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A model of spontaneous Lorentz violation in four dimension is given, which seems to provide a Lorentz
invariant effective theory. An SU(2) Yang-Mills gauge field and an auxiliary U(1) vector field generate
gravity and other interactions when they have vacuum expectation values. The emergent gravity is
equivalent to conventional general relativity up to the third order terms in the Lagrangian. The coupling to
matter, including spin-1=2 fermions, is also given correctly to this level. It remains to be seen whether this
formalism reproduces the properties of black holes and other consequences obtained from Einstein’s
theory.
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I. INTRODUCTION

In contrast to broken gauge symmetry, broken spacetime
symmetry has been rarely considered in four dimensions,
since the latter is apt to end up with a Lorentz violating
effective theory. However, this paper presents a model of
spontaneous Lorentz violation in four dimensions, which
seems to give a Lorentz invariant effective theory. We
consider the four component gauge potential Yμα composed
of an SU(2) Yang-Mills gauge field and an auxiliary
isoscalar vector field with the vacuum expectation value
hYμαi ¼ ημαϕ0, where ϕ0 is a constant with mass dimension
one. We can show that even if Yμα couples to Weyl doublets,
it is consistent with the relativity of emergent quasiparticles.
Though the vacuum expectation value hYμαi breaks both

Lorentz symmetry and gauge symmetry, if isospin is
rotated at the same time like a Lorentz vector, it remains
invariant. In this case, the Minkowski metric ηαβ should
be assumed in the four-dimensional isospin space. The
invariance under the extended Lorentz transformation,
Y 0
μα ¼ Λμ

νΛα
βYμβ etc., will therefore guarantee the

Lorentz invariance of the effective theory.
However, the above postulate is found not to be enough

for the effective Lorentz invariance, since the mass term,
the non-Abelian terms, and the interaction terms to fer-
mions in the Lagrangian of the massive SU(2) Yang-Mills
fields will not be invariant under the extended Lorentz
transformation.
The solution to this problem, on which this paper is

mainly based, is to formulate the model in a spacetime
with the quantum vierbein conformal to the gauge field,
êμα ¼ Yμα=ϕ̄, where ϕ̄ is some scalar field with mass

dimension one. The adjective “quantum” is attached for
distinguishing it from the classical vierbein in Einstein’s
theory of gravity. The new postulate returns to the original,
when the quantum vierbein and the scalar field have the
vacuum expectation values: hêμαi ¼ ημα, and hϕ̄i ¼ ϕ0,
respectively. Then, the gauge field Yμ

α provides the
quantum mechanical local Lorentz frame vectors in the
classical Minkowski spacetime, where the isospin index α
is identified with that of the local Lorentz frame index. We
then confirm the Lorentz invariance of the effective theory.
Relativity of emergent fermions and their interactions are
also confirmed.
As a natural consequence of the above hypothesis, a

graviton appears even in a flat Minkowski spacetime.
Though the quantum metric ĝμν obeys the Yang-Mills
action for the massive SU(2) gauge field, the Einstein
gravity is reproduced up to the third order terms in the
Lagrangian. Whether the extra gravity alone is sufficient to
completely replace Einstein gravity is an issue that this
paper does not fully resolve.
If there already exists Einstein’s type gravity in unbroken

phase, the extra gravity will become a renormalization. The
phenomenological interpretations of the results obtained
are finally discussed.

II. BROKEN LORENTZ SYMMETRY AND
GOLDSTONE BOSONS

As a preparation for understanding the necessity of
quantum geometry by gauge fields for the effective
Lorentz invariance, we begin with describing spontaneous
Lorentz violation of a massive SU(2) gauge theory, and
clarifying the number of resultant Nambu-Goldstone
modes [1,2]. The theme attracts attention also from the
aspect of the breakdown of Goldstone’s theorem [3].*kimihiden@dune.ocn.ne.jp
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Spontaneous Lorentz violation occurs when the massive
SU(2) gauge field Yμ couples to fermions. We consider the
Lagrangian L ¼ LY þ LF where

LY ¼ −
1

4
Yμν · Yμν þ g∂μYν · ðYμ × YνÞ

−
g2

4
ðYμ × YνÞ · ðYμ × YνÞ þ

m2
Y

2
Yμ · Yμ; ð1Þ

Yμν ≔ ∂μYν − ∂νYμ, and LF is the Lagrangian of fermions,
which will be specified in Sec. VI. The mass term is
supposed to be originated from the Higgs mechanism,
though the Lagrangian of the Higgs doublet is not explicitly
written. In the Minkowski spacetime, the equation of
motion for Yμ is given by

ð□þm2
YÞYμ − ∂μ∂ · Y þ � � � ¼ jμ; jμ ≔ −

δLF

δYμ
; ð2Þ

where the contributions from non-Abelian terms, which are
not essential in the following argument, are neglected for
simplicity. Then, the equation for the vacuum expectation
value,

m2
YhYμi ¼ hjμi; ð3Þ

shows that hYμi ≠ 0, if hjμi ≠ 0. When hYμi ≠ 0, the free
equation of motion for a fermion depends on hYμi. In this
case, the perturbative estimation gives hjμi ¼ ΓðYÞhYμi,
where ΓðYÞ is generally a scalar function of hYμiwith mass
dimension two. Then, Eq. (3) provides the self-consistency
condition for hYμi. If it has a nontrivial solution hYμi ≠ 0,
spontaneous Lorentz violation will occur [4,5].
We next consider this model in the Lagrangian formal-

ism to find the Goldstone bosons. In the following, we
assume that hYμai ¼ ημaϕ0. Further, it is convenient for us
to write the free part of the Lagrangian in the form

Lð0Þ
Y ¼ −

1

2
∂ρYμ

a∂ρYμa þ
m2

Y

2
Yμ

aYμa; ð4Þ

with the physical state condition

∂ · Ya
ðþÞiphys ¼ 0; ð5Þ

where (þ) denotes the positive frequency (annihilation)
part as in the Gupta-Bleuler formalism [6,7]. We can
decompose Yμa into a local Lorentz transformation Λμ

ν,
and a symmetric tensor ϕμa,

Yμa ¼ Λμ
νϕνa; ð6Þ

where ϕ0a ¼ 0, ϕij ¼ ϕji and hϕμai ¼ ημaϕ0. For a
small local Lorentz transformation Λμ

ν ¼ ημ
ν þ ϵμ

ν, the
Lagrangian (4) reduces to

LY ¼ −
ϕ2
0

2
∂ρϵμi∂ρϵμi þ

1

2
∂ρϕij∂ρϕij −

m2
Y

2
ϕijϕij: ð7Þ

Twelve components of Yμa are decomposed into the
antisymmetric tensor ϵμν with six components, and the
symmetric tensor ϕij with also six components. Six ϵ
modes, corresponding to the Goldstone bosons due to
Lorentz violation, are massless owing to the Lorentz
invariance of the mass term Yμ

aYμa ¼ ϕμ
aϕμa.

We next count the number of independent Goldstone
bosons. By introducing the notations

ϵ0i ¼ ϵi; ϵij ¼ ϵijkωk=
ffiffiffi
2

p
; ð8Þ

the Lagrangian is turned into the form

LY ¼ ϕ2
0

2
½−∂μϵi∂μϵi þ ∂μωi∂μωi�

þ 1

2
∂ρϕij∂ρϕij −

m2
Y

2
ϕijϕij: ð9Þ

The canonical quantization in a volume V gives the
following expansion of field operators:

ϵiðxÞϕ0 ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2jkjVp ½aike−ikx þ a†ike

ikx�;

ωiðxÞϕ0 ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2jkjVp ½bike−ikx þ b†ike

ikx�; ð10Þ

with the commutation relations:

½aik; a†jk0 � ¼ −δijδkk0 ; ½bik; b†jk0 � ¼ δijδkk0 : ð11Þ

For the ϕ field, we introduce the notations C1 ¼
ffiffiffi
2

p
ϕ23,

C2 ¼
ffiffiffi
2

p
ϕ31, C3 ¼

ffiffiffi
2

p
ϕ12 D1 ¼ ϕ11, D2 ¼ ϕ22, and

D1 ¼ ϕ33. The canonical quantization again gives the
following field operators:

CiðxÞ ¼
X
p

1ffiffiffiffiffiffiffiffiffiffiffi
2ωpV

p ½cipe−ipx þ c†ipe
ipx�;

DiðxÞ ¼
X
p

1ffiffiffiffiffiffiffiffiffiffiffi
2ωpV

p ½dipe−ipx þ d†ipe
ipx�; ð12Þ

with the commutation relations

½cip; c†jp0 � ¼ ½dip; d†jp0 � ¼ δijδpp0 : ð13Þ

Neglecting the infinite constant term, we obtain the
Hamiltonian
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H ¼
X
k;i

jkjð−a†ikaik þ b†ikbikÞ þ
X
p;i

ωpðc†ipcip þ d†ipdipÞ;

ð14Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

Y

p
. The vacuum state i ≔ jvacuumi is

defined by the condition ðaik; bik; cip; dipÞi ¼ 0. Although

one-particle states a†iki and b†iki have the same positive
energy eigenvalue jkj, the former has the negative norm
ka†ikik2 ¼ −1, giving the negative energy expectation
value haikHa†iki ¼ −jkj, while the state b†iki with positive
norm kb†ikik2 ¼ 1 gives the positive energy expectation
value hbikHb†iki ¼ jkj.
Because of the mass difference between the ϵ boson and

the ϕ boson, the physical state condition (5) separates into
two conditions:

∂μϵðþÞ
μa iphys ¼ 0; ∂μϕðþÞ

μa iphys ¼ 0: ð15Þ

For an ϵ boson propagating in the direction of the third axis,
kμ ¼ ðjkj; 0; 0; jkjÞ, the physical state condition reduces to

ða1 þ b2=
ffiffiffi
2

p
Þiphys ¼ 0;

ða2 − b1=
ffiffiffi
2

p
Þiphys ¼ 0; a3iphys ¼ 0; ð16Þ

where the momentum dependence is suppressed for sim-
plicity. The vacuum state condition is expressible as
Ziphys ¼ 0, if the Z operator is defined with constant
coefficients zi by

Z ≔ z1ða1 þ b2=
ffiffiffi
2

p
Þ þ z2ða2 − b1=

ffiffiffi
2

p
Þ þ z3a3: ð17Þ

Then, we have the following relations:

½Z; ða1 þ
ffiffiffi
2

p
b2Þ†� ¼ 0; kða1 þ

ffiffiffi
2

p
b2Þ†ik2 ¼ 1;

½Z; ða2 −
ffiffiffi
2

p
b1Þ†� ¼ 0; kða2 −

ffiffiffi
2

p
b1Þ†ik2 ¼ 1;

½Z; b†3� ¼ 0; kb†3ik2 ¼ 1; ð18Þ

which show that there are three independent physical states
with positive norm and positive energy jkj, since no other
creation operators commuting with Z are constructible
from a†i and b†i .
For the ϕ boson, on the other hand, Eq. (16) requires that

c1iphys ¼ 0; c2iphys ¼ 0; d3iphys ¼ 0; ð19Þ

which shows that the ϕ boson has also three physical
modes: c†3i, d†1i, and d†2i.
The number of Goldstone bosons ordinarily equals

that of broken symmetries. However, we obtain here
only three Goldstone bosons, although six Lorentz gen-
erators are broken. The phenomenon that the number of

Nambu-Goldstone bosons becomes less than that of broken
generators for spontaneous spacetime symmetry breaking
has been often reported, and the reason is known [3]. We
consider the variation of Yμa under an infinitesimal gauge
transformation combined with a local Lorentz one:

δYμa ¼ ∂μθa þ ϵabcθbYμc þ ϵμ
νYμa; ð20Þ

where θa are SU(2) gauge parameters. Then, we find that

hδY0ii ¼ ∂0θi þ ϵiϕ0;

hδYiji ¼ ∂iθj þ ϵijkðωk=
ffiffiffi
2

p
− θkÞϕ0: ð21Þ

The first relation shows that Lorentz boost transformations
ϵi can be canceled by taking the gauge parameters such that
∂0θi ¼ −ϵiϕ0, which implies that three Goldstone modes
corresponding to the broken Lorentz boost transformations
are not independent of gauge transformations. The second
relation shows that, once gauge parameters θi are fixed to
cancel the Lorentz boost modes, there remains no room
for canceling the Goldstone modes corresponding to the
broken rotational symmetry. Consequently, the total num-
ber of independent Goldstone modes for spontaneous
violation of gauge and Lorentz symmetries are six: the
three corresponding to SU(2) breaking, and the other three
corresponding to rotational symmetry breaking. Of those,
the three gauge modes are to be absorbed as the longi-
tudinal components of the massive gauge bosons by the
Higgs mechanism. As a result, the final number of the
Goldstone bosons is three, which is the same as that
obtained from the physical state condition (5).

III. EXTENDED RELATIVITY
AND GOLDSTONE PHOTON

It is often anticipated that the photon may be the
Goldstone boson emergent from spontaneous Lorentz
violation [8–10]. The last preparation is to show that
two of the three Goldstone modes derived in the previous
section are expressible in terms of a U(1) gauge field. The
result serves to separate from the Lagrangian the part which
breaks the extended Lorentz invariance.
In order to acquire the perspectives on the relativistic

properties of the effective theory, we introduce an auxiliary
isoscalar gauge field Yμ0 with the vacuum expectation
value hYμ0i ¼ ημ0ϕ0 to form the four component gauge
field Yμα ¼ ðYμ0; YμaÞ with the vacuum expectation value,
hYμαi ¼ ημαϕ0.
We may assume hYμ0i¼ ημ0ϕ

0
0 instead of hYμ0i ¼ ημ0ϕ0,

where ϕ0
0 is different from ϕ0. Even in this case, it can be

changed into the original form by rescaling the time
coordinate. Actually, by introducing the new coordinates
x00 ¼ cx0 and x0i ¼ xi with the ratio c ¼ ϕ0

0=ϕ0, we have
hYμ

0dxμi ¼ cdx0 ¼ hY 0
μ
0dx0μi, where hY 0

μ
0i ¼ ημ

0ϕ0. If x0

has the dimension of time, c represents the velocity of light.

EXTRA EQUATION OF GRAVITY INDUCED BY SPONTANEOUS … PHYS. REV. D 103, 064056 (2021)

064056-3



The Lagrangian (4) is expressible as

Lð0Þ
Y ¼ 1

2
∂ρYμα∂ρYμα −

1

2
∂ρAμ∂ρAμ þ

m2
Y

2
Yμ

aYμa; ð22Þ

with the physical state conditions ∂ · YðþÞ
α iphys ¼ 0, and

∂ · AðþÞiphys ¼ 0, where Aμ ≔ Yμ0 − hYμ0i. The kinetic
term for Yμα in (22) becomes now invariant under the
extended Lorentz transformation,

Y 0
μα ¼ Λμ

νΛα
βYνβ; ð23Þ

where the four isospin components are also transformed in
the same way as a Lorentz vector. Under the same trans-
formation, Aμ can be regarded as a Lorentz vector,
A0
μ ¼ Λμ

νAν, if Aμ in an arbitrary Lorentz frame is
defined by

Aμ ¼ ðYμα − hYμαiÞδα=
ffiffiffiffiffiffiffiffi
δ · δ

p
; ð24Þ

with the help of a constant timelike 4-vector δα. The 16
components of Yμα are decomposable into a local Lorentz
transformation Λμ

ν, and the residual symmetric tensor
ϕμν ¼ ϕνμ satisfying hϕμαi ¼ ημαϕ0 as

Yμα ¼ Λμ
νϕνα: ð25Þ

For a small quantum oscillation, Λμ
ν ¼ ημ

ν þ ϵμ
ν, Yμα is

expressible up to the first order:

Yμα ¼ ϕ0ϵμα þ ϕμα: ð26Þ

Then, we have

1

2
∂ρYμα∂ρYμα ¼

ϕ2
0

2
∂ρϵμα∂ρϵμα þ

1

2
∂ρϕμα∂ρϕμα: ð27Þ

The mass term is rewritten as

m2
Y

2
Yμ

aYμa ¼
m2

Y

2
ϕμ

aϕμa ¼
m2

Y

2
½ϕ2

0i − ϕ2
ij�: ð28Þ

The fields ϵμν, ϕ00, ϕ0i, and ϕij obey the equations of
motion:

□ϵμν ¼ 0; □ϕ00 ¼ 0;

�
□þm2

Y

2

�
ϕ0i ¼ 0;

½□þm2
Y �ϕij ¼ 0: ð29Þ

Because of the mass difference, the physical state condition

∂ · YðþÞ
α iphys ¼ 0 separates into

∂μϵðþÞ
μν iphys ¼ 0; ∂0ϕ

ðþÞ
00 iphys ¼ 0;

∂0ϕ
ðþÞ
0i iphys ¼ 0; ∂jϕ

ðþÞ
ji iphys ¼ 0: ð30Þ

As for the first condition, the expressions (10) and (11)
become applicable also to the present case by taking
ϵ0i ¼ ϵi=

ffiffiffi
2

p
instead of ϵ0i ¼ ϵi in Eq. (8). The Z operator

corresponding to Eq. (17) is now written as

Z ≔ z1ða1 þ b2Þ þ z2ða2 − b1Þ þ z3a3: ð31Þ

Then, we have

½Z; ða1 þ b2Þ†� ¼ 0; kða1 þ b2Þ†ik2 ¼ 0;

½Z; ða2 − b1Þ†� ¼ 0; kða2 − b1Þ†ik2 ¼ 0;

½Z; b†3� ¼ 0; kb†3ik2 ¼ 1; ð32Þ

which shows that only b†3i remains as the Goldstone boson,
and the other two states in the previous section turn into
zero-norm states carrying no energy. Instead of two
Goldstone modes lost, we now obtain a U(1) gauge field
Aμ with two polarization modes. This observation is
interpretable as that two of the three Goldstone bosons
in the first formulation are transformed into a massless U(1)
gauge boson in the second formulation. The result justifies
one to treat Yμ0 and Aμ in (22) as independent.
Concerning the ϕ boson, on the other hand, owing to the

second and the third condition in (30), ϕ00 component and
ϕ0i components are physically prohibited. Only the third
condition remains, which is the same as that for ϕij in the
previous section. Therefore, the number of physical modes
for the ϕ boson is the same also in the new formulation.
The new formulation improves the perspectives on the

Lorentz symmetry of the effective theory, where an
auxiliary isoscalar gauge field is introduced, and a four
component isovector is assumed to be transformed as a
Lorentz 4-vector. However, the above analysis clarifies
another problem; the extended Lorentz invariance is still
broken by the mass term of the ϕ boson (28), even though
the dispersion relation for each component is relativistic
including unphysical modes. Whereas the components
corresponding to the physical states have the unique mass
mY , the propagator hTϕμνðxÞϕρσðx0Þi, which is calculable
by the path integral method, is not covariant under the
extended Lorentz transformation, since the unphysical
states with masses mϕ ¼ 0, mYffiffi

2
p also contribute to virtual

processes.
The effective Lorentz invariance would follow, if the

mass term (28) was −m2
YY

μαYμα=2, which is invariant
under the extended Lorentz transformation. However, this
modification will be inappropriate for the picture of the
Goldstone boson as the U(1) gauge field, since then the
U(1) gauge field would become massive. A consistent
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method to remove Lorentz violation from the effective
theory is to separate the isospin rotation from the original
Lorentz transformation by introducing a vierbein, and to
transfer the isospin rotation to the local Lorentz trans-
formation. This improvement implies that one uses the
extended gauge field as the local Lorentz frame vectors, as
explained in the next section.

IV. QUANTUM VIERBEIN

The Lorentz invariance of the effective theory examined
in the previous two sections reveals that the mass term
of the symmetric tensor bosin ϕμν violates relativity in the
extended sense. This section begins with introducing the
vierbein into the same model to see how that point is
modified.
The extended gauge field Yμα in the Minkowski space-

time is expressible in a local Lorentz frame as

Yμα ¼ eμβYβα; ð33Þ

with the help of the vierbein eμα, where the first index of
Yβα represents a local Lorentz index, while the second is of
the extended isospin, though both are expressed by the
common greek letters. The arguments in the previous two
sections will be applicable to Yβα by replacing a Lorentz
transformation with a local Lorentz transformation. Owing
to the vierbein, the expression (33) becomes valid also in
the curved spacetime with the metric gμν ¼ eμαeνα.
Since the vierbein eμα has the same degree of freedom as

Yμα, it serves to represent all the freedom of the gauge field,
if every component of the vierbein is auxiliary. We hereafter
forget the Einstein gravity for a while, and assume that all
the components of the vierbein eμα are auxiliary fields in a
flat Minkowski spacetime. Considerations on the influence
of the classical action of gravity is postponed until Sec. VII.
Then, we will obtain the expression

Yμ
α ¼ eμαϕ̄; ð34Þ

where ϕ̄ is a scalar field of mass dimension one with the
vacuum expectation value hϕ̄i ¼ ϕ0, which is indispen-
sable due to the normalization condition for the vierbein,
eμαeμβ ¼ ηαβ. Inversely, we can define a quantum version
of the vierbein by

êμα ≔ Yμ
α=ϕ̄: ð35Þ

The Minkowski metric ημν is reproduced as the vacuum
expectation value of the quantum metric

ĝμν ¼ êμαêνα; hĝμνi ¼ ημν: ð36Þ

The contravariant quantum metric ĝμν is given in terms of
the inverse quantum vierbein

ĝμν ≔ ηαβêμαêνβ; ð37Þ

where the inverse quantum vierbein, satisfying êμαêμβ ¼
ηα

β as well as êμαêνα ¼ ημν, is obtainable by the definition

êμα ≔ −
1

3!ê
ϵμνρσϵαβγδêνβêργ êσδ; ê ¼ det êμα; ð38Þ

where ϵμνρσ is the totally antisymmetric tensor with con-
vention ϵ0123 ¼ 1. The extended isospin space has been
assumed to have the Minkowski metric ηαβ. In terms of the
gauge field, Eq. (38) is expressible as

Yμ
α ¼ −

ϕ̄2

3!jYj ϵ
μνρσϵαβγδYν

βYρ
γYσ

δ; jYj ≔ detYμ
α;

ð39Þ

from which we have the relations

Yμα ¼ ĝμνYν
α; ĝμν ¼ Yμ

αYνα=ϕ̄2; ϕ̄2 ¼ Yμ
αYμ

α=4:

ð40Þ

Since ĝμν is defined by the gauge field, it changes under the
SUð2Þ × Uð1Þ gauge transformation as

hδθĝμνi ¼ ð∂μθν þ ∂νθμÞ=ϕ0;

δθYμ
α ¼ ð∂μθ

0; ∂μθþ gθ × YμÞ; ð41Þ

which is the same as the infinitesimal coordinate trans-
formation of the classical Minkowski metric ημν under the
identification δxμ ¼ −θμ=ϕ0. This observation suggests
that if we formulate spontaneous Lorentz violation of
the massive SU(2) gauge theory to be in general coordinate
invariant in the quantum spacetime defined by ĝμν, the
broken gauge symmetry will recover and the massive gauge
bosons will return massless. In fact, the mass term of the
gauge boson is transformed under the quantum spacetime
into the mass term of the scalar boson,

m2
Y

2
ĝμνYμ · Yν ¼ −

3

2
m2

Yϕ̄
2; ð42Þ

which is Lorentz invariant in the extended sense.
The formulas in differential geometry are not altered

whether the vierbein and the metric tensor are composed
of the gauge field or not. In the quantum geometry, the
covariant derivative for the general coordinate transformation
and that for the local Lorentz transformation are obtainable
by replacing gμν and eμα by ĝμν and êμα, respectively:

∇̂μVν ¼ ∂μVν − Γ̂ρ
μνVρ;

Γ̂ρ
μν ¼ 1

2
ĝρσð∂μĝσν þ ∂νĝσμ − ∂σ ĝμνÞ; ð43Þ
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∇̂μVα ¼ ∂μVα þ ω̂μ
α
βV

β;

ω̂μαβ ¼ êνα∇̂μêνβ ¼ êναð∂μêνβ − Γ̂ρ
μνêρβÞ: ð44Þ

In accordance with the definition by Weinberg [11], the
covariant derivative for êμα in (44) does not contain the local
Lorentz connection ω̂μαβ.
The covariant derivative for a spinor field requires the

spin connection ω̂μ. In the case of a Weyl spinor φ, it is
expressible in terms of ω̂μαβ as

∇̂μφ ¼ ð∂μ þ ω̂μÞφ; ω̂μ ¼
1

8
ω̂μαβσ̄

αβ;

σ̄αβ ≔ σασ̄β − σβσ̄α; ð45Þ

where the four component Pauli matrices σα and σ̄α are
defined by

σα ¼ ð1; σÞ; σ̄α ¼ ð1;−σÞ: ð46Þ

V. EXTRA GRAVITY

This section shows that the introduction of quantum
geometry eliminates from the Lagrangian of the gauge field
Eq. (1) the breakdown of extended Lorentz invariance.
Actually, the mass term and the fourth order term in (1),
which violate relativity in the extended sense, turn into
the mass term and the self-interaction term for the scalar
field ϕ̄:

m2
Y

2
Yμ · Yμ ¼ −

3

2
m2

Yϕ̄
2;

−
g2

4
ðYμ × YνÞ · ðYμ × YνÞ ¼ −

3

2
g2ϕ̄4: ð47Þ

Wewill see that the quantum geometry also makes the third
order term in Eq. (1) harmless to the emergent Lorentz
invariance. The remaining second order term can be made
relativistic in the extended sense as follows.
As done in Sec. III, we introduce an auxiliary vector field

Yμ0 to extend the isospin to be of four components, and a
constant timelike 4-vector δα for a local Lorentz violation.
In a local Lorentz frame in which the spacial components
of a timelike 4-vector vanish, δα ¼ ðδ; 0; 0; 0Þ, the second
order term can be decomposed into the form

Lð2Þ
Y ¼ −

1

4
Yμν · Yμν ¼ LYG þ LA; ð48Þ

LYG ¼ 1

4
YμναYμνα; Yμνα ≔ ∂μYνα − ∂νYμα; ð49Þ

LA ¼ −
1

4
FμνFμν; Fμν ≔ ∂μAν − ∂νAμ; ð50Þ

Aμ ¼ Yμ0 − hYμ0i: ð51Þ

The contravariant tensors are assumed to be defined by the
covariant ones with the help of the quantum metric, for
example, Yμν ¼ ĝμρĝνσYρσ, although the quantum geometry
makes no difference to the second order approximation of

Lð2Þ
Y . Following the argument in Sec. III, we hereafter treat

Yμα and Aμ as independent. The Lagrangian LYG turns into
that of quantum gravity by replacing Yμα with êμαϕ̄. For a
small quantum oscillation, êμα ¼ ημα þ ωμα þOðω2Þ, LYG

becomes up to the quadratic order,

LYG ¼ ϕ2
0

2

�
∂ρωμα∂ρωμα −

1

2
∂ρω∂ρω

�
þ ∂ρϕ̄∂ρϕ̄

þ ∂ρϕ∂ρϕ −
1

2
∂ · Yα∂ · Yα; ð52Þ

where total divergence terms are discarded. Since ∂ · Yα ¼
∂αϕþ ϕ0ð∂ρωρα − 1

2
∂αωÞ in the first order approximation,

where ϕ ¼ ffiffiffî
e

p
ϕ̄, and ω ≔ ωρ

ρ, the gauge fixing condition

∂ρωρα −
1

2
∂αω ¼ ð

ffiffiffi
2

p
− 1Þ∂αϕ=ϕ0 ð53Þ

cancels the last two terms in the right-hand side of Eq. (52).
Then, we obtain in this gauge the following expression:

LY ¼ ϕ2
0

8

�
∂ρĥμν∂ρĥμν −

1

2
∂ρĥ∂ρĥ

�
þ ϕ2

0

2
∂ρϵμν∂ρϵμν

þ Lð3Þ
Y −

1

4
FμνFμν þ ∂ρϕ̄∂ρϕ̄ −

3

2
m2

Yϕ̄
2 −

3

2
g2ϕ̄4;

ð54Þ

where Lð3Þ
Y ¼g∂μYν ·ðYμ×YνÞ, ĥμν ¼ 2ωðμνÞ ¼ ωμν þ ωνμ,

ϵμν ¼ ω½μν� ¼ ðωμν − ωνμÞ=2, and ĥ ¼ ĥρρ.
For ϵμν ¼ 0with ϕ ¼ ϕ0, the gauge fixing condition (53)

reduces to ∂ρĥρμ − 1
2
∂μĥ ¼ 0, which is the same as that

of the harmonic coordinates for the gravitational wave
δĝμν ¼ ĥμν [12]. The first part for ĥμν in Eq. (54) is the same
as the Lagrangian of gravitational waves in Einstein’s
gravity, provided that the gravitational constant 8πG is
now replaced with ϕ−2

0 . The terms representing the
Lagrangian of the scalar field ϕ̄ would turn into renorm-
alization terms, if we had prepared beforehand the
Lagrangian for ϕ̄. In this form of Lagrangian (54), only
ϕ̄ develops the vacuum expectation value.
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Our remaining task is to evaluate Lð3Þ
Y , which reduces in the same order of approximation to

êLð3Þ
Y ¼ gϵabc

�
−ĥρað∂ρωbc − ∂bωρcÞ þ ωρ

að∂ρωbc − ∂bωρcÞ −
1

2
ω∂aωbc

�
: ð55Þ

The contribution from Lð3Þ
Y to the linear equation for ωμν can be extracted by taking the variation of Eq. (55):

δðêLð3Þ
Y Þ ¼ gϵabc

2
64−δĥμν

�
ηνað∂ρωbc − ∂bωρcÞ − 1

4
ημν∂aωbc

�
þδωμ

a

�
∂μωbc þ ∂bðωcμ − ωμcÞ þ ημb

�
∂ρωρc − 1

2
∂cω

��
3
75: ð56Þ

The first part proportional to δĥμν corresponds to the source
term for the linear equation of ωμν, which contributes to the
energy-momentum tensor of ωμν. The second part propor-
tional to δωμ

a, which contributes to the free equation of
motion, vanishes, if ωμν is symmetric and satisfies the
gauge condition ∂ρωρα − 1

2
∂αω ¼ 0. Therefore, Lð3Þ

Y does
not affect the free equation of motion for the extra graviton.
We will see in Sec. VI that the antisymmetric tensor boson
decouples from fermions by the local Lorentz transforma-
tion for spinor fields. Then, LY is effectively Lorentz
invariant in the extended sense, even after spontaneous
Lorentz violation.

VI. RELATIVISTIC QUASIPARTICLES

We now turn our attention to the fermions coupled with
the gauge field Yμ, and examine the relativity of quasi-
particles and their interactions. In perturbation theory, the
effective Lagrangian is separated into the free part and the
interaction part. This section shows that the hypothesis
hYμαi ¼ ϕ0ημα suffices for the Lorentz invariance of the
free part, whereas the quantum geometry by the gauge field
is indispensable for the Lorentz invariance of interactions.
We assume here that the Lagrangian of fermions LF

is the sum of those for left-handed Weyl doublets,

LF ¼ P
N
i¼1 L

ðiÞ
W . The fermion current jμ in the equation

of motion (2) is then the sum of the currents from the

doublets, jμ ¼
P

N
i¼1 j

ðiÞ
μ , where N should be even, if our

model cancels the Witten’s global SU(2) anomaly [13–16].
We consider one of the Weyl doublets, and give the

Lagrangian LW in the quantum spacetime described by the
quantum vierbein êμα:

LW ¼ ðLφ þ L†
φÞ=2; Lφ ¼ êμαφ†σ̄αiDμφ;

Dμ ¼ ∂μ þ
1

8
ω̂μβγσ̄

βγ − i
g
2
ρ̄αYμ

α; ð57Þ

where the four component isospin matrices, ρα ¼ ð1; ρÞ,
ρ̄α ¼ ð1;−ρÞ, are introduced, and the gauge field is under-
stood as Yμ

α ¼ êμαϕ̄. The local Lorentz connection ω̂μβγ

has already been given by Eq. (44). We have assumed in

Eq. (57) an SUð2Þ × Uð1Þ gauge interaction including an
auxiliary field Yμ0. The coupling constant g0 for Yμ0 has
been set equal to g. Another choice of g0 would affect the
electric charges of quasifermions, as in the case of the
standard electroweak theory.
For small quantum oscillations, êμα ¼ ημα þ ωμα and

ϕ̄ ¼ ϕ0 þ σX=
ffiffiffi
2

p
, LW reduces to

LW ¼ L0
W þ L1

W þ � � � ; ð58Þ

L0
W ¼ φ†

�
σ̄μi∂μ þ

m
2
ρ̄ · σ̄

�
φ; m ≔ gϕ0; ð59Þ

L1
W ¼ mωμνjμν − ωðμνÞK̄μν þ gffiffiffi

2
p σXjαα; ð60Þ

jμν ¼ 1

2
φ†σ̄μρ̄νφ; Kμν ¼ φ†σ̄μiDνφ;

Dμ ¼ ∂μ − i
m
2
ρ̄μ; ð61Þ

where K̄μν is the real part of Kμν. The derivation is given in
the Appendix.
We first examine the free equation of motion of a left-

handed doublet obtained from Eq. (59) in momentum
representation, �

σ̄ · pþm
2
ρ̄ · σ̄

�
φp ¼ 0; ð62Þ

which gives the dispersion relation,				σ̄ · pþm
2
ρ̄ · σ̄

				 ¼ p · p½ðp − δÞ · ðp − δÞ −m2� ¼ 0;

δμ ¼ −mημ0: ð63Þ

In terms of the helicity eigenstates L and R, the eigen-
functions are expressible as

p0 ¼ p; φνp ¼ LL; ð64Þ
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p0 ¼ −p; φν̄p ¼ RR; ð65Þ

p0 ¼ ω −m; φep ¼ λþRLþ λ−LR; ð66Þ

p0 ¼ −ω −m; φēp ¼ −λ−RLþ λþLR; ð67Þ

where p ¼ jpj and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and the coefficients λ�

are given by

λ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1� p

ω

�s
: ð68Þ

The first L or R of each direct product in the wave functions
corresponds to the isospin-helicity eigenstate, while the
second is to the ordinary spin-helicity eigenstate.
We may call the solution (64) with energy Eνp ¼ p

a “quasineutrino” and (65) with energy Eν̄p ¼ p a
“quasi- anti-neutrino,” while the solution (66) with energy
Eep ¼ ω −m a “quasielectron,” and (67) with energy
Eēp ¼ ωþm a “quasipositron,” in accordance with the
hole theory applied to the negative kinetic energy.
The dispersion relation for the quasielectron has the form

ðp − δÞ · ðp − δÞ ¼ m2. A fermion obeying this dispersion
relation is an ordinary relativistic fermion with kinetic
4-momentum kμ ¼ pμ − δμ. The Lorentz violating term δμ

can be removed, if the fermion has a U(1) gauge
interaction.
The momenta pμ and kμ, which are transformable to

each other under gauge transformations, are both physical
quantities in quantum mechanics. Then, the difference of
the two, δμ, will be also physical. However, this does not
imply that δμ is always detectable, or has a physical effect.
It will depend on the situation, or what experiment is done,
although we usually expect that δμ does not have any
physical effects [17,18].
The difference between the quasielectron and the Dirac

electron deserves special attention, since the former has the
only one spin state like a neutrino. The form of the wave
function of the quasielectron represents a superposition of a
right-handed electron and a left-handed electron, despite
starting from a left-handed doublet. The appearance of a
right-handed quasielectron is understandable as follows.
The equation of motion (62) is expressible for a quasielec-
tron in the form

σ̄ · ðp − δÞφep ¼ mχep; χep ≔ Tφep; ð69Þ

where

T ¼ 1

2
ð1þ ρ · σÞ: ð70Þ

The 4 × 4 matrix T is unitary and exchanges the spin
matrices and the isospin matrices:

T† ¼ T−1 ¼ T; TρT−1 ¼ σ; TσT−1 ¼ ρ: ð71Þ

Operating T on Eq. (69), we find that χep satisfies the
equation of motion

ρ̄ · ðp − δÞχep ¼ mφep: ð72Þ

It can be rewritten as

σ · ðp − δÞχep ¼ mφep; ð73Þ

due to the relation, p · ðσ − ρ̄Þχe ¼ 0, obtainable from
the property of the wave function χep ¼ λþLRþ λ−RL.
Equation (73) shows that χe is a right-handed doublet.
Incidentally, the right-handed electron is also interpret-

able as a three body bound state of Weyl fermions,

χe ¼ Tφe ≃
2

k1m
hφφ†φjei; ð74Þ

where k1 is a quadratically divergent constant in a pertur-
bative estimation. It is derived by expanding the propagator
of a Weyl doublet with respect to M̄. Then, we have

hφðxÞφ†ðxÞi ¼
Z

d4p
ð2πÞ4

i
σ̄ · pþ M̄

¼ k1
2
M þ � � � ; ð75Þ

where

M ¼ g
2
σμρ̄αhYμαi ¼ mT; k1 ¼

Z
d4p
ð2πÞ4

i
p2 þ iϵ

; ð76Þ

from which Eq. (74) follows. In grand unified theories like
an SU(5) model [19], it is not unusual that a left-handed
state and a right-handed state of the same particle belong to
different multiplets.
The interaction part of the Lagrangian (60), on the other

hand, is expressible in the form

L1
W ¼ −ωðμνÞT̄μν þ ϵμν

m
2
φ†σ̄μρ̄νφ − ωðμνÞφ†σ̄μφδν

þ gffiffiffi
2

p σXφ
†ð1 − TÞφ; ð77Þ

Tμν ¼ φ†σ̄μði∂ν − δνÞφ: ð78Þ

For the quasineutrino, φ ¼ φν, δμ ¼ 0, L1
W reduces to

L1
W ¼ −

ĥμν
2

T̄μν: ð79Þ

There remains only a gravitational interaction, since
Eqs. (64) and (65) show that the wave functions of the
quasineutrino are symmetric under the exchange of the spin
and the isospin, from which Tφν ¼ φν follows.
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In the case of the quasielectron, φ ¼ φe, δμ ¼ −mημ0,
the interaction Lagrangian (77) is also expressible in a
Lorentz invariant form:

L1
W þ δL½−mφ†

eTφe� ¼ −
ĥμν
2

T̄μν
e þ gAμφ

†
eσ̄μφe

−
gffiffiffi
2

p σXφ
†
eχe; ð80Þ

gAμ ¼ gYμ0 − hgYμ0i ≃mωμ0 þ ημ0
gffiffiffi
2

p σX: ð81Þ

The second term in the left-hand side of Eq. (80) is a local
Lorentz transformation of the quasielectron mass term:

δL½−mφ†
eTφe� ¼ mϵμνφ

†
e

�
σ̄μην0 −

1

2
σ̄μρν

�
φe;

δLφe ¼
1

8
ϵμνσ̄

μνφe: ð82Þ

Although the interaction Lagrangian (80) is expressed in
terms of a left-handed doublet only, we can also find
another local Lorentz transformation which reproduces
the left-right symmetric amplitudes [5]. The quasielectron
has a gravitational interaction, a U(1) gauge interaction,
and a scalar interaction coupling to the mass term of a
quasielectron.

VII. REPRODUCTIONOFGENERAL RELATIVITY

After confirming the Lorentz invariance of the effective
theory, we finally consider the phenomenological implica-
tions of the results obtained. We first assume that Lorentz
symmetry is spontaneously broken in the present phase of
the vacuum. Since the original massive SU(2) gauge bosons
disappear in this phase, these bosons will not be identical
with the weak bosons in the standard electroweak theory.
Further, if the Einstein type action of gravity is already
present even before spontaneous Lorentz violation, we
should add the Lagrangian of gravity,

ffiffiffiffiffiffi
−g

p
L0
G ¼ −1

16πG0

ffiffiffiffiffiffi
−g

p
R

≃
1

64πG0

�
∂ρhμν∂ρhμν −

1

2
∂ρh∂ρh

�
; ð83Þ

to Eq. (54), and the interaction Lagrangian,

L1
G ¼ −

hμν
2

T̄μν; ð84Þ

to Eq. (60) under our approximation, where G0 is the
bare gravitational constant, and δgμν ¼ hμν is a small
oscillation for the classical metric before spontaneous
Lorentz violation.

Since ĥμν and hμν generate independent gravitational
forces, the present Newton constant should be the sum of
the two gravitational constants G0 and Gex ¼ ð8πϕ2

0Þ−1:

GN ¼ G0 þ
1

8πϕ2
0

: ð85Þ

The ratio of the bare gravitational constant to the Newton
constant is expressed by

G0=GN ¼ 1 −
g2M2

P

8πm2
; ð86Þ

where MP is the Planck mass.
We first temporarily assume that G0 ¼ 0, which implies

that the Yang-Mills gravity, can approximate Einstein’s
gravity, although the coincidence of two theories beyond
perturbation remains yet to be seen.
Further, if the quasifermions are identified with leptons

in this case, m ¼ gϕ0 should have the order of a charged
lepton massml ¼ me,mμ, ormτ, and the coupling constant
should be extremely small: g ≃ml=MP ≪ 1. Therefore,
the U(1) gauge field Aμ in Eq. (80) will represent an extra
electromagnetism, which interacts with leptons extremely
weaker than the ordinary electromagnetism.
As a possible option, we may regard Aμ as the real

photon by assuming the coupling constant to be the electric
charge of the electron, g ¼ e. Then, the charged lepton
would in turn become extremely heavy, m ≃MP.
In the case of G0 ≠ 0, on the other hand, our model can

represent a unified theory of leptons interacting with a
graviton, a photon, and a Higgs-like scalar boson, without
any of the inconveniences found above. However, this case
predicts that the bare gravity present before spontaneous
Lorentz violation will be an extremely strong antigravity,
−G0=GN ≃OðM2

P=m
2
lÞ. This conclusion will not be avoid-

able, as long as the quasifermions are identified with real
leptons, and the Goldstone photon with the real photon.
We here do not enter into considerations on the quantum
mechanical problems with antigravity, nor on the influence
upon cosmology, including the big bang scenario of the
Universe.

VIII. SUMMARY

We have shown that the effective theory emergent from
spontaneous Lorentz violation of massive SU(2) gauge
theory of Weyl doublets in four dimensions will be Lorentz
invariant under the two hypotheses:
(1) The extended gauge field Yμα, including an auxiliary

field Yμ0, develops vacuum expectation value
hYμαi ¼ ημαϕ0.

(2) The local Lorentz frame is provided by Yμα accord-
ing to the relation Yμα ¼ êμαϕ̄.
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Then, the massive SU(2) gauge bosons are turned into a
massless tensor boson ωμν, a Goldstone photon Aμ, and a
massive scalar boson ϕ̄. As a natural consequence from the
second hypothesis, an extra graviton appears as the
symmetric part of the massless tensor boson. The corre-
spondence between the Einstein gravity and the Yang-Mills
gravity beyond perturbation remains yet to be examined.
In particular, if we regard our model as a unified theory

of gravity and electromagnetism interacting with leptons,
the bare gravitational constant before Lorentz violation will
be negative and very large, which predicts the existence of
an extremely strong primordial antigravity. Discussions on
possible problems which may arise from antigravity are
also beyond the scope of this paper.

APPENDIX: DERIVATION OF THE FIRST
ORDER INTERACTION LAGRANGIAN (60)

For small variations δêμα and δYμ
α, the Lagrangian Lφ

in (57) changes as

δLφ ¼ δêμαKα
μ þ

1

8
êμαδω̂μβγφ

†iσ̄ασ̄βγφþ gêμαδYμβjαβ:

ðA1Þ

For the real part of Lφ, we have

δLW ¼ δêμαK̄α
μ þ

1

4
ϵαβγδêμαδω̂μβγφ

†σ̄δφ

þ gêμαðδêμβϕ̄þ ημβδϕ̄Þjαβ; ðA2Þ

where the following identity has been used:

σ̄ασβσ̄γ ¼ ηαβσ̄γ − ηαγσ̄β þ ηβγσ̄α − iϵαβγδσ̄δ: ðA3Þ

From the definition of the local Lorentz connection (44),
we obtain for êμα ¼ ημα þ ωμα,

ϵαβγδêμαδω̂μβγ ¼ ϵαβγδ∂αωβγ þ � � � : ðA4Þ

Then, ignoring a total divergence term, we have

1

4
ϵαβγδêμαδω̂μβγφ

†σ̄δφ ¼ −
1

4
ϵαβγδωαβ∂γðφ†σ̄δφÞ þ � � � :

ðA5Þ

On the other hand, Kμν can be rewritten in the form

Kμν ¼ φ†σ̄μiDνφ

¼ 1

2
φ†σ̄μðσνσ̄ρ þ σρσ̄νÞiDρφ

¼ 1

2
φ†σ̄μσρσ̄νiDρφ; ðA6Þ

by using the equation of motion, σ̄ρiDρφ ¼ 0. Then, from
the identity (A3), we have

K½μν� ¼ −
1

2
ϵμνρσφ†σ̄σiDρφ: ðA7Þ

Therefore, the real part of K½μν� reads

K̄½μν� ¼ −
1

4
ϵμνρσ∂ρðφ†σ̄σφÞ: ðA8Þ

Accordingly, Eq. (A5) is expressible as

1

4
ϵαβγδêμαδω̂μβγφ

†σ̄δφ ¼ ωμνK̄½μν� þ � � � : ðA9Þ

Since δêμα ¼ −ωα
μ, Eq. (A2) reduces to

δL̄W ¼ −ωμνK̄ðμνÞ þ gϕ̄ωμνjμν þ gδϕ̄jαα þ � � � ; ðA10Þ

which is identical with Eq. (60) in the first order approxi-
mation, δϕ̄ ¼ σX=

ffiffiffi
2

p
.
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