

−
3

�
1þ 2α

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α

3

q �

10ð1þ 2α
3
Þ ðy0 ≫ 1Þ

−
6

�
1þ 2α

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2α

3

q �

5ð1þ 2α
3
Þy0

ðy0 ≪ 1Þ:

ð5:6Þ

Thus, the spirals become larger according to the increase
in the value of α. The curves in the low-density case with
y0 ¼ 100 are given in Fig. 4(a). The relatively high-density
cases with y0 ¼ 10 [Fig. 4(b)] and y0 ¼ 6 [Fig. 4(c)]
exhibit similar characteristics. The coefficient b is plotted
against α and y0 in Fig. 5.
The profiles of the energy density for α ¼ 0.5 and 1 are

shown in Fig. 6. Note that here ρ is defined by ∝ 1
4πr2

dMðrÞ
dr .

They seem to have behaviors similar to the case in general
relativity (α ¼ 0). This is because the terms with the
coefficient α in the equations are proportional to M=r3,

which behaves asymptotically ∝ 1=r2 for r → ∞. In other
words, all isothermal spheres in our present model have an
outer region which is well described by the structure of the
Newtonian isothermal spheres.

C. Stability

While the behaviors of the spirals in the ðu; vÞ plane and
the density profiles have moderate dependence on the
central density and the parameter α which appears in
Hořava gravity, the parameter dependence of stability is
very complicated, as we will show below. Therefore, in the
present paper, we only discuss the stability by considering
the ratio of the sum of the mass of constituent particles and
the mass of the isothermal sphere in the region of the fixed
radius. The analyses using various known methods are left
for future studies.
Because the isothermal spheres in our model have the

same asymptotic density profile as the Newtonian one, we
consider the finite spherical box to define the mass of the
object [1–7]. We consider the region inside the sphere with
radius r.
Here, we consider the ratio mNp=M, where

Np ¼ 4π

Z
r

0

npðrÞ
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2GMðrÞ
r

q dr

¼ 1

G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρc

p
Z

x

0

y0K2ðyðx0ÞÞ
yðx0Þ½ðK1ðy0Þ þ 3

y0
K2ðy0Þ�

×
x02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M̃ðx0Þ
x0

q dx0: ð5:7Þ

Then, the ratio can be expressed as

mNp

M
¼ 1

M̃ðxÞ
Z

x

0

y0K2ðyðx0ÞÞ
yðx0Þ½ðK1ðy0Þþ 3

y0
K2ðy0Þ�

x02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M̃ðx0Þ

x0

q dx0:

ð5:8Þ

FIG. 5. Slope coefficient b plotted against α and y0.

(a) (b)

FIG. 6. The density profiles ρðxÞ=ρc for y0 ¼ 100 (red), y0 ¼ 10 (blue), and y0 ¼ 6 (cyan) with the parameter α ¼ 0.5 are plotted in
(a), while those with α ¼ 1 are plotted in (b).
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Figure 7 shows the ratio mNp=M versus − log10½ρ=ρc�.
Since the ratio ρðrÞ=ρc monotonically decreases with r, as
we have seen in this section, the radius of the spherical box
becomes larger from left to right in the horizontal axis.
Notice that, apart from some exceptions, the characteristic
feature of the plots lies inside the finite region by selecting
the scale of the axis.
Since Np ¼ R

np
ffiffiffĩ
g

p
d3x, the ratio mNp=M > 1 implies

positive binding energymNp −M, so the isothermal sphere
is expected to be energetically stable in this case.
We should also consider the maximum point of the ratio.

On the right-hand side of the maximum, the increase of the
radius of the sphere reduces the amount of binding energy
per mass. Thus, there is a possibility that some smaller
bodies produced by fission will be more stable than a
single body.
In Fig. 7(a), we show the general relativistic case

(α ¼ 0). If the central density is sufficiently large (i.e.,
the gas is rather relativistic in the vicinity of the center),
the stable configuration disappears according to the
above-mentioned criteria. Its critical value is y0 ≈ 7.8.
However, the change of the curve is complicated for
y0 > 10. For y0 ¼ 100, the maximum is located around
− log10½ρðrÞ=ρc� ≈ 2.5. This is consistent with the known
stability criterion for the Newtonian isothermal sphere
− log10½ρðrÞ=ρc�< 2.85 [3–7].
The Hořava-type gravity case is more complicated.

The behaviors of the curves in Figs. 7(b) (for α ¼ 0.5) and
7(c) (for α ¼ 1) drastically change if y0 is larger than
about 10. This is because the terms including α in (4.13)
and (4.14), which have finite values in the central region
[i.e., M̃ðxÞ=x3 ¼ 2

3þ ffiffiffiffiffiffiffiffi
9þ6α

p þOðx2Þ if x ≪ 1], are dominant

over the contribution of densities in the right-hand side of
the equations in the small scale. Thus, the almost non-
relativistic gas sphere is stable when the radius is
relatively small. Another important feature one can
observe in Fig. 7 is that even the relatively high-central-
density spheres may possess a stable radius if α is
sufficiently large.

VI. CONCLUSION

In this paper, we investigated isothermal spheres in
general relativity and in a concise version of the Hořava
gravity model. We concentrated on spherically symmetric
and static solutions of the equations for the local equilibrium
configuration. We found that the nonrelativistic limit repro-
duces the already-known Newtonian isothermal sphere.
We found that with Einstein gravity, the stability of the

sphere tends to be spoiled by the high density at the center
of the general relativistic isothermal sphere. In Hořava-type
gravity, the higher-derivative term stabilizes the sphere
even if the central density is rather high; however, at the
same time, the term makes the radius of the stable sphere
very small with low central density.
In vacuum, the value of the parameter of Hořava gravity

is severely limited observationally [37]. However, recalling
that the parameter α is defined as 4πGρc

2
ω, it can be found

that the value of α is generally enhanced in matter. Thus, it
is meaningful to consider the higher-derivative correction
in the study of the general high-density stellar structure.
Studying various modified gravitational theories and other
choices of equations of state is a good direction for future
work. We will also continue discussing the stability from
various points of view, including thermodynamical aspects,
and we shall report such analyses in a future work.
Last but not least, we approached the finite-temperature

self-gravitating system from first principles.As a future task,
the analyses of thermodynamical fluctuations with metric
fluctuations should be studied carefully for investigating
thermodynamical quantities in the system. A further theo-
retical study, including an extension to nonextensive stat-
istical dynamics [38–42] and generalization of canonically
formulated gravity [43–45], will be reported elsewhere.
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FIG. 7. The ratiomNp=M is plotted. (a) α ¼ 0, (b) α ¼ 0.5, and (c) α ¼ 1. In each plot, the red curve represents y0 ¼ 100, the magenta
curve is for y0 ¼ 30, the blue curve is for y0 ¼ 10, the pale blue curve is for y0 ¼ 7.8, and the cyan curve is for y0 ¼ 6.
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[13] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[14] G. Alberti and P. H. Chavanis, Caloric curves of classical
self-gravitating systems in general relativity, Phys. Rev. E
101, 052105 (2020).

[15] W. C. Saslaw, S. D. Maharaj, and N. Dadhich, An iso-
thermal universe, Astrophys. J. 471, 571 (1996).

[16] N. Dadhich, Isothermal spherical perfect fluid model:
Uniqueness and conformal mapping, Pramana 49, 417
(1997).

[17] N. Dadhich, A conformal mapping and isothermal perfect
fluid model, Gen. Relativ. Gravit. 28, 1455 (1996).

[18] N. Dadhich, S. Hansraj, and S. D. Maharaj, Universality of
isothermal perfect fluid spheres in Lovelock gravity, Phys.
Rev. D 93, 044072 (2016).

[19] G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, Stellar
structure models in modified theories of gravity: Lessons
and challenges, Phys. Rep. 876, 1 (2020).

[20] J. Sommer-Larsen, H. Vedel, and U. Hellsten, The structure
of isothermal, self-gravitating, stationary gas spheres for
softened gravity, Astrophys. J. 500, 610 (1998).

[21] A. Giusti, MOND-like fractional Laplacian theory, Phys.
Rev. D 101, 124029 (2020).

[22] A. Giusti, R. Garrappa, and G. Vachon, On the Kuzmin
model in fractional Newtonian gravity, Eur. Phys. J. Plus
135, 798 (2020).

[23] G. U. Varieschi, Newtonian fractional-dimension gravity
and MOND, Found. Phys. 50, 1608 (2020).

[24] G. U. Varieschi, Newtonian fractional-dimension gravity
and disk galaxies, Eur. Phys. J. Plus 136, 183 (2021).

[25] G. U. Varieschi, Newtonian fractional-dimension gravity
and rotationally supported galaxies, arXiv:2011.04911.

[26] Z. F. Seidov, Non-1=r Newtonian gravitation and stellar
structure, arXiv:astro-ph/9907136.

[27] M. Lazar, Gradient modification of Newtonian gravity,
Phys. Rev. D 102, 096002 (2020).

[28] A. Wang, Horava gravity at a Lifshitz point: A progress
report, Int. J. Mod. Phys. D 26, 1730014 (2017).

[29] S. Nojiri and S. D. Odintsov, Unified cosmic history in
modified gravity: From FðRÞ theory to Lorentz non-invari-
ant models, Phys. Rep. 505, 59 (2011).

[30] G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and
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Hořava–Lifshitz gravity, Phys. Lett. B 684, 1 (2010).

[33] A. Kehagias and K. Sfetsos, The black hole and FRW
geometries of non-relativistic gravity, Phys. Lett. B 678, 123
(2009).

[34] R. L. Arnowitt, S. Deser, and C.W. Misner, Canonical
variables for general relativity, Phys. Rev. 117, 1595 (1960);
Gen. Relativ. Gravit. 40, 1997 (2008).

[35] W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and
Statistical Mechanics (Springer-Verlag, New York, 1995).

[36] R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Dover, New York, 1987).

[37] T. Harko, Z. Kovács, and F. S. N. Lobo, Solar system tests of
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