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Hyperbolicity and causality of Einstein-Gauss-Bonnet gravity
in warped product spacetimes
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In Einstein-Gauss-Bonnet gravity, for a group of warped product spacetimes, we get a generalized
master equation for the perturbation of tensor type. We show that the “effective metric” or “acoustic metric”
for the tensor perturbation equation can be defined even without a static condition. Since this master
equation does not depend on the mode expansion, the hyperbolicity and causality of the tensor perturbation
equation can be investigated for every mode of the perturbation. Based on the master equation, we study the
hyperbolicity and causality for all relevant vacuum solutions of this theory. For each solution, we give the
exact hyperbolic condition of the tensor perturbation equations. Our approach can also applied to
dynamical spacetimes, and Vaidya spacetime have been investigated as an example.
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I. INTRODUCTION

Lovelock theories are the most general diffeomorphism
covariant theories only involving a metric tensor with
second order equations of motion [1]. In four dimension
and generic values of the coupling constants, the theory
reduces to the General Relativity with a cosmological
constant [2]. The equations of motion of such a theory
in four dimensions are the Einstein equations. However,
when the higher order terms of spacetime curvature exist,
there will be a lot of properties which are different from the
Einstein equations. For example, the gravitational propa-
gation velocity may exceed the speed of light unlike the
Einstein theories where graviton always travels slower than
light [3].

Einstein-Gauss-Bonnet gravity, whose Lagrangian con-
tains the quadratic term of spacetime curvature, as the
lowest Lovelock theory, is a simplest model to display the
difference between the general Lovelock gravity theory and
Einstein gravity theory in higher dimensions. The theory is
fascinating since it has been realized in the low-energy limit
of heterotic string theory [4—7]. Moreover, this theory is
studied in many aspects, such as black holes [8—11] and
AdS/CFT correspondence [12,13]. Also, Einstein-Gauss-
Bonnet theories with a scalar field have been broadly
studied. For example, in Refs. [14—18], the authors show
the massless graviton constraint restricts greatly the func-
tional form of the scalar potential and scalar coupling
function.
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It is well known that Einstein equations are second order
quasilinear equations, i.e., the coefficients of the second
order partial derivatives of the metric in the equations of
motion only depend on the metric and the first order partial
derivatives of the metric. However, the equations of motion
of the Einstein-Gauss-Bonnet gravity do not have such a
property. In general, the equations of motion of Einstein-
Gauss-Bonnet gravity are second order full nonlinear
equations but not quasilinear equations. This reason, the
Einstein-Gauss-Bonnet gravity and more general Lovelock
gravity may have very different behaviors from the Einstein
gravity theory in the viewpoint of partial differential
equations.

Many physical systems are described by partial differ-
ential equations. The Cauchy problem is required to be
well-posed by the determinism. The basic causal properties
of a system of partial differential equations are determined
by its characteristic hypersurfaces [19]. As for the Einstein
equations, a hypersurface which is characteristic is equiv-
alent to it is null. This means that gravity travels at the
speed of light in general relativity. In Einstein-Gauss-
Bonnet theory, however, the superluminal propagation of
gravitons will arise because of the noncanonical kinetic
terms [20]. Along the characteristic hypersurfaces, one can
define the effective metric. Izumi has proved some impor-
tant conclusions by using the method of the characteristics
in the Gauss-Bonnet theory [21]. In that paper, he claims
that on an evaporating black hole where the geometrical
null energy condition is expected not to hold, classical
gravitons can escape from the black hole defined with null
curves. This kind of study has close relations to the
hyperbolicity and causality of the gravitational equations.

© 2021 American Physical Society


https://orcid.org/0000-0001-6633-6613
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.064054&domain=pdf&date_stamp=2021-03-24
https://doi.org/10.1103/PhysRevD.103.064054
https://doi.org/10.1103/PhysRevD.103.064054
https://doi.org/10.1103/PhysRevD.103.064054
https://doi.org/10.1103/PhysRevD.103.064054

LI-MING CAO and LIANG-BI WU

PHYS. REV. D 103, 064054 (2021)

In principle, to get the hyperbolicity of the equations of
motion for a given gravity theory, we have to study the
leading partial derivative terms of the equations, and get the
principle symbol which is a matrix in usual. The classi-
fication of the partial differential equations depends on the
property of this matrix. However, in gravity theory, usually,
people are interested in the propagation of a gravitational
fluctuation on a fixed background, i.e., the gravitational
perturbation theory or linearized gravity theory. Although
the linearized gravity theory is very different from the full
theory, it really provides some useful information on the
hyperbolicity and causality of the full theory [22]. So the
study of the gravitational perturbation equation provides a
practical way to investigate the hyperbolicity and causality
of the theory.

It is well known that any gravitational perturbation
theory is gauge dependence. The perturbation variables
between one gauge and another are related by a gauge
transformation. Problems of choosing gauge will be faced
when we study the perturbation of a spacetime. One way is
to find physically preferred gauges. Another way is to use
the gauge-invariant variable, for example, the Kodama-
Ishibashi gauge-invariant variables [23]. By using these
gauge-invariant variables, one can get the master equations
which have tensor, vector, and scalar parts [23-26]. Based
on these, the stability of the higher dimensional black holes
such as Gauss-Bonnet black holes are studied by Takahashi
and Soda [27-29]. A typical way to calculate the effective
metric is using the master equations. This means that one
can determine characteristics from the equations of motion
of linearized perturbations of a background [22,30,31]. In
the paper [30], Papallo and Reall work out a speed limit for
small black holes and investigate a Shapiro time delay in
the Einstein-Gauss-Bonnet theory. In the paper [22], Reall
and Takahashi generalized the result of Izumi [21] to prove
that any Killing horizon is a characteristic hypersurface for
all gravitational degrees of freedom of a Lovelock theory.
They also investigated the hyperbolicity of Ricci flat type N
spacetimes and the static, maximally symmetric black hole
solutions in the Lovelock theory. Beside the method by
gauge-invariant variables, recently, it has been shown that
(weakly coupled) Lovelock and Horndeski theories possess
a well-posed Cauchy problem base on the conventional
harmonic gauge or modified harmonic gauge [32,33].

However, unlike the Kodama-Ishibashi formalism in
Einstein gravity theory, the gauge-invariant gravitational
perturbation in Einstein-Gauss-Bonnet theory and more
general Lovelock theory is far from completed—even the
simplest tensor perturbation is still staying at the static
spacetimes [23]. So, for black hole spacetimes, the study of
the hyperbolicity and causality of the Einstein-Gauss-
Bonnet theory is mainly limited to static cases up to date
[22]. In this paper, we conquer the general master equation
of tensor perturbation for general warped product space-
times in Einstein-Gauss-Bonnet theory. Based on this new

master equation, we show that effective metric of the tensor
perturbation equation defined by Reall in [22] can be
generalized to the cases without a static condition.

Since the new master equation does not depend on
the mode expansion (For example, the expansion by
harmonic tensors on a closed manifold with integers k*> =
(¢ +1)--- which is proportional to the eigenvalues of
Laplacian operator), the hyperbolicity and causality can be
investigated for any mode of the perturbation. This gen-
eralized the method in [22] in which only large # mode has
been studied. Based on the master equation, we study the
hyperbolicity and causality of all relevant vacuum solutions
of the theory. For each solution, we give the exact hyper-
bolic condition of the tensor perturbation equations. For
example, we can give an analytic hyperbolic condition of
the tensor perturbation equation on D = 6 dimensional
black holes background. Our approach can also be applied
to dynamical spacetimes, and Vaidya spacetimes have been
investigated as an example.

The paper is organized as follows. In Sec. II, we give a
brief review on the Einstein-Gauss-Bonnet theory, and the
effective metric defined by Reall, and explain how to get
the effective metric from the master equation of tensor part.
In Sec. III, we calculate the tensor perturbation equations
for a general warped product spacetime instead of the static
solutions. Moreover, we give the condition of keeping the
hyperbolicity of the tensor perturbation equations and give
the condition of the tensor mode which can travel faster
than light. In Secs. IV-VL, according to the classification of
the vacuum solutions in [34], we check the hyperbolicity of
the tensor perturbation equation on three types of space-
times—the Boulware-Deser-Wheeler-Cai  solution, the
Nariai-type spacetime, and the dimensionally extended
constant curvature black hole. We also check whether
there are cases that the graviton travels faster than the
light. In the Sec. VII, we apply our methods to investigate
hyperbolicity of the tensor perturbation equation on Vaidya
spacetime which is not a vacuum solution any more.
Section VIII is devoted to conclusion and discussion.

We use the following notion for indices. The capital
letters {M,N, L, P---} are the indices for the D = n + 2-
dimensional spacetime. The lowercase letters a, b are the
indices for the manifold (M?,g,,), while the lowercase
letters {i,j, k,I,---} are the indices for the manifold
(N".7;;)- The convention of the curvature is given by
(ViuVy = VaVy) v, = Ry pvt, which is the same as in
the reference [26].

II. BASIC THEORY

A. Einstein-Guass-Bonnet theory

Here, we start by a brief review of Einstein-Gauss-
Bonnet gravity with a cosmological constant [1,2]. The
action in the D-dimensional spacetime with a metric g,y is
given by
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1
S = / dPx\/=g [ﬁ (R—2A+aLgp)| + Smaters  (2.1)
D

where kp, is the coupling constant of gravity, and R and A
are the D-dimensional Ricci scalar and the cosmological
constant, respectively. S, aer Stands for the matter fields.
The Gauss-Bonnet term is given by

LGB == RZ - 4RMNRMN + RMNPQRMNPQ. (22)
The symbol «a is the coupling constant of the Gauss-Bonnet
term. This type of action can be derived from the low-
energy limit of heterotic string theory [4—7]. This reason, o
is considered to be positive. The equation of motion of this
theory is given by

Guy + aHyy + Aguy = &pTun, (23)
where
Gun = Run — %QMNRv (2.4)
and

Hyy =2[RRyy — 2Ry RY — 2R*“Ryixny + REFP Ry p)

1
_EgMNLGB- (2.5)
The second order tensor T';y, wWhich can be obtained from
Smatter» 18 the energy-momentum tensor for matter fields. In
the four-dimensional spacetime, the Gauss-Bonnet term
|

does not make a contribution to the equations of motion
since it is identically a total derivative. It is worth pointing
out that the field equations (2.3) contain up to the second
derivative of the metric just as what the Lovelock theorem
said [1].

Now, we consider a D = 2 + n-dimensional spacetime
(MP, gyn), which has a local direct product manifold
MP =~ M? x N* and a metric,
gundxMdxN = gop(y)dydy” + r*(y)yi;(z)de'dz!,  (2.6)
where coordinates x¥ = {y',y*;z!,...,7z"}. The two
element tuple (M2, g,) forms a two dimensional
Lorentzian manifold, and (N",y;;) is an n—dimensional
Riemann manifold. The metric compatible covariant deriv-
atives associated with gy, 9., and y;; are denoted by Vu,

D,, and D;, respectively. In the following discussion, the
Riemann manifold (N",y,;) is assumed to be an Einstein
manifold, i.e.,
IA?ij = (n—=1)Ky;;, (2.7)

where IAQ,-J- is the Ricci tensor of (N",y,;), and K = 0, %1.
Actually, we will consider more restrictive case in which
this Einstein manifold is a maximally symmetric space, and
K is the sectional curvature of the space.

An (n + 2)-dimensional spacetime in GB gravity with
the metric (2.6), in which (N", y;;) is an Einstein manifold,
has three groups of field equations

K — (Dr)? 20 K — (Dr)?
{1+ 200 - 1=K r 20 - 1) 2 - 12 K= 0
r r r
20r\2  (D,D,r)(D*D® -3)(n—4)[K — (Dr)*?
+4a<n_1><n_z)[<_r> _(DuDy)(DD"r) | (n = 3)(n = DK = (Dr)]
r r 4r
n—3)K—(Dr)}20r] = aCyp, C™ 4a 5, 1y
_( ){ 5 ( )]_:| +kl44}7/ij__4ciklmcjk[m :_ZKZDP}/”, (28)
r r r r
K — (Dr)? 1 r 1 ]
[1+2a(n—1)(n—2)- r(z ):|<DuDhr_§2Drguh>:_;K2D<Tab_§Tcdnggah)v (2.9)
and
20 K—(Dr)? 2 -1 —2)[K — (Dr)? -3)[K - (Dr)? 20O
D oy KO 200 (= IR - rn{(n K= r>]__r}
r 2r r
A C....Clikl 2
——+%=—K—Dg“”nb, (2.10)
n nr n

where the energy-momentum tensor 7',y has been decom-
posed into Ty = diag{T,,(y).”p(y)r;j}. The Weyl
tensor of (N, y;;) is denoted by C; k- In the case of vacuum

|
and maximally symmetric (N,y;;), i.e., Tyy =0 and
é‘,»jk, = 0, similar equations can be found in [34]. It is
worth mentioning that the first equation (2.8) comes from
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the (ij)—components of Eq. (2.3), the second equation (2.9)
comes from the traceless part of the (ab)-components of
Eq. (2.3), and the third equation (2.10) comes from the
trace part of the (ab)—components of Eq. (2.3).

B. Effective metrics

In gravity theory, the so-called “effective metric” or
“acoustic metric” is important to determine the type of the
linearized gravitational equations which are usually second
order partial differential equations. In the following sec-
tions, this kind of discussion will be applied to the Einstein-
Gauss-Bonnet theory. By requiring that the effective metric
to be Lorentzian, the equation of the tensor perturbation is
hyperbolic in the usual sense.

Principally, to study the causality and hyperbolicity of a
gravity theory, we have to consider the full nonlinear
equations of motion of the theory. However, for some
background spacetime, the linear perturbation equations
can provide a lot of information on the hyperbolicity or
causality of the theory, see [22] for details. To understand
the effective metric, let us give a brief review on the
hyperbolicity of a second order differential equations.

Consider a second order linear differential equation for
an V/-dimensional vector ¢/ in a patch of a spacetime with
a coordinate system {x", M =1,...,D}:

PMNT 9y Ong” + P, 0y + VIl =0, (2.11)

where I,J =1, ..., N, and

PMN — (PMNIJ) — (PNMI]) — PNM,

PM = (PM)  and V= (V)

are N x N real matrices. For a covector & at a point p, the
principal symbol of the equations is given by

P(p.&) = P"(p)éuén- (2.12)

This is an V' x N matrix and it plays an important role in
the classification of the partial differential equations in
usual theory of differential equation. The characteristic
polynomial Q(p, &) is defined as

Q(p. &) = detP(p,g). (2.13)

The hypersurface ¢» = const is a characteristic hypersurface
if Q(p, d¢p) = 0, and the normal vector at each point of the
characteristic hypersurface is called a characteristic direc-
tion. The normal cone at p is defined by the equation
Q(p,&) =0 at the point p, and it is important in the
discussion of the causality of the theory [19,21,22,35].
For the gravitational theories with the second order
derivatives of metrics, the linearized gravitational equations
can be put into the form (2.11). Of course, now ¢’

corresponds to hyy = Ogyn, and the indices I and J
now correspond to (MN) and (LP) respectively.
Actually, this can be realized by rearranging h,,y into a
column vector.

In general, the characteristic polynomial Q(p, &) is quite
complicated. However, for the metric (2.6) with an max-
imally symmetric space (N”,y;;) (especially for a static
case), it is assumed that Q(p, &) can be factorized into a
form

Q(p.&) = (GISWINI (P)Em,En,)P - (ngNz(P)sz‘sz)pV
(G (P)ém,En,)PT, (2.14)

where pg, py, and p; are the number of degrees of freedom
of scalar, vector, and tensor perturbation respectively, and
the second order tensor G¥V, G¥V, and G¥V are the so-
called “effective metric” associated with the scalar, vector,
and tensor perturbation [22].

In the function space formed by 4y, the scalar, vector,
and tensor perturbation of the metric (2.6) belong to three
different subspaces which are orthogonal to each other
[23,36], so we can consider these three kinds of perturba-
tion separately. In the case only the tensor perturbation is
involved, we have

Qp.&) = (G (p)émén)" (2.15)
Naively speaking, one can say: since the scalar and vector
perturbation are shut down, ie., pg=0=py, so
Eq. (2.14) reduce to the above equation. According to
the paper [22], a hypersurface is characteristic if, and only
if, it is null with respect to the effective metric G¥. The
tensor perturbation equation is hyperbolic if that the
effective metric GYV has a Lorentzian signature.

For several static examples, it has been shown that the
factorization (2.14) or (2.15) is really a reasonable
assumption [22]. In this paper, for the tensor perturbation
of the general metric (2.6), we will show that Q(p, &) can
be put into the form (2.15) even without the static condition
if (N",y;;) is maximally symmetric. However, without the
condition of the maximal symmetry of (N”,y;;), we have
no relation (2.15) in general.

III. HYPERBOLICITY AND CAUSALITY OF
GENERAL TENSOR PERTURBATION
EQUATIONS

A. General tensor perturbation equations
Considering a metric perturbation gyy — gun + huns
the linear perturbation equations of Gauss-Bonnet gravity
are given by

5GMN + AhMN + 0{5HMN = K205TMN’

(3.1)
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where 6Gyy and O0Hy are the perturbations of the
Einstein tensor and the Gauss-Bonnet tensor of the space-
time (MP, gy ) respectively, and 5T,y is the perturbation
of the energy-momentum tensor.

Here, we will get the effective metric for tensor pertur-
bations around a fixed spacetime with the metric (2.6). The
tensor perturbations around backgrounds [with the Einstein
manifold (N,y;;)] are transverse and traceless part of 7,
[23], ie., h;; = hl-TJ-T, which means that we are considering
perturbation A,y which satisfies

A A hkl 2]('2
(P, XD, Dy, + P KD,,D, + P*;*'D, + V) <7> = —r—zDéT

hy, =0, h, =0, D:hi=0. (3.2)
It is well known that the above tensor perturbation of the
spacetime with the metric (2.6) is gauge invariant. Of
course the scalar and vector perturbations are quite differ-
ent, to get the gauge invariant perturbation variables, one
has to consider the combinations of different parts of 7.

Substituting &,y [satisfying (3.2)] into Eq. (3.1), after
lengthy and tedious calculation, the tensor perturbation
equation has the following form

(3.3)

ijs

where the detailed expressions for the coefficients P92, ¥, pmn, K pa, K v, K can be found in the Appendix A. When

y

(N.y,;) is maximally symmetric, the Weyl tensor C ijir 18 vanishing, and we have

pab kl I)tlb k !
ij — 5i 51 N
pmn kl I)I‘I’ln k i
ij - 5,' 5] N

Paijkl — Pa5ik5jl7

Vijkl — V5ik5jl, (34)
where P92, P PV have following forms
DD'r [l K- (Dr)* 20Or
ab __ .ab _ A — _ ab
P = g% 4 4a(n 2){ . + [Z(n 3) o . ]g }, (3.5)
2(n -3 2|:| K- (D 2 mn
P’”":{1+2a[2R—M+(n—3)(n—4)#}}y2, (3.6)
r r r
D%r D’r ) 2Or
P*=n +2(n—-2)aq 4 +|*R-2(n—1)—
r r r
K — (Dr)? Dyr
+ (n_z)(n_:;)#]gab}%’ (3.7)
and
20 -3)K —1)(n—=2)(Dr)?
V2R 1) 2 2) _n )("2 CLSEPIN
r r r
D“Dr)(D,D 20r\ 2
+a{—4(n—1)(n—2)( r)g “ br)+4(n—1)(n—2)<—r>
r r
K -’R Dr)? - 2R K -0
+2n(n-3) —2(n—1)(n-2)%—4n(n—3)2 —
r r
Dr)? -2 K - (Dr)?
+a(n—1)(n—-2)(n- 3)%—2,1(;1 —3)%(n —4)¥
r r
K2 D 272
+(n=3)(n—-4)(n*>-3n- 2)7 +(n—-1)(n=2)(n-3)(n—-4) [( r;) ] } (3.8)
So, when (N, y;;) is maximally symmetric, the tensor perturbation equation can written as
b KLy T hij 2}
r r ’
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Obviously, this equation reduces to the tensor perturbation
equation in Einstein gravity theory when a is vanishing
[23,26]. In the static case, one can check the above
equations exactly reduce to the one in Ref. [37].

B. Hyperbolicity of the tensor
perturbation equations
Comparing Eq. (3.3) and Eq. (2.11), it is easy to find
that indices / and J correspond to (ij) and (k/). We can
rearrange h;; = A" into a column vector ¢’ such that 5,5/
in Eq. (3.3) can be expressed as §;’. So the characteristic
polynomial Q(p, &) now has a form (2.15), i.e.,

Q(p. &) = (P (p)énén)Pr,

where PMN can be put into a matrix form

P® 0

PMNY = . 3.10

@™ =1"y o] (3.10)

Here P“’ has been defined in Eq. (3.5), and Q is the
coefficient of y"//r? in Eq. (3.6), i.e.,

(n—3)*0r

Q:1+2a[2R—2 +(n=3)(n—a)X= D7)

r r

K- (Dr)2] _

(3.11)
Since h;; = hj', the dimension of the vector ¢' is the

number of degrees of freedom of gravitational perturbation,
1.e., we have

1

Thus the effective metric is nothing but PMV in Eq. (3.10),
i.e., we have

GV = pMV,

It should be noted here: the effective metric is not so simple
if that the Einstein manifold (N, y;;) is not maximally sym-
metric, see Appendix A. From now on, we only consider
the cases with maximal symmetry.

The effective metric PMN should be Lorentzian to
maintain the hyperbolicity of the theory. Therefore, we
have to set

P =det(P®*) <0, and Q>0. (3.12)
Inequalities (3.12) are based on the following discussion.
We know the effective metric originally has two choices of
signature to maintain the hyperbolicity of the theory, one is
(=, +,4+, -+, +) and the other is (4, —, —, - - -, —). For the
second choice of signature, a wave equation can be

obtained, but it would describe some gravity theory with
ghost instability [28,29]. This situation can still be rejected
as unphysical due to propagating ghosts. Therefore, to
avoid the appearance of ghosts, we choose the first
signature (—, +,+, -, +).

By using the equations of motion and the null frame
{£*,n"}, we have (see Appendix B)

P = det(P)
SRR = S5 )
+ 1602 (n = 2)2kh (T Tr)
x {n {1 4 2a(n—1)(n-2) izm)z} }_2, (3.13)

r

where Ty = T, ¢ and T, = T ,,nn® are the compo-
nents for the energy-momentum tensor along the null
directions. Of course, the above equation is valid only in
the case where

_ 2
K= L,

I

1+2a(n—1)(n-2)

It will be discussed separately when the above condition is
not satisfied (see Sec. VI).

Equation (3.13) suggests that P is always negative or
vanishing for vacuum solutions. When matter fields are
present and satisfy null energy condition, P might be
positive. However, for the radiation matter with a null
direction £ or n, P is also nonpositive. This happens in
Vaidya spacetimes.

C. Causality of the tensor perturbation equations

Strictly speaking, if the field equations are hyperbolic,
then a notion of causality is provided by the convex hull of
the characteristic cones of all the physical degrees of
freedom, see [38] for details. This means we should
consider not only the tensor perturbations but also the
scalar and vector perturbations because that causality of the
theory is determined by the outermost null cone among
the cones by the three perturbations [22]. In this paper, only
the tensor perturbation is considered. However, merely
with the help of studying the tensor perturbations, we can
still discuss the speed of a gravitational fluctuation. In other
words, we can check whether tensor perturbation travels
faster than light or not. For simplicity, we suppose

1
DeDby — EZDrg"b =0. (3.14)
This condition implies that K¢ = ¢*’ D, r corresponds to a
Killing vector field of the spacetime (where €, is the

volume element of (M?, g,;)). If gravity travels faster than
light, we have
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g"™NEyén <0, (3.15)
where &, satisfies the following condition

This means that ¥ is the a characteristic direction, and
normal cone by ¢V is smaller than the normal cone
by PMN [22]. Substituting the PMN in Eq. (3.10) into
Eq. (3.16), we have

{12022 - 035~ 2))

x gPE &, + Q!]ijfifj =0. (3.17)

Since ¢ = y'//r* is positive defined, Eq. (3.15) implies
that
978, < 0. (3.18)

Only in the case Q > 0, it makes sense of discussing the
velocity of the graviton. So we have

20 K — (Dr)?
1—2a(n—2)[—r—(n—3) (2 r)} >0.  (3.19)
r r
For convenience, we define
20 K — (Dr)?
I=1-2a(n-2) [—r— (n—3)¥} (3.20)
r I

Therefore, from Eqgs. (3.15) and (3.17), we arrive at

0-1>0. (3.21)
From the expressions of Q and /, it is not hard to find that
Q — I is proportional to a, so we can define

0-1=2al,
where J is given by

0 K — (Dr)?
J=R—(n-4) o3 KPS (3
r r

It is easy to find that I approaches Q if we take the limit
a — 0. So, under this limit, the gravitational wave travels at
a speed of light. In conclusion, if gravity travels faster than
light, we have the following three conditions

0 =1+ 20| -2 =370 _r3)ZDr
_ 2
+(n=3)(n—4) r(zDr) >0,  (3.23)

1:1—205(;1—2)2—’—(;1—3)1(_(21”>2 >0,

r (3.24)
and
J:ZR_<n_4)ZDT’—2(n—3)if’)2>o. (3.25)

In the following sections, we will discuss the hyperbolicity
and causality of the tensor perturbation equations for exact
solutions in Einstein-Gauss-Bonnet gravity theory. We will
investigate the above three inequalities on these exact
spacetimes.

IV. BOULWARE-DESER-WHEELER-CAI
SOLUTION

The static vacuum solution in Einstein-Gauss-Bonnet
theory has been found long time ago by Boulware and
Deser [8] and Wheeler [9]. The solutions have been
extended to the case with a cosmological constant by
Cai [10] about twenty years ago. The metric of the solution
is given by

ds? = —F(r)df* + F~\(r)dr* + ry;dzide/,  (4.1)
where
72 (2k5M 1 ~

w9

In the above equation, corresponds to the so-called
“general relativity branch” which reduces to the solution in
general relativity when a approaches to zero, while “+”
corresponds to “Gauss-Bonnet branch” which has no
general relativity limit as o approaches to zero. The
thermodynamic properties of such solution, including its
energy have been studied in [10,11,39]. The parameter M is
mass parameter, and @ = (n — 1)(n —2)a and A =2A/
(n(n+ 1)). In the following discussion, it is convenient to
define M as

2K2DM

M= ,
nvk

where VX is the volume of the maximally symmetric space
(N.y,;) with a unit radius. Since it is a vacuum solution,
from Eq. (3.13), we always have P < 0 (excluding some
special values of P = 0 which form a zero measure set).
Therefore, the hyperbolicity is determined by the sign of Q.
Some calculation shows
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L 2n i)F/(r>
Lf(r) . (4.3)

I%

0=1-2a|F'(r)
—(n=3)(n-4)

This result is the same as the one in Ref. [31] when n =3
and n = 4.

Another important thing is to study the existence of the
superluminal modes. Before the detailed discussion, we
give three useful formulas which can be expressed as

Ocr + Qg =0, (4.4)
IGR + IGB — 0, (45)
Jor +Jg =0, (4.6)

where GR stands for the general relativity branch while GB
stands for the Gauss-Bonnet branch. It is easy to get the
above equations, and we will not give the proof here. These
results imply that the discussion on the GR branch is
enough. So, in this paper, we only consider the solution
which can reduce to the one in general relativity under the
limit of a — 0.

The details of the solution (4.1) is complicated. For
different values of the parameters, the solution might be a
globally regular solution, a black hole, a naked singularity,
or a branch singularity. The classification of this solution
has been done in [40] and references therein.

A. Black hole solutions

In this subsections, we show that the hyperbolicity is
broken outside the event horizon in some dimensions, for
example D = 6, and this is consistent with the results in
[22]. Beside this, we give the precise conditions when the
hyperbolicity is broken outside the event horizon.

For simplicity, when the event horizon is present, we
introduce three dimensionless quantities, x, @, and A

A=rZA, (4.7)

where r is the radius of the outermost event horizon. Here,
we have assumed a > 0, so a is always positive. By these
definitions, Q, I, and J can be expressed as

2ax?
EERCEDICE)
X [x?F = 2(n—4)xF, — (n=3)(n—4)(K - F(x))],
(4.8)
2ax?
I:1+( _1)[xe—|—(n—3)(K—F( IR (4.9)

J =L 4 (1= 6P, 2= 3)(K = F)]
(4.10)

where

Fx)=K+—
(x) + 2ax?

x {1=\/1+4ai+[(1+2Ka) — 1 - 4ax+1 .
(4.11)

To simplify the discussion, it is convenient to define

J =1 =—x’F + (n—6)xF, —2(n-3)(K — F(x)).
(4.12)

Note that J and J have the same sign. Here the F, denotes
the derivative of F(x) with respect to x. It should be noted
here that F', is negative at x = 1 because r, is the radius of
the outermost event horizon of the black hole.

1. A=0 and K =1 case

For n = 3, when M > @, there is a black hole horizon.
For n > 4, when M > 0, there is a black hole horizon [40].
Here, we will investigate the sign of Q outside the (out-
most) event horizons of the black holes. In these regions of
the spacetimes, x € [0, 1], and Q can be written as

0- (n=3)(n=5)y*+2(n+1)2n=3)y* - (n+1)*
N 4(n—1)(n-2)y3 ’

(4.13)

where
y =[14+4a(l + a)x" .

Obviously, we have y € [1, 1 4 2a]. Since the denominator
of Q in Eq. (4.13) is always positive, we will focus on the
numerator of O, denoted by 0, given by

A

0)=n=3)(n=5)y*+2(n+1)(2n—=3)y> = (n+1)2.
(4.14)

We investigate the sign of Q in the following discussion.
The n =3, 4, 5 and n > 6 will be discussed separately.
For n = 3, it is easy to find that

Oy) =24y>-16>24-16 =8> 0.

So in D =5, the tensor perturbation is hyperbolic outside
the event horizon of the spacetime.
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For n = 4, we have
O(y) = —y* + 50y - 25.
This equation implies
0>0, yell.V25+10V6),
{Q <0, ye(V25+10V6,+).

Therefore, Q is positive for all y € [1, 1 4+ 2a] when

14 2a < 1\/25+ 10V6.

However, Q is negative if y € (/25 + 10v6,1 + 24|

when
1+2a > 1/25+ 10V/6,

and Q is positive if y € [1, v/25 + 10V/6).

For n = 5, we find
O =84y? —36>84—36 =48 > 0.

So, in the case of D = 7, the equation is always hyperbolic
outside the horizon.

For n > 6, from the expression (4.14), it is not hard to
find that Q(y) has only one zero point # in (0, +oo0), where

(n=3)(n=5)y*+2(n+1)2n=3)(1 +4al)y* — (n + 1)>(1 + 4al)?

. \/(n FOVSE =200 124 = Gn=3)] o

(n=3)(n-15)

However, it is not hard to prove that ¢ < 1. This means that
Q is positive for all y € [1,1 + 24].

The above discussion shows that tensor perturbation
equation is hyperbolic outside the event horizon for all
possible parameter a if D # 6. The caseof D = 6orn =4
is very special, the hyperbolicity is maintained outside the
event horizon only when

i1
a=2 <> <\/25+ 10v/6 - 1> ~3.0176.
re 2

This suggests that the radius of the event horizon of the
black hole has to satisfy

r. > \/a/3.0176.

So, to ensure the hyperbolicity of the equation, the black
hole cannot be too small.

2. A< 0and K=1 case

For n = 3, when M > @, there is a black hole horizon.
For n > 4, when M > 0, there is a black hole horizon [40].
Outside the event horizon, we have x € [0, 1], and Q has a
form

o(y) =

where

y = [1 +4al+ da(—=2 + 1 4 a)x" .

Since x € [0, 1], we have y € [/1 +4al, 1 + 2a].

4(n—1)(n-2)y3 ’

(4.16)

(4.17)

(i) First, let us consider the case with 1 + 4a4 > 0. Similar to the case with A = 0, the numerator of Q in Eq. (4.16) can

be defined as

0(y) = (n=3)(n=5)y* +2(n+1)(2n = 3)(1 +4al)y* — (n + 1)>(1 + 4al)>.

For n = 3, we have

(4.18)

O(y) = 24(1 + 4a)y* — 16(1 + 4ar)?® > 8(1 + 4al)® > 0.

For n = 4, we have

O(y) = —y* + 50(1 + 4ad)y? — 25(1 + 4al)>.

From this equation, we get
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LI-MING CAO and LIANG-BI WU

PHYS. REV. D 103, 064054 (2021)

(ii)

(iii)

{Q>o, y € [V1+4al/1+4ak-\/25+10V/6),
0 <0, ye (V1+4ad-/25+10v/6,4+).

Thus, we have O > O forall y € [/ + 4al, 1 + 24]
when

14 2a < 1+ 4al- /25 + 10V/6.

However, we have O <0 if y e (W1+4ak-

V/25 4+ 10v/6, 1 4 2a] when

1 +2a > 1+ 4ak- /254 10V6,
and Q>0 if ye[v/1+4al,v/1+4al-1/254+10V6).

For n =5, obviously we have

(4.19)

O(y) = 84(1 + 4ak)y* — 36(1 + 4ar)?
> 48(1 + 4al)? > 0.

Forn > 6, from the expression of Q(y) in(4.18), we
find that Q(y) has only one zero ponit (v/1 + 4a)t in
(0, +0), where ¢ is given by Eq. (4.15). Noted that
t <1, we have (v/1+4ad)t<+/1+4al. So, we
always have Q > 0 when n > 6.

So, as the case A <0 and K =1, the D =6 or
n = 4 is special. If we hope the hyperbolicity is present
outside the event horizon of the black hole, we have to
impose a condition on a and 4, i.e., the inequality
(4.19), see Fig. 1. The hyperbolicity is broken above the
solid black line.

Second, when 1 + 4a4 = 0, from x € (0, 1] we have
y € (0,14 2a|, and Q has a simple form

(4.20)

Itis obvious that Q = O whenn = 3,5, Q < 0 when
n=4,and Q > 0 when n > 6.

Finally, in the case with 1 + 4al < 0, itis not hard to
find

30

25

0.5

FIG. 1. n =4, the case for A <0 and K = 1. In the shadow
region, inequalities (4.19) and 1 4 4al > 0 are satisfied. For a
given A, we have an upper bound for a. The dotted line is for
a = 3.0176, and this corresponds to the upper bound of a in the
case with A =0 and K = 1.

ve (

then y € (0, 1 + 2a]. Actually, physically, this case
is not so interesting because the solution has some
(branch) singularity when y approaches to 0. How-
ever, it is also curious to us to that the possibility of
the existence of some wave equation on this strange
background. From the expression of Q(y) in
Eq. (4.18) and the condition 1 4 4al < 0, it is easy
to find we have Q(y) < 0forn=3,4,5.So Q(y) <0
when n < 5. The linearized gravitational wave does
not exist in when D < 7.

For n>6, O(y) has only one zero point s in
(0, +00), where

i vl

s = \/—(1 taa) "t L

This implies we always have Q < 0 in (0, 1 4 24]
when 1+ 2a < s. However, we can get O > 0 in
(5,14 2a] when 1 + 2a > s, and Q is still negative

V5n? —20n + 24 + (2n - 3)]

=) (4.21)

in (0,s). So, for this background with a branch
singularity, we can get some wave equations
when D > 8.
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3. A< 0and K=0 case

For any n > 3, when M > 0, there is a black hole horizon
[40]. Consider the region outside the event horizon, then we
have x € [0, 1]. By defining

y =1+ 4ai — 4aix"1,

the Q and Q have the same forms as in Eq. (4.16)
and (4.18).

(i) In the case with 1+44al >0, we have y€
[V 1+ 4ak,1]. Similar to the case with K =1,
n=3,4,5,and n > 6 will be discussed separately.

For n = 3, we have

O(y) = 24(1 + 4ad)y? — 16(1 + 4a)? 05}
> 8(1 + 4al)? > 0. [
0.0
For n = 4, we have
O(y) = —y* +50(1 + 4ad)y* = 25(1 + 4az)’*. FIG. 2.

35

30
25

20

=30 =25 =20 -15 -10 =05 0.0

A

n = 4, the case for A < 0 and K = 0. In the shadow

region, inequalities (4.22) and 1 + 4al > O are satisfied.

This equation implies

{Q>0, y € [V1+4ai,/T+4al-\/25+106),
0 <0, ye(V1+4ad-v/25+10V/6,+x).

So we have Q > 0 for all y in [/1 + 4al, 1] if

1 <V1+4ai-\/25+10V6. (4.22)

However, O <0 foryin (v/1+4al-\/25+ 10V/6, 1]
if

(i)

1> VI+4al-\/25+10V6. (i)

Of course, now we also have Q >0 for y in

V1 +4al,\/T+4ak- /25 + 10V/6).

For n = 5, we have

O(y) = 84(1 + 4al)y* — 36(1 + 4al)?
> 48(1 4 4al)? > 0.

For n > 6, from the expression (4.18), we find that

QO(y) has only one zero point (v/1+ 4al)t in
(0,4+00), where ¢ is the same as the one in

Eq. (4.15). Noted that r<1, we have
(V1 + 4ald)t < /1 + 4al. So we have Q > 0.

064054-11

Above discussions show that D = 6 is special, one
might get negative Q if the condition (4.22) is broken.
The details can be found in Fig. 2. Obviously, for a
given A, we have an upper bound of a. However, this
upper bound approaches infinity when A approaches
zero. This is very different from the case with K = 1.
Physically, this suggests: by choosing the value of 4,
the black hole can be arbitrary small without breaking
the hyperbolicity of the tensor perturbation equation.
In the case with 1 +4al =0, we have x € (0, 1],
and then y € (0,1]. Q has a same form as in
Eq. (4.20). It is obvious that Q = 0 when n = 3,
5,and Q < 0 when n =4, and Q > 0 when n > 6.
In the case 1 + 4al < 0, we have

1\
1 4+— 1
ve((1+a) 1]

and then y € (0, 1]. From the expression (4.18) and
the condition 1 + 4al < 0, we have we have Q(y) <
0 for n = 3, 4, 5. Of course, this also means Q < 0
for n <5.

For n > 6, Q(y) has only one zero point s in
(0, +00), where s is given by Eq. (4.21). Therefore,
when 1 < s, we have Q <0 in (0, 1]; when 1 > s,
we have Q <0 in (0,s) and Q > 0 in (s, 1].
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4. A <0and K= -1 case

For n > 3, when

n—l)—l—\/n—l +4d A(n

n=3
2

=-3)(n+1)

(n +1)/§

X

there is a black hole horizon [40]. With this condition, the
outer event horizon is not degenerate. Furthermore, to
ensure the existence of the event horizon, we also have
r. > +/2a, i.e., a < 1/2. Since the mass parameter M is
not necessary to be positive when K = —1, we will discuss

the hyperbolicity as follows.
(1) Firstly, let us consider the case with positive mass

parameter M, ie., the case with M > 0. M >0
implies a > 1 + 4. So we get

1 +4al < (1 -2a).

The quantity Q and its numerator Q still have forms
(4.16) and (4.18), but now y is defined as

y=1/1+4ad +da(-4— 1+ a)e+!,

(i) If 1+4al >0, then y € [V/1+4al, 1 - 2a].
For n = 3 and n = 5, with the same logic, we

have Q > 0, and then Q > 0. For n =4, we
have

A

O(y) = =y* +50(1 + 4ad)y? = 25(1 + 4al)?,
(4.24)

and then

{Q>o ve[V1+4ai/1+4al-\/25+106),

0<0, ye(v/1+4ak-\/25+10v/6,+c0).

Therefore, Q > 0 for all y in [V1+4al, 1 -

2a] when

1 =2a < V1+4al-1\/25+ 10V6.

(4.25)

We also have Q <0 for y in (v/1+ 4ak-

25 +10v/6, 1 — 2a] when

1—2a>V1+4ad-1\/25+ 10V6,

—1+4aA+4n +4nd/§+\/(n —1)2+4aA(n-3)(n+ 1)} } >0,

(4.23)

and 0 >0 for y in [1+ 4al, 1+ 4al-

25 4+ 10+/6). For n > 6, we find that Q(y)
has only one zero point (v/1+4ald)r in
(0,+00). Noted that r<1, we have
(V1 +4ad)t < +/1+ 4ak. So, we have Q > 0.

Sothe D = 6 s special. To ensure Q > 0, the
allowed parameters have been given in the
shadow region of Fig. 3. The dashed line in
Fig. 3 is for a = 1 + A. So the region above this
line corresponds to M > 0.

(i) When 1 +4aA=0, x € (0,1], and then y €
(0,1 —2a]. Now Q has a form in Eq. (4.20). It
is obvious that Q = 0 when n = 3, 5, and Q <
0 when n =4, and Q > 0 when n > 6.

0TFT T T
0.6:— _
0.4:-
0.3:-

02|

0.1F

/]
’
.
'
']
’
1
1
'
1]
,
’
’
’
r
]
’
’
']
1
’

(]
1]

1

-0.5 0.0

-1.0

FIG. 3. n =4, the case for A < 0 and K = —1. In the shadow
region, inequalities (4.25), 1 +4al > 0,a > 1+ A,anda < 1/2
are satisfied. Above the dashed line, the mass parameter M is
positive. Bellow the solid black line, the hyperbolicity is satisfied
outside the event horizon.
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(iii)) When 1 4+ 4al < 0, we have
—(1+4 ol
ve (fmeal ™)

da(-A—1+a

and then y € (0,1]. Obviously, we have
QO(y) <0 when n =3, 4, 5. For n > 6, O(y)
has only one zero point s in (0, +oc0), where s is
given by Eq. (4.21). Therefore, we have O < 0
for all y in (0, 1] when 1 —2a <s. When
1 —2a > s, we have Q <0 for y in (0, s) and
Q>0 foryin (s, 1 —2a].

(2) In the case with M =0. Noted that 0 <1+

4ai < 1, we have

0 =1+4al>0.

(3) In the case with M < 0. Obviously, we have
0<1+4al<1. M <0 implies a <1+, and
we have

(4.26)

V1+4ail>1-2a.

Consider the region outside the event horizon, i.e.,
the region with x € [0, 1], then we can define

y= \/1 +4al+4a(=2— 1+ a)x".

It is easy to find y € [1 — 2a,+/1 + 4al], and O has
the same form as the one in (4.18). When K = —1,
the black hole might have inner horizon [40]. Inner
and outer event horizons both exist when

a)Ta(l +4ak)+M <0,  (4.27)
and only one event horizon exists when
2a)Ta(l +4ah) + M >0.  (4.28)

For n = 3, we have
O(y) = 24(1 + 4ad)y* — 16(1 + 4al)?.

This implies

{ 0>0, ye (\/2(1+4ad)/3,V/1+4al],

0 <0, ye (0,/2(1+4ak)/3).

Thus, we have Q>0 for all y in

[1 —2a,+/1+ 4al]when
1—2a > /2(1 + 4a2)/3.

We have O < 0 for y in [1 = 2a,
when

2(1+ 4a2)/3)

1—2a < \/2(1 + 4al)/3,

and O > 0 for y in (\/2(1 + 4al)/3,/1 + 4al).
For n = 4, we have

O(y) = —y* + 50(1 + 4ad)y? — 25(1 + 4ad)>.

This equation gives

{Q>0, y € (V1 +4al-\/25-10V6,\/1 + 4all,
Q0 <0, ye(0,v1+4al -/25-106).

So we have Q > 0 for all y in [1 — 2a, /1 + 4al] when

1-2a > V1+4ai-\/25-10v6.  (4.29)

However, we have O <0 for y in [1 =2a,v/1+4ak-
25 — 10v/6) when

1-2a <1+ 4al-\/25—-10V6,

and O > 0 for y in (v/1 + 4ad- /25 — 10v/6, /1 + 4al].

For n = 5, we have
O(y) = 84(1 + 4al)y* — 36(1 + 4a)>.

This equation tells us we have

{Q >0, ye (\/3(1+4ak)/7,V/1+ 4al],
0 <0. ye(0.\/3(T+4a)]7).

So we have Q > 0 for all y in [1 — 2a, /T + 4al] when
1—2a> /31 +4al)/7.

3(1 +4al)/7) when

1 —2a < +/3(1 +4al)/7,

and O > 0 for y in (\/3(1 + 4ad)/7,/1 + 4al).
For n > 6, we have

We have Q < 0 for y in [I - 2a,

O) = (n=3)(n=3)y* +2(n+ 1)(2n = 3)(1 + 4al)y*
— (n+ 1)2(1 + 4al)*.

It is obvious that Q(y) has only one zero point (/T + 4al)t
in (0,+o0), where 7 is given by Eq. (4.15). Noted that
t <1, we have (/1 +4ald)t < /1 + 4al. Therefore, we
have O > 0 for y in [l — 2a,/1 + 4aA] when
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FIG. 4. n =4, the case for A < 0 and K = —1. In the shadow

region, inequalities (4.23), (4.29),a > 54+ 3,and a < 1 + A are
satisfied. Above the dotted line in the shadow region, the black
hole has only one horizon. Bellow this dotted line, the black hole
has two horizons. The dot-dashed line is for a > 54 + 3. The
solid black line is for the hyperbolicity.

1-2a> (V1+4ad)t.
We also have Q < 0 for y in [1 —2a,

1 —2a < (V1 +4al)t,

and Q > 0 for y in ((v/1+ 4ad)t, /1 + 4al).

So the situation is complicated when M < 0. In this case,
hyperbolicity can be broken outside the event horizon for
all dimension D > 5. Here, as an example, Fig. 4 for D = 6
or n = 4 has been given to show the details of the range of
the parameters. The dotted line in the shadow region of
Fig. 4 is for the conditions (4.27) and (4.28). When
condition (4.27) is satisfied, the solution has two event
horizon. To ensure r is the radius of outer event horizon,
we have to impose a condition F,(x) < 0 at x = 1 (noted
that x = r_/r), and this gives

1 + 4ait) when

a > 51+ 3.

This corresponds to the dot-dashed line in Fig. 4.

5.A>0and K=1 case

Although cosmological horizon exists when A > 0, the
discussion on the hyperbolicity is similar to the case with
K = 1and A < 0. Maybe the most significant difference is
the existence conditions for the black hole solutions.

For n = 3, when M > & and
1 + 4aA — 4aM > 0,

there is a black horizon. For n > 4

x [—1 +4GA+n+4nal

+\/(n—1)2+4d/i(n—3)(n+1)}} <0, (4.30)

with M > 0, black hole solution exists [40]. The above
inequality suggests a bound on the black hole, i.e., the
radius of black hole horizon must be less than the radius of
cosmological horizon. Outside the event horizon of this
solution, we have x € [0, 1]. let

y = [1 4+ 4ai+4a(—-1 + 1+ a)x"],

theny € [V/1 + 4ad, 1 + 2a]. By this definition, the numer-
ator of Q is the same as the one in Eq. (4.16). Except A > 0,
all of the discussion and results are the same as the case
with K =1 and A <O.

For n=3, n=35, and n>6, Q is always positive
outside the black hole horizon. Actually, Q is positive
for x € [0, +o0), where +oo corresponds to r = 0, i.e., the
singularities of the spacetimes.

D = 6 or n = 4 is also special, the numerator of Q is still
given by (4.19), so we have

{Q>0, y € [V1+4al, 1+ 4ak-/25+ 10V6),
0 <0, ye(V1+4al-\/25+10V6,+c0).

Thus, we have Q > 0 for all y € [v/1 + 4a4, 1 + 2a] when

142a<V1+4ad-\/25+10v6. (431
However, we have Q<0 if ye(v1+4al-

V/25 4 10v/6, 1 4 2a] when

1+2a > 1+ 4ak-\/25+ 10V/6,
and Q > 0 if y € [T+ 4ad, /T + 4ai- /25 + 10V6).

It should be point out here: There are two horizons in this
case, i.e., black hole horizon and cosmological horizon.
The parameter x is defined by the radius of black hole
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FIG. 5. n =4, the case for A > 0 and K = 1. In the shadow
region, inequalities (4.30), (4.31), and a > 54 — 3 are satisfied.

horizon, i.e., x = r, /r, so we have F(x) < O atx = 1. For
n=4, F.(x) <0at x=1 gives a constraint

a>51-3. (4.32)

Above discussion show that D = 6 is special, we have to
impose a condition (4.31) on the parameter a and A to
ensure the positiveness of Q outside the event horizon. The
allowed range of the parameters have been depicted in
Fig. 5. The black solid line in Fig. 5 is for the condition
(4.31). The region below this line has a positive Q. The
dotdashed line in Fig. 5 is for (4.32).

B. Regular solution

A globally regular solution of the theory only happens
when M = 0 (The case with M = 0, K = —1,and A < O'is
|

2(n+1)(K + aK?* = 2)x"'[=a(n = 3)(K + aK? = 2)x"*! + 1 + 4al)]

an exception, which has a horizon and has been discussed
in the previous part of the paper). For M = 0, we have

B 8(n—1)(n—-2)aA
Q= \/1+ nn+1) '

(4.33)

So, for the regular solution, we always have Q > 0. Of
course, the above result also implies

8(n—1)(n—=2)aA

1
* nn+1)

> 0. (4.34)

For A > 0, this inequality is obviously right. However, for
A < 0, the Gauss-Bonnet coupling o has an upper bound
which can be read out from the above immediately.

C. The existence of superluminal mode

When the tensor perturbation equation is hyperbolic,
there are travel modes in the theory, and we can discuss the
speed of a gravitational fluctuation. In this subsection, we
study the causality of this kind of tensor perturbation.

We investigate the possible superluminal modes by
solving the inequalities (3.23)—(3.25). Actually from these
inequalities, we can get the precise conditions for the
existence of a superluminal mode. For the black hole
solutions of the theory, we find that the superluminal mode
is allowed only in the case with M > 0. Further, the
superluminal mode could exist near the infinity of the
spacetime. These can be found as follows.

Now, we find that 7 and J can be expressed as

~ 2a(n—3)(K+aK?* - 2)x"" 4 (n = 1)(1 + 4al)
(n—1)[1 + 4ai + 4a(K + aK?* — 2)x" ]2

’

(4.35)

and

j:

[l +4al +4a(K + ak? — A)x" 'z

First, we consider the cases with 1 + 4a4 > 0. With this
condition, we discuss n = 3, n > 4 separately.

(i) For n =3, we have I>0. When M > 0, i.e.,
K+aK?—21>0, we have J>0. Therefore,
there is always superluminal mode outside the
black hole horizon if M > 0. When M <0, i.e.,
K 4+ aK? -1 <0, we always have J <0. So the
superluminal mode is absent when M < 0.

. (4.36)

|
(ii) Forn >4, when M > 0, i.e., K + aK?> — 1> 0, we
have I > 0. By solving J > 0, we obtain

1

1+ 4al )

0<
=SS G =3)(K + ak2 =)

(4.37)

This is the condition for the existence of super-
luminal mode. When M = 0, i.e., K + ak? — 1 = 0,
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the superluminal mode is absent. Actually, in this
case, we have I > 0 and J = 0. When M < 0, i.e.,
K + aK? — ) < 0, we always have J < 0 no matter
whether [ is positive or not. Therefore, there is no
superluminal mode when M < 0.

In the case with 1+44al<0, we always have
K +aK?— 2> 0. This suggests that J <0. So there is
no superluminal mode in this case.

At the end of this section, based on the exact range in
(4.37), we list the detailed conditions for the existence of
superluminal modes when K =1, 1 =0, a = 24. When
r > r., where r_ is determined by the rightmost term in the
inequality (4.37), there will be superluminal mode. This
result is consistent with the one in [22].

Dimensions Critical value r. (ry = 1)
D=6,n=4 3.5944
D=7,n=5 3.2598
D=8 n==6 29177
D=9, n=7 2.6456

V. NARIAI-TYPE SPACETIME

When r = r, = constant, equations of motion imply that
2R is a constant. It means that (M2, g,,) is a two-dimen-
sional constant curvature spacetime. This kind solution is
called the Nariai-type spacetime [34], and the metric in the
standard coordinates is given by

 [(n=1)+2(n=1)(n—2)(n - 3)akry>
o r3+2(n—=1)(n-2)ak oK. (52)

From Eq. (2.10), we know that r% is the real and positive
root of the following algebraic equation

on DK = = De g

Of course, this equation does not always exist a real and
positive root r3. The simplest case is the solution with
K = 0. Obviously, A and ¢ have to be vanishing when
K =0, and r} is an arbitrary positive constant. So the
solution (5.1) reduces to a very simple form. In the case
with K # 0, the condition for real and positive r% depends
on the dimension n. For n = 3, this condition is KA > 0.
For n > 4, the condition becomes [34]

A>0, K = =£1,
A=0, K=-1,
—n(n—1)/8(n-2)(n-3)a) <A <0, K=-1.
From the metric (5.1), it is easy to find
2Or =0,

‘R = 20, (Dr)*> =0.

Therefore, P, Q, I, and J have following forms

dp? o K12
d52 — —(1 — gpz)dtz + 1 P 5 + r%}/ijdzldzf’ (51) P=—|1+ 2(1(” - 2)(71 - 3)ﬁ s (54)
—op 0
where
|
0- rg+4(n* —4n+6)Kria +4(n—1)(n —2)%(n - 3)K*a? (5.5)
N r3lrd +2a(n—1)(n — 2)K] ' '
[
A. K=1 case
I=1+2a(n—2)(n-3) 52 (5.6) F.rom the expression- (5.4), one has P < 0. It is also easy
ry to find that (5.5) implies
and 0- rg+4(n* —4n+6)rja+4(n—1)(n-2)*(n-3)a?
r3[r3 + 2a(n —1)(n—2)]
4K >0, (5.8)

Ty (57)

Obviously, P can be vanishing only in the case with
negative K. Roughly speaking, we find that the super-
luminal modes appear in the cases K = 1 with some
special @ and A. Details can be found in the following
subsections.

It is easy to find that / and J are both positive when K = 1.
Therefore, there is always superluminal modes in this case.

B. K=0 case

When K = 0, we have 6 = 0 and A = 0. The metric can
be represented as
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ds? = —d* + dp* + r3s,dz dz (5.9)

In this case, P, Q, I, J have very simple forms i.e., P = —1,
Q =1,1=1,J =0. Therefore, there is no superluminal
modes in this case.

C. K= -1 case

This case is a little bit complicated. However, Eq. (5.4)
implies that P is always nonpositive. Now Q has a form

rg—4(n*>—4n+6)ria+4(n—1)(n—2)*(n-3)a?

0= 7317 = 2a(n=1)(n =2)

(5.10)

So Q might be negative. From the expressions (5.6) and
(5.7), we find that the signs of / and J depend on the

parameters and dimensions. We will discuss the cases with
A =0, A>0,and A < 0O separately.

1. A=0 case

In the case with n =3, there is a contradiction in
Eq. (5.3). For n >4, we have r3 = (n—2)(n—3)a. In
this case,

2
—-n-1
Q:_—n " 0 < 0.

(n+1)(n-2) (5.11)

Since Q < 0 in this case, the discussion of the causality is
meaningless.

2. A > 0 case
In this case, Eq. (5.3) gives

r :%{—(n— 1)+ \/(n— 1)2+%(n— 1)(n—2)(n—3)a}.

(5.12)

It is not hard to find that there is no a and A satisfying the condition P < 0 and Q > 0. So Q is always negative, the tensor

perturbation equation is not hyperbolic.

3. A <0 case

In this case, Eq. (5.3) tells us

n

Ty

{—(n— 1) & \/(n— 1)? +87A(n— 1)(n —2)(n —3)(1}.

(5.13)

Solving the condition P <0, @ > 0, I > 0 and J > 0, we have the following results:

Dimenion Hyperbolicity condition Causality condition
n=23 ah < =3or—t<aA <0 —1<aA <0
nz4(+) — gl < ah < M(n) — sl < ah < M(n)
— n(n—1 n(n+1
nx4(-) —W<aA<—ﬁorN(n)<a/\<O N(n) <ah <0
In the above table, (+) and (—) correspond to the sign + in (5.13), and
—n(n* = 6n® + Tn* + 16n — 36) — 2n(n — 4)V/5n* = 20n + 24
M(n) = n(n n> +7n* + 16n ) 3n(n )V5n n+ ’ (5.14)
8(n—1)(n=2)*(n-13)
N(n) = —n(n* = 6n° + Tn®> + 16n — 36) + 2n(n — 4)V5n> — 20n + 24‘ (5.15)

8(n—1)(n—2)3(n-3)

In the “(+)” case of n > 4, it is easy to find that the range of aA become narrower and narrower when 7 increases. It is also
not hard to find that M(n) and N(n) are both monotonically increase when n > 5. Therefore, if

1
—§<a/\<0,

the hyperbolicity and causality will be satisfied in all dimensions.
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VI. DIMENSIONALLY EXTENDED CONSTANT
CURVATURE BLACK HOLE

Consider the equations of motion, especially the
Eq. (2.9), when

1+ 2a

K — (Dr)?
o7 _,

r

one gets a solution with 1 + 4@A = 0. This corresponds to
the dimensionally extended constant curvature black hole
given by Banados, Teitelboim and Zanelli [34,41]. This
kind of solution is given by

ds* = —h(r)e®Ide> + h=' (r)dr* + r’y;dZ'dz/,  (6.1)
where
r2
h(r) =K+ — 6.2
(r) t55° (6.2)

and &(z, r) is an arbitrary function. For this spacetime, we
find that P is always vanishing, and

/

hé
0 =—2a|3W8 +2h8" +2h(8)? +2(n-3)—|,  (6.3)
r

where ’ stands for d/9dr. Obviously, Q is also vanishing if §
does not depend on r, i.e., §=5(¢). So the principle
symbol for the tensor perturbation equation in this back-
ground is totally degenerated.

Here we show why that P is always vanishing. From the
solution, it is not hard to find

D,D,rD*Dbr = % [(h)? + 2hh'§ +2h%(8')?].  (6.4)
By using
20r =K + hd, (6.5)
we get

1 1
D,D,rD*Dbr = 3 (0Or)* + Ehz(é/)2 . (6.6)

Therefore, substituting this result into the expression (B5)
in Appendix B, we obtain

4(n—2)?

1”2

fi-nr o[ oy KO

a2h2(5/>2

Consider that function / is given by (6.2), we obtain P = 0.
With the above relations, we also get the expression of Q,
i.e., Eq. (6.3).

The above calculation shows the tensor perturbation
equation is not hyperbolic in this case, and there is no
gravitational wave on this dimensionally extended constant
curvature black hole spacetime.

VII. VAIDYA SPACETIMES

A Vaidya spacetime is a solution of the theory with
radiation matter, the metric of the spacetime can be
expressed as

ds* = —F (v, r)dv* 4+ 2dvdr + r*y;dz'dz/.  (7.1)
In general, the energy-momentum tensor of the radiation
matter satisfy

Tff ;é 0, and Tnn = 0,

or

Tff =0, and Tnn ?ﬁ 0.

Therefore, from Eq. (3.13), we have P < 0. From the above

metric, we have
R=-F", 20r=F, (Dr)?>=F, (7.2

where ' stands for 0/0r as before. Substituting the

quantities in (7.2) into Eq. (3.11), we can get

F’ K-F
Q:1+2a[—F”—2(n—3)—+(n—3)(n—4) 5 },
r r
(7.3)
where
r 8kHaM(v) -
F(U,I"):K—l-ﬁ 1F \/1+W+4GA . (74)

The trapping horizon or apparent horizon of Vaidya
spacetime is given by F(v,r) =0, and we can get the
radius of the apparent horizon r4 (). Instead of the radius
of event horizon r, in Eq. (4.7), in the untrapped region of
the spacetime, the radius of the apparent horizon r,(v) can
be used to define x, a, and 4, i.e., we have

Although these quantities depend on v, in the discussion of
the hyperbolicity and causality, the algebraic structure is the
same as the case of the static, and we can get nearly the
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same conclusions as the static cases. We will not repeat this
kind of discussion here.

VIII. SUMMARY AND DISCUSSION

In this paper, we have obtained the general master
equations of tensor type for the warped spacetimes with
the metric (2.6), i.e., Eq. (3.3) or Eq. (3.9). These new
master equations do not depend on the mode expansion. Of
course, one can introduce the harmonic tensor T;; on the
maximally symmetric space (N, y,;) [42], i.e., the functions
satisfying

AT;; = (=K +2nK) T,
and expand h;; = h}" as h;;/r* = hyT;; (the summation on
k implied), then we can get the equation for each mode /7.
Actually, in Appendix A, we have get the more general
master equations (A30) for the D = m + n dimension
warped spacetimes in which (N,y;;) is an Einstein
manifold.

Based on the master equation, especially the effective
potential in [37], Reall has provided a smart way to study
the hyperbolicity and causality of the perturbation equa-
tions in Einstein-Gauss-Bonnet theory [22]. This method is
focused on the large k limit in the mode expansion. Now,
from our formula (3.9), it is obvious this limit can help
people extract the information about PYD;D; from the
effective potential. However, this also implies the method is
only valid for the large K modes. This is not necessary in the
discussion based on our new master equations.

Furthermore, by using this new master equation, we
show that effective metric or acoustic metric of the tensor
perturbation equation defined by Reall in [22] can be
generalized to the cases without a static condition. In fact,
we have get the effective metric PMV in Eq. (3.10). With
this effective metric in hand, we can study the hyperbolicity
and causality of the tensor perturbation on all vacuum
solutions of the theory. We have given the explicit con-
ditions that PMN is Lorentzian, i.e., Q > 0 in Eq. (3.23).
Under the assumption (3.14), when condition (3.24) and
(3.25) are satisfied, the causality is broken, and super-
luminary mode exists.

For each vacuum solution which can be written in the
form of Eq. (2.6), the exact hyperbolic condition of the
tensor perturbation equations has been given. Among
the black hole solutions, when M > 0 and 1 + 4@ A > 0,
D =6 or n =4 is very special because the hyperbolicity
might be an issue outside the event horizon only in this
case. We have found the analytic hyperbolic condition of
the tensor perturbation equation on this background. In the
case A =0, only K = 1 solution exists, and we find that
hyperbolicity can be broken outside the event horizon,
when the black hole is small enough, i.e.,

r. < \/@/3.0176 = 1.4101+/a.

This point has been noticed by Reall in [22]. Here, we have
found the precise value of 7, in the hyperbolic condition. In
the case of A <0, K =1, we find the constraint by the
hyperbolicity becomes tighter when |A| increases.
However, in the case of A <0, K = 0, the situation is
quite different: the radius of the black hole can be arbitrary
small without breaking the hyperbolicity outside the event
horizon if we turn down the abstract value of the cosmo-
logical constant. For the positive A, the hyperbolic con-
dition also provide constraint of the parameter @, and
detailed constraints have been depicted in the figures of the
paper. It should be noted here, for A <0 and K = —1, in
the case where mass parameter M < 0, the situation is
complicated, and the hyperbolicity of the tensor perturba-
tion might be broken for all D > 5. Although the case of
1 4+ 4a@A < 0 is not so physically attractive, for the com-
pleteness of the paper, we have also studied this situation
with a very short discussion. For this background space-
time, some wave equations exist when the spacetime
dimension is greater than seven, i.e., D > 7.

Nariai type solutions and dimensionally extended con-
stant curvature black hole solutions are also considered in
this paper, and the constraints by the hyperbolicity and
causality on the tensor perturbation have been given
explicitly. Our approach can also applied to dynamical
spacetimes, and Vaidya spacetime have been investigated
as an example.

We have discussed the case m =2, but from the
Eq. (A30) in Appendix A, we can also discuss the cases
with m = 1, and m > 2. For instance, the case with m = 4,
which is interested for many people. For example, our
formulas can be used to the special Kaluza-Klein compac-
tification in [43,44], in which the topology of the spacetime
is locally MP =~ M* x N" with a maximally symmetric
space N" with negative sectional curvature.

On the other hand, the approach of using the effective
metric to study the hyperbolicity and the causality can be
applied to other gravity theories, for example, scalar-tensor
gravity and F(R) gravity theories.
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APPENDIX A: MORE GENERAL TENSOR
PERTURBATION EQUATIONS

1. Background spacetimes

In this Appendix, we derive the perturbation equation for
a general warped spacetime MP =~ M™ x N" with metric
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gundxMdxN = g,,(y)dy*dy” + r*(y)yj(z)dz'dz!,

where coordinates x¥ = {y',---y™;z!, ..., z"}. The tuple
(M™, g,) forms a m— dlmensmn Lorent21ar1 manifold, and
(N",y;;) is an n—dimensional Riemann manifold. This
Riemann manifold (N",y,;) is also assumed to be an
Einstein manifold, i.e., the Ricci tensor is given by
Eq. (2.7). As in Sec. II, the metric compatible covariant
derivatives associated with gy, 9,5, and y;; are denoted by
V. D,, and D;, respectively.

According to the metric (Al), we get the nontrivial
components of Riemann tensor Ry, X as follows:

(A1)

Rabcd = mRabcdv
D Dbr
r
Rij! = Riy' = (D

5]

r)2<55'7ki - 5%7@‘)-

Raibj =
(A2)

Here, "R,,.? and R,]k are the Riemann tensors of
(M™,r,) and (N"y;), respectively, and (Dr)? =
g*D,rD,r. Utilizing Eqs. (A2), we obtain the nonvan-
ished components of the Ricci tensor of the spacetime
(MP, gyn), which are given by

D_D
Ry = "Ry —n—20"
r
mr K — (Dr)?
Rij = |- , + (l’l - 1)7 rzj/ij. (A3)

Then the scalar curvature of the spacetime has a form

m

O K — (Dr)?
R:mR—Zn—rJrn(n—])&.
r

72

(A4)

In the above Eqs. (A2)—(A4), ™R and "R, are the scalar
curvature and the Ricci tensor of the manifold (M™, g,,),
respectively. The symbol 200 = ¢*’D,D, is the
d’Alembertian in (M™, g,;,). With the metric (Al), any
energy-momentum tensor 7,y can be decomposed into

in which both T, and p only depend on the coordi-
nates {y“}.

2. General tensor perturbation equations

For the background spacetime with the metric (A1), we
discuss the tensor perturbation by setting

hab = 07 hai = O’
oT,, =0, oT,; =0, (A5)
and the tensor h;; is transverse trace free i.e., Dih, ;= 0,and
N ij vhi _ 5o
h=g"hyy = g"h;; :T: reyih = 0. (A6)

As a result, in Einstein-Gauss-Bonnet gravity theory, the
nontrivial components of the perturbation equation (3.1)
are

8G;; + Ah;; + adH,; = kp6T ;. (A7)
To get the detailed forms of these equations, we have to
calculate the perturbation of the geometric quantities

associated to the spacetime. Consider the perturbation of
the metric gyy — gyn + hyn, One can get

1
— S (VoY = ViV )e”
- vaLhMP) -

SRyn” + (VuVihy®

(vaPhNL - vaPh‘ML)]’
(A8)

and

5RMNLP = gSPaRMNLS + RMNLShSP-

By using Eq. (AS5) and Eq. (A8), we find that the
perturbation of the Riemann tensor satisfies

OR pea = 0, (A9)
Tyy = diag{Tu,(y). > P74},
J
2D }"Dbr 1 DurDbhl-j Derahij ) hl] D Dbr
6Ralb/ 4,'2 ij— E |: . + ; +r Dan 7 — ar hij’ (A]O)
and
}/ml m rzyml N m N m 1 m 1A m
6Rijk] — T( ”n hk + Rl]k hn ) - Dleh] - Djthj _2 h]k + D D hlk

PVl pya 5 i

2ml D V{VVIkDah —ryDyhi™ — T(Duhjk) +% (Dahik):| + (Dr)*(vijhi = viih)- (All)
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The perturbation of the Ricci tensor can be put into forms

2D ,rD,r(y" h; i 1
5Ruh_# ;’ (DarDyhij + DyrDohiy) =5 DaDyh, (A12)
r
and
r2m h;; nD% | PPN A ay 1 .
K (Dr)*> ™dr PO | B ro,
+ (l’l— l)ﬁ‘i‘T——]hu—ﬁRl j hkl—EDlD]h—zD rDahy,] (A13)
By these, one can get the perturbation for the scalar curvature
1. | P 1 Der ..
OR = — Dh—ﬁAh“‘FD D/h,j—i(n+2) r3 }’jDahl'j
2)(Dr)? K(n—1)h
—zﬁz)arz)a;z+('“L J(Dr) ), _Kln—Dh (Al4)
r r

where A = YD, D denotes the Laplace-Beltrami operator of (N",y;;). Furthermore, by using Egs. (A9)-(A14) and
considering that the tensor h;; is transverse trace free, we obtain the necessary terms to calculate the perturbation of the
Gauss-Bonnet tensor H,;:

mr K — (Dr)? rr _(h;\ nDr
ot [ i KD (o) 00,

r

1 K (Dr? "0 L
——Ahij—l—[(n—l)p—i—( ) —Tr]h,-j—r klhk,} (A15)

272 r

m] K — (Dr)? 2 hy; D 1 .
RY Ry = [_ r+(n_1)¢]{_r_mg(_2/) Iy S S A
r

= 2 \R2) 2y e

h

1.
- o= R h}, (A16)

R,-MéRsz—[—mDr-i-(”—l)K_ } +{ n_1)1<—(2Dr)2H_r22mD<hg>

r r r

+{(n-1)§+(D§)2—m—Dr]

nD%
2 = Dahij=

D“D” 2D,rD 1 [D,rDyhi;  DyrDgh;; h.
RMN&R[‘M/‘N _ (mRab —n I”){ a’; brhi]’ _ |: al iy + b Zaltij + rzDuDh <_12]):|
l r r : 2 r r r

—Danrhij} T |: mOr K- (Dr)2:| {K(I’l - l)hlj LAh

S8+ [<n_1>’§ r> "o ]h,.j rl R,k ’h,d} (A17)

e/ 2 T ap

r
+ fyij“rDah,»k -

Dr)?

Ripjn0RMN =

2 [ mOr K- (Dr)* o 1. rr _(h

-
nD“ (Dr mr 1
" — D, hy — —Athr (n—1) T) ]hkl——Rk ! hmn}

(Dr)* [ r*, _ (hi n D% 1 . K (Dr)> ™Or | PO

(A19)
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2D“D"r (2D rD,r 1

RMVESR jynp = —

i Derahij

Danr

{

[DarDbhij

I‘2 Y r

2
ypl( jmnphkn + ijknhnp)

2
_rypl

Der |:ryjk<Dahmp)

2(Dr)?

+ (Dr)*(Yimhji — 7kjhml>i| - K(n -

(Dr)zD“r

2 D,h;" Dahij
2]"2 <n_ ) Y mi +— P P

_2D“D’r (2D rDbr 1

R.MNP _

hi;
+r’D, D, (r—;)} - hij}

1 A 4
[D Dihy,? = D,y Dyh? == D;D

r

ypl
2

4

o P
__](Dahmk) on

<Dahjk)

L= 2)[(Dr)2]2

I"4

- r?’mk(Dahjp)

Dr
h,j+( ! Ah;

1) ..

tj

(A20)

RjpynpOR; 3

DarDbhl-j
r

1. r A
j {Eyp( tmnphk +lek h p)

2

(Dr)*Dr

n Derahij

ﬁDar{ryik(Dahmp) -

2(Dr)?

r

h..
o))
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517
rymk( hp) __(Dahmk)

(Dr)?

K(”l—l)hl}+ r4

r4 Ahl}
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22
- ijnp istu(

L4y

[ZR $ th‘t + K(n - 1)]’1”],
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2Rl]klRl]k hnl lekl
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From Eq. (2.5), we have
0H;; = 2(RR;; + R;;0R)

+2(RMPSR jynp + RjynpoRMNT) — %
For the Einstein manifold, the relation between the Weyl tensor

A

Cijii = Riju

Dahi/'
(n=2)( rYmjDah™ + o =+

hmsynt},pu + hntyms},pu 4 hpuyms

5 (DiDyhyy = D;Dihyy = DDk + DDyhy).

- K(J’ikl’lj

Y
r4

™)

(A21)

(A22)

— 4(RMNSRp1 iy + Ripgjy6RMN)

1

hijLGB - Egij5LGB~ (A23)

and the Riemann tensor is given by

= ViV j)- (A24)

Substituting Eqgs. (A15)-(A22), and Eq. (A24) into Eq. (A23), after lengthy calculation, we finally obtain the exact formula

of 5HIJ

20H;;

; DDt
j:4{mGab_(n_2) r

r

1
_[5
D*D'r 1 "

; 7@-2){ R-2

(n—=2)(n-3)

r

+ 8{”’G“b —(n-2)
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2, (1) 2[R 2Ty, K005 ()

r2 3

r2 r r r
wal g ’”Dr+2( 0 my 2+ e K (n—1)"R (Dr)? 3 7)1( mr
r " r " r? " r? e r r
D 2 m] D 272
#30- 00 -2)(0-3) P - 0= 2= 9) [
K\?2 K (Dr)?
+(n—3)(n2—2n—2)<—2> —n(n—3)(2n—5)—2-( ;)
r r r
. D“Dbr] D, Dyr 1 hi\ | 2Wi
e L S AN C )
Here
, D,Dyr "Or K- (Dr)?
Lgp = "Lgp + 8n"G* f—éln(n—l)(n—Z) P
r
K — (Dr)?2]? D,D,r)(D*D"
+n(n—1)(n—2)(n—3){%r)] —4n(n—1)( a br)g r)
r r
K — (Dr)? mEN2 C, Gl
—|—2n(n—1)mR-—(2 r) +4n(n—l)< r) SR L (A26)
r r

where "L g is the Gauss-Bonnet term in the Lorentizan manifold (M", g,;,). The W;; in Eq. (A25) contains the terms about
the Weyl tensor é‘,-j,d, and it can be expressed as

A h 2n—4 . h 2 A ~(h
w Gk im kl C.k 1pa kl Ck1 kl
ij:2 i D(?)‘*‘ r ijDrDa(?)"’ﬁ ijA<7>

Cimkl .
A [D;Dyhyy = D,y Dyhjy — DD by + D, Dby
Cv‘mkl o . R R
- ]’_4 [Dszhml - Dkahtl - DiDlhmk =+ Dlehzk}
Cpakl . R A
+ 7 [Dpthql - Dquhpl - Dleh’qk + DqDlhpk]Yij
4"kl"mn 2"km" nl yij"qul" n
+Fcijck 1" oy +ch a G ihk1+7c Cpgk Mt
m] K
+2[—’”R—|—2(n—3)—r—(n2—7n+16)—2
r r
(Dr)*] » hy
+(n-3)(n—-4) 3 clf ek (A27)

At the same time, we can also get the perturbation of the Einstein tensor 6G;;

26G;; h;; D° i\ Ay (hi m]
2]:—’”D<r2]>—nera<2]>+2L(rzj>—[mR—2(n—1)rr

r r r

+n(n—1)r—li—(n—1)(n—2) ([Z)T <h;> (A28)

r

where A; is the Lichnerowicz operator acting on the symmetric rank-2 tensor on (N",7i;). The relation between this
operator and usual Laplace operator is given by the following formula,
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ALsij = —Asij+RikSkj+Rijik—2Rk Skl? (A29)

where s;; is an arbitrary symmetric tensor field tensor on (N, y;;). When (N, y;;) is maximal symmetry manifold, it should
be noted here that

ALSij = (_A + ZHK)SU.
From Egs. (A25), (A27), (A28), and (A29), we find that Eq. (A7) becomes

A h 21<
(P, XD,Dy, + P M D,,D, + P*;*'D, + V) <r—’;’> =_-2 5T,,, (A30)
where
pab Kl — pabsks ! — g“bC,kjl, (A31)
DerCr!
Pe M = pagks ] — da(n - 2) — —1 (A32)
r I
da . . . . .
Pmn kl __ Pmn5 k(s + (Cjknléim + Ciknléjm + ijlnﬁik + Cimlnéjk _ kanlyij _ Cikjlymn)7 (A33)
Zéik 1 m] K Dr)2 Cik<l
Vi =vshs! + —5 +a{4{”’R —2(n=3)— 4 (= Tn + 16) 5 —(n—-3)(n—4) ( ;) ] >
r r r r r
8~ mknl 4 . k7 mn 1 _ 2. mnpl ; Cmnpqém”
- CiminC +3 7 Conf*C I =i, ks +#5ik5jl . (A34)
In the above equations
DD K- (Dr)*> _™O
P = g% 4+ 2(n — Z)a{Z - [(n ~3) (2 s r] gab} — d4a - "G, (A35)
r r
2(n—3)"0 Dr)¥] y™
pmn:{ma[@_um )(M)J]}Q, (A36)
r 7’ r
D¢ an m]
Pi=n r+2(n—2)a{4 r—l—{mR—2(n—1) !
r r r
K — (Dr)? D D
+(n—2)(n—3)#}g“b}—br—8a-m6“b—br, (A37)
r r r
and
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r r r
D,D D*D’r)(D,D
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mr\ 2 K- ’”R Dr)?-"R
+4(n—1)(n—2)( r) +2n(n—3) —2(n=1)(n-2 )%
p
.m0 D 2 m]
_an(n-32K r+4(n—l)(n—2)(n—3)7< r)” - "Or
r
K- (D K?
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p
Dr)?12
+(n=1)n=-2)(n-3)(n-4) {( rz) ] } (A38)

064054-24



HYPERBOLICITY AND CAUSALITY OF ...

PHYS. REV. D 103, 064054 (2021)

Equation (A30) is the most general master equation of
tensor type for the warped spacetime with the metric (A1).
In general, the components of /;; = " are coupled to
each other if (N,y;;) is not maximally symmetric. If we
restrict to the case with m =2, we have ’G,, =0,
’Lgg = 0, and the above equations reduce to Egs. (3.5),
(3.6), (3.7), (3.8) in Sec. III. If we further restrict to the case
that (N, y,;) is maximally symmetric, Eq. (A30) reduces to
Eq. (3.9) in Sec. IIL

APPENDIX B: THE DETERMINANT
OF TENSOR P8

In two-dimensional Lorentz manifold, the volume
element €, and the metric g,;, can be related by

K — (Dr)?

€ac€bd = Yad9cb — abYcd- (Bl)

Hence, the determinant of P’ can be expressed as
1 ab pcd 1 ab 1 2
P =3 €acpaP P =2 PapP —E[Tr(Pﬂ ;

(B2)

where Tr(P) = g,,P is the trace of the tensor P“*, Simple
calculations show

20
Tr(P) :2+a{4(n—2)(n—3) . —4(n—2)—r}, (B3)
r r
and
) K — (Dr)? 20y
P, P =24 2a|4(n—2)(n—-23) —4(n-2)—
-
0 K — (Dr)? 0
+a2{8(n ) el [2(;1 ~2)(n - 3)#-4@ - 2)’”]
r r r
K — (Dr)? 20r)?
+2[2(n ~2)(n —3)#—4@ —2)’1
r r
D,D,r)(D*D"
L 16(n —2)2 P b’>§ r>}. (B4)
r
By using expressions of Tr(P) and PP in the above equations, we arrive at
_ 2 2
P=—1 —a{4(n-2)(n—3)w—4(n-2)ﬂ}
r r
D,D,r)(D*D"? 20r\?
+a2{8(n—2)2( D7) r)—8(n—2)2<r>
r r
20Or[K — (Dr)?
4+ 8(n—2)2(n — 3) 2K = (D)
2 2 [K - (Dr)z]z
—4(n-2)*(n-3)*———>. (B5)
Consider Eq. (2.9), we obtain
1 r 1 K — (Dr)?*1-!
D,Dy,r - EZDrgab = ;’92) <§QCchd9ab - Tab> ) [1 + 20’(” - 1)(” - 2) #} : (B6)
and
b Lo P a1y 1 b b
(DaDhr)(DaD r) - 5( DI") = ?KD _gc Tcdgab - Tab EgefTefga -1
K — (Dr)*]-2
X [l—f—Za(n—l)(n—Z)#] . (B7)
r

064054-25



LI-MING CAO and LIANG-BI WU

PHYS. REV. D 103, 064054 (2021)

We can choose null frame {n%, £} such that
Gab = _fanh - nafb’

where

T, can be expressed as

1
Tab = Tffnanb + Tnnl/ﬂal/ﬂb + _Tgalﬂ

. (B3)

where
Tff = Tabfafb, Tnn = Tabn“nb,
and

T = g*T,, = —2n“¢*T,,.

Finally, by using Eq. (B7) and Eq. (B8), one gets
Eq. (3.13).
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