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In this paper we investigate the cosmological dynamics of geometric inflation by means of the tools of the
dynamical systems theory. We focus on the study of two explicit models where it is possible to sum the
infinite series of higher curvature corrections that arise in the formalism. These would be very interesting
possibilities since, if we regard gravity as a quantum effective theory, a key feature is that higher powers of the
curvature invariants are involved at higher loops. Hence, naively, consideration of thewhole infinite tower of
curvature invariants amounts to consideration of all of the higher-order loops. The global dynamics of these
toy models in the phase space is discussed and the quantum origin of primordial inflation is exposed.

DOI: 10.1103/PhysRevD.103.064043

I. INTRODUCTION

Since long ago it has been suggested that the quantum
gravity action should contain, in addition to the Einstein-
Hilbert action, contributions from higher-order curvature
invariants involving more than the first two derivatives of
the metric tensor [1]. Although such higher-derivative
terms in the action would carry negligible consequences
in the classical (infrared) domain, at high frequencies they
would dominate, leading to power-counting renormaliza-
tion [2,3]. It has been shown that gravitational actions
which include terms quadratic in the curvature tensor are
indeed renormalizable, although not unitary [4]. After due
consideration of the Gauss-Bonnet (GB) invariant,

G ¼ R2 − 4RμνRμν þ RμνλσRμνλσ; ð1Þ

only terms ∝ R2 and ∝ RμνRμν were considered in [4]. As
shown in [5] (see also [6,7]) such a quadratic (two-
parametric) class of theories yields to a class of multimass

models of gravity with a total of eight degrees of freedom;
in addition to the usual massless excitations of the field
(two degrees of freedom), there are now massive spin-two
(five degrees of freedom) and massive scalar excitations.
The massive spin-two part of the field has negative energy
so that it is a ghost excitation which for an effective theory
could not be catastrophic, but from a quantum perspective
leads to nonunitarity.
In four-dimensional space the class of theories derivable

from Lagrangians that depend exclusively on the metric
tensor field L ¼ LðgμνÞ (and on its derivatives), and that
admit second-order equations of motion, are limited by the
Lovelock theorem [8,9]. According to this theorem, the only
second-order Euler-Lagrange equation Eμν ¼ 0 obtainable
in a four-dimensional space from a Lagrangian of the form
LðgμνÞ is when [10] Eμν ¼

ffiffiffiffiffijgjp ðαGμν þ λgμνÞ, where α and
λ are constants and Gμν ¼ Rμν − gμνR=2 is the Einstein
tensor. The general class of Lagrangians that lead to these
second-order equations of motion read:

L ¼
ffiffiffiffiffi
jgj

p
ðαRþ βGÞ þ γϵμνσλRαβ

μνRαβσλ;

where the second and third terms above do not contribute
to the Euler-Lagrange equations. As a consequence, in
four dimensions the only viable alternatives to general
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relativity (GR) should be based either (i) on the consideration
of other fields beyond the metric, (ii) on the assumption of
higher-dimensional spaces, or (iii) on the inclusion of higher
than second-order derivatives of the metric in the equations
of motion, among a few others [10].
Hence, an interesting possibility to evade the Lovelock

theorem in order to obtain equations of motion that differ
from the GR ones is to relax the requirement of considering
up to second-order derivatives of the metric. This has been,
precisely, the route followed in a series of recent works
[11–17] in order to obtain dynamics substantially different
from those resulting from GR.
Among these “beyond Lovelock” proposals is the so

called Einsteinian cubic gravity (ECG) theory [11–13]. The
ECG formalism is the outcome of an approach based on a
D-dimensional theory involving arbitrary contractions of
the Riemann tensor and the metric

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p
Lðgμν; RμνσλÞ; ð2Þ

whose motion equation is

Eμν ¼ PμσρλR
σρλ
ν −

1

2
gμνL − 2∇λ∇σPμλσν ¼ 0; ð3Þ

where Eμν is the Euler-Lagrange tensor, and

Pμνσλ ≡ ∂L
∂Rμνσλ

����
gαβ

;

contains up to fourth-order derivatives of the metric. The
linearization of (3) around maximally symmetric back-
grounds1 with the Riemann tensor

Rð0Þ
μνσλ ¼ Λ½gð0Þμσ g

ð0Þ
λν − gð0Þμλ g

ð0Þ
σν �;

yields to the gravitational spectrum consisting of (i) a
massless graviton, and (ii) a massive (ghost) graviton with
mass mg and a massive scalar mode with mass ms, i.e.,
basically the same spectrum found in the four-dimensional
quadratic theory of [4–7] (for the full details of the
linearization procedure see [11]). In the effective theory,
in the limit jmgj → ∞, jmsj → ∞, the massive vacuum
modes become infinitely heavy and decouple from the
spectrum of the theory, leaving the massless graviton as the
only propagating vacuum degree of freedom, as in GR. It is
demonstrated in [11] that the most general cubic theory
possessing dimension-independent couplings, which shares
the spectrum with GR, reads:

L ¼
ffiffiffiffiffijgjp
2

ðR − 2Λ0 þ 2αGþ 2βT ð3Þ þ 2λPÞ; ð4Þ

where, in four dimensions, the GB term G amounts to a total
derivative, while the cubic Lovelock term T ð3Þ identically
vanishes. The cubic term P,

P ¼ 12Rμ
ν
λ
σRν

τ
σ
ρRτ

μ
ρ
λ þ Rμλ

νσRνσ
τρRτρ

μλ

− 12RμλνσRμνRλσ þ 8Rμ
λRλ

νRν
μ; ð5Þ

is neither trivial nor topological in four dimensions.
In [15] a cubic modification of Einstein’s GR was

proposed which generalizes the ECG theory [11,12,14].
The proposed modification, called cosmological ECG
(CECG) theory, rests on the following combination of
cubic invariants: P − 8C, where

C ¼ RμλνσRμλν
τRστ −

1

4
RRμλνσRμλνσ

− 2RμλνσRμνRλσ þ 1

2
RRμνRμν: ð6Þ

Although this latter invariant was previously found in [13],
in that reference the authors were interested in static
spherically symmetric spaces where C vanishes. The action
of the CECG theory and the derived equations of motion
read (we adopt Rð3Þ ≡ P − 8C):

S ¼ 1

2

Z
d4x

ffiffiffiffiffi
jgj

p
ðR − 2Λþ 2βRð3ÞÞ;

2Eμν ¼ Gμν þ gμνΛþ 2β

�� ∂Rð3Þ
∂Rμαβσ

�
Rαβσ
ν

−
1

2
gμνRð3Þ − 2∇α∇β

� ∂Rð3Þ
∂Rμαβν

��
¼ 0: ð7Þ

In general, the Eqs. (7) are fourth-order and so the Lovelock
theorem [8] is not violated by the CECG theory. An
interesting property of this theory is that in Friedmann-
Robertson-Walker (FRW) spacetime the motion equations
are second-order in the time derivatives. For other back-
grounds such as, for instance, the plane-symmetric Bianchi
I space, the cosmological equations are fourth-order in the
derivatives (see Appendix A of [18]).
In [16], it is shown that the combination of cubic

invariants defining five-dimensional quasitopological grav-
ity, when written in four dimensions, reduces to the CECG
theory. It also introduced a quartic version of the CECG
theory and a combination of quintic invariants with the
properties of the mentioned theory. In [19], the effect of
higher-curvature terms in the string low-energy effective
action has been studied for the bosonic and heterotic
strings, as well as for the type II superstring in the
cosmological context, up to quartic corrections in the

1The metric gets small perturbations of the kind gμν ¼ gð0Þμν þ
hμν, where g

ð0Þ
μν is the background metric while hμν ≪ 1 are small

perturbations.

ISRAEL QUIROS et al. PHYS. REV. D 103, 064043 (2021)

064043-2



curvature invariants.2 Meanwhile, in [17] it is shown how to
construct invariants up to eighth-order in the curvature. In
the latter reference it was also shown that the presence of an
inflationary epoch is a natural, almost unavoidable, con-
sequence of the existence of a sensible formalism involving
an infinite tower of higher-curvature corrections to the
Einstein-Hilbert action. The formalism was called “geo-
metric inflation” because the only field required was the
metric. In string theory we are familiar with such a structure
as the string effective action contains an infinite series of
higher curvature corrections to the leading Einstein gravity
(see, for instance, [19]).
The beyond Lovelock theories—as any other higher

curvature modification of GR—are characterized by the
high complexity of their mathematical structure, so that only
through feasible approximations may one retrieve some
useful analytic information on the cosmological dynamics.
Otherwise, one has to perform either a numeric investigation
or apply the tools of the dynamical systems theory. The latter
allows one to retrieve very useful information on the
asymptotic dynamics of the mentioned cosmological mod-
els. The asymptotic dynamicsmaybe characterized by either
(i) attractor solutions to which the system evolves for a wide
range of initial conditions, (ii) saddle equilibrium configu-
rations that attract the phase space orbits in one direction but
repel them in another direction, (iii) source critical points
which may be pictured as past attractors, or (iv) limit cycles,
among others. Although the use of the dynamical systems is
especially useful when one deals with scalar-field cosmo-
logical models (for a small but representative sample see
[21–27]), its usefulness in other contexts has been explored
as well [28–31]. The tools of the dynamical systems have
been used, in particular, in the study of the CECG cosmo-
logical model in [32], while in [33] the dynamics of the so-
called extended cubic gravity, fðPÞ, was explored.
As stated above, in [32] the cosmological dynamics of an

up-to-cubic curvature correction to GR—known as CECG
theory—was investigated. It was confirmed that an infla-
tionary matter-dominated big bang was the global past
attractor, which means that inflation is the starting point of
any physically meaningful cosmic history in that set up.
However, as discussed in [18], certain instabilities may be
present in this purely cubic model. In this regard it could be
very interesting to explore how the results of [32] are
modified when all orders of curvature are included, in
particular because such a configuration could avoid the
kind of instabilities found in [18] in the CECG model.
In the present paper we shall look for the global

asymptotic dynamics of the geometric inflation formalism
developed in [17], which considers the whole infinite tower
of higher curvature corrections to GR. We shall explore two

explicit toy models where it is possible to sum the infinite
series of higher curvature corrections that arise in the
formalism. Including all orders of curvature would be a
very interesting possibility. Besides, if we regard gravity as
a quantum effective theory [34], it is a well-behaved
quantum theory at low energies. For the gravitational part
of the effective theory we would have

Seff ¼
Z

d4x
ffiffiffiffiffijgjp

2
ðR − 2Λþ c1R2 þ c2RμνRμν þ � � �Þ;

where Λ, c1, and c2 are constants and the ellipses denote
higher powers of R, Rμν, and Rμνσλ. At one loop the
divergences due to the massless gravitons read [2]:

ΔLð1Þ ¼ 1

8π2ϵ

�
1

120
R2 þ 7

20
RμνRμν

�
;

where the constant ϵ ¼ 4 − d within dimensional regulari-
zation (recall that we work with units where 8πGN ¼ 1). At
two loops these divergences have the form [35]

ΔLð2Þ ¼ 209

1440ð16π2Þ2ϵR
αβ
μνRμν

σλRσλ
αβ:

As properly noted in [34], the key feature is that higher
powers of R, Rμν, and Rμνσλ are involved at higher loops. In
this regard the two toy models proposed in [17] would
represent an interesting possibility to consider all of the
higher-order modifications of GR, i.e., all of the higher-
order graviton loops, without involving a perturbative
approach. One would naively expect that consideration
of the whole infinite tower of curvature invariants would
amount to consideration of all of the higher-order loops.
Hence, quantum effects would be manifest at the high
curvature regime, at least.
Our aim is to corroborate, from the dynamical systems

perspective, the result of [17]—that primordial inflation is a
generic outcome of the resulting cosmological model.
While doing so, the role of the new scale, L≳ LPl (LPl
is the Planck length), will be revealed as well. We will be
able to connect the inflationary stage with the effects that
arise at curvature scales ∼L−2

Pl ≳ L−2, so that these are
necessarily quantum effects. We shall show that in the
“classic limit”, i.e., in the limit when the coupling of the
higher curvature corrections vanishes, the primordial infla-
tion of quantum origin is replaced by a big bang singularity.
As far as we know, the global cosmological dynamics of the
above mentioned models have not been investigated before.
We have organized the paper in the following way. In

Sec. II, the basic elements of the geometric inflation
formalism are given. In Sec. III, we expose the main
properties of the dynamical system corresponding to the
two toy models proposed in [17], where the sum of the
infinite tower of higher curvature corrections to gravity is

2In the context of superstring theory it has been shown long
ago that the effective gravitational action should be, at least, 4th
order in the Riemann tensor [20].
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explicitly computed. The global dynamics of the mentioned
toy models are discussed in Sec. IV, where the results of the
dynamical systems study are presented and physically ana-
lyzed. In Sec. V we discuss the physical consequences of the
obtained results, while brief conclusions are given in Sec. VI.
Unless stated otherwise, herewe use the units where 8πGN ¼
M−2

Pl ¼ c2 ¼ 1 (MPl is the reduced Planck mass).

II. THE BASICS OF THE GEOMETRIC
INFLATION FORMALISM

Here we consider the formalism proposed in [17] that
relies on the following action:

S ¼
Z

d4x
ffiffiffiffiffijgjp

2

�
R − 2Λþ

X∞
n¼3

λnL2n−2RðnÞ

�
; ð8Þ

where RðnÞ are densities constructed from contractions of
the metric and the Riemann tensor, λn are dimensionless
constants, and L−1 is a new energy scale below the Planck
scale L−1 ≲ L−1

Pl . For L
−1 ≪ L−1

Pl (and λ3 ≠ 0), the theory is
affected by causality issues due to the presence of an
infinite tower of massive higher spin particles [36].
Besides, as stated in [17], the most reasonable choice for
the new scale L−1 seems to be that it corresponds to some
new scale below the Planck mass, but high enough to make
the higher-curvature effects become negligible at late times.
Here, in line with the former analysis, we shall assume
that L−1 ≲ L−1

Pl .
Among other desirable properties, the geometric infla-

tion theory is ghost-free around maximally symmetric
backgrounds and the FRW cosmological equations of
motion are second-order, such as these are for the
CECG theory [15]. Actually, in terms of the FRW line-
element with flat spatial sections,

ds2 ¼ −dt2 þ a2ðtÞδikdxidxk:

The cosmological equations of motion derived from (8)
with the addition of a matter piece of action read [17]:

3FðHÞ ¼ ρm þ Λ;
_H
H
F0ðHÞ ¼ −ðpm þ ρmÞ;

_ρm ¼ −3Hðρm þ pmÞ; ð9Þ

whereH is the Hubble parameter, ρm and pm are the energy
density and pressure of the matter fluid,3 and F0 ≡ dF=dH.
The function F ¼ FðHÞ reads:

FðHÞ ¼ H2 þ L−2
X∞
n¼3

ð−1ÞnλnðLHÞ2n: ð10Þ

As appropriately discussed in [17], there is an ambiguity
in the choice of the coefficients λn in (8) which is linked to a
similar ambiguity that has been discussed long ago within
the context of string theory [37–42] (see the related
discussion in the final paragraphs of Sec. V). The ambi-
guity can be stated in the following way: Suppose thatRðnÞ
and R0

ðnÞ are two different densities such that

RðnÞ ¼ R0
ðnÞ þ T ðnÞ;

where the density T ðnÞ does not affect the equations of
motion in four dimensions.4 Hence, the action

S0 ¼
Z

d4x
ffiffiffiffiffijgjp

2

�
R − 2Λþ

X∞
n¼3

λ0nL2n−2R0
ðnÞ

�

¼
Z

d4x
ffiffiffiffiffijgjp

2

�
R − 2Λþ

X∞
n¼3

λ0nL2n−2RðnÞ

�
;

where the constants λ0n ≠ λn and (8) are equivalent actions.
This means that (at least) one or several of the dimension-
less constants λn can be arbitrarily chosen. In this regard,
in Ref. [17] two different kinds of conditions were given
on the dimensionless parameters λn such that the infinite
summation in (10) can be explicitly performed5: λ2kþ1 ¼ 0,
λ4þ2k ¼ λ4=k! (k is a positive integer) for model 1 and
λ3 > 0, λn≥4 ¼ ð−1Þnλ3=ðn − 4Þ! for model 2. These con-
ditions led to two different toy models that are based in the
following forms of the function F:

FðHÞ ¼ H2½1þ λ4ðLHÞ6eðLHÞ4 �; ð11Þ

for model 1 and

FðHÞ ¼ H2f1 − λ3ðLHÞ4½1 − ðLHÞ2eðLHÞ2 �g; ð12Þ

for model 2, respectively. Since in these models it is
possible to sum over the infinite tower of higher-order
curvature contributions, we expect that at high curvature
H2 ≳ L−2 quantum gravitational effects would become
important, if the present classical theory is regarded as

3In what follows, for simplicity, we assume the following
equation of state (EOS) for the matter fluid: pm ¼ ωmρm, where
the constant ωm is the EOS parameter.

4An example is

T ð3Þ ¼ RμνσλRμνσ
τRλτ −

1

2
ðRμνσλRμνσλRþ R3Þ

þ 2ðRμνRμνR − RμνσλRμσRνλ − RμνRνσRμ
σÞ;

which vanishes in four dimensions [16].
5As clearly stated in [17] many other summable choices are

possible.
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an effective quantum theory [34]. As a matter of fact, the
Planck length represents the boundary of the quantum
domain, so that below LPl, i.e., at very high curvature
H2 ≳ L−2

Pl , quantum gravity is the dominating contribution.
Strictly speaking, we would trust the present formalism up
to curvatures ∼L−2

Pl .

III. THE DYNAMICAL SYSTEM

Here we follow quite a different approach than in [32].
We choose variables of some phase space that are dimen-
sionless and bounded as in the mentioned reference, but the
constants of the theory λk, where k ¼ 4 for model 1 while
k ¼ 3 for model 2, are not absorbed into these variables.
Instead these remain free constants of the dynamical
system, affecting the existence and stability of the equi-
librium configurations.

A. Model 1

The cosmological equations of motion (9) for the choice
(11) read:

1þ λ4L6H6eL
4H4 ¼ Ωm þΩΛ;

− 2
_H
H2

¼ 3ðωm þ 1ÞΩm

1þ 2λ4L6H6eL
4H4ð2þ L4H4Þ ; ð13Þ

where, as customary, Ωm ≡ ρm=3H2 is the dimensionless
energy density of the matter degrees of freedom,
while ΩΛ ¼ Λ=3H2.
Here, in order to investigate the global asymptotic

dynamics of this model, we introduce the following
bounded variables of some phase space:

x≡ 1

1þ L2H2
⇒ L2H2 ¼ 1 − x

x
;

y≡ 1

1þ Ωm
⇒ Ωm ¼ 1 − y

y
; ð14Þ

where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The modified Friedmann
constraint—the first equation in (13)—can be written in the
following way:

ΩΛ ¼ 2y − 1

y
þ λ4ð1 − xÞ3eð1−xx Þ2

x3
: ð15Þ

Meanwhile,

_H
H2

¼ −
3ðωm þ 1Þx2AðxÞð1 − yÞ

2BðxÞy ; ð16Þ

where, for compactness of writing, we have introduced the
functions

AðxÞ ¼ x3e−ð1−xx Þ2 ;

BðxÞ ¼ x5e−ð
1−x
x Þ2 þ 2λ4ð1 − xÞ3ð3x2 − 2xþ 1Þ; ð17Þ

respectively.
In terms of the phase space variables x, y, the second-

order cosmological equations (9) may be traded by the
following two-dimensional autonomous dynamical system:

dx
dv

¼ 3ðωm þ 1Þx3ð1 − xÞAðxÞð1 − yÞ
BðxÞ ;

dy
dv

¼ 3ðωm þ 1Þyð1 − yÞ
�
y −

x2AðxÞð1 − yÞ
BðxÞ

�
; ð18Þ

where we have introduced the time variable

v ¼
Z

ð1þ ΩmÞHdt: ð19Þ

The phase space to look for equilibrium configurations
of the dynamical system (18) is the following unit phase
square:

Ψ ¼ fðx; yÞ∶0 ≤ x ≤ 1; 0 ≤ y ≤ 1g: ð20Þ

The separatrix

S ¼ fðx; yÞ∶0 ≤ x ≤ 1; y ¼ ȳ1ðxÞg; ð21Þ

where

ȳ1ðxÞ ¼
AðxÞ

2AðxÞ þ λ4ð1 − xÞ3 ; ð22Þ

separates the region where the backgound space is de Sitter,
ΩΛ ≥ 0 ⇒ y ≥ ȳ1ðxÞ, from the region where the back-
ground space is anti-de Sitter, ΩΛ < 0 ⇒ y < ȳ1ðxÞ. Here
we concentrate on de Sitter background spaces exclusively,
so we shall consider only the region of the phase square
above the separatrix:

Ψphys;1 ¼ fðx; yÞ∶0 ≤ x ≤ 1; ȳ1ðxÞ ≤ y ≤ 1g: ð23Þ

Another curve of physical interest is the one related with
the change of sign of the deceleration parameter:

q≡ −1 −
_H
H2

; ð24Þ

i.e., the curve that follows from the condition q ¼ 0,

ŷ1ðxÞ ¼
3ðωm þ 1Þx2AðxÞ

3ðωm þ 1Þx2AðxÞ þ 2BðxÞ : ð25Þ

Accelerated expansion occurs whenever y > ŷ1ðxÞ.
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B. Model 2

Here, as in the former subsection, we shall focus in de
Sitter background spaces exclusively, so that only the case
with Λ ≥ 0 will be of interest. The cosmological equations
of motion (9) for the choice (12) read:

1 − λ3L4H4 þ λ3L6H6eL
2H2 ¼ Ωm þ ΩΛ;

_H
H2

¼ −3ðωm þ 1ÞΩm=2

1 − 3λ3L4H4 þ λ3ð4þ L2H2ÞL6H6eL
2H2 ;

_Ωm ¼ −HΩm

�
3ðwm þ 1Þ þ 2

_H
H2

�
; ð26Þ

where λ3 is a dimensionless coupling constant and, as
before, Ωm ≡ ρm=3H2 while ΩΛ ¼ Λ=3H2.
We shall use the same variables (14). We get that

ΩΛ ¼ 2y − 1

y
− λ3

�
1 − x
x

�
2
�
1 −

�
1 − x
x

�
e
1−x
x

�
; ð27Þ

and

_H
H2

¼ −
3ðωm þ 1Þx4ð1 − yÞ

2DðxÞy ; ð28Þ

where we have introduced the functions

CðxÞ ¼ 3x2 − ð1þ 3xÞð1 − xÞe1−x
x ;

DðxÞ ¼ x4 − λ3ð1 − xÞ2CðxÞ: ð29Þ

The following ordinary differential equations (ODEs) are
obtained out of (14) and (26):

x0 ¼ −2xð1 − xÞ
_H
H2

;

y0 ¼ yð1 − yÞ
�
3ðωm þ 1Þ þ 2

_H
H2

�
;

where the prime denotes derivative with respect to the time
variable, τ ¼ ln a. In a more explicit form, the above
equations can be written as follows:

dx
dv

¼ 3ðwm þ 1Þx5ð1 − xÞð1 − yÞ
DðxÞ ;

dy
dv

¼ 3ðwm þ 1Þyð1 − yÞ
�
y −

x4ð1 − yÞ
DðxÞ

�
; ð30Þ

where we have used the time variable v in (19), instead of
τ ¼ R

Hdt. Notice that under the replacement DðxÞ →
x2BðxÞ=AðxÞ, i.e.,

λ3 → 2λ4
ð3x2 − 2xþ 1Þeð1−xx Þ2

ð3x2 − 2x − 1Þeð1−xx Þ − 3x2
; ð31Þ

the dynamical system (18) transforms into (30), so that
these are mathematically equivalent. This means, in turn,
that the global dynamics of both models share the same
features.
Since here we consider de Sitter background spaces

exclusively, ΩΛ ≥ 0, then from (27) it follows that the
physically meaningful region of the phase space,
Ψ ¼ fðx; yÞ∶0 ≤ x ≤ 1; 0 ≤ y ≤ 1g, is the one located
above the separatrix y ¼ ȳ2ðxÞ, where

ȳ2ðxÞ ¼
x3

2x3 − λ3ð1 − xÞ2½x − ð1 − xÞe1−x
x � ; ð32Þ

i.e.,

Ψphys;2 ¼ fðx; yÞ∶0 ≤ x ≤ 1; ȳ2ðxÞ ≤ y ≤ 1g: ð33Þ
Accelerated expansion occurs for points above the curve

y ¼ ŷ2ðxÞ:

ŷ2ðxÞ ¼
3ðwm þ 1Þx4

3ðwm þ 1Þx4 þ 2DðxÞ : ð34Þ

IV. GLOBAL DYNAMICS OF THE MODELS

The fact that in the models (11) and (12) it is possible to
sum over the infinite tower of higher-order curvature
corrections in (10) means that geometric manifestation
of quantum effects is possible in these models. One may
reach the same conclusion if they regard the geometric
inflation formalism as a quantum effective theory [34]. If
this were so, then these effects should be reflected in the
properties of the phase space, including its equilibrium
configurations. One would expect, in particular, that the
inflationary behavior in the models would be strongly
correlated with quantum effects. Our expectations are
confirmed by the investigation of the global dynamics of
the models, as we shall see.
Before we list the critical points of the dynamical

systems corresponding to the above models and expose
their main properties, we want to briefly discuss an
important issue in connection with the existence of an
inflationary quantum manifold in the phase space of the
models, as it is revealed by the numerical investigation.
Here we assume that this manifold is located within the
quantum domain, or trans-Planckian region of phase space,
where H2 > L−2

Pl (below we shall discuss supporting argu-
ments). One related question is how to identify where the
Planck scale H2 ¼ L−2

Pl is located in the phase square. One
expects that within the theory (8) one may find, at least, an
estimate of the magnitude of the new scale L−1, so that the
ratio
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α ¼ L2

L2
Pl

; ð35Þ

should be fixed by the theory itself. Instead, what we have
is a very rough lower bound [17]: α≳ 1. In the absence of a
more accurate estimate one may identify other possible
clues of where to locate the x-position in the phase plane
where H2 ¼ L−2

Pl . Given the definition of the phase space
variable x (14),

x ¼ 1

1þ L2H2
; ð36Þ

the origin x ¼ 0 is linked with the condition H2 ≫ L−2

and, since in the present models we assume that L−2 ≲ L−2
PL,

then H2 ≫ L−2
Pl as well. Meanwhile, the new scale L is

located at H2 ¼ L−2 → x ¼ 1=2 (the vertical dash-dot line
that splits the phase portraits in Figs. 1 and 2 into two
halves). This means that the Planck scale may be located
somewhere between x ¼ 0 and x ¼ 1=2 in the phase
square. From (36) it follows that at H2 ¼ L−2

Pl ,

xPl ¼
1

1þ L2=L2
Pl

→ L−2
Pl ¼

�
1 − xPl
xPl

�
L−2; ð37Þ

where xPL marks the position of the Planck scale (also the
quantum boundary) in the phase plane. Substituting (35)
into the left equation of (37) one obtains that

FIG. 1. Phase portraits of the dynamical systems for models 1 and 2 (top and bottom panels, respectively) for the radiation
(ωm ¼ 1=3). Different choices of the dimensionless constants λk (k ¼ 4 for model 1 and k ¼ 3 for model 2) are considered. From left to
right: (i) λk ¼ 10−5, (ii) λk ¼ 10−2, and (iii) λk ¼ 1. The critical point Pmat∶ð1; 1=2Þ is enclosed by the small circle, while the de Sitter
critical manifold MdS is represented by the thick solid (red) horizontal line coincident with the upper boundary. The quantum
inflationary manifold, Qinfl ¼ fðx; 0Þ∶0 ≤ x ≤ hxig, is represented by the thick solid (red) horizontal segment at y ¼ 0 (lower
boundary), that starts at the origin and ends up at the solid circle representing the averaged value hxi, at which H ¼ L−1

Pl (thick vertical
long-dash red line). The quantum domain, which includes the fuzzy boundary around hxi is represented by the vertical (dark gray) strip
with thickness d ∼ jδqxj, where according to (50): jδqxj ∼ hxið1 − hxiÞ. The vertical dash-dot straight line that splits the phase portraits
into two halves represents the points where H ¼ L−1. The separatrix S (dark curve) and the curve corresponding to the condition
q ¼ −1 − _H=H2 ¼ 0 (dark dashed curve) are also shown. The region above the separatrix is for the de Sitter background (ΩΛ > 0)
while the region below it (gray shading) corresponds to anti-de Sitter background space, which is not of interest here. Above the dashed
curve the expansion occurs at an accelerated pace while below it the cosmic expansion is decelerated. The orbits that meet the region
with decelerated expansion (magenta shading) are drawn same color as the region.
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xPl ¼
1

1þ α
: ð38Þ

Hence, the location of the Planck scale in the x direction of
the phase plane is completely determined by the ratio α (35)
which, as said, should be fixed by the theory. In the absence
of an accurate estimate for the ratio of the new and the
Planck lengths (squared), for the purposes of the numerical
investigation we arbitrarily assume that α ¼ 9, so that
L ¼ 3LPl. This arbitrary value is the one used in Fig. 1.

In the classical limit λk → 0, which corresponds to the
formal limit L−1

Pl → ∞, the location of the quantum
boundary shifts to the origin, xPl → 0, so that the quantum
domain disappears (see Fig. 2).
An additional comment is necessary at this point. Since it

is based on the tools of the dynamical systems theory, our
study is strictly qualitative so that the actual location xPl of
the Planck scale in the phase square is irrelevant and so is
any specific assumption on the quantitative relationship
between the Planck scale and the new scales, α ¼ L2=L2

Pl.
Quantum fluctuations of the cosmological horizon at the

Planck scale,

jδqH−1j ∼ LPl ⇒ jδqHj ∼ L−1
Pl ;

induce fluctuations of the x-position of the quantum
boundary in the phase space,6

jδqxj ∼
2L2=L2

Pl

ð1þ L2=L2
PlÞ2

¼ 2α

ð1þ αÞ2 ; ð39Þ

where the x-position of the quantum boundary is not a fixed
value but an averaged quantity instead:

xPl ¼ hxi: ð40Þ

Hence, we get a fuzzy boundary around the average
position: hxi � jδqxj=2.

A. Critical points and their properties

The critical points Pi∶ðxi; yiÞ of the dynamical systems
(18) and (30) in the physically meaningful phase
spaces Ψphys;1 and Ψphys;2, respectively, as well as their
stability properties, are listed and briefly discussed
below (see Fig. 1). Recall that since both dynamical
systems are mathematically equivalent—see the text below
equation (30)—the asymptotic properties of the corre-
sponding phase spaces will be qualitatively the same.
This is why, in what follows, we present the critical points
and/or manifolds, as well as their stability properties, in a
unified way for both models.
(1) Quantum inflationary manifold,

Qinfl ¼ fðx; 0Þ∶0 ≤ x ≤ hxig; ð41Þ

where the length of the manifold is an averaged
value. This is a “fuzzy manifold” since hxi is not a
definite value but, rather, an averaged quantity
because due to the quantum behavior near the Planck
scale L−1

Pl , there are quantum fluctuations. Here, and
in what follows, we assume that at the average value
hxi, H ¼ L−1

Pl , i.e., that (40) takes place. The above

FIG. 2. Phase portrait of the dynamical systems for models 1
(top panels) and 2 (bottom panels) for the ΛCDM model: λ4 ¼
λ3 ¼ 0 (as before, we consider radiation with ωm ¼ 1=3). The
critical points Pbb∶ð0; 1=2Þ and Pmat∶ð1; 1=2Þ are enclosed by the
small circles, while the de Sitter critical manifold MdS is
represented by the thick solid horizontal (red) line coincident
with the upper boundary. The vertical dash-dot straight line
represents the condition H ¼ L−1. The solid dark curve repre-
sents the separatrix S and the dark dash curve corresponds to the
condition q ¼ −1 − _H=H2 ¼ 0. The region below the separatrix
(gray shading) corresponds to anti-de Sitter background space.
Above the dashed curve the expansion is accelerated while below
it the cosmic expansion is decelerated.

6See the derivation of (39) in Sec. IV B 2.
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qualitative picture is legitimate since (i) in the present
set up, the new and the Planck scales are in a
numerical relationship of similarity: L−1 ≲ L−1

Pl
(α ≳ 1) and (ii) our study is strictly qualitative. In
Fig. 1, the curvature scaleH2 ¼ L−2 is represented by
the dash-dot vertical straight line that splits the phase
portraits into two halves. To the left of this line (left-
hand half) the probed energies are greater than the
new energy scale, up to the boundary of the quantum
domain (vertical dark-gray strip centered at x ¼ hxi
in Fig. 1) where the Planck energy is probed.
What we have called the quantum inflationary

manifold Qinfl can be found only through numeric
investigation. We recall that in the quantum domain
the dynamical system may not be well-defined.
Nevertheless, in the understanding that the present
set upmay beviewed as a quantum effective theory of
gravity, we may trust our computations at least up to
the boundary of the quantum domain.
From the numerical investigation it follows that

critical points in Qinfl are past attractors. In general
the manifold is a global past attractor since any
possible orbit in the phase space starts at a point in
Qinfl. Although in the quantum domain we lose track
of any classical curve—such as, for instance, the
separatrix or the curve where q ¼ 0—immediately
after abandoning points inQinfl the orbits of the phase
space enter a region where the expansion is accel-
erated, this is why we may relate this manifold with
inflationary behavior.
It is verified that several relevant quantities evalu-

ated at points in Qinfl blow up. For instance:

Ωm → ∞; ΩΛ → ∞: ð42Þ

While the first limit may be associated with ρm →
∞ and a large but finite Hubble rate, the second
limit is unphysical. Actually, even for those points
in Qinfl where H2 is very large but finite
(H2 ≥ L−2

Pl ), the only way in which the limit ΩΛ ¼
Λ=3H2 → ∞ can be attained is when the cosmo-
logical constant Λ → ∞, which is clearly phenom-
enologically incorrect. This inconsistency of the
classical equations of motion must be only a
manifestation of the quantum nature of points in
this manifold. Hence, our assumption that Qinfl may
be located inside the quantum domain H2 > L−2

Pl ,
where the equations of motion of the present
classical formalism are not supposed to be valid,
is justified. The resulting qualitative picture is one
where all points in the quantum manifold lie in the
trans-Planckian region of the phase square. If there
were some points of Qinfl in the classical domain
where H2 < L−2

Pl , then there would be no feasible
classical explanation to the second limit in (42).

For points located inside the trans-Planckian region,
it happens that _H=H2 → 0, which means that the
expansion is always de Sitter in that region of the phase
square. It is seen from Fig. 1 that the orbits generated
by initial data ðxi0; yi0Þ inside the quantum domain
(vertical dark-gray strip in Fig. 1) are almost vertical
straight lines (x ≈ xi0 ⇒ H ≈Hi0), which means that
the corresponding cosmological evolution is an ever-
lasting de Sitter expansion. For these cosmic histories
there is not low-energy physics; the classical domain
H2 < L−2 is never attained. Hence, no phenomeno-
logically viable cosmological dynamics are possible.
Only in orbits that have originated from initial con-
ditions either in the neighborhood or outside of the
quantum domain it is possible to scape to the classical
region and to produce, accordingly, viable phenom-
enological cosmic dynamics. Yet, if we evolve these
phenomenologically viable orbits back into the trans-
Planckian region of phase space, the numeric inves-
tigation shows that these originate from the right edge
of the quantum manifold. Hence, every possible orbit,
no matter whether it could be associated with viable
phenomenological dynamics or not, is originated at the
past attractor manifold Qinfl.

(2) Standard big bang solution Pbb∶ð0; 1=2Þ. In this case
x ¼ 0 ⇒ H ≫ L−1, while y ¼ 1=2 ⇒ Ωm ¼ 1.
This solution exists only for λk ¼ 0, i.e., in the
classical limit of models 1 and 2, where the higher
curvature corrections to gravity are vanishing and
the quantum domain disappears. Whenever it exists,
Pbb is the global past attractor (see Fig. 2).

(3) Matter domination, Pmat∶ð1; 1=2Þ ⇒ H ≪ L−1 and
Ωm ¼ 1, i.e., 3H2 ¼ ρm. Given that the eigenvalues
of the linearization matrix at Pmat,

λ1 ¼ −3ðωm þ 1Þ=2; λ2 ¼ 3ðωm þ 1Þ=2;

are of different sign, this means that the matter-
dominated solution is a saddle critical point. At this
solution ΩΛ ¼ 0, while Ωm ¼ 1 ⇒ 3H2 ¼ ρm and

_H
H2

¼ −
3

2
ðωm þ 1Þ ⇒ q ¼ 3ωm þ 1

2
:

(4) The de Sitter attractor manifold,

MdS ¼ fðx; 1Þ∶0 ≤ x ≤ 1g; ð43Þ

which exists only for de Sitter (Λ > 0) background
spaces. For points in MdS we obtain the following
eigenvalues of the corresponding linearization ma-
trix: λ1 ¼ 0, λ2 ¼ −3ðwm þ 1Þ. The vanishing
eigenvalue is associated with an eigenvector that
is tangent to the manifold at each point. The second
eigenvalue is always a negative quantity. This means
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that, as seen from Fig. 1, each one of the critical
points in MdS is a local attractor, i.e., the manifold
itself is a global attractor of orbits in Ψ. For each
point in the de Sitter attractor manifold, _H ¼ 0,
Ωm ¼ 0 ⇒ q ¼ −1. Besides,

ΩΛ ¼ 1þ λ4

�
1 − x0
x0

�
3

eð
1−x0
x0

Þ2 ; ð44Þ

for model 1, while for model 2

ΩΛ ¼ 1 − λ3

�
1 − x0
x0

�
2
�
1 −

�
1 − x0
x0

�
e
1−x0
x0

�
; ð45Þ

with fixed x0 ∈ MdS in both cases.
As already mentioned, due to the equivalence of the

dynamical systems (18) and (30), all of the above critical
sets are common to both models 1 and 2. There are not
other equilibrium states in the phase spaces of these
models.

B. Physical analysis of the phase portrait

The phase portraits of the dynamical systems (18) and
(30), for toy models 1 (top panels) and 2 (bottom panels),
respectively, are shown in Fig. 1. The critical point Pmat
appears enclosed by the small circles, while the de Sitter
attractor manifold MdS is represented by the thick hori-
zontal (red) line joining the points (0, 1) and (1 ,1), i.e., this
manifold coincides with the upper boundary of the phase
square. The inflationary quantum manifold Qinfl is repre-
sented by the thick horizontal (red) segment with the
coordinate y ¼ 0, starting at the origin and ending up at
the solid circle at hxi (it coincides with the corresponding
segment of the lower boundary). As a matter of fact hxi is
an averaged value due to quantum fluctuations δqx of the
boundary of the inflationary manifold [see Eq. (39)]. The
value hxi defines the condition H ¼ L−1

Pl (thick vertical
long-dash red line in Fig. 1), i.e., it represents the average
value of the fuzzy boundary of the quantum domain
(thickness δqx) behind which the equations of the present
formalism are not valid anymore. The vertical straight dash-
dot line represents the x-position where H ¼ L−1. To the
left of this line the energies are higher than the new
scale L−1.
For completeness, the relevant curves ȳj ¼ ȳjðxÞ (j ¼ 1

for model 1, while j ¼ 2 for model 2) in (22) and (32),
respectively, i.e., the separatrices represented by the solid
dark curves in the figure, and ŷj ¼ ŷjðxÞ in (25) and (34)
(dashed dark curves), respectively, have been included as
well in the phase portraits. The region below the separatrix
(gray shading) corresponding to anti-de Sitter background
spaces is not of interest for the present investigation. The
region with ȳj ≤ y ≤ ŷj (magenta shading in the figure) is

where the expansion is decelerated and cosmic structure
may form.

1. ΛCDM model

The existence of the energy scale L−1 ≲ L−1
Pl appreciably

modifies the global dynamics of the Λ cold dark matter
(ΛCDM) model emerging from the geometric inflation
formalism when compared with the known GR-based
result. Actually, the ΛCDM model retrieved from the
present set up in the limit when the coupling λk → 0
(see Fig. 2) does not exactly coincide with the one obtained
within the GR framework. In this limit the quantum
manifold Qinfl is replaced by the global past attractor
Pbb∶ð0; 1=2Þ, which is associated with a matter dominated
(Ωm ¼ 1) big bang (H2 → ∞), while the matter dominated
saddle point Pmat∶ð1; 1=2Þ, where Ωm ¼ 1 and H2 ≪ L−2,
and the de Sitter manifoldMdS (the global future attractor)
are also critical states of the model.7 Meanwhile, in the
GR-based ΛCDM model, where Ωm þ ΩΛ ¼ 1, a one-
dimensional dynamical system is obtained which is driven
by the following ordinary differential equation:

Ω0
m ¼ 3ðωm þ 1ÞΩmðΩm − 1Þ: ð46Þ

As seen in this case, only two critical points can be found:
(i) the matter-dominated (Ωm ¼ 1) past attractor, and (ii) the
de Sitter future attractor with Ωm ¼ 0.
This discrepancy may be due to the fact that, for the GR-

based ΛCDM model, since there is not any intrinsic energy
scale, the matter-dominated solution, Ωm ¼ 1 ⇒ 3H2 ¼
ρm, comprises both cases—the big bang singularity when
H2 → ∞ and ρm → ∞, as well as any other stage of matter
dominance, when both H and ρm are finite. The problem
here is that since the matter-dominated solution is the past
attractor, one has to decide whether to put the origin of the
cosmic history at the big bang (singular) event or at a
matter-dominated stage with the finite curvature and energy
density that is necessary to generate the amount of observed
cosmic structure. This is to be contrasted with the ΛCDM
limit of the geometric inflation model where, since there
exists an intrinsic energy scale L−2, the big bang event
(Pbb) and the matter-dominated stage with finite energy
density (Pmat) are differentiated according to whetherH2 ≫
L−2 (big bang) or H2 ≪ L−2 (matter dominance necessary
for the structure formation). In this case the big bang is the
starting point of any potential cosmic history, while the
matter-dominated stage that allows for the formation of
cosmic structure is a transient stage, as required by the
standard cosmic paradigm. The GR-based ΛCDM model

7The limit λk → 0 is equivalent to the “classical limit” LPl → 0.
Hence, this may be thought of as the classical limit of the
geometric inflation formalism where the quantum effects are
neglected. Even in this classic limit the existence of the scale L−1

makes a difference as compared with GR.
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can be recovered from the geometric inflation set up in the
limit LH → 0, instead of λk → 0.
It is worth noticing that theΛCDM limit of the geometric

inflation formalism, where the quantum domain is shrunk
to the neighborhood of the point x ¼ 0, is a classic limit in
the sense that the coupling λk of the higher-order curvature
contributions to gravity is vanishing. This means that any
geometrical manifestation of the quantum effects is elim-
inated—as seen from Fig. 2, the quantum domain is not
visible—and the big bang singularity appears in its place.

2. Quantum inflationary manifold Qinfl

As said before, this is a fuzzy manifold which com-
pletely lies within the quantum domainH ≥ L−1

Pl . Along the
manifold, from x ¼ 0 to x ¼ hxi, the Hubble parameter
changes from a very high curvature regime H ≫ L−1

Pl at
x ¼ 0, to

HðhxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hxi
hxi

s
L−1; ð47Þ

at x ¼ hxi. In this paper, we identify the average value hxi
with the mean x-position of the Planck scale: H ¼ L−1

Pl . In
Fig. 1, hxi is marked by the solid circle and the corre-
sponding region of phase space is represented by a thick
vertical long-dash (red) line. Given the qualitative nature of
our present study, the precise value of hxi is irrelevant.
According to (47) at the Planck scale [compare with

(37)],

L−1
Pl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hxi
hxi

s
L−1 ¼ ffiffiffi

α
p

L−1:

Hence, for the ratio α ¼ L2=L2
Pl, we get

α ¼ 1 − hxi
hxi ⇒ hxi ¼ 1

1þ α
; ð48Þ

so that the average position of the quantum boundary is
completely specified by the ratio αwhich, in turn, should be
fixed by the theory (8) itself.
In order to estimate the size of the quantum fluctuations

of the quantum boundary at hxi, the starting point may be
the definition of the x-coordinate of the phase space (36).
Hence,

δx ¼ −
2L2HδH

ð1þ L2H2Þ2 ;

and if we define the quantum fluctuations around hxi in the
following way:

jδqxj ∼ jδxjH¼L−1
Pl
¼

2 L2

LPl
jδL−1

Pl j
ð1þ L2

L2
Pl
Þ2 ¼

2 L2

L2
Pl

jδLPlj
LPl

ð1þ L2

L2
Pl
Þ2 ; ð49Þ

where in the last equation we have taken into account that
jδL−1

Pl j ¼ L−2
Pl jδLPlj, then equation (39) is obtained from

(49) by assuming that jδLPlj ∼ LPl. By substituting L2 ¼
αL2

Pl and (48) into (39) one finally gets

jδqxj ∼
2α

ð1þ αÞ2 ¼ 2hxið1 − hxiÞ: ð50Þ

This means that both the “thickness” of the quantum
boundary ∼jδqxj and its average position hxi are fixed
by the assumed value of α ¼ L2=L2

Pl. Recall that, since our
study is merely qualitative, the exact value of the average
position hxi is not actually relevant. In our study we have
arbitrarily chosen α ¼ 9.
It is interesting to note that orbits that originate inside the

trans-Planckian region, and in its neighborhood, are
(almost) vertical lines joining a point in Qinfl with a point
with (almost) the same x-coordinate in the attractor de
Sitter manifold MdS. This means that initial conditions
within the quantum domain lead to de Sitter ever expanding
universes with the constant

H ¼ H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x0
x0

s
L−1;

where x ¼ x0 is the initial condition. These are trans-
Planckian ever-inflating universes. We have to recall,
however, that inside the quantum domain we may not trust
the results obtained on the basis of the present classical
theory.
In order for a given orbit to lead to sensible cosmic

dynamics, it should leave the quantum domain and after a
primordial inflationary period, meet the region of the phase
space where the expansion occurs at a decelerated pace
(q > 0); the region below the curve where q ¼ 0 (dashed
curve in Fig. 1) and above the separatrix (solid curve), i.e.,
the region where ȳjðxÞ ≤ y < ŷjðxÞ, with ȳjðxÞ, and ŷjðxÞ
(j ¼ 1, 2) given by (22), (32) and (25), (34), respectively
(magenta shaded region in the phase portrait). In Fig. 1 the
orbits that lead to well-behaved cosmic dynamics are the
same color of the region where the deceleration parameter
q > 0 (magenta shaded region). The decelerated expansion
stage is mandatory for the required amount of cosmic
structure to form. For those orbits that always evolve in the
region where the expansion is accelerated, no cosmic
structure forms at all.

3. De Sitter attractor manifold MdS

The de Sitter attractor manifold owes its existence to the
nonvanishing cosmological constant Λ that is included in
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the model from the start [17]. This warrants that the
decelerated expansion, whenever it takes place, can be
only a transient stage of the cosmic evolution. From Fig. 1
it is seen that those orbits that represent sensible cosmic
dynamics start in a stage of primordial curvature inflation,
then go into a stage of decelerated expansion where the
appropriate amount of cosmic structure forms (magenta-
shaded region in Fig. 1), to finally enter another inflationary
stage and, eventually, to end up in a de Sitter regime.

V. DISCUSSION

There are two inflationary stages in the geometric
inflation model. One primordial inflationary period and a
second inflationary stage at late times. For some orbits—
those leading to sterile evolution, i.e., without formation of
cosmic structure—these stages are continuously joined,
while others that allow for the correct amount of cosmic
structure to form have an intermediate epoch of decelerated
expansion which joins the two inflationary stages (see
Fig. 1). Hence, the arising of sensible cosmological
dynamics in the geometric inflation model depends on
the initial conditions.
From the motion Eqs. (13) and (26), it follows that

−2 _H ¼ ðwm þ 1Þρm
1þ 2λ4ð2þ L4H4ÞL6H6eL

4H4 ; ð51Þ

for model 1, while

−2 _H ¼ ðwm þ 1Þρm
1 − 3λ3L4H4 þ λ3ð4þ L2H2ÞL6H6eL

2H2 ; ð52Þ

for model 2, where ρm ∝ a−3ðwmþ1Þ. In the very high
curvature limit H ≫ L−1, the de Sitter expansion is
approached as long as

L10H10eL
4H4 ≫ a−3ðwmþ1Þ;

for model 1 or

L8H8eL
2H2 ≫ a−3ðwmþ1Þ;

for model 2, so that _H → 0. The very high curvature regime
H ≫ L−1

Pl falls in the quantum domain where the motion
equations of the geometric inflation model stop being valid.
Hence, while at late times the expansion is de Sitter
aðtÞ ∝ expð ffiffiffiffiffiffiffiffiffi

Λ=3
p

tÞ, at early times the inflationary stage
is not always de Sitter. As we have just shown, the
primordial de Sitter inflation takes place in the quantum
domain (vertical orbits in the dark-gray strip in Fig. 1) so
that no sensible cosmic dynamics can be linked with it.
The sensible cosmological scenario in the present

formalism takes place if for cosmic evolution in the
part of the phase square in Fig. 1 to the left of the vertical

dash-dot line and up to the boundary of the quantum
domain (L−2 ≲H2 ≲ L−2

Pl ), the crossing of the condition
q ¼ 0 in the direction from q < 0 to q > 0 is possible.
For the choice wm ¼ 1=3 (background radiation) at early
times where ρm ≫ Λ, the deceleration parameter q ¼ −1 −
_H=H2 reads8:

q ¼ 1 − 2λ4ð1þ L4H4ÞL6H6eL
4H4

1þ 2λ4ð2þ L4H4ÞL6H6eL
4H4 ; ð53Þ

for model 1, while for model 2 we have

q ¼ 1þ λ3L4H4 − λ3ð2þ L2H2ÞL6H6eL
2H2

1 − 3λ3L4H4 þ λ3ð4þ L2H2ÞL6H6eL
2H2 : ð54Þ

Hence, the condition q ¼ 0 amounts to

ð1þ L4H4ÞL6H6eL
4H4 ¼ 1

2λ4
; ð55Þ

for model 1 and

ð2þ L2H2ÞL6H6eL
2H2 ¼ 1

λ3
þ L4H4; ð56Þ

for model 2. Whenever the left-hand side (LHS) in the
above equations is greater than the right-hand side (RHS),
recalling that L−1 ≲H ≲ L−1

Pl , primordial non-de Sitter
inflation takes place. Then, as long as H further decreases
so that the LHS of Eqs. (55) and (56) becomes smaller than
the RHS, the crossing of the condition q ¼ 0 takes place
and the corresponding phase space orbits enter a decel-
erated expansion region (magenta shading in Fig. 1), with
the consequent formation of cosmic structure.
Finally, let us discuss on another important aspect of the

present effective theory. Classical GR must be, at most, the
infrared limit of some quantum gravity theory. This means
that modifications of general relativity with the inclusion of
low-energy quantum corrections must be seen as an
effective quantum theory of the gravitational interactions
[34]. For example, the low-energy string effective action
can be seen, at tree-level, as a perturbative expansion in
powers of the Regge slope. This expansion yields, in addi-
tion to the Einstein action, corrections that are quadratic
and higher-order in the curvature [42]. Several of the coeffi-
cients of the expansion may be uniquely fixed by compar-
ing string-theory and field-theory S-matrices [38–42].
However, those coefficients of the expansion, which
change under field redefinitions in the effective action

8Notice from Eqs. (53) and (54) that if we consider the very
high curvature regime H2 ≫ L−2, it follows that q → −1, i.e.,
this is a de Sitter expansion regime taking place in the quantum
domain H−1 < LPl, as discussed above.
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that, according to the equivalence theorem [43–46], leave
the S-matrix unchanged, are ambiguous [20,38,47].
As discussed in Sec. II in the paragraph below Eq. (10)

(see the related discussion in [17]), the above ambiguity
also affects other kinds of effective theory like the one of
our interest in this paper (8). What can we learn from the
results of our study in regards to the mentioned ambi-
guity? Here we have shown [see the paragraph below
Eq. (30)] that the dynamical systems (18) (model 1) and
(30) (model 2) are mathematically equivalent under the
transformation (31). This entails that the global dynamics
that follow from the corresponding phase portraits are
essentially (qualitatively) the same. This is clearly illus-
trated in Fig. 1. On the other hand, both models 1 and 2
are based on different choices of the dimensionless
constants λn in the expansion of the effective action
(8). Model 1—given by (11)—is due to the following
choice: λ2kþ1 ¼ 0, λ4þ2k ¼ λ4=k! (k is a positive integer).
Model 2—given by (12)—is obtained after the choice
λ3 > 0, λn≥4 ¼ ð−1Þnλ3=ðn − 4Þ!. The fact that these quite
unrelated choices of the coefficients of the expansion in
the higher-curvature invariants lead to qualitatively the
same global dynamics may be seen as an indication that
the ambiguity discussed above bears no relevance to the
asymptotic properties of the models. However, we do not
know how this result may affect the similar ambiguity
issue found in the string theory framework. This latter
issue deserves separate investigation.

VI. CONCLUSION

In this paper the geometric origin of primordial inflation
in the geometric inflation formalism [17] has been inves-
tigated on the basis of the dynamical systems analysis for
the first time. We have studied two toy models proposed in
the mentioned reference, where the sum over the infinite
tower of higher-order curvature invariants is performed,
yielding to compact expressions in the equations of
motion. These are very encouraging possibilities if we
regard gravity as a quantum effective theory [34], since
higher powers of R, Rμν, and Rμνσλ would be involved at
higher loops. Hence, one would naively expect that
consideration of the whole infinite tower of curvature
invariants would amount to consideration of all of the
higher-order loops, so that quantum effects would be
manifested.
Perhaps the more interesting result of the present

research has been to show, precisely, the quantum origin
of the primordial inflation in the geometric inflation theory.
This is a consequence of the new length scale L which is
assumed above (but not too much) of the Planck length LPl:

L≳ LPl. As seen from Fig. 1, for equilibrium points in the
inflationary past attractor we have that H−1 < LPl, so that
every orbit, no matter whether it leads to unphysical or
phenomenologically viable cosmic dynamics, starts in the
past attractor within the quantum domain.
In a recent paper [32], the global dynamics of an up-to-

cubic curvature correction to GR, known as “cosmological
Einsteinian cubic gravity,” were explored. The results of
that paper show that the asymptotic cosmological dynamics
are qualitatively similar to the one of the classical ΛCDM
limit of the geometric inflation model (λk → 0). In this
regard, compare the left panel of Fig. 1 of [32] with Fig. 2
of this paper, noticing that a different set of phase space
variables were used in the former study. In the mentioned
reference, the matter-dominated big bang is the global past
attractor instead of the quantum manifold found in this
paper, where the whole infinite tower of higher-order
curvature corrections to GR is considered. We may explain
the qualitative differences between both studies by arguing
precisely that, while here we have considered toy models
that included the infinite tower of higher curvature invar-
iants, in [32] only terms up to cubic order were included.
We think that these are not enough to excite quantum
effects.
In order to allow for under-Planckian initial energy

densities, recently a hybrid geometric inflation model
was proposed [48], where the role of a scalar field in
the geometric inflation formalism is investigated. Although
this model misses one of the most attractive features of the
geometric inflation formalism, the pure geometrical origin
of primordial inflation, it would be very interesting to
explore the asymptotic dynamics of such an hybrid
scenario. This will be the subject of forthcoming work.
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