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We show that the Plebański-Demiański spacetime persists as a solution of general relativity when the
theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature
corrections. The quadratic terms are of two types and are given by quadratic combinations of the Riemann
tensor as well as a higher curvature interaction constructed with a scalar field which is conformally coupled
to quadratic terms in the curvature. The later is built in terms of a four-rank tensor Sμνλρ that depends on the
Riemann tensor and the scalar field, and that transforms covariantly under local Weyl rescalings. Due to the
generality of the Plebański-Demiański family, several new hairy black hole solutions are obtained in this
higher curvature model. We pay particular attention to the C-metric spacetime and the stationary Taub-NUT
metric, which in the hyperbolic case can be analytically extended leading to healthy, asymptotically AdS,
wormhole configurations. Finally, we present a new general model for higher derivative, conformally
coupled scalars, depending on an arbitrary function and that we have dubbed conformal K essence. We also
construct spherically symmetric hairy black holes for these general models.
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I. INTRODUCTION

In gravity, described by general relativity (GR) or in any
of its extensions, a fundamental angle to be investigated is
their spectrum of solutions. Such set includes gravitational
waves [1] and black holes as well as other astrophysically
relevant objects. Black holes are formed by gravitational
collapse [2], a catastrophic event that may produce singu-
larities, pathological points in the spacetime where geo-
desic completeness is broken and where the curvature may
diverge [3]. The classical validity of GR is guaranteed by
the cosmic censorship hypothesis [4] which asserts that for
realistic forms of matter the singularities are covered by a
horizon, a surface from which no information can escape to
infinity. Ultimately, a black hole is the region inside the
event horizon, a region that is causally disconnected with
future null infinity and whose boundary in the spacetime is
given by the event horizon itself. It has been argued that,
after the gravitational collapse takes place, the formed
black hole can only be described by a well-defined set of
parameters, its mass, electromagnetic charges and angular
momentum, and that no possible further relevant character-
istics of the original matter that produced the black hole,
such as baryonic or leptonic numbers for example, survive
the process. In some case this conjecture can be proven and

leads to no-hair theorems [5], where hair is used to name all
possible characteristics of black holes that make them not
bald, those quantities that do not hold a Gauss law, and as a
consequence are not conserved at infinity.
In spite of these results, it is possible to construct hairy

black holes in general relativity with a sensible matter
content. The first attempts in this direction were carried out
with the backreaction of a conformally coupled scalar field
[6,7]. A backreacting, minimally coupled, static, spheri-
cally symmetric massless scalar field inevitably leads to a
singular spacetime, which can be integrated analytically
[8,9]. Such pathology remains even beyond spherical
symmetry in the static case [10].1 Nevertheless, the intro-
duction of a conformal coupling with the curvature allows
us to bypass the no-hair results providing a healthy
spacetime, but with a scalar field that diverges at the
horizon. Notwithstanding this result, as shown in Ref. [13]
such singular behavior does not imply infinite tidal forces
on a falling object. The presence of a cosmological constant
and a quartic self-interaction pushes the scalar field
singularity inside the event horizon [14,15] and a rich
family of causal structures can be obtained in this setup
[16]. Those features are also exhibited by higher-dimen-
sional rotating solutions even when the coupling factor is

*adolfo.cisterna@ucentral.cl
†aneira2017@udec.cl
‡juoliva@udec.cl
§srebolledo2017@udec.cl

1Recently these no-hair results have been revisited in the
context of stationary, axisymmetric spacetimes endowed with
reasonable matter fields that do not share the same symmetries of
the metric [11,12].
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not conformal and a self-interacting potential is present
[17]. In this line, including a self-interacting potential that
induces a deviation from conformal symmetry by the
presence of linear and cubic terms, allows to construct
regular black holes and wormholes in (A)dS spacetime [18],
[21], while the most general scalar field potential consistent
with a Petrov Type-D background has been found in [22]. A
charged generalization of these solutions in the static case
permits the presence of amass term for the scalar [24].When
GR is embedded in a UV complete theory, higher curvature
corrections inevitably emerge. In four dimensions, quadratic
higher curvature corrections are particularly interesting
since they provide a power counting renormalizable theory,
at the cost of introducing a ghost mode [21]. Due to the
topological nature of the quadratic Euler combination in four
dimensions, one has only two arbitrary couplings in the
quadratic sector. Unitarity is recovered if one restricts
oneself to the model of the form R2, since these are dual
to the Einstein-Hilbert Lagrangian with a scalar field.
Consequently, it is natural to wonder how these higher
curvature correctionsmodify the spectrum of black holes. In
vacuum one can prove that, static, asymptotically flat black
holes exist, only when the quadratic combination reduces to
theWeyl square term of four-dimensional conformal gravity
and the static black holes must be integrated numerically
[23] [see Ref. [24] for the asymptotically (A)dS case].
Remarkably, it has been found recently that the static black
hole solutions of this model can be constructed as a power
series around the horizon, leading to a recurrence equation
that can be solved in a closed form [25–28].
Since the presence of a conformally coupled scalar has

proven to be fruitful in the construction of analytic hairy
black holes, it is also natural to wonder about how to couple
in a Weyl invariant manner a scalar with these higher
curvature terms. The simplest way to perform such a task is
to make use of the following tensor:

Sμνλρ ¼ ϕ2Rμν
λρ − 4ϕδ½μ½λ∇ν�∇ρ�ϕ

þ 8δ½μ½λ∇ν�ϕ∇ρ�ϕ − 2δμνλρ∇αϕ∇αϕ; ð1Þ

which was introduced in Ref. [29] in order to provide a
higher dimensional generalization of the standard confor-
mally coupled scalar field to Euler densities of higher
degree (see also the works [30–33] for the use of a Weyl
gauging in the construction of conformal higher curvature
couplings with a vector field as well as a scalar). This tensor
has the same symmetry properties as the Riemann tensor,
and under the local Weyl rescaling

gμν → ΩðxÞ2gμν; ϕ → ΩðxÞ−1ϕ; ð2Þ

it transforms into

Sμνλρ → ΩðxÞ−2Sμνλρ: ð3Þ

Conveniently, the standard Lagrangian for a conformally
coupled scalar field is, up to a boundary term, equal to the
second trace of the tensor (1), S ¼ gμλgνρSμνλρ. Here after
we also define its first trace as Sνρ ¼ gμλSμνλρ.
In this work we will consider the following model

I½g;ϕ� ¼
Z �

R − 2Λ
2κ

þ α1R2 þ α2CμνλρCμνλρ − λϕ4

−
1

2
ð∂ϕÞ2 − 1

12
Rϕ2 þ βϕ−4S2

� ffiffiffiffiffiffi
−g

p
d4x; ð4Þ

which can be dubbed conformal quadratic gravity. We use
κ ¼ 8πG. This theory is the natural generalization of the
standard Einstein-Hilbert Lagrangian with a conformally
coupled scalar field, including now conformal couplings
with quadratic terms in the curvature. For α1 ¼ β ¼ 0, this
model has been considered for example in [34] and [35] in
the context of a cosmological model for the early universe,
which may hold up to arbitrarily high energies, and has also
been revisited in [36] in the realm of black holes. For non-
vanishing α1 and β, new static, spherically symmetric,
asymptotically (A)dS black holes were constructed in [37].
The main purpose of the present work is to extend such
explorations beyond staticity.
There are three algebraically independent quadratic

combinations of the Riemann tensor and the tensor
Sμνλρ, namely ðRμνλρRμνλρ; RμνRμν; R2Þ and ðϕ−4SμνλρSμνλρ;
ϕ−4SμνSμν;ϕ−4S2Þ, where each of the elements of the later
set transforms homogeneously, with a weightΩ−4ðxÞ under
a local Weyl rescaling (2). Using the topological nature
of the Euler combination in four dimensions, it is useful
to consider R2 and CμνλρCμνλρ as the basis for quadratic
Lagrangians in four dimensions. In the conformal matter
sector, it can also be proven that ϕ−4ðSμνλρSμνλρ −
4SμνSμν þ S2Þ is a boundary term. Additionally denoting
by WμνλρðSÞ the trace free part of the tensor Sμνλρ,
one can prove that ϕ−4WμνλρðSÞWμνλρðSÞ ¼ CμνλρCμνλρ.
Consequently, the Lagrangian (4) is the most general one
containing up to quadratic terms in both curvatures. It is
interesting to notice that the tensor Sμνλρ can be obtained
from a change of frame of the Riemann tensor, where the
scalar field emerges as aWeyl compensator. The presence of
nonconformally invariant terms in the action removes the
pure gauge nature of the scalar in such construction, and
allows to introduce a new conformal degree of freedom.
This paper is organized as follows: In Sec. II we provide

the field equations of the model, and review some of its
properties including the existence of static black hole
solutions. In Sec. III, we construct new solutions for this
system within the C-metric ansatz as well as the Plebański-
Demiański family of spacetimes. Section IV is devoted to
the analysis of the causal structures of some particular cases
containing Taub-NUT spacetimes as well as asymptotically
AdS wormholes. In Sec. V, we introduce a new family of
conformally invariant interactions which we dubbed
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conformal K essence, and we show that they also possess,
generically, hairy black holes. Our conclusion is given
in Sec. VI.

II. THE MODEL AND FIELD EQUATIONS

Stationary variations of the action (4) with respect to the
metric and the scalar provide the following set of field
equations

Gμν þ Λgμν ¼ κTμν; ð5Þ

�
□ −

1

6
R

�
ϕ ¼ 4λϕ3 − 4βð−S2ϕ−5 þ ϕ−3RS

− 3Sϕ−4
□ϕ − 3□ðϕ−3SÞÞ; ð6Þ

where

Tμν ¼ −2α1
�
2gμν□R − 2∇ν∇μRþ 2RRμν −

1

2
gμνR2

�
− 4α2ð∇α∇βCαðμνÞβ þ RαβCαðμνÞβÞ

− 2β

�
ð2Rμν − 2∇μ∇ν þ 2gμν□Þðϕ−2SÞ þ 12∇ðμðϕ−3SÞ∇νÞϕ − 6gμν∇αðϕ−3S∇αϕÞ −

1

2
gμνϕ−4S2

�

þ ∂μϕ∂νϕ −
1

2
gμνð∂ϕÞ2 þ 1

6
ðGμν −∇μ∇ν þ gμν□Þϕ2 − λgμνϕ4: ð7Þ

Due to the conformal invariance of the matter sector,
the trace of the energy-momentum tensor is proportional
to the field equation for the scalar and therefore, on-shell
one has

6α1

�
□ −

1

6α1

�
ðR − 4ΛÞ ¼ 0: ð8Þ

As usual this equation signals the presence of a scalar
degree of freedom (d.o.f.) coming from the quadratic
gravity terms. Such d.o.f. has an effective mass of
m2

eff ¼ ð6α1Þ−1, and therefore, from the perspective of flat
spacetime one must impose α1 > 0. Using the standard
trick of multiplying and then integrating on the spacelike
section of the domain of outer communications of a would
be black hole, one can prove that for static spacetimes
Eq. (8) implies the constraint R ¼ 4Λ. This argument also
applies in some supergravity models with R2 terms [38].
As a matter of fact and also for simplicity, hereafter we

focus on such sector of the space of solutions of this higher
curvature theory, but removing the assumption of staticity
to consider general stationary spacetimes.
In the absence of the term CμνλσCμνλσ in the action, i.e.,

when α2 ¼ 0, it was proven in Ref. [37] that the model has
the following configuration as a solution

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
γ ; ϕ ¼ ϕðrÞ; ð9Þ

being

fðrÞ ¼ −
Λ
3
r2 þ γ

�
1 −

μ

r

�
2

;

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μ2ð1þ 128πGΛðα1 þ βÞÞ

4Gπ

r
1

r − μ
; ð10Þ

and where γ is the curvature of the horizon and the
following relation between the couplings must be met

λ ¼ −
2πGΛ

9ð1þ 128πGΛðα1 þ βÞÞ : ð11Þ

This metric, originally constructed in the model without
higher derivative terms, contains a rich set of causal
structures [14–16], which include asymptotically de Sitter
black holes with a scalar field regular on and outside the
horizon, as well as asymptotically locally AdS black holes
with hyperbolic horizons. Including the higher derivative
terms, and assuming staticity, this is the only solution within
the ansatz with a single blackening factor. The solution can
be charged both electrically and magnetically [37].

III. THE PLEBIAŃSKI-DEMIAŃSKI FAMILY

The Plebiański-Demiański spacetime is the most general
Petrov type-D metric which solves the Einstein-Lambda
field equations. In spite of its complexity, in Ref. [39] it was
shown that this spacetime does support a conformal hair on
black holes as well as gravitational stealths (nontrivial scalar
field profiles with vanishing energy-momentum tensor
[40,41]) in the prototypical secondorder scalar-tensormodel
α1 ¼ α2 ¼ β ¼ 0, while the static C-metric ansatz was also
shown to lead to non-trivial solutions in this system in [42].
The ansatz leading to the Plebiański-Demiański solution

in general relativity [43] can be written as [44]

ds2 ¼ 1

ð1 − αxyÞ2
�
−
XðxÞðdτ − ωy2dσÞ2

x2 þ ω2y2

þ YðyÞðωdτ þ x2dσÞ2
x2 þ ω2y2

þ ðx2 þ ω2y2Þ
�
dy2

YðyÞ þ
dx2

XðxÞ
��

: ð12Þ
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Here, α and ω are parameters introduced in Ref. [44], which
facilitate taking different limits for physically relevant
cases. Since our matter field is conformally invariant, the
trace of the field equations leads to Eq. (8), and inspired by
the no-hair result described above, we solve such an
equation by imposing

R ¼ 4Λ: ð13Þ

This equation is in particular solved by quartic polynomials
on their variables for X and Y, while in this sector, the
remaining field equations imply the following non-trivial
solution of the system

XðxÞ ¼ −
�
α2y0 þ

1

3
Λ0

�
x4 − y2x2 þ x0; ð14Þ

YðyÞ ¼ −
�
x0α2 þ

1

3
Λ0ω

2

�
y4 þ y2y2 þ y0; ð15Þ

ϕðx; yÞ ¼ Bð1 − αxyÞ
ð1þ αxyÞ ; ð16Þ

which solves the field equations provided

κB2 ¼ 6ð1þ 16κΛ0ðα1 þ βÞÞ and λ ¼ −
Λ0

6B2
: ð17Þ

This configuration extends to the realm of conformal
quadratic gravity the hairy Plebański-Demiański solution
constructed in Ref. [39]. As in Ref. [39], there are also
extra branches that lead to nontrivial scalar field profiles
with vanishing energy-momentum tensor on locally con-
stant curvature spacetimes. Nevertheless, the configuration
defined by Eqs. (14)–(16) defines a spacetime with non-
trivial curvature. Here, x0, y0 and y2 are integration
constants. Along the lines of Ref. [44] one can analyze
the different causal structures contained in Eq. (12). Below,
we obtain the C-metric as well as the topological Taub-
NUT spacetime integrating the equations from scratch, also
we provide comments on their causal structures.

A. C-metric black holes

The metric

ds2 ¼ 1

ðy − AxÞ2
�
dx2

XðxÞ þ
dy2

YðyÞ − YðyÞdt2 þ XðxÞdσ2
�
;

ð18Þ

with

XðxÞ ¼ −A2y4x4 − Ay3x3 − y2x2 −
y3ð4y2y4 − y23Þ

8Ay24
xþ x0;

ð19Þ

YðxÞ ¼ y4y4þ y3y3þ y2y2þ
y3ð4y2y4 − y23Þ

8y24
y−A2x0−

Λ0

3
;

ð20Þ

ϕðx;yÞ ¼ 4y4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2κ
ð1þ 16κΛ0ðα1þ βÞÞ

r
y−Ax

2y4ðAxþ yÞþ y3
;

ð21Þ

is a solution of the higher-derivative action (4), provided
the couplings of the theory are related as

λ ¼ −
Λ0κ

36ð1þ 16κΛ0ðα1 þ βÞÞ : ð22Þ

Here x0, y2, y3, and y4 are constants. Depending on the
structure of zeros of the polynomial XðxÞ one can have
constant t surfaces with different topologies. Our solution is
an extension to the higher derivative regime of the hairy
C-metric found in Ref. [39]. The sign of the integration
constants is not fixed a priori, in contraposition to what
occurs with a term of the form Q2 in the metric, when Q is
the electric charge. When XðxÞ has two zeros at x ¼ xmax
and x ¼ xmin, and is positive between such points, one can
restrict the coordinate x to such regions and identify the
coordinate σ. In general, this introduces conical singular-
ities at x ¼ xmax and x ¼ xmin, both of which can be
remarkably removed in this case due to the backreaction
of the conformal scalar, leading to the cohomogeneity-two
black holes reported in Ref. [39]. As shown above, such
structure persists when higher curvature terms are included.

IV. TOPOLOGICAL TAUB-NUT WITH A
CONFORMAL HAIR

It is known from Ref. [39] that a limit can be taken from
the Plebański-Demiański spacetime which leads to Taub-
NUT spacetime in the second order theory defined by
Eq. (4) with α1 ¼ α2 ¼ β ¼ 0. Even more, such spacetimes
can be conveniently obtained by direct integration [45] and
by using a generalization of the Ernst generating technique
[46,47]. In presence of the higher derivative terms, when
the relation (22) holds, the configurations are corrected and
lead to

ds2 ¼ −fðrÞ

0
B@dtþ n

8<
:

4sin2ðθ
2
Þ

ρ2

4sinh2ðθ
2
Þ

9=
;dϕ

1
CA

2

þ dr2

fðrÞ þ ðr2 þ n2Þ

0
B@
8<
:

dθ2

dρ2

dψ2

9=
;þ

8<
:

sin2θ

ρ2

sinh2ψ

9=
;dϕ2

1
CA;

ð23Þ
with
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fðrÞ ¼ −
Λ0

3
ðr2 þ n2Þ þ

�
γ −

4

3
n2Λ0

� ðr −MÞ2
r2 þ n2

; ð24Þ

ϕðrÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ 16κΛ0ðα1 þ βÞÞ

2κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2

p

r −M
; ð25Þ

where γ ¼ þ1; 0;−1, corresponds to the first, second and
third line of Eq. (23), respectively, M is the mass and n the
NUT parameter (notice that Taub-NUT/Bolt solutions with
scalar hair have also been recently obtained in Ref. [48] ).
Restricting to the hyperbolic case (γ ¼ −1), one can

perform the following formal transformation on such a
configuration

t ¼ uiþ nT; ψ ¼ θ þ π

2
i and ϕ ¼ T; ð26Þ

which leads to

ds2 ¼ dr2

fðrÞ þ fðrÞðduþ 2n sinh θdTÞ2

þ ðr2 þ n2Þð−cosh2θdT2 þ dθ2Þ: ð27Þ

with fðrÞ and the scalar field given by Eqs. (24) and (25),
respectively. For negative cosmological constant, when
fðrÞ> 0 in the domain −∞< r <∞, a condition that is
achieved in an open set of the parameter space ðn;MÞ, this
configuration describes the hairy extension of the asymp-
totically locally AdS wormhole found in Ref. [49]. When a
Maxwell field is included, this spacetime can be embedded
in N ¼ 2 gauged supergravity and admits nontrivial
Killing spinors [50]. It is interesting to notice that the
formal transformation (26) is not a double Wick rotation
but still it leads to a Lorentzian geometry with a new causal
structure. It is known that the hyperbolic Taub-NUT AdS
is devoid of closed timelike curves, and the wormhole
geometry and its hairy extension presented here maintain
this property, which was proven in Ref. [49] along the lines
of the analysis performed in Ref. [51] for a particular
quotient of AdS3 spacetime.

V. A GENERAL FAMILY OF CONFORMALLY
INVARIANT LAGRANGIANS:
CONFORMAL K ESSENCE

Since under a local Weyl rescaling the tensor Sμνλρ
transforms as Sμνλρ → Ω−4Sμνλρ, the matter theory

Imatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ϕ4Fðϕ−4SÞ; ð28Þ

is invariant under conformal transformations for an arbi-
trary function FðYÞ ¼ Fðϕ−4SÞ. When F is a constant
function, the action (28) corresponds to the conformal
potential, while for F being the identity function, Eq. (28)

reduces to the standard conformally coupled scalar field, up
to a boundary term. The combination Y ¼ ϕ−4S ¼
ϕ−4ðϕ2R − 6ϕ□ϕÞ is indeed conformally invariant. The
action defined by Eq. (28) can be thought of as a con-
formally invariant extension of a K-essence Lagrangian,
namely a conformally invariant version of the action
Kðϕ□ϕÞ. Coupling this conformal invariant action to GR

I ¼
Z ffiffiffiffiffiffi

−g
p

d4x½R − 2Λþ ϕ4Fðϕ−4SÞ�; ð29Þ

leads to the field equations

Gμν þ Λgμν ¼ Tμν; ð30Þ

2ϕ3FðYÞ − Rϕ
dF
dY

þ 9□ϕ
dF
dY

− 3□

�
ϕ
dF
dY

�
¼ 0; ð31Þ

where

Tμν ¼
1

2
gμνϕ4FðYÞ − dF

dY
ðϕ2Rμν − 6ϕ∇μ∇νϕÞ

þ∇μ∇ν

�
dF
dY

ϕ2

�
− 3

�
∇μ

�
dF
dY

ϕ∇νϕ

�

þ∇ν

�
dF
dY

ϕ∇μϕ

��
−□

�
dF
dY

ϕ2

�
gμν

þ 3∇λ

�
dF
dY

ϕ∇λϕ

�
gμν: ð32Þ

One can check that, as expected from conformal invariance,
the trace of the energy-momentum tensor (32) vanishes by
virtue of the equation for the scalar field (31). The
configuration

ds2 ¼ −
�
−
Λ0

3
r2 þ

�
1 −

M
r

�
2
�
dt2

þ dr2

− Λ0

3
r2 þ ð1 − M

r Þ2
þ r2ðdθ2 þ sin2θdψ2Þ; ð33Þ

ϕðrÞ ¼ A
r −M

; ð34Þ

leads to a constant Weyl invariant combination

Y ¼ ϕ−4S ¼ ϕ−4ðϕ2R − 6ϕ□ϕÞ ¼ 4Λ0M2

A2
: ð35Þ

Here we focused on the γ ¼ 1 case. Specifying the function
F in the action (29), the field equations on the configuration
defined by Eqs. (33) and (34) lead to the following two
constraints:

2M4Λ0 þ A4FðYÞ ¼ 0; ð36Þ

A2FðYÞ − 2Λ0M2
dFðYÞ
dY

¼ 0: ð37Þ
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These constraints can be understood as follows: the
constraint (36) fixes the value of the constant appearing
on the scalar field A, while the constraint (36) fixes the
different parameters that appear in the action functional
through the election of the function FðYÞ. For example,
choosing FðYÞ ¼ − 1

12
Y − λ in Eq. (29) leads to the

standard conformally coupled scalar field with a conformal
potential coupling λ such that

ϕðrÞ ¼ 2
ffiffiffi
3

p M
r −M

and λ ¼ −
Λ0

72
; ð38Þ

which reduces to the solution found in Ref. [14] with
the normalization 16πG ¼ 1. We have therefore proved
that provided the constraints (36) and (37) are fulfilled, the
black hole configuration (33) and (34) is a solution
of general relativity supported by a general conformal
K-essence field (28).

VI. FURTHER COMMENTS

We have shown that the Plebański-Demiański spacetime,
and therefore all type-D metrics, as for example the
C-metric and topological Taub-NUT spacetimes can be
embedded as solutions of a quadratic gravity model, con-
formally coupled to a scalar field with higher derivative
corrections. Some of these spacetimes have already been
studied in the presence of a conformally coupled scalar field
with second order dynamics and we expect that in the black
hole case, the higher derivative terms may induce modifi-
cations on the thermodynamics, aswell as in the perturbative
stability properties of the solutions.Our solutions can also be
extended to include a Maxwell field including both electric
andmagnetic sources, which in the case of static black holes
with hyperbolic horizons in AdS may describe the causal
structure of a black hole inside a black hole [16].
The tensor Sμνλρ is the building block that allowed to

construct conformal couplings of a scalar to Euler densities
in arbitrary dimension [29]. In such a setup one can also
construct black hole solutions with simple scalar field

profiles, provided the couplings of the different terms in the
matter sector fulfill a relation [52–55], leading to an
interesting phase structure [56–59]. Such constraint is of
a different sort than the one imposed by Eq. (22) which
relates the gravitational and the matter couplings. Using the
same tensor, it would be interesting to construct new higher
curvature and derivative couplings in higher dimensions and
classify them.Onemay even consider complete contractions
of tensor products of Weyl tensor Cμν

λρ and copies of the
tensor Sμνλρ. Such combinations will transform homo-
geneously under conformal transformations and therefore
it will lead to conformally invariant Lagrangians by the
introduction of a compensating power of the scalar field. In
order to go beyond the standard conformally coupled scalar
field, but still within the realm of a second order theory, one
is forced to introduce a second scalar leading to a Bi-scalar
Extensions of Horndeski Theories [60], which may admit
some of the stationary solutions we have found in this paper.
Finally, we have introduced a general conformally invari-

ant model that depends on an arbitrary function, which we
have dubbed conformal K essence. It is tempting to con-
jecture that such a general family of theories does also admit
stationary solutions in the Plebański-Demiański family. To
study different applications of such conformal K essence it
would be interesting to study first the potential formation of
caustic as was done for example in Ref. [61] for the standard
K-essence theory. Work along these lines is in progress.
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