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Extra equation of gravity induced
by spontaneous local Lorentz symmetry breakdown
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A model of spontaneous Lorentz violation in four dimension is given, which seems to provide a Lorentz
invariant effective theory. An SU(2) Yang-Mills gauge field and an auxiliary U(1) vector field generate
gravity and other interactions when they have vacuum expectation values. The emergent gravity is

equivalent to conventional general relativity up to the third order terms in the Lagrangian. The coupling to

matter, including spin-1/2 fermions, is also given correctly to this level. It remains to be seen whether this
formalism reproduces the properties of black holes and other consequences obtained from Einstein’s

theory.
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I. INTRODUCTION

In contrast to broken gauge symmetry, broken spacetime
symmetry has been rarely considered in four dimensions,
since the latter is apt to end up with a Lorentz violating
effective theory. However, this paper presents a model of
spontaneous Lorentz violation in four dimensions, which
seems to give a Lorentz invariant effective theory. We
consider the four component gauge potential ¥, composed
of an SU(2) Yang-Mills gauge field and an auxiliary
isoscalar vector field with the vacuum expectation value
(Yyua) = Nuatho» Where ¢y is a constant with mass dimension
one. We can show that even if Y, couples to Weyl doublets,
it is consistent with the relativity of emergent quasiparticles.

Though the vacuum expectation value (Y,,) breaks both
Lorentz symmetry and gauge symmetry, if isospin is
rotated at the same time like a Lorentz vector, it remains
invariant. In this case, the Minkowski metric 7,5 should
be assumed in the four-dimensional isospin space. The
invariance under the extended Lorentz transformation,
Y = Aﬂ”A,/" Y,s etc, will therefore guarantee the
Lorentz invariance of the effective theory.

However, the above postulate is found not to be enough
for the effective Lorentz invariance, since the mass term,
the non-Abelian terms, and the interaction terms to fer-
mions in the Lagrangian of the massive SU(2) Yang-Mills
fields will not be invariant under the extended Lorentz
transformation.

The solution to this problem, on which this paper is
mainly based, is to formulate the model in a spacetime
with the quantum vierbein conformal to the gauge field,

Cpu = W/g?), where ¢ is some scalar field with mass
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dimension one. The adjective “quantum” is attached for
distinguishing it from the classical vierbein in Einstein’s
theory of gravity. The new postulate returns to the original,
when the quantum vierbein and the scalar field have the
vacuum expectation values: (2,,) = ., and (¢) = ¢y,
respectively. Then, the gauge field Y,” provides the
quantum mechanical local Lorentz frame vectors in the
classical Minkowski spacetime, where the isospin index a
is identified with that of the local Lorentz frame index. We
then confirm the Lorentz invariance of the effective theory.
Relativity of emergent fermions and their interactions are
also confirmed.

As a natural consequence of the above hypothesis, a
graviton appears even in a flat Minkowski spacetime.
Though the quantum metric g, obeys the Yang-Mills
action for the massive SU(2) gauge field, the Einstein
gravity is reproduced up to the third order terms in the
Lagrangian. Whether the extra gravity alone is sufficient to
completely replace Einstein gravity is an issue that this
paper does not fully resolve.

If there already exists Einstein’s type gravity in unbroken
phase, the extra gravity will become a renormalization. The
phenomenological interpretations of the results obtained
are finally discussed.

II. BROKEN LORENTZ SYMMETRY AND
GOLDSTONE BOSONS

As a preparation for understanding the necessity of
quantum geometry by gauge fields for the effective
Lorentz invariance, we begin with describing spontaneous
Lorentz violation of a massive SU(2) gauge theory, and
clarifying the number of resultant Nambu-Goldstone
modes [1,2]. The theme attracts attention also from the
aspect of the breakdown of Goldstone’s theorem [3].

© 2021 American Physical Society
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Spontaneous Lorentz violation occurs when the massive
SU(2) gauge field Y, couples to fermions. We consider the
Lagrangian £ = Ly 4+ L where

1
Ly = =3 V" Y, +90,Y, (Y x V)

7 , my

—Z(Y” xY')- (Y, xY,) +7Y” Y, (1)
Y, =09,Y,-0,Y, and Ly is the Lagrangian of fermions,
which will be specified in Sec. VI. The mass term is
supposed to be originated from the Higgs mechanism,
though the Lagrangian of the Higgs doublet is not explicitly
written. In the Minkowski spacetime, the equation of
motion for Y, is given by

oLy

O+m3)Y,-0,0-Y+---=j,. J ==
"

2)
where the contributions from non-Abelian terms, which are
not essential in the following argument, are neglected for

simplicity. Then, the equation for the vacuum expectation
value,

m2Y<Y/4> = <i[l>’ (3)

shows that (Y,) # 0, if {j,) # 0. When (Y,) # 0, the free
equation of motion for a fermion depends on (Y,). In this
case, the perturbative estimation gives (j,) = I'(Y)(Y,),
where I'(Y) is generally a scalar function of (¥ ,) with mass
dimension two. Then, Eq. (3) provides the self-consistency
condition for (Y,,). If it has a nontrivial solution (Y,) # 0,
spontaneous Lorentz violation will occur [4,5].

We next consider this model in the Lagrangian formal-
ism to find the Goldstone bosons. In the following, we
assume that (Y,,) = n,,¢,. Further, it is convenient for us

to write the free part of the Lagrangian in the form

2

1
LY =— SOY"0, Y + % Y4 Y yas (4)

with the physical state condition

9 Y, )pys =0, (5)

phys

where (4) denotes the positive frequency (annihilation)
part as in the Gupta-Bleuler formalism [6,7]. We can
decompose Y, into a local Lorentz transformation A,”,
and a symmetric tensor ¢,,,

Y/,m = Aﬂy¢ya7 (6)
where ¢o, =0, ¢;j =¢;; and <¢;4a> = Nyatho. For a

small local Lorentz transformation A, =1n,” +¢,”, the
Lagrangian (4) reduces to

%

‘CY: 2

2
et ;0,€, + %apd’ijapfﬁij - %fﬁij(f’ij- (7)
Twelve components of Y,, are decomposed into the
antisymmetric tensor ¢,, with six components, and the
symmetric tensor ¢;; with also six components. Six e
modes, corresponding to the Goldstone bosons due to
Lorentz violation, are massless owing to the Lorentz
invariance of the mass term Y*,Y,, = ¢* ¢,

We next count the number of independent Goldstone
bosons. By introducing the notations

€ij = €ijkwk/\/§v (8)

€oi = €,

the Lagrangian is turned into the form

2
ﬁY = % [—8ﬂ€iaﬂ€i + aﬂa)iaﬂwi]
1 m3
+ Eap¢ij8/’¢ij - 7Y¢U¢z] (9)

The canonical quantization in a volume V gives the
following expansion of field operators:

1 et ik

€i(x = — |age™"™ + aj e,

(x)¢ho zkj 2|k|v[ " e

1 ) )

0i(X)po =Y ———[bye * + bl e, 10

(0 = 32— o™+ Bl (10)
with the commutation relations:

[aik7 a}k,] = _5ij5kk” [bik7 bj:k/] = 5ij5kk'- (11)

For the ¢ field, we introduce the notations C; = v/2¢3,
Cy =V2¢31. C3=V2¢1, Dy =1, Dy =, and
D = ¢p33. The canonical quantization again gives the
following field operators:

—ipx T ipx
e~'P* 4 cp et

1
Ci(x) = ;_/—prv [cip

dipe_i”x + d;ei”x], (12)

1
Di(x) = —]
zp: A /2a)pV
with the commutation relations

[c,»p,cj.p,] = [d;

Ip’d;p’] :515 (13)

jCpp’ -

Neglecting the infinite constant term, we obtain the
Hamiltonian
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H =3 ki~

lka,k—l—blkb,k —|—Zw c »Cip —|—d dyp),
(14)

where w, = /p? + m}. The vacuum state ) := |vacuum) is
defined by the condition (ai, b,k, ip»dip)) = 0. Although
one-particle states a ) and b ) have the same positive
energy eigenvalue |k| the former has the negative norm
laj P =

value (agHa),) =

—1, giving the negative energy expectation
—|k|, while the state b},) with positive
norm |\bjk>\|2 =1 gives the positive energy expectation
value <b,-kHblTk) = |k|.

Because of the mass difference between the € boson and

the ¢ boson, the physical state condition (5) separates into
two conditions:

8”€,SZ>> =0,

phys

PP onys = 0. (15)

For an e boson propagating in the direction of the third axis,
k= ), the physical state condition reduces to

(al + bZ/\/E»phys =0,
(a2 - bl/\/z»phys =0, (13>

where the momentum dependence is suppressed for sim-
plicity. The vacuum state condition is expressible as
Z)pnys = 0, if the Z operator is defined with constant
coefficients z; by

phys — Ov (16)

Z = Zl(lll+b2/\/§>+Z2(32—b1/\/§)+Z3a3. (17)

Then, we have the following relations:

Z, (a; + \/Ebz) ]=0, [|(a; + ﬁbz)UIIQ =1
Z, (ay - \/ibl)-} 0. l|(a; - \/Ebl)WHZ =1
Z.bf]=0, DI =1, (18)

which show that there are three independent physical states
with positive norm and positive energy |k|, since no other
creation operators commuting with Z are constructible
from a] and b,

For the ¢ boson, on the other hand, Eq. (16) requires that

c1>phys =0, 62>phys =0, d3>phys =0, (19)

which shows that the ¢ boson has also three physical
modes: c}), d}), and d}).

The number of Goldstone bosons ordinarily equals
that of broken symmetries. However, we obtain here
only three Goldstone bosons, although six Lorentz gen-
erators are broken. The phenomenon that the number of

Nambu-Goldstone bosons becomes less than that of broken
generators for spontaneous spacetime symmetry breaking
has been often reported, and the reason is known [3]. We
consider the variation of Y, under an infinitesimal gauge
transformation combined with a local Lorentz one:

5Y/4a = 8ﬂ¢9a + CabcebYﬂC + eﬂ’“Y’m, (20)
where 6, are SU(2) gauge parameters. Then, we find that

(6Y0i)
(6Y ;)

The first relation shows that Lorentz boost transformations
€; can be canceled by taking the gauge parameters such that
0g0; = —€;¢py, which implies that three Goldstone modes
corresponding to the broken Lorentz boost transformations
are not independent of gauge transformations. The second
relation shows that, once gauge parameters 6, are fixed to
cancel the Lorentz boost modes, there remains no room
for canceling the Goldstone modes corresponding to the
broken rotational symmetry. Consequently, the total num-
ber of independent Goldstone modes for spontaneous
violation of gauge and Lorentz symmetries are six: the
three corresponding to SU(2) breaking, and the other three
corresponding to rotational symmetry breaking. Of those,
the three gauge modes are to be absorbed as the longi-
tudinal components of the massive gauge bosons by the
Higgs mechanism. As a result, the final number of the
Goldstone bosons is three, which is the same as that
obtained from the physical state condition (5).

= 0o0; + €ihy,
= 0,0, + e/ V2 = 0,) o (21)

III. EXTENDED RELATIVITY
AND GOLDSTONE PHOTON

It is often anticipated that the photon may be the
Goldstone boson emergent from spontaneous Lorentz
violation [8—10]. The last preparation is to show that
two of the three Goldstone modes derived in the previous
section are expressible in terms of a U(1) gauge field. The
result serves to separate from the Lagrangian the part which
breaks the extended Lorentz invariance.

In order to acquire the perspectives on the relativistic
properties of the effective theory, we introduce an auxiliary
isoscalar gauge field Y,, with the vacuum expectation
value (Y,9) = 1,000 to form the four component gauge
field Y, = (Y ,0.Y,,) with the vacuum expectation value,
<Y /wt> = ’7;40:4)0

We may assume (Y o) =1, instead of (Y ) = 1,000,
where ¢, is different from ¢,. Even in this case, it can be
changed into the original form by rescaling the time
coordinate. Actually, by introducing the new coordinates
x'% = cx% and ¥ = x' with the ratio ¢ = ¢/, we have
(Y, 0dxt)y = cdx® = (Y,%dx""), where (Y,°) = n,%¢. If x°
has the dimension of time, ¢ represents the velocity of light.
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The Lagrangian (4) is expressible as

2

1
£ = —aﬂwaapy,m —SPAYA TV Y (22)

with the physical state conditions 0 - 7Y, ff))

phys = 0, and
9-AM) s =0, where A, :=Y,0— (Y,). The kinetic
term for Y,, in (22) becomes now invariant under the

extended Lorentz transformation,
;m = A A Yy/iv (23)

where the four isospin components are also transformed in
the same way as a Lorentz vector. Under the same trans-
formation, A, can be regarded as a Lorentz vector,
A, =AA, if A, in an arbitrary Lorentz frame is
defined by

Au = ( ua < ;4a>)5a/\/— (24)

with the help of a constant timelike 4-vector §*. The 16

components of ¥, are decomposable into a local Lorentz

transformation A,”, and the residual symmetric tensor
d);w = ¢I4l SatISfylng <¢ﬂ(l> = ’1,m¢0 as

Yﬂa = Aﬂ”¢ua' (25)

For a small quantum oscillation, A,* =#n,” +¢€,", Y, is

ua
expressible up to the first order:

Yﬂ(l = ¢0€;m + ¢ﬂ(l’ (26)

Then, we have

aﬂwaa Y e = ¢° DD e + aﬂqswa,,qsﬂa. (27)

pa

The mass term is rewritten as

m3 m3
2Y Yr aY;w - 7Y¢”u¢;m - [¢Oz 11] (28)

The fields €,,, ¢oo, $oi» and ¢;; obey the equations of
motion:

‘:’Sﬂy = 0, |:|¢00 = 0, |:|:| + :|¢Ol = 0
[0+ m]¢;; = 0. (29)

Because of the mass difference, the physical state condition

0 - Y£,+)> = 0 separates into

phys

aﬂeﬁ))phys = 0’ 80¢(()-(~)_)>phys = 07
80¢§)T)>phys = 0’ aj¢§‘?>>phys =0. (30)

As for the first condition, the expressions (10) and (11)
become applicable also to the present case by taking

€o; = €;/V/2 instead of ¢y; = ¢; in Eq. (8). The Z operator
corresponding to Eq. (17) is now written as

Z = zy(ay + by) + z2(a, — by) + z3a3. (31)

Then, we have

[Z, (a; + by)T] =0, (a1 + b2)T)||* =0,
Z.(ay = by)"] =0, I(ay = b1)")|> =0,
[Z.bi] =0, (B} =1, (32)

which shows that only b;) remains as the Goldstone boson,
and the other two states in the previous section turn into
zero-norm states carrying no energy. Instead of two
Goldstone modes lost, we now obtain a U(1) gauge field
A, with two polarization modes. This observation is
interpretable as that two of the three Goldstone bosons
in the first formulation are transformed into a massless U(1)
gauge boson in the second formulation. The result justifies
one to treat ¥,y and A, in (22) as independent.
Concerning the ¢ boson, on the other hand, owing to the
second and the third condition in (30), ¢»oy component and
¢o; components are physically prohibited. Only the third
condition remains, which is the same as that for ¢;; in the
previous section. Therefore, the number of physical modes
for the ¢ boson is the same also in the new formulation.
The new formulation improves the perspectives on the
Lorentz symmetry of the effective theory, where an
auxiliary isoscalar gauge field is introduced, and a four
component isovector is assumed to be transformed as a
Lorentz 4-vector. However, the above analysis clarifies
another problem; the extended Lorentz invariance is still
broken by the mass term of the ¢ boson (28), even though
the dispersion relation for each component is relativistic
including unphysical modes. Whereas the components
corresponding to the physical states have the unique mass
my, the propagator (T¢,, (x)¢,,(x)), which is calculable
by the path integral method, is not covariant under the
extended Lorentz transformation, since the unphysical
states with masses my = 0, m—\é also contribute to virtual

processes.

The effective Lorentz invariance would follow, if the
mass term (28) was —m3YH?Y wa/2, Which is invariant
under the extended Lorentz transformation. However, this
modification will be inappropriate for the picture of the
Goldstone boson as the U(1) gauge field, since then the
U(1) gauge field would become massive. A consistent
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method to remove Lorentz violation from the effective
theory is to separate the isospin rotation from the original
Lorentz transformation by introducing a vierbein, and to
transfer the isospin rotation to the local Lorentz trans-
formation. This improvement implies that one uses the
extended gauge field as the local Lorentz frame vectors, as
explained in the next section.

IV. QUANTUM VIERBEIN

The Lorentz invariance of the effective theory examined
in the previous two sections reveals that the mass term
of the symmetric tensor bosin ¢,, violates relativity in the
extended sense. This section begins with introducing the
vierbein into the same model to see how that point is
modified.

The extended gauge field Y, in the Minkowski space-
time is expressible in a local Lorentz frame as

Y/wt = eﬂﬂYﬂa, (33)

with the help of the vierbein e,*, where the first index of
Y, represents a local Lorentz index, while the second is of
the extended isospin, though both are expressed by the
common greek letters. The arguments in the previous two
sections will be applicable to Y, by replacing a Lorentz
transformation with a local Lorentz transformation. Owing
to the vierbein, the expression (33) becomes valid also in
the curved spacetime with the metric g,, = ¢,%¢,,-

Since the vierbein e, has the same degree of freedom as
Y 4 it serves to represent all the freedom of the gauge field,
if every component of the vierbein is auxiliary. We hereafter
forget the Einstein gravity for a while, and assume that all
the components of the vierbein e, are auxiliary fields in a
flat Minkowski spacetime. Considerations on the influence
of the classical action of gravity is postponed until Sec. VII.
Then, we will obtain the expression

a _ eﬂaq_ﬁ’ (34)

where ¢ is a scalar field of mass dimension one with the
vacuum expectation value () = ¢,, which is indispen-
sable due to the normalization condition for the vierbein,
etqe, 5 = Nap- Inversely, we can define a quantum version
of the vierbein by

0,7 = Y,/ . (35)

The Minkowski metric 7,, is reproduced as the vacuum
expectation value of the quantum metric

.@/w = éyaéuw <§;w> = Ny - (36)

The contravariant quantum metric " is given in terms of
the inverse quantum vierbein

=2y, (37)

where the inverse quantum vierbein, satisfying é”aé,/ =
n.” as well as & ,&,% = n*,, is obtainable by the definition

1
ey = ~ 556" €apys@,/2,78,°, e =dete,”, (38)
where €**7? is the totally antisymmetric tensor with con-
vention €23 = 1. The extended isospin space has been
assumed to have the Minkowski metric 77,4. In terms of the
gauge field, Eq. (38) is expressible as

72

¢
V=~ 3! | Y| €ﬂyp6€‘l/}l’5 Ylfﬁ Y/)y Yﬁ(s’

|Y| = det Y4
(39)

from which we have the relations

Y;ta = .@/U/Yl/a’

.@Mv = YﬂaYva/éSzv 4_52 = Yﬂayﬂa/“"

(40)

Since g, is defined by the gauge field, it changes under the
SU(2) x U(1) gauge transformation as

<59§/w> = (aﬂeu + augu)/¢0’
0pY, " = (8”(90, 8//9 + g0 x Yﬂ), (41)

which is the same as the infinitesimal coordinate trans-
formation of the classical Minkowski metric 7, under the
identification 6x* = —0"/¢,. This observation suggests
that if we formulate spontaneous Lorentz violation of
the massive SU(2) gauge theory to be in general coordinate
invariant in the quantum spacetime defined by g,,, the
broken gauge symmetry will recover and the massive gauge
bosons will return massless. In fact, the mass term of the
gauge boson is transformed under the quantum spacetime
into the mass term of the scalar boson,

m3y 3 -
TYQWYM Y, = —Em%(j)z, (42)

which is Lorentz invariant in the extended sense.

The formulas in differential geometry are not altered
whether the vierbein and the metric tensor are composed
of the gauge field or not. In the quantum geometry, the
covariant derivative for the general coordinate transformation
and that for the local Lorentz transformation are obtainable
by replacing g,, and e,, by g,, and é,,, respectively:

V.V, =08V, -1V,

fﬁy = 5@””(3,4901/ + 3u§,w - ao‘?]yv)’ (43)

064056-5



KIMIHIDE NISHIMURA

PHYS. REV. D 103, 064056 (2021)

N

V, V=0,V + 0,7, VP,
é)ufxﬂ = év(lvyévﬁ = éua(ayévﬁ - Fﬁl’épﬂ)‘ (44)

In accordance with the definition by Weinberg [11], the
covariant derivative for &, in (44) does not contain the local
Lorentz connection @,,q.

The covariant derivative for a spinor field requires the
spin connection @,. In the case of a Weyl spinor ¢, it is
expressible in terms of @,,; as

Vo = (0, +d,)e. iy, = ga)ﬂaﬂ&aﬂ’

5% = 625P — 652, (45)

where the four component Pauli matrices ¢* and 6% are
defined by

o =(lo), & =(l.-0). (46)

V. EXTRA GRAVITY

This section shows that the introduction of quantum
geometry eliminates from the Lagrangian of the gauge field
Eq. (1) the breakdown of extended Lorentz invariance.
Actually, the mass term and the fourth order term in (1),
which violate relativity in the extended sense, turn into
the mass term and the self-interaction term for the scalar
field ¢:

m? 3 -
VY, = = mi,

Pron 3,
_I(Y xY)'(YuXYu)——Eng#- (47)

We will see that the quantum geometry also makes the third
order term in Eq. (1) harmless to the emergent Lorentz
invariance. The remaining second order term can be made
relativistic in the extended sense as follows.

As done in Sec. III, we introduce an auxiliary vector field
Y, to extend the isospin to be of four components, and a
constant timelike 4-vector 6% for a local Lorentz violation.
In a local Lorentz frame in which the spacial components
of a timelike 4-vector vanish, 5* = (8,0, 0,0), the second
order term can be decomposed into the form

1
Eg/z) — _ZYIW . Y}w = EYG + EAs (48)

1
EYG = Z YﬂmY,uya? Yﬂmx = 8}¢Yz/a - al/Yﬂa’ (49)

1
Ly==3F"Fu.  Fu=0,A,-0,A, (50)

v
A, =Y,0=(Y,0). (51)

The contravariant tensors are assumed to be defined by the
covariant ones with the help of the quantum metric, for
example, Y = ¢#?§°Y ,,, although the quantum geometry
makes no difference to the second order approximation of
£§,2). Following the argument in Sec. III, we hereafter treat
Y,, and A, as independent. The Lagrangian Ly turns into
that of quantum gravity by replacing Y ,, with ,,¢. For a
small quantum oscillation, &,, = 7, + @, + O(®?), Lyg
becomes up to the quadratic order,

4

1 -
5 P 0,0,y — Eapwa,,w + 07¢0,¢

Lye =
+ PO, — %a YD Y, (52)

where total divergence terms are discarded. Since 0 - Y, =
Outp + (0’ w,, — 1 0,0) in the first order approximation,
where ¢ = \/5(;5 and w = @’ ,, the gauge fixing condition

8/}wpa - %8(160 = (\/E - 1)80,4')/4')0 (53)

cancels the last two terms in the right-hand side of Eq. (52).
Then, we obtain in this gauge the following expression:

L _% ™, h 18%3}3 "%aﬂ )
Y=g Pl =5 P +7 € 0pCu

1 - 3 -, 3 .-
+ [’gf) _ ZF”UFW + 8/’¢8p¢ _ 5m%/¢2 _ 592¢4,
(54)
where LZQ =g0,Y,-(YFxY"), izﬂ,, =20,

€ = Oy = (@, — ®,,)/2, and h= IA#’p.
Fore,, = 0 with ¢ = ¢, the gauge fixing condition (53)

=y + Dyys

reduces to af’fzpﬂ —%Bﬂfz = 0, which is the same as that
of the harmonic coordinates for the gravitational wave
09 = lAzW [12]. The first part for fzﬂb in Eq. (54) is the same
as the Lagrangian of gravitational waves in Einstein’s
gravity, provided that the gravitational constant 8zG is
now replaced with ¢y2. The terms representing the
Lagrangian of the scalar field ¢y would turn into renorm-
alization terms, if we had prepared beforehand the
Lagrangian for ¢. In this form of Lagrangian (54), only
¢ develops the vacuum expectation value.
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Our remaining task is to evaluate 59, which reduces in the same order of approximation to

A 1
éﬁy) = Y9€abc |:_hpa (8/)(‘)170 - 8bw,oc) + wpa <8pwbc - abc‘)pc) - Ea)aawbc:| . (55)

The contribution from Lg;” to the linear equation for w,, can be extracted by taking the variation of Eq. (55):

6(é£§’3)) = G9€apc

The first part proportional to §42* corresponds to the source
term for the linear equation of w,,, which contributes to the
energy-momentum tensor of @,,. The second part propor-
tional to dw*,, which contributes to the free equation of
motion, vanishes, if ®,, is symmetric and satisfies the
gauge condition 9w, — %aaw = 0. Therefore, Eg;) does
not affect the free equation of motion for the extra graviton.
We will see in Sec. VI that the antisymmetric tensor boson
decouples from fermions by the local Lorentz transforma-
tion for spinor fields. Then, Ly is effectively Lorentz
invariant in the extended sense, even after spontaneous

Lorentz violation.

VI. RELATIVISTIC QUASIPARTICLES

We now turn our attention to the fermions coupled with
the gauge field Y,, and examine the relativity of quasi-
particles and their interactions. In perturbation theory, the
effective Lagrangian is separated into the free part and the
interaction part. This section shows that the hypothesis
(Yyua) = @on,, suffices for the Lorentz invariance of the
free part, whereas the quantum geometry by the gauge field
is indispensable for the Lorentz invariance of interactions.

We assume here that the Lagrangian of fermions Lp
is the sum of those for left-handed Weyl doublets,
Lr=7V, Eéf,) . The fermion current j, in the equation
of motion (2) is then the sum of the currents from the
doublets, j, = ﬁV: { j,(f>, where N should be even, if our
model cancels the Witten’s global SU(2) anomaly [13-16].

We consider one of the Weyl doublets, and give the
Lagrangian Ly in the quantum spacetime described by the
quantum vierbein e,

Ly =(L,+L})]2, L, = e '5%iD,g,

| .9
D,=09,+ ga)ﬂﬂyoﬁ}’ - lipaY#“, (57)

where the four component isospin matrices, p* = (1,p),
p* = (1, —p), are introduced, and the gauge field is under-

A~

stood as Y,* = eﬂ"‘(}. The local Lorentz connection @,

has already been given by Eq. (44). We have assumed in

_67/\1”” (nua(apwbc - abwpc) - %nﬂpaawbc>

+6wﬂa (aua)bc + ab(ww - wﬂc) + Mub (apa)pc - %acw))

(56)

|
Eq. (57) an SU(2) x U(1) gauge interaction including an
auxiliary field Y. The coupling constant ¢ for Y, has
been set equal to g. Another choice of ¢ would affect the
electric charges of quasifermions, as in the case of the
standard electroweak theory.

For small quantum oscillations, é,, = n,, + ®,, and

& = ¢y + ox/V/2, Ly reduces to

Ly =LY+ L+, (58)

. m_  _
LYy =o' [5"1@, +op 0] ®, m:= gy, (59)

z 9

Ly, = M, 1 — @) K" + ﬁaxj"a, (60)

1
M =500, KW =¢'5iD",

.m _

where K* is the real part of K#*. The derivation is given in
the Appendix.

We first examine the free equation of motion of a left-
handed doublet obtained from Eq. (59) in momentum
representation,

_ m_  _
(a-p%—ip-a)(pp =0, (62)

which gives the dispersion relation,

m_ _
c-p+—=p-
p p-G

p-rllp=268)-(p—68 —m? =0,

& = —mnt. (63)

In terms of the helicity eigenstates L and R, the eigen-
functions are expressible as

P=p.  @,=LL, (64)
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P’=-p. @3 =RR, (65)
P’ =w-—m, @ = ALRL+A_LR,  (66)
P’ =—-w—m, ¢z = —A_RL+ A, LR, (67)

where p = |p| and @ = \/ p? + m?, and the coefficients ..
are given by

Ay = %(mg). (68)

The first L or R of each direct product in the wave functions
corresponds to the isospin-helicity eigenstate, while the
second is to the ordinary spin-helicity eigenstate.

We may call the solution (64) with energy E,, = p
a “quasineutrino” and (65) with energy E;,=p a
“quasi- anti-neutrino,” while the solution (66) with energy
E,, =w—m a “quasielectron,” and (67) with energy
E;, = @ + m a “quasipositron,” in accordance with the
hole theory applied to the negative kinetic energy.

The dispersion relation for the quasielectron has the form
(p—96)-(p—6) =m> A fermion obeying this dispersion
relation is an ordinary relativistic fermion with kinetic
4-momentum k* = p* — &". The Lorentz violating term "
can be removed, if the fermion has a U(l) gauge
interaction.

The momenta p* and k*, which are transformable to
each other under gauge transformations, are both physical
quantities in quantum mechanics. Then, the difference of
the two, &, will be also physical. However, this does not
imply that §* is always detectable, or has a physical effect.
It will depend on the situation, or what experiment is done,
although we usually expect that 6 does not have any
physical effects [17,18].

The difference between the quasielectron and the Dirac
electron deserves special attention, since the former has the
only one spin state like a neutrino. The form of the wave
function of the quasielectron represents a superposition of a
right-handed electron and a left-handed electron, despite
starting from a left-handed doublet. The appearance of a
right-handed quasielectron is understandable as follows.
The equation of motion (62) is expressible for a quasielec-
tron in the form

o (p - 5)(pep = MYep, Xep = T(pelw (69)

where

1
TZE(I +p-0). (70)
The 4 x4 matrix T is unitary and exchanges the spin

matrices and the isospin matrices:

T"=T"1=T, TpT™' =0, TeT™' =p. (71)
Operating T on Eq. (69), we find that y,, satisfies the

equation of motion

p- (p - 6))(ep = MPep- (72)

It can be rewritten as

o (p - 5))(617 = M@Pe¢p, (73)

due to the relation, p- (o —p)y, =0, obtainable from
the property of the wave function y,, = A, LR + A_RL.
Equation (73) shows that y, is a right-handed doublet.

Incidentally, the right-handed electron is also interpret-
able as a three body bound state of Weyl fermions,

Xe =T, (pp'ple), (74)

N k 1m
where k; is a quadratically divergent constant in a pertur-
bative estimation. It is derived by expanding the propagator
of a Weyl doublet with respect to M. Then, we have

. d*p i k
F S R L S—_" R 75
(p(x)e"(x)) /(2ﬂ>45_p+M M- (79)
where
M=2650 (¥, =mT. Kk = dp i (76)
0P =B E Lo Cie

from which Eq. (74) follows. In grand unified theories like
an SU(5) model [19], it is not unusual that a left-handed
state and a right-handed state of the same particle belong to
different multiplets.

The interaction part of the Lagrangian (60), on the other
hand, is expressible in the form

T m P =~ v
Ly = =, T" + eﬂpaqﬂo"p @ — ()9 5" P65
g T
+—o0 1-T)op, 77
Lo (1= Ty )
T = ¢'5"(i0" — &) . (78)

For the quasineutrino, ¢ = ¢,, & = 0, L}, reduces to

S

h,, -
Lly = -2, (79)

There remains only a gravitational interaction, since
Egs. (64) and (65) show that the wave functions of the
quasineutrino are symmetric under the exchange of the spin
and the isospin, from which T¢, = ¢, follows.
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In the case of the quasielectron, ¢ = ¢,, & = —mny*°,
the interaction Lagrangian (77) is also expressible in a
Lorentz invariant form:

. h, _ .
Ly + 6, [-mpiTe,] = - % Te + gA,pe" P,

9 ¥
- L oyply., 80
Nk (80)

g
9A, = gY 0 — (gY 0) = Mm@y, + 1,0 726)(' (81)

The second term in the left-hand side of Eq. (80) is a local
Lorentz transformation of the quasielectron mass term:

5 —maoiTo.] — i (su0 1oy
LI=meeTo,] = me, @ &' 501" e

1
5L Pe = g e/,w&”y(pe' (82)

Although the interaction Lagrangian (80) is expressed in
terms of a left-handed doublet only, we can also find
another local Lorentz transformation which reproduces
the left-right symmetric amplitudes [5]. The quasielectron
has a gravitational interaction, a U(l) gauge interaction,
and a scalar interaction coupling to the mass term of a
quasielectron.

VII. REPRODUCTION OF GENERAL RELATIVITY

After confirming the Lorentz invariance of the effective
theory, we finally consider the phenomenological implica-
tions of the results obtained. We first assume that Lorentz
symmetry is spontaneously broken in the present phase of
the vacuum. Since the original massive SU(2) gauge bosons
disappear in this phase, these bosons will not be identical
with the weak bosons in the standard electroweak theory.
Further, if the Einstein type action of gravity is already
present even before spontaneous Lorentz violation, we
should add the Lagrangian of gravity,

-1
L0 = /—OR
V=ILG = 1626,V I

1
~ o, h,, —=0"hd,h|, (83
64rG, ) ’ (83)

to Eq. (54), and the interaction Lagrangian,
h,, -
Lg=-—5T" (84)

to Eq. (60) under our approximation, where G, is the
bare gravitational constant, and &g, = h,, is a small
oscillation for the classical metric before spontaneous
Lorentz violation.

Since ﬁﬂ,, and h,, generate independent gravitational
forces, the present Newton constant should be the sum of
the two gravitational constants Gy and G, = (8z2¢3)~!:

1
Gy =Gy+—. 85
N 0 871'4% ( )

The ratio of the bare gravitational constant to the Newton
constant is expressed by

M3

Gy/Gy=1- ,
O/N 871'1’}12

(86)

where Mp is the Planck mass.

We first temporarily assume that G, = 0, which implies
that the Yang-Mills gravity, can approximate Einstein’s
gravity, although the coincidence of two theories beyond
perturbation remains yet to be seen.

Further, if the quasifermions are identified with leptons
in this case, m = g¢, should have the order of a charged
lepton mass m, = m,, m,, or m,, and the coupling constant
should be extremely small: g~ m,/Mp < 1. Therefore,
the U(1) gauge field A, in Eq. (80) will represent an extra
electromagnetism, which interacts with leptons extremely
weaker than the ordinary electromagnetism.

As a possible option, we may regard A, as the real
photon by assuming the coupling constant to be the electric
charge of the electron, g = e. Then, the charged lepton
would in turn become extremely heavy, m ~ Mp.

In the case of G, # 0, on the other hand, our model can
represent a unified theory of leptons interacting with a
graviton, a photon, and a Higgs-like scalar boson, without
any of the inconveniences found above. However, this case
predicts that the bare gravity present before spontaneous
Lorentz violation will be an extremely strong antigravity,
—Gy/Gy ~ O(M%/m?2). This conclusion will not be avoid-
able, as long as the quasifermions are identified with real
leptons, and the Goldstone photon with the real photon.
We here do not enter into considerations on the quantum
mechanical problems with antigravity, nor on the influence
upon cosmology, including the big bang scenario of the
Universe.

VIII. SUMMARY

We have shown that the effective theory emergent from
spontaneous Lorentz violation of massive SU(2) gauge
theory of Weyl doublets in four dimensions will be Lorentz
invariant under the two hypotheses:

(1) The extended gauge field Y ,, including an auxiliary
field Y,y develops vacuum expectation value
<Y/m> = 77;4a¢0'

(2) The local Lorentz frame is provided by Y, accord-
ing to the relation Y, = éwqfﬁ.
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Then, the massive SU(2) gauge bosons are turned into a
massless tensor boson ,,, a Goldstone photon A, and a
massive scalar boson ¢. As a natural consequence from the
second hypothesis, an extra graviton appears as the
symmetric part of the massless tensor boson. The corre-
spondence between the Einstein gravity and the Yang-Mills
gravity beyond perturbation remains yet to be examined.

In particular, if we regard our model as a unified theory
of gravity and electromagnetism interacting with leptons,
the bare gravitational constant before Lorentz violation will
be negative and very large, which predicts the existence of
an extremely strong primordial antigravity. Discussions on
possible problems which may arise from antigravity are
also beyond the scope of this paper.

APPENDIX: DERIVATION OF THE FIRST
ORDER INTERACTION LAGRANGIAN (60)

For small variations §¢,” and 6Y,”, the Lagrangian L,
in (57) changes as

SL. = Set K« 1w S Tiza5Pr ot §Y i
0 = 0, ”—i—geaa)ﬂﬁyq)ma @+ gertpor 5.

(A1)
For the real part of Lq,, we have
8Ly = e+ K, + %e"‘ﬂﬁé"aé&)ﬂﬂy(p"'&é(p
+ g2 o (62,5 + 1,p0) J. (A2)
where the following identity has been used:
50’67 = nPe — 6P +nf16* — G5 (A3)

From the definition of the local Lorentz connection (44),
we obtain for &,, = 17,4 + @4

Pt 50,5, = €100, 5, 4 -+ . (A4)

Then, ignoring a total divergence term, we have

! afrdsp Sh = ! apfys t5

PR 00,50 G50 = —¢ Wap0, (9 Gsp) + -+ -
(AS)

On the other hand, K*¥ can be rewritten in the form

K# = g 5#iD%
_ L isniorer + oo iD
—E(pa(aa +076")iD ¢

1
= E(pT(}”of’é'”iD,,(p, (A6)

by using the equation of motion, 6°iD,¢ = 0. Then, from
the identity (A3), we have

Kl = — % " 5,iD . (A7)
Therefore, the real part of K/ reads
Kl = —%e’“’f’”ap(qodf&gqo). (A8)
Accordingly, Eq. (AS) is expressible as
le"/’y‘sé“aéé)ﬂﬁy(pTéw =w, KM +.... (A9
4
Since 6¢, = —w,", Eq. (A2) reduces to
8Ly = ~0,, KW + ghpw,, j* + 95¢j+---,  (Al0)

which is identical with Eq. (60) in the first order approxi-
mation, 8¢ = ox/V/2.
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