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A theory of gravity is deduced from the axioms of the premetric program. The starting point is the
conservation of energy and momenta, and the equivalence of gravitation and inertia. The latter is what leads
to the framework of the so-called purified gravity. The local and linear constitutive relation has
14 components when it is assumed to be metrical, but the compatibility of the constitutive relation with
an action principle fixes uniquely the theory of coincident general relativity. The premetric formalism of
purified gravity has a direct analogy with massive electromagnetism, the Planck mass corresponding to the
Proca mass of the gauge boson. The metric emerges as a Stueckelberg field, and the graviton as a Goldstone
boson of the broken symmetry.

DOI: 10.1103/PhysRevD.103.064041

I. INTRODUCTION

Electrodynamics, in Maxwell’s well-known form and its
many possible generalizations, can be understood to a
surprising extent without referring to a metric. The starting
point is then to consider quantities that can be counted,
without requiring the measurements of areas, volumes, or
durations, for which one typically would need to resort to
less elementary objects such as measuring sticks and clocks.
The invariance of the countable elementary quantities, in
particular electric charges, gives rise to a conserved current
(3-form), and this in turn gives rise to an excitation (2-form),
whereas the conservation of the magnetic flux gives rise to a
field strength (2-form). The workings of theory are then
specified by the relation between the field strength and the
excitation, called the constitutive relation. In Maxwell’s
vacuum electrodynamics the constitutive relation (Hodge
dual) requires a metric, but more general possibilities can be
considered, with or without invoking a metric, and this
allows the unified description of the vast variety of physical
phenomenology of the electromagnetic interaction from
linear and nonlinear effects in media to axionic and other
extensions of the Maxwell electrodynamics.
Such a premetric construction of the classical electro-

magnetic theory is exposed in great detail and clarity in the
pedagogical textbook of Hehl and Obukhov [1]. The
premetric program was originally put forward in 1922
by Kottler, who applied it both to electromagnetism and to

Newtonian gravity [2]. More recently, relativistic theories
of gravity have been considered in the context of the
premetric program [3–8], and this has quite naturally lead
to the metric teleparallel1 reformulation of Einstein’s theory
[11,12]. In the premetric approach to the theory of gravity,
one begins with the conservation of energy and momenta
since these are the sources of the gravitational field [13].
Formally, the construction proceeds in a rather direct
analogy to the case of electromagnetism. The conservation
of energy and momenta gives rise to currents and further,
excitations. Corresponding forces are introduced, and now
their constitutive relation to the excitations, even in the
local and linear case, contains many more possibilities than
in the case of electromagnetism [6], due to there being four
conserved charges instead of one.
In the standard textbook descriptions of general rela-

tivity, gravitation is often interpreted as geometry [14],
whereas in the metric teleparallel formulation gravity is
rather understood as a force [11]. These alternative
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1A flat affine connection is called “teleparallel”. We refer to a
metric-compatible flat connection as “metric teleparallel”, and to
symmetric flat connection as “symmetric teleparallel”. (In the
literature the term teleparallel usually means the former special
case, and it is a common statement that whereas in General
Relativity the fundamental variable is the metric, in the tele-
parallel version of the theory the fundamental variable is the
tetrad. However, such a statement is empty, if not misleading,
since the Einstein-Hilbert action can just as well be rewritten in
solely terms of the tetrad. A unifying framework for all the
formulations is metric-affine theory, wherein the fundamental
variables are the metric and the affine connection [9,10]. In
general relativity the appropriate connection of course is not
teleparallel, but it is both metric and symmetric.)
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formulations and interpretations provide interesting
insights into both Newton’s and Einstein’s theories [15],
but yet, it may be also useful to recall that to the latter, the
quintessence of gravitation was neither force nor geometry,
but inertia [16]. To express this idea precisely, in the
modern terms of a gauge theory, one may contemplate the
basic fact that a purely inertial interaction is characterized
by a vanishing gauge field strength. It is the gauge field
strength that is both the gauge invariant measure of force,
from the physical perspective of field theory, and the gauge
invariant measure of geometry, from the mathematical
perspective of principal bundles. However, the description
has to be a bit more subtle, since the gravitational force (or,
equivalently, geometry) can be eliminated only locally.
A resolution for the dilemma has been recently sought in

the context of the so-called purified gravity [17]. From the
viewpoint of geometrical foundations, it was proposed that
the fictitious forces could be described by a purely
integrable spacetime affine geometry [18]. Such a geom-
etry, which is devoid of both torsion and curvature, was
recognized as that of the so-called symmetric teleparallel-
ism [19,20] and it was discovered that the affine connection
of the geometry is generated by a pure coordinate trans-
formation, i.e., a (passive) translation. This was the starting
point for a reformulation of Einstein’s theory, called the
coincident general relativity (CGR) [17]. This theory,
which is determined uniquely by the integrability postulate
and a symmetry principle, can indeed be understood as a
canonical gauge theory of translations, and it can be simply
described as the minimal covariantization of the Einstein
action [21]. For a review of the three possible formulations
of general relativity, in terms of curvature, torsion, and
nonmetricity, respectively, see Ref. [9]; for a unification
of teleparallel geometries see the recent Ref. [10]; and
about more general modifications of general relativity, see
e.g., Ref. [22].
In this paper, we attempt to understand purified gravity

from the perspective of the premetric program. It will turn
out that the electromagnetic analogy to purified gravity is
rather Proca’s massive [23–25] than Maxwell’s massless
electromagnetism. This clarifies why also the gravitational
field itself contributes to the conserved currents of energy
and momenta (which is more difficult to explain in the
metric teleparallel construction), and the dimension of the
gravitational action is no longer anomalous. A main
conclusion will be that in the consistent formulation of
the theory, the field strength is vanishing but there exists an
excitation: this reflects the geometrical setup wherein the
affine spacetime connection is trivializable, but the con-
nection to which matter turns out to couple, is the curved
metric-compatible connection [18]. Actually, the more
suitable analogy would be Stueckelberg’s than Proca’s
massive electromagnetism. The latter’s formulation is
physically equivalent but respects the original symmetry
of the Maxwell theory (which, though coming at the price

of introducing an extra scalar, can be indispensable e.g.,
renormalization [23]). Indeed, the constitutive relation of
CGR is found to be uniquely specified as the one that
restores the translational symmetry of the theory. Thus, the
graviton can be interpreted as the massless Goldstone
boson of a spontaneous symmetry breaking, an idea which
goes back to at least to Isham, Salam, and Strathdee [26].
The structure of this article is as follows. First we shall

go through the premetric deduction of gravity theory using
the standard language of tensors in Sec. II. It can be helpful,
in the spirit of [27], to expose the basic foundation of the
construction without obscuring its simplicity by excessive
mathematical formalism. On the other hand, exterior
algebra provides the natural expressions for conservation
laws, and elegantly highlights the paramount role of
Poincaré’s lemma in the premetric reasoning. Thus in
Sec. IV we also write down the premetric construction
in the language of differential forms. The reader familiar
with this language might prefer to start from Sec. IV, Sec. II
being redundant with it. In both discussions, we emphasize
the analogy between gravity and electromagnetism by first
reviewing the premetric perspective in the latter, slightly
simpler, case (a comparison of these two cases and a
dictionary between the two languages will then be given in
Table II). The local and linear constitutive relations are
analyzed in Sec. III, by first focusing on metrical relations,
taking into account parity-violating ones, and then general-
izing to fully arbitrary constitutive relations which we
decompose into their irreducible components. The inter-
pretation of the metric as a Stueckelberg field is elaborated
in Sec. V, filling in some technical details and briefly
speculating on the ultraviolet limit of purified gravity. The
properties of the theories with more general constitutive
relations, that do not share the unique property of the CGR
relation, are explored in Sec. VI, with attention on the
degrees of freedom, propagation of waves, and the con-
servation laws. We conclude in Sec. VII with a summary
and discussions.

II. PREMETRIC CONSTRUCTION IN THE
TENSOR LANGUAGE

We shall refer to the covariant derivative that satisfies
½∇μ;∇ν� ¼ 0. We ask the reader who is uncomfortable with
this to kindly just consider ∇μ as a notation for ∂μ until the
Sec. VA, wherein we shall justify the use of the covariant
form of the equations in this section.

A. Excitation

1. Electromagnetism

The conservation of electric charge entails the existence
of an electric current, described by the vector density Jμ.
The charge conservation, in integral and in differential
forms, is
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Z
∂Ω4

d3xJμnμ ¼ 0 and ∇μJμ ¼ 0; ð1Þ

respectively, nμ being a unit normal to the 3-surface ∂Ω4.
Locally, this is equivalent to the equation (that is a gener-
alized version of the inhomogeneous Maxwell equation)

∇μHμν ¼ Jν; ð2Þ

where the electromagnetic excitation Hμν ¼ H½μν� is an
antisymmetric tensor density. In case of a theory with self-
interactions, such as in Proca’s massive electromagnetic
theory or a non-Abelian gauge theory, we may write
Jμ ¼ Tμ þ tμ, where Tμ are the external sources and tμ

are due to the electromagnetic field itself.2 We have
assumed an additive decomposition of the sources. There
is redundancy in the excitation tensor density, in the sense
that any Hμν → Hμν þ∇λφ

λμν, where φλμν ¼ φ½λμν� also
satisfies the above equation (2) with the antisymmetric
property of as Hμν. Without requiring the same property,
the 4-component redundancy is increased to 24 compo-
nents. This ambiguity of the excitation tensor is not usually
taken into account in the premetric construction of electro-
magnetic theory, since it has no relevance to the dynamics.

2. Gravity

In gravity, we begin with the conservation of energy-
momentum and denote the corresponding current as Jμν.
The four conservation laws are, again in integral and in
differential forms, expressed as

Z
∂Ω4

d3xJμνnμ ¼ 0; and ∇μJμν ¼ 0: ð3Þ

The latter implies again the existence of an antisymmetric
excitation tensor density Hμν

α ¼ H½μν�
α. The redundancy in

this tensor density is Hμν
α → Hμν

α þ∇λφ
λμν

α where, if
φλμν

α ¼ φ½λμν�
α it has 16 independent components, and if

not, 96 independent components. We now write

∇μHμν
α ¼ Jνα ¼ Tν

α þ tνα; ð4Þ

taking into account that in addition to the energy-
momentum of matter Tμ

ν, there can also occur inertial
energy-momentum tμν.

B. Field strength

1. Electromagnetism

The field strength Fμν satisfies the integral and differ-
ential conservation equations

Z
∂Ω4

Fμνnν ¼ 0; and ∇½αFμν� ¼ 0; ð5Þ

implying the conservation of the magnetic flux and the
existence of the electromagnetic potential Aμ, such that
Fμν ¼ 2∇½μAν�. It is defined up to the total derivative
Aμ → Aμ þ∇μφ. For a detailed premetric investigation
of the potential Aμ, see [28].

2. Gravity

In analogy to electromagnetism, we introduce the gravi-
tational field strength Fαβ

μν which ought to be conserved,

Z
∂Ω4

Fαβ
μνnν ¼ 0; and ∇½ρFαβ

μν� ¼ 0: ð6Þ

This implies the existence of a gravitational potential Aαβ
μ,

such that Fαβ
μν ¼ 2∇½μAαβ

ν� and defined up to the deriva-
tive Aαβ

μ → Aαβ
μ þ∇μφ

αβ. The defining peculiarity of
gravitation is that it can always be locally eliminated. In
other words, its field strength should vanish, Fαβ

μν ¼ 0.
Therefore, we can always assume that Aαβ

μ ¼ ∇μφ
αβ.

One notes that we stipulated that the gravitational field
strength comes with two indices, thus the transformation of
φμν has a priori 16 independent components. Later, when
imposing the constitutive relations, it will be evident that
the theory actually involves only the 10 components that
are symmetric with respect to the exchange of the two
indices. A possible interpretation is that these correspond to
the 4þ 6 conserved quantities, the four-momentum and the
angular momenta. One may also consider that the under-
lying symmetry is just the symmetry of the frame, GL(4),
and by requiring Lorentz invariance (through the impose-
ment of the symmetrized constitutive relations) we can then
eliminate the 6 antisymmetric components of φαβ, leaving
us with the 10 nonzero φαβ ¼ φðαβÞ.
We can already anticipate that is possible to identify the

gauge potential and the pure gauge transformation asAαβ
μ ¼

−Qμ
αβ and φαβ ¼ gαβ, respectively. The vanishing of the

field strength means teleparallelism, ∇½μQν�αβ ¼ 0. It is a
geometric identity that∇½μQν�αβ ¼ RðαβÞ

νμ − 1
2
Tλ

μνQλ
αβ; see

[27] for notation and details. However, we shouldmake clear
that at this pointwe do not have ametric at hand.Also,we are
not considering aGL(4) gauge theory,whereRðαβÞ

νμ ≠ Fαβ
μν

would have a different form comprising terms that are
quadratic in Aαβ

μ and the gauge transformation (at a non-
linear order) would not be simply the shift by a derivative of

2To give a concrete example, in the Proca theory we would
have tμ ¼ m2 ffiffiffiffiffiffi−gp

gμνAν, where m is the mass of the electro-
magnetic field, gμν is the metric, and Aν is the electromagnetic
potential we shall introduce in a moment. At this point of course
we do not have a metric at hand.

AXIOMATIC DERIVATION OF COINCIDENT GENERAL … PHYS. REV. D 103, 064041 (2021)

064041-3



φαβ. After arriving at the final form of the premetric theory,
we will better clarify its relationship to the theory derived
from the conventional gauge approach based on the GL(4)
group. Namely, in Sec. VA 2 we will assume the gauge
connection to be a given GL(4) form, denoted by Γα

μν and
consisting of Levi-Civita connection, torsion, and nonme-
tricity when such a decomposition is possible, and will then
show that in the end the final form of the theory is the same as
follows from the present premetric construction.

C. Force

1. Electromagnetism

The Lorentz force is described by the four-vector density

fμ ¼ FμνJν ¼ FμνðTμ þ tμÞ; ð7Þ

which contributes to the nonconservation of the energy-
momentum, as we will learn below.
For the analogous case of gravity, it will be important to

realize that in massive electromagnetism there is an element
of nonconservation even in the case of vanishing force.
Namely, when we go back to our very starting point (1), and
recall that in the case of Proca theory in Minkowski space
we have tμ ¼ m2Aμ, the conservation of electric charge
current Tμ is

∇μTμ ¼ −m2∇μAμ: ð8Þ

Hence, the electric charge current is conserved only if the
Lorentz condition ∇μAμ ¼ 0 is imposed.3

2. Gravity

In gravity, the quantity analogous to (7) is a rank (1,1)
tensor density

fμν ¼ Fμβ
ανðTα

β þ tαβÞ ¼ 0; since Fμβ
αν ¼ 0: ð9Þ

The vanishing of the tensor density fμν reflects the
conservation of the total energy-momentum, to be defined
next.
Before that, let us however note that there nevertheless

arises an effective force felt by the matter fields. Denoting
this effective force by F ν, we see that it is given as

∇μTμ
ν ¼ −∇μtμν ≡ F ν: ð10Þ

As will be clarified in the following, the presence of this
effective force is due to the nonzero mass of the pure gauge
connection. That makes it clear that the physical origin of

F ν is inertia, though in the end its effects can also be
discussed in terms of an effective force and illustrated in
terms of geometry. As in the case of electromagnetism,
compare (8), the nonconservation is gauge dependent. The
canonical frame of purified gravity [21] has been proposed
to be the analog of the Lorentz gauge in massive electro-
magnetism in that, in a well-defined sense, it establishes the
“physical” geometry.

D. Energy-momentum current

1. Electromagnetism

In electromagnetism, the energy-momentum current has
the form

emTμ
ν ¼ HμαFνα −

1

4
δμνHαβFαβ þ PμAν −

1

2
δμνPαAα; ð11Þ

where Pμ is determined by the interaction potential, and its
presence generically breaks the U(1) invariance.4 If Pμ ¼ 0,
the divergence of the above tensor density becomes

∇μ
emTμ

ν¼ fν−Hαβ

�
∇βFνβþ

1

4
∇νFαβ

�
−
1

4
ð∇νHαβÞFαβ:

ð12Þ

It is easy to see that when Hαβ ¼ Fαβ, we recover
∇μ

emTμ
ν ¼ fν.

2. Gravity

We are considering the purely inertial energy-momentum
tμν in (4), since the Tμ

ν shall be defined by all matter fields.
For example, emTμ

ν in (11) is a contribution to the Tμ
ν in the

presence of the electromagnetic field, and if there were
charged fields contributing to the electromagnetic current
Tμ, they would contribute to the gravitational current Tμ

ν as
well. Since Fαβ

μν ¼ 0, the kinetic energy-momentum term
in direct analogy to (11) is now trivial, but there may be a
nontrivial potential energy-momentum. We denote with
Pα

μν the conjugate of the potential analogous to Pμ in
electromagnetism. Then, the energy-momentum current
analogous to (11) is

tμν ¼ Pμ
αβQν

αβ −
1

2
δμνPγ

αβQγ
αβ: ð13Þ

According to Ref. [21], this tensor density describes the
fictitious energy-momentum in a noninertial frame, being
sourced by a pure-gauge field Aαβ

μ ¼ ∇μφ
αβ ¼ −Qμ

αβ.
The most direct equivalent of this in an electromagnetic
theory would be the requirement of the vanishing of the
current tμ in a pure-gauge massive electromagnetism. It is

3In the case of Proca theory with a curved metric, the Lorentz
condition is generalized to the metric-covariant form and Eq. (8)
becomes the metric-covariant conservation of the electric current
tensor (not density). 4An example is the Proca field for which Pμ ¼ m2 ffiffiffiffiffiffi−gp

gμνAν.
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also trivial to see that the contribution to emTμ
ν due to a

mass of the gauge field Aμ can be nonzero even in the pure-
gauge case Aμ ¼ ∇μφ, but nevertheless it can be always
eliminated by choosing the unitary gauge, φ → 0. Whereas
formally the equivalent of the Lorentz gauge in a nontrivial
Proca theory would be ∇μtμν ¼ 0, the definition of the
canonical frame of purified gravity is tμν ¼ 0.

III. CONSTITUTIVE RELATION

This far we have established the two fundamental
equations of purified gravity, expressing the conservation
of translational currents and the integrability postulate,
respectively. The quantities appearing in these two equa-
tions are related by the linking equations, whose possible
forms we study in this section. We begin by writing down
the metric form of the constitutive relation that is known to
reproduce the equivalent of general relativity, then consider
arbitrary constitutive relations in terms of a metric, and
finally analyze in detail the generic local and linear
constitutive relations.

A. Electromagnetism

In order to have a predictive theory, one has to specify
the kinetic and the potential excitations. In the case of a
linear constitutive relation, the generic kinetic constitutive
tensor density χ̃μνα ¼ χ̃½μν�α has 24 independent compo-
nents and the generic potential constitutive tensor density
ξ̃μα has 16 components. The constitutive relations can be
written as

Hμν ¼ χ̃μναAα; Pμ ¼ ξ̃μαAα: ð14Þ

In the case of the Proca theory, we have a metric gμν and its
Levi-Civita covariant derivative Dμ at hand, and can write
the constitutive relations as χ̃μνα ¼ 2

ffiffiffiffiffiffi−gp
gα½νDμ� and

ξ̃μα ¼ m2 ffiffiffiffiffiffi−gp
gμα. If in addition to linearity, we require

that the constitutive relation does not involve derivative
operators other than the field strength, the generic ansatz
then reads

Hμν ¼ χμναβFαβþ χμναAα; Pμ ¼ ξμαβFαβþξμαAα; ð15Þ

where χμναβ ¼ χ½μν�αβ ¼ χμν½αβ� has 36 and ξμαβ ¼ ξμ½αβ� has
24 independent components. In this formulation, the Proca
theory is χμναβ ¼ ffiffiffiffiffiffi−gp

gμαgνβ, χμνα ¼ 0, and ξμαβ ¼ 0,
ξμα ¼ m2 ffiffiffiffiffiffi−gp

gμα. These constitutive relations have the
exchange symmetry χμναβ ¼ χαβμν, ξμα ¼ ξαμ. If we con-
sider constitutive relations built with a metric gμν and the
Levi-Civita tensor density ϵαβγδ, it is impossible to have
nontrivial pieces χμνα or ξμαβ (as we shall soon see, the case
is different with gravity, and in fact it is then crucial to take
into account the piece corresponding to χμνα).

The general relation χμναβ in (15) has been well studied,
see [1,29], and its complete classification has been per-
formed. In particular, the relation can be decomposed
into the principal part (20 components), the skewon part
(15 components), and the axion part (1 component). In a
general theory, the propagating fields may feature, in
addition to the familiar electromagnetic field, an axion, a
dilaton, and the more exotic skewon [30,31].

B. Gravity

In analogy to (14), the gravitational constitution relations
are now specified by the 960 independent components of
the kinetic constitutive tensor density χμναρσ

β ¼ χ½μν�αρσβ ¼
χμναðρσÞβ and the 1600 independent components of the
potential constitutive tensor density ξαμν

β
ρσ ¼ ξαðμνÞβρσ ¼

ξαμν
β
ðρσÞ as

Hμν
α ¼ χμναρσ

βQβ
ρσ; Pα

μν ¼ ξαμν
β
ρσQβ

ρσ: ð16Þ

There are three symmetrizations we have imposed here in
order to extract only the symmetric part of the gauge field
Aαβ

μ, such that we can identify φðαβÞ ¼ gαβ. Since this gμν is
the only tensor we have at hand in addition to the ones
appearing in (16), the most economical way to proceed is to
assume that the constitutive relation features only this
tensor. We emphasize that the object φμν emerged in the
construction of the theory as we noticed that the potential
Aμν

α can always be reduced to Aα
μν ¼ −∇αφ

μν, so we have
only changed the name of φðμνÞ into gμν and of ∇αφ

ðμνÞ into
−Qα

μν, and not added these tensors ad hoc.
Since our starting point was the conservation of

energy and momentum, another natural assumption is that
the theory should be invariant under translations,
gμν → gμν þDðμXνÞ. It has been shown that these two
requirements uniquely specify the theory, that in the gauge
wherein the connection vanishes was called the coincident
general relativity [17]. The constitutive relations for that
theory are

CGR χ
μν

αρσ
β ¼ ffiffiffiffiffiffi

−g
p

M2ðgαðρδ½μσÞgν�β − gρσδ
½μ
α gν�β þ δ½μα δ

ν�
ðρδ

β
σÞÞ;

ð17aÞ

CGRξ
α
μν

β
ρσ

¼ −
1

4

ffiffiffiffiffiffi
−g

p
M2ðgαβgμðρgσÞν − 2δβðνgμÞðσδ

α
ρÞ

− gαβgμνgσρ þ δαðσδ
β
ρÞgμν þ δαðμδ

β
νÞgσρÞ: ð17bÞ

The mass scale M gives the gravitational coupling, and is
related to Newton’s constant G scale by 1=M2 ¼ 8πG.
There is a remarkable relation

in CGR∶ ∇μHμν
α ¼ 2∇μPμν

α: ð18Þ
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This relation is an identity that holds despite the different
symmetries of the two tensor densities. Note that it implies
that

in CGR∶ ∇μ∇νPμν
α ¼ 0; ð19Þ

which indeed can be derived as a Bianchi identity [27].
Since in the equations of motion the tensor density Hμν

α

only features in (4), where it can be equivalently replaced
by (twice) the tensor density Pμν

α, it appears that at the
level of dynamics, we can identify the latter as both the
kinetic and the potential excitation tensor density. Defining
τμν ¼ ∇αHαμ

ν, we can rewrite the identity (4) as

τμν ¼ Tμ
ν þ tμν; ð20Þ

which features explicitly the canonical decomposition [21]
of the field equation into the gravitational, matter, and
inertial energy-momentum tensor densities. There is
an important subtlety, however, that since ∇σφ

½σμ�ν
α ¼

Hμν
α − 2Pμν

α ≠ 0, we should not employ the potential
excitation to deduce the energy-momentum of a gravitating
system, but should use kinetic excitation.

C. General metric constitutive relation

Let us then continue to consider more general possibil-
ities than the special case of CGR. The generic metric
relation (14) is given by 9 parameters as

EVEN χ
μν

αρσ
β ¼ ffiffiffiffiffiffi

−g
p ðb1gαðρδ½μσÞgν�β

þ b2gρσδ
½μ
α gν�β þ b3δ

½μ
α δ

ν�
ðρδ

β
σÞÞ; ð21Þ

EVENξ
α
μν

β
ρσ

¼ ffiffiffiffiffiffi
−g

p �
c1gαβgμðρgσÞν þ c2δ

β
ðνgμÞðσδ

α
ρÞ

þ c3gαβgμνgσρ þ c4δαðμgνÞðρδ
β
σÞ

þ 1

2
c̃5δαðσδ

β
ρÞgμν þ

1

2
c̃6δαðμδ

β
νÞgσρ

�
: ð22Þ

For the two last pieces, it will be more convenient later to
employ the different parametrization

1

2
c̃5δαðσδ

β
ρÞgμν þ

1

2
c̃6δαðμδ

β
νÞgσρ

¼ 1

2
c5ðδαðσδβρÞgμν þ δαðμδ

β
νÞgσρÞ

þ 1

2
c6ðδαðσδβρÞgμν − δαðμδ

β
νÞgσρÞ: ð23Þ

It can be seen that the c5 term is reversible and c6 is the
coefficient of a skewon term. As noticed by Vilson and
Rünkla [32], the relation has the exchange symmetry
ξαμν

β
ρσ ¼ ξβρσ

α
μν when c̃6 ¼ c̃5, i.e., c6 ¼ 0. Only the

components of the constitutive relation which have
this symmetry enter into the Lagrangian, and having
a Lagrangian formulation is a necessary condition for
reversibility [6].
The constitutive relation (22) with c6 ¼ 0 describes

the 5-parameter action of what was dubbed the newer
general relativity [17] and has been studied on many
occasions [20,27,32–35]. However, it is worth reiterating
that the unique constitutive relation (17) is dictated by
∇μ∇νPμν

α ¼ 0 and ∇μHμν
α ¼ 2∇μPμν

α, which reflects the
translational invariance of the purified gravity theory [27].
Conroy analyzed the case of a generic linear constitutive
relation without the restriction to first-derivative order or
even the assumption of locality [36], which required the
parametrization by 9 independent functions (the argument
of those functions being the d’Alembertian operator
gμν∇μ∇ν). Nonlinear constitutive relations have been
applied in the context of fðQÞ cosmology5 [17,38–42],
and Dialektopoulos has classified the cosmological
Noether symmetries of the most generic nonlinear first-
derivative action [43]. The alternative possibilities that are
uncovered in the premetric formalism could also be
interesting to study in more detail.
In the case that one resorts, in addition to themetric, to the

Levi-Civita tensor density ϵαβγδ, it is possible to consider
parity-violating purified gravity theories [44,45]. Only one
additional term can appear in the quadratic form, but four
contractions can be formed in the kinetic constitutive
relation. The parity-violating constitutive relations are

ODD χ
μν
αρσ

β ¼ b4ϵμναðρδ
β
σÞ þ b5ϵμναβgρσ þ b6ϵαβ½μðρδ

ν�
σÞ

þ b7ϵμνβðρgσÞα; ð24Þ

ODDξ
α
μν

β
ρσ ¼ c7ðϵαβμðρgσÞν þ ϵαβνðρgσÞμÞ: ð25Þ

The excitation tensor densities implied by the most general
metric constitutive relation are therefore, explicitly,

Hμν
α ¼ −

ffiffiffiffiffiffi
−g

p ðb1Q½μν�
α þ b2Q½μδν�α þ b3Q̃

½μδν�α Þ
þ b4ϵμναβQ̃

β þ b5ϵμναβQβ þ b6ϵαβ½μρQβ
ν�ρ; ð26Þ

Pα
μν ¼

ffiffiffiffiffiffi
−g

p �
c1Qα

μνþc2QðμανÞ þc3Qαgμνþc4δαðμQ̃νÞ

þ1

2
ðc5δαðμQ̃νÞ þc6δαðμQνÞÞ

�
−2c7ϵαβρðμQβ

νÞρ: ð27Þ

However, the parity-violating constitution relation cannot
satisfy the requirement ∇αHαμ

ν ¼ 2∇αPαμ
ν. The CGR

relations (17) are therefore the unique local and linear
(nonderivative) constitutive law of a Lagrangian theory,
and this excludes odd-parity interactions.

5Such models may have also relevance at galactic scales [37].
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Finally, we should remark that although the above
requirement ensures that the premetric equations can be
derived from an action principle, such a principle
may not be necessary for a consistent physical theory.
If this assumption is relaxed, one may consider the
full 13-component set of theories described by the above
constitutive relations χμναρσ

β ¼ ODD χ
μν
αρσ

β þ EVEN χ
μν
αρσ

β

and ξαμν
β
ρσ ¼ ODDξ

α
μν

β
ρσ þ EVENξ

α
μν

β
ρσ. However, except

in the case of CGR, these theories may not be com-
patible with the metric-covariant conservation of matter
energy-momentum (although they, by construction, are
compatible with the conservation of the total energy-
momentum of the matter and the metric field) unless
additional constraints are imposed. As we will demon-
strate in Sec. VI, devoted to the further study of the
possible viability of such generalized class of purified
gravity (which could be dubbed the premetric newer

general relativity), this turns out to be a case. Now
we instead continue with the investigation of the con-
stitutive relations, proceeding to the most generic case
wherein no metric (nor Levi-Civita tensor) need be
assumed.

D. Irreducible decomposition of ξ

Since the constitutive tensor densities ξαμν
β
ρσ and

χμναρσ
β are rather cumbersome objects with a large number

of components, it is helpful to decompose them into smaller
parts. Here we make use of an irreducible decomposition
based on Young diagrams, along the lines of a similar
decomposition shown in [6]. We begin with the potential
constitutive tensor density ξαμν

β
ρσ ¼ ξαðμνÞβρσ ¼ ξαμν

β
ðρσÞ.

Its decomposition can be visualized in terms of Young
diagrams as

ð28Þ

where the first bracket corresponds to the upper indices,
while the second bracket corresponds to the lower indices.
In four dimensions one finds that the total number of
components decomposes as

1600 ¼ 200 ⊕ 120 ⊕ 450 ⊕ 270 ⊕ 350 ⊕ 210: ð29Þ
By applying the Young projectors to ξαμν

β
ρσ one finds that

its irreducible parts are given by

½1�ξαμνβρσ ¼ ξðαμνβÞρσ −
½3�ξαμνβρσ −

½5�ξαμνβρσ; ð30aÞ
½2�ξαμνβρσ ¼ ξ½αμνβ�ρσ −

½4�ξαμνβρσ −
½6�ξαμνβρσ; ð30bÞ

½3�ξαμνβρσ ¼
1

2
ðξðαμνβÞρσ − ξðαρσβÞμνÞ; ð30cÞ

½4�ξαμνβρσ ¼
1

2
ðξ½αμνβ�ρσ − ξ½αρσβ�μνÞ; ð30dÞ

½5�ξαμνβρσ ¼ ξðαðμνβÞρσÞ; ð30eÞ
½6�ξαμνβρσ ¼ ξ½αðμνβ�ρσÞ: ð30fÞ

The structure of this decomposition becomes clearer ifwe first
decompose ξαμνβρσ into its reversible and irreversible parts, z

ξ
þ

α
μν

β
ρσ ¼

1

2
ðξαμνβρσ þ ξβρσ

α
μνÞ ¼ ξ

þ
β
ρσ

α
μν; ð31aÞ

ξ
−
α
μν

β
ρσ ¼

1

2
ðξαμνβρσ − ξβρσ

α
μνÞ ¼ −ξ− β

ρσ
α

μν: ð31bÞ

Note that only ξ
þ

α
μν

β
ρσ contributes to the Lagrangian and

preservesmatter energy-momentum,while ξ
−
α
μν

β
ρσ mediates

dissipative effects.We then further decompose these twoparts
by imposing the symmetry or antisymmetry of the upper two
indices,

ξ
�

α
μν

β
ρσ ¼ ξ

�
α
μν

β
ρσ þ ξ

� ½α
μν

β�
ρσ: ð32Þ

Carefully examining the decomposition (30) then shows that
it can alternatively be written in the equivalent form

½1�ξα μν
β
ρσ ¼ ξ

þ ðα
μν

βÞ
ρσ − ξ

þ ðαðμν βÞ
ρσÞ; ð33aÞ

½2�ξαμν β
ρσ ¼ ξ

− ½α
μν

β�
ρσ − ξ

− ½αðμν β�
ρσÞ; ð33bÞ

½3�ξαμν β
ρσ ¼ ξ

− ½α
μν

β�
ρσ; ð33cÞ

½4�ξαμν β
ρσ ¼ ξ

þ ðα
μν

βÞ
ρσ; ð33dÞ

½5�ξαμν β
ρσ ¼ ξ

þ ðαðμν βÞ
ρσÞ; ð33eÞ

½6�ξαμνβ ρσ ¼ ξ
þ ½αðμν β�

ρσÞ: ð33fÞ

The reversible and irreversible parts thus decompose as
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ξ
þ

α
μν

β
ρσ ¼ ½1�ξαμν β

ρσ þ ½4�ξαμν β
ρσ þ ½5�ξαμν β

ρσ; ð34aÞ

ξ
−
α
μν

β
ρσ ¼ ½2�ξαμν β

ρσ þ ½3�ξαμν β
ρσ þ ½6�ξαμν β

ρσ: ð34bÞ

In Table I we give names to these irreducible pieces,
following a logic adapted from [6]. All parts contribute to

energy-momentum, but not all can be derived from a
Lagrangian formulation.

E. Irreducible decomposition of χ

We then continue with the kinetic constitutive tensor
density χμναρσ

β ¼ χ½μν�αρσβ ¼ χμναðρσÞβ. In terms of Young
diagrams the decomposition is given by

ð35Þ

where again the first and second brackets correspond
to upper and lower indices, respectively. One then finds
that the total number of independent components splits
into

960 ¼ 400 ⊕ 400 ⊕ 80 ⊕ 80: ð36Þ

The irreducible decomposition of χμναρσ
β is given by

½1�χμναρσβ¼ χμναρσ
β− ½2�χμναρσβ− ½3�χμναρσβ− ½4�χμναρσβ; ð37aÞ

½2�χμναρσβ ¼ χμνðαρσÞβ − ½4�χμναρσβ; ð37bÞ

½3�χμναρσβ ¼ χ½μναρσβ� − ½4�χμναρσβ; ð37cÞ
½4�χμναρσβ ¼ χ½μνðαρσÞβ�: ð37dÞ

An alternative decomposition can be obtained by lowering
the first pair of indices by using the Levi-Civita symbol,
and defining

χ̃μναρσ
β ¼ 1

2
ϵμντω χ

τω
αρσ

β: ð38Þ

We can then perform a decomposition in the lower indices,
which is expressed in Young diagrams as

TABLE I. Nomenclature for the irreducible parts of the constitutive relations. In the last column we indicate which combinations of the
metric terms contribute to each of the irreducible parts. Elsewhere, the parentheses are used to indicate that we have a definite answer
only in a metrical theory. As will be clarified later, the dispersion relation of gravitational waves depends at the linear order only on the
constitutive relation χμναρσ

β, and not all its irreducible parts contribute.

Irreducible part Components Nomenclature Lagrangian Dispersion Metric terms

½1�ξαμνβρσ 200 principal-1 Yes � � � c1 − 2c3, c2 þ c4 − 2c5
½2�ξαμνβρσ 120 skewon-1 No � � � none
½3�ξαμνβρσ 450 skewon-2 No � � � c6
½4�ξαμνβρσ 270 axion-1 Yes � � � c4 − c2, c7
½5�ξαμνβρσ 350 principal-2 Yes � � � c1 þ c3, c2 þ c4 þ c5
½6�ξαμνβρσ 210 axion-2 No � � � none

½1�χμναρσβ 400 principal-A (Yes) Yes b1 − 2b2, 2b4 − b6
½2�χμναρσβ 400 principal-B (Yes) Yes b1 þ b2
½3�χμναρσβ 80 axion-A (No) No b4 þ b6, 2b5 þ b7
½4�χμναρσβ 80 axion-B (No) No b5 − b7
f1gχμναρσβ 336 odd axion (No) (No) b5 − b7
f2gχμναρσβ 240 odd principal-1 (No) (Yes) 2b5 þ b7 − b4, 2b5 þ b7
f3gχμναρσβ 2 · 144 even principal-1 (Yes) (Yes) b1, b2
f4gχμναρσβ 80 odd principal-2 (No) (Yes) b4 − 2b5 − 2b6 − b7
f5gχμναρσβ 16 even principal-2 (Yes) (Yes) b1 − 2b2 − 2b3

KOIVISTO, HOHMANN, and MARZOLA PHYS. REV. D 103, 064041 (2021)

064041-8



ð39Þ

Taking into account also the upper index, which we omitted
in the decomposition above, the number of independent
components splits as

960 ¼ 336 ⊕ 240 ⊕ 2 · 144 ⊕ 80 ⊕ 16: ð40Þ
Particular attention should be paid to the third diagram,
which appears twice in the decomposition. This indicates
that the irreducible tensor decomposition, seen as a
decomposition of a tensor product of representations of
GL(4) into irreducible subrepresentations, contains two
copies of the same irreducible representation represented
by this diagram. However, in contrast to the remaining
representations, which appear only once in the decom-
position, there is no canonical choice of the two repre-
sentation spaces (and hence projectors onto particular
tensor components); only their direct sum is canonically
determined. Thus, the decomposition yields five terms,
which we label fIgχ̃μναρσβ; I ¼ 1;…; 5. Keeping in mind
that these are still antisymmetric in the first two indices, we
may raise these indices again, hence defining

fIgχμναρσβ ¼ −
1

2
ϵμντωfIgχ̃τωαρσβ: ð41Þ

These terms are then given by

f1gχμναρσβ ¼
1

5
ðχμνðαρσÞβ þ 2δ½μðα χ

ν�γ jγjρσÞβ þ 4δ½μðα χ
ν�γ

ρσÞγβÞ;
ð42aÞ

f2gχμναρσβ ¼ χμναρσ
β − χμνðαρσÞβ −

1

2
χγδγδðρβδ

½μ
σÞδ

ν�
α

þ 2

3
δα

½μ χν�γγρσβ þ
5

6
δ½μðρ χ

ν�γ jαγjσÞβ −
1

6
δ½μðρ χ

ν�γ
σÞαγβ

−
2

3
δ½μðρ χ

ν�γ jγαjσÞβ −
2

3
δα

½μ χν�γðρσÞγβ; ð42bÞ

f3gχμναρσβ¼
1

5
ð3χγδγδðρβδ½μσÞδν�α −3δ½μðρ χ

ν�γ
σÞαγβ−3δ½μðρ χ

ν�γ jαγjσÞβ

þ2δ½μðρ χ
ν�γ jγαjσÞβþ2δα

½μ χν�γðρσÞγβ−4δα
½μ χν�γγρσβÞ;

ð42cÞ

f4gχμναρσβ ¼
1

2
δ½μðρ χ

ν�γ
σÞγαβ −

1

2
δ½μðρ χ

ν�γ jαγjσÞβ þ
1

6
χγδγδðρβδ

½μ
σÞδ

ν�
α ;

ð42dÞ

f5gχμναρσβ ¼ −
4

15
χγδγδðρβδ

½μ
σÞδ

ν�
α : ð42eÞ

Some properties of these components are summarized in
Table I.

F. Irreducible decomposition of metric
constitutive law

We now apply the decompositions shown above to the
metric constitutive relations. The potential constitutive
tensor density (22), (25) decomposes into the parts (in
this subsection, we shall absorb the scale M2 into the
coefficients ci and bi, which then become dimensionful)

½1�ξαμνβρσ ¼
ffiffiffiffiffiffi
−g

p �
c1 − 2c3

3
gαβðgμðρgσÞν − gμνgρσÞ

þ c2 þ c4 − 2c5
6

ð2δðαðμgνÞðρδβÞσÞ

− gμνδαðρδ
β
σÞ − gρσδαðμδ

β
νÞÞ

�
; ð43aÞ

½2�ξαμνβρσ ¼ 0; ð43bÞ

½3�ξαμνβρσ ¼
ffiffiffiffiffiffi
−g

p c6
2
ðδαðσδβρÞgμν − δαðμδ

β
νÞgσρÞ; ð43cÞ

½4�ξαμνβρσ ¼
ffiffiffiffiffiffi
−g

p ðc4 − c2Þδ½αðμgνÞðρδβ�σÞ
þ c7ðϵαβμðρgσÞν þ ϵαβνðρgσÞμÞ; ð43dÞ

½5�ξαμνβρσ ¼
ffiffiffiffiffiffi
−g

p ½ðc1 þ c3ÞgαβgðμνgρσÞ
þ ðc2 þ c4 þ c5ÞgðμνδαρδβσÞ�; ð43eÞ

½6�ξαμνβρσ ¼ 0: ð43fÞ

We find that the only irreversible part is the skewon
½3�ξαμνβρσ , which is nonvanishing only in the case c6 ≠ 0.
We also find that the parity-violating term (25) contributes
only to the part ½4�ξαμνβρσ . For the kinetic constitutive tensor
density (21), (24) we have the irreducible parts

½1�χμναρσβ ¼
ffiffiffiffiffiffi
−g

p �
b1−2b2

3
ðgαðρδ½μσÞgν�β−gρσδ

½μ
α gν�βÞ

þb3δ
½μ
α δ

ν�
ðρδ

β
σÞ

�
þ2b4−b6

3
ðϵαμνðρδβσÞ− ϵα

β½μðρδ
ν�
σÞÞ;

ð44aÞ

½2�χμναρσβ ¼
ffiffiffiffiffiffi
−g

p ðb1 þ b2Þgðρσδ½μαÞgν�β; ð44bÞ
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½3�χμναρσβ ¼ ðb4 þ b6Þϵαðρ½μνδβ�σÞ
þ 2b5 þ b7

3
ðgρσϵαβμν − gαðρϵσÞβμνÞ; ð44cÞ

½4�χμναρσβ ¼ ðb5 − b7ÞgðρσϵαÞβμν: ð44dÞ

Alternatively, we may use the decomposition (42) and find

f1gχμναρσβ ¼ ðb5 − b7ÞgðρσϵαÞβμν; ð45aÞ

f2gχμναρσβ ¼
2b5 þ b7 − b4

2
δ½μðρϵ

ν�
σÞαβ þ b4ϵμναðρδ

β
σÞ

þ 2b5 þ b7
3

ðgρσϵμναβ − gαðρϵμνσÞβÞ; ð45bÞ

f3gχμναρσβ ¼
ffiffiffiffiffiffi
−g

p �
b1 − 2b2

5
δ½μα δ

ν�
ðρδ

β
σÞ

þ b1gαðρδ
½μ
σÞg

ν�β þ b2gρσδ
½μ
α gν�β

�
; ð45cÞ

f4gχμναρσβ ¼
b4 − 2b5 − 2b6 − b7

2
δ½μðρϵ

ν�
σÞαβ; ð45dÞ

f5gχμναρσβ ¼ −
ffiffiffiffiffiffi
−g

p b1 − 2b2 − 5b3
5

δ½μα δ
ν�
ðρδ

β
σÞ: ð45eÞ

Following this decomposition, we find that the parity-
preserving terms contribute only to f3gχμναρσβ and

f5gχμναρσβ, while the parity-violating terms contribute only
to f1gχμναρσβ, f2gχμναρσβ and f4gχμναρσβ.
We shall return in Sec. VII to summarize in Fig. 2 the

physical assumptions which lead from the 5632-component
general constitutive relation to the unique theory specified
by one free component.

IV. PREMETRIC CONSTRUCTION IN THE
LANGUAGE OF DIFFERENTIAL FORMS

In this section we revisit the steps of Sec. II in a different
formalism. A dictionary between the two languages will be
given in Table II.

A. Frame

Consider a four-dimensional differential manifold
endowed with a coframe ea. Its exterior products generate
the bases

ea; eab ¼ ea ∧ eb; eabc ¼ ea ∧ eb ∧ ec;

eabcd ¼ ea ∧ eb ∧ ec ∧ ed ð46Þ

of the spaces of untwisted 1-forms, 2-forms, 3-forms, and
4-forms, respectively. In terms of the Levi-Civita permu-
tation symbol εacbd and a section s of the orientation line
bundle, we can introduce the twisted scalar-valued volume
form

TABLE II. Summary of the objects and laws in the two formalisms. In the column “Basis” the number p denotes a p-form, and − is for
twisted, þ for untwisted. The entry in column “W” is 1 for tensor densities (or, tensor density equations) and 0 for tensors (the rank is
manifest). We see that the quantities corresponding to twisted forms are tensor densities. We also see that apart from the form of the
homogeneous field equation, the analogy with massive electromagnetism is complete, naturally modulo the extra indices in gravity
theory. However, as mentioned in the text, the homogeneous field equation Fab ¼ 0 could be regarded as a macroscopic approximation
to the gravity theory where only dFab ¼ 0 was required at energies ∼M (or, distances ∼1=M).

Objects and laws Basis Electromagnetism Gravity W Electromagnetism Gravity

Source current 3− J ¼ Tþ t Ja ¼ Ta þ ta 1 Jμ ¼ Tμ þ tμν Jμν ¼ Tμ
ν þ tμν

Conservation law 4− dJ ¼ 0 dJa ¼ 0 1 ∇μJμ ¼ 0 ∇μJμν ¼ 0

Kinetic excitation 2− H Ha 1 Hμν Hμν
α

Mass excitation 3− P Pab 1 Pα Pα
μν

Inhomogeneous field equation 3− dH ¼ J dHa ¼ Ja 1 ∇μHμν ¼ Jν ∇μHμν
α ¼ Jμα

Kinetic potential 1+ A Aab 0 Aμ Aαβ
ν

Mass potential 0+ B Bab 0 B Bαβ

Field strength 2+ F ¼ dA Fab ¼ dAab 0 Fμν ¼ 2∇½μAν� Fαβ
μν ¼ 2∇½μAαβ

ν�
Homogeneous field equation 3+, 2+ dF ¼ 0 Fab ¼ 0 0 ∇½αFμν� ¼ 0 Fαβ

μν ¼ 0

Lorentz force 4− fa ¼ əa · F ∧ J 0 1 fμ ¼ FμνJν 0
Effective force 4− f ¼ −dt fa ¼ −dta 1 f ¼ −∇μtμ fν ¼ −∇μtμν
Energy-momentum 3− emTa ta 1 emTμ

ν tμν
Kinetic Lagrangian 4− kinΛ ¼ − 1

2
F ∧ H 0 1 kinL ¼ 1

4
HμνFμν 0

Mass Lagrangian 4− potΛ ¼ − 1
2
A ∧ P potΛ ¼ − 1

2
Aab ∧ Pab 1 potL ¼ − 1

2
PμAμ

potL ¼ − 1
2
Pα

μνAμν
α

Kinetic constitutive relation 0− χabcd χabcdf
e 1 χαβμν χμναβγ

δ

Mass constitutive relation 0− ξab ξacd
b
ef 1 ξαβ ξαμν

β
ρσ
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vol ¼ 1

4!
εacbdeabcd ⊗ s: ð47Þ

We note that we can use the interior product (to be denoted
here with a “dot” instead of the perhaps more common
“hook”) without invoking a spacetime metric, it being in
basic terms just a summation than a contraction. Thus we
can introduce the frame field əa as the inverse of the
coframe,

əa · eb ¼ eb · əa ¼ δba; ð48Þ

and this allows us to also introduce the basis form for the
spaces of twisted 0-forms, 1-forms, 2-forms, 3-forms, and
4-forms as

ϵabcd ¼ əd · ϵabc; ϵabc ¼ əc · ϵab;

ϵab ¼ əb · ϵa; ϵa ¼ əa · vol; vol; ð49Þ

respectively. One may check that ea ∧ ϵb ¼ δabvol. Under a
GL(4) transformation Λa

b (with the inverse Λa
b and the

determinantΛ), we have the following transformation laws:

ea → Λb
aeb; əa → Λb

aəb; vol→ jΛjvol; ð50Þ

and thus the bases (46) are tensors while the twisted bases
(49) are tensor densities.

B. Excitation

1. Electromagnetism

The conservation of the electric charge entails the
existence of an electric current J. It is described as a
twisted 3-form,

J ¼ Jaϵa: ð51Þ

Under the transformation (50) Ja → Λ−1Λa
bJb, and thus

J → �J, where the sign is the sign of Λ. The charge
conservation, in integral and in differential forms is

Z
∂Ω4

J ¼ 0; and dJ ¼ 0; ð52Þ

respectively. Locally, the latter is equivalent to the inho-
mogeneous Maxwell equation

dH ¼ J; ð53Þ

implying the existence of the electromagnetic excitationH,
which is a twisted 2-form

H ¼ 1

2
Habeab ¼

1

2
H̃abϵab; where H̃ab ¼ 1

2
ϵabcdHcd:

ð54Þ

SinceHab is a twisted covariant tensor, H̃ab is an untwisted
contravariant tensor density. To take into account that in
addition to the matter sources T, in massive electromag-
netism there exists also the self-interaction source t, one
performs the decomposition J ¼ Tþ t.
In case of such self-interactions, one also needs to

consider a twisted 3-form P, given as

P ¼ 1

6
Pabceabc ¼ P̃aϵa; where P̃a ¼ 1

6
ϵabcdPbcd: ð55Þ

Since Pabc is a twisted covariant rank-3 tensor, P̃a is an
untwisted contravariant vector density.

2. Gravity

In gravity, we begin with the conservation of energy and
momenta, and we have thus four conserved charges. As in
the case of electromagnetism, they are described by a
twisted 3-form,

Ja ¼ Jacϵc: ð56Þ

The conservation in integral and in differential forms is
analogously expressed as

Z
∂Ω4

Ja ¼ 0; and dJa ¼ 0: ð57Þ

The latter implies again the existence of a twisted two-form

Ha ¼
1

2
Habcebc ¼

1

2
H̃a

bcϵbc; where H̃a
bc ¼ 1

2
ϵbcdeHade:

ð58Þ

Since Habc is a twisted covariant tensor, H̃a
bc is an

untwisted contravariant tensor density. We now write

dHa ¼ Ja ¼ Ta þ ta; ð59Þ

taking into account that in addition to the energy-
momentum of matter Ta, there can also occur inertial
energy-momentum ta.
The potential excitation is now defined as the twisted

3-form Pab, given as

Pab ¼
1

6
Pabcdeecde¼ P̃ab

cϵc; where P̃ab
c ¼ 1

6
ϵcdefPabdef:

ð60Þ
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Since Pabcde is a twisted covariant rank-3 tensor, P̃ab
c is an

untwisted contravariant vector density.

C. Field strength

1. Electromagnetism

The field strength F ¼ 1
2
Fabeab is an untwisted 2-form,

which satisfies the equations

Z
∂Ω4

F ¼ 0; and dF ¼ 0: ð61Þ

The latter equation is an expression of the conservation of
the magnetic flux, and it implies the existence of the
electromagnetic potentialA ¼ Aaea such that dA ¼ F. The
electromagnetic potential is defined up to a scalar φ such
that A → Aþ dφ.

2. Gravity

We introduce the gravitational field strength Fab as an
untwisted tensor-valued 2-form which satisfies the equa-
tions Fab ¼ 0, due to the integrability of the gravitational
geometry. The gravitational potential Aab ¼ Aab

cec for
which Fab ¼ dAab thus has the further property thatAab ¼
dφab for some φab, which follows from our basic postulate
that Fab ¼ 0.

D. Force

1. Electromagnetism

The force acting on matter is described by a covector-
valued twisted 4-form f a ¼ favol, where fa is a covector-
valued scalar. The Lorentz force is given as

f a ¼ ðəa · FÞ ∧ J ¼ ðJbFbaÞvol ¼ favol: ð62Þ

By construction, fa is an untwisted covector-valued scalar
density.

2. Gravity

The gravitational force is, again, constructed in complete
analogy to the electromagnetic one, as a covector-valued
twisted 4-form f ab ¼ fabvol,

f ac ¼ ðəa · FbcÞ ∧ Jb ¼ ðJbdFbc
daÞvol ¼ facvol: ð63Þ

The absence of curvature, Fab ¼ 0, implies the absence of
force, f ab ¼ 0. This reflects the conservation of total
energy and momentum.
However, matter energy-momentum need not be con-

served. Therefore, there arises an effective force

dTa ¼ −dta ≡ fa: ð64Þ

The interpretation of this force as an inertial effect was
already discussed in Sec. II C 2. In the case of CGR it turns
out that fa has precisely the form that ensures the metric-
covariant conservation of matter. This could be expected
because the CGR can be derived from an action principle,
which guarantees the generalized Bianchi identity [46].

E. Energy-momentum current

1. Electromagnetism

Energy-momentum currents are described by covector-
valued 3-forms. In the case of electromagnetism, we write

emTa ¼
1

2
ðF ∧ əa ·H −H ∧ əa ∧ FþA ∧ əa · P

− P ∧ əa ·AÞ: ð65Þ

If the theory can be obtained from a twisted Lagrangian
4-form

Λ ¼ −
1

2
F ∧ H −

1

2
A ∧ P; ð66Þ

we can alternatively write

emTa ¼ əa · Λ − F ∧ əa ·H −A ∧ əa · P: ð67Þ

One may verify that, defining LaX ¼ ½əa;X� for any form
X as its Lie derivative along the basis vector əa,

demTa¼ f a−
1

2
ðF∧LaH−H∧LaFþA∧LaP−P∧LaAÞ:

ð68Þ

Here f a is the Lorentz force and the remaining additional
force is determined by the constitutive law.

2. Gravity

In case of gravity, the current analogous to (65) contains
only the two last terms. That is,

ta ¼
1

2
ðAbc ∧ əa · Pbc − Pbc ∧ əa ·AbcÞ: ð69Þ

Again, if the theory can be obtained from a twisted
Lagrangian 4-form

Λ ¼ −
1

2
Aab ∧ Pab; ð70Þ

there is an alternative formula,

ta ¼ əa · Λ −Abc ∧ əa · Pbc: ð71Þ
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The conservation of the gravitational energy-momentum
tensor can be derived to be

dta ¼ −
1

2
ðAbc ∧ LaPbc − Pbc ∧ LaAbcÞ; ð72Þ

which is minus the effective force fa affecting matter.

F. Constitutive relation

1. Electromagnetism

By using the expansions

H ¼ 1

2
H̃abϵab; F ¼ 1

2
Fabeab;

P ¼ P̃aϵa; A ¼ Aaea; ð73Þ

one finds that essentially the same constitutive relations as
in Sec. III A are to be specified. For example, a generali-
zation of the Proca theory is given by

H̃ab ¼ χabcdFcd; P̃a ¼ ξabAb: ð74Þ

The constitutive tensor densities in the two languages are
related by the components of the coframe field

χabcd ¼ eaμebνecρedσ χμνρσ; ξab ¼ eaμebνξμν: ð75Þ

Thus, the analysis of the constitutive relations in the tensor
language is directly applicable to theory formulated in the
exterior algebra.

2. Gravity

Now let us recall the expansions

Ha¼
1

2
H̃a

bcϵbc; Pab ¼ P̃c
abϵc; Aab ¼ Aab

cec: ð76Þ

The constitutive relations we focused upon previously are
thus expressed in latin indices as

H̃c
ab ¼ χabcdf

eQe
df; P̃a

bc ¼ ξabc
d
efQd

ef; ð77Þ

where the index conversion can be made with the help of
the components of the coframe and the tetrads, i.e., the
components of the frame, in the very obvious way

χabcdf
e ¼ eaμebνəfσeeβ χμναρσβəcαədρ;

ξabc
d
ef ¼ eaαedβξαμνβρσəb

μəcνəeρəfσ: ð78Þ

By lifting the analysis into the frame bundle, we have
introduced an additional object, the frame field, only to
avoid introducing a coordinate chart explicitly. One may
then consider trading the extra structure for another, the
symbol ηab. Then one of the fields, ea and φab (where

Qab ¼ −dφab) becomes redundant, since it is possible,
and indeed conventional, to make the identification
φab · əa · əb ¼ ηabəa ⊗ əb.

V. RESTORING SYMMETRIES

In this section we discuss further the analogy of purified
gravity and massive electromagnetism. In particular, the
analogy suggests a natural extrapolation of CGR which
predicts an “impurity” of the spacetime structure at the
Planck scale.

A. From Proca to Stueckelberg

1. Electromagnetism

Our discussion has lead to the premetric generalization
of massive Abelian gauge theories. In the Proca formu-
lation, the Lagrangian for the massive vector field is simply

LProca ¼
1

4
FμνFμν −

1

2
m2AμAμ: ð79Þ

The mass term obviously breaks the gauge symmetry
Aμ → Aμ −∇μφ. For many purposes, it is much better to
consider the Stueckelberg version of the theory. Let us
introduce a new field B and write the Lagrangian for the
two fields as

LStueck ¼
1

4
FμνFμν −

1

2
ð∇μBþmAμÞð∇μBþmAμÞ: ð80Þ

The trick is that now we have restored the gauge symmetry
of the massless case, when taking into account also the
transformation of the field B, since the action is invariant
under

Aμ → Aμ −∇μφ; B → Bþmφ; ð81Þ

and by setting B ¼ 0we recover the Proca action. Thus, the
formulations (79) and (80) are equivalent as far as the
vector boson is concerned, but the introduction of a further
degree of freedom, B, allows us to extend the symmetries of
the system yielding important consequences, for instance,
for the renormalizability of the theory [23].
This suggests to improve the application of the premetric

program, as realized in the two previous sections, in the
case of nonzero potential excitations. It should be then
understood that just as the existence of the kinetic exci-
tation H implies the existence of a potential A, the
existence of a potential excitation P implies the existence
of a field B. The principle is that the symmetry that emerges
for the kinetic excitation should not be destroyed by the
presence of the potential excitation. Thus, a nonvanishing
constitutive relation ξ may be considered to entail the
presence of an additional Stueckelberg field. As is the case
in the above demonstrated example, the resulting theory
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should be physically completely equivalent (despite the
formal introduction of the additional degrees of freedom).
However, it is, in our understanding, conceptually prefer-
able from the standpoint of the premetric program, to
consider that the redundancy in the one-form A deduced
from the property of the two-formH, is not undermined by
the presence of the three-form P. Rather, from the latter, we
can deduce the further property of the theory: the existence
of the 0-form B.
In the case of purified gravity, we shall sometimes refer

to the corresponding Stueckelberg 0-form Bab as the
“premetric field.”

2. Gravity

Two concerns may have arisen in the formulation of the
gravitational theory as presented in the above three sec-
tions. Firstly, was it legitimate to start with the connection
∇μ instead of ∂μ? Secondly, was it legitimate to promote
the gauge transformation φμν (respectively, φab) to a
dynamical variable? Now we shall clarify these points
which had been left somewhat vague. Both the issues are
addressed by applying the same symmetry-based reasoning
that lead us from Proca electromagnetism to Stuckelberg
electromagnetism to gravity. Thus, neither the substitution
∂μ → ∇μ nor the substitution Aμν

α → −Qα
μν ¼ ∇αgμν are

put by hand in the theory, but they are the inevitable
consequences of the symmetry axiom we proposed to
supplement the premetric program with in order to more
robustly deal with symmetry-breaking self-interactions
when such arise in physics.
To show this in detail, let us take some steps back and

undo those two perhaps dubious substitutions. In the Proca-
type formulation we have now (twice) walked through, the
gravitational Lagrangian is written as

LP ¼ λμν
αβFμν

αβ þ
1

2
M2Aμν

αξ
α
μν

β
ρσA

ρσ
β; ð82Þ

where we implemented the constraint of vanishing force
with a Lagrange multiplier λμναβ (though this is inessential).
The important thing is that we do not assume anything else
about the field Aρσ

β, except that it does not describe a
physical force. The symmetry of the field strength Fμν

αβ for
the gauge potential Aμν

α is Aμν
α → Aμν

α − ∂αφ
μν for an

arbitrary φαβ. Obviously, the self-interaction term now
breaks such symmetry.
Exactly as in the case of electromagnetic self-interaction,

we shall restore the symmetry by introducing the compensat-
ing field Bμν, which must transform as Bμν → Bμν þMφμν.
The gravitational Stueckelberg action then reads

LS ¼ λμν
αβFμν

αβ

þ1

2
ðMAμν

αþ∂αBμνÞξαμνβρσðMAρσ
βþ∂βBρσÞ: ð83Þ

The variation with respect to the field Aμν
α just gives an

equation of motion for the irrelevant Lagrange multiplier:

2∂βλμν
αβ ¼ ξαμν

β
ρσðMAρσ

β þ ∂βBρσÞ: ð84Þ

The variation with respect to the Lagrange multiplier in turn,
gives the equation of motion for Aμν

α:

Fμν
αβ ¼ 0 ⇒ Aμν

α ¼ 2MΓ̂μ
α
ν; where Γ̂μ

α
ν is flat: ð85Þ

Wehave introduced a flat affine connectionwith a convenient
normalization. Using this information in the action, it
becomes

LS ¼
1

2
M2ð∂αBμν þ 2Γ̂ðμ

α
νÞÞξαμνβρσð∂βBρσ þ 2Γ̂ðρ

α
σÞÞ:

ð86Þ

We have emphasized the symmetrization of the connection
Γ̂μ

α
ν that is imposed by the symmetries of the constitutive

relation, ξαμν
β
ρσ ¼ ξαðμνÞβðρσÞ. We should now note that

though torsion is given by the antisymmetry of the last
two indices of an affine connection, the contortion (i.e., the
total contribution of the torsion to the affine connection) is
antisymmetric in its first and the last indices. Thus we may
write

∂αBμν þ 2Γ̂ðμ
α
νÞ ¼ ∂αBμν þ 2Γðμ

α
νÞ ≡∇αBμν: ð87Þ

where Γμ
α
ν is flat and torsion-free.

Finally we may rename the variable Bμν as gμν, and
conclude that the theory is

LS ¼
1

2
M2∇αgμναξαμνβρσ∇βgρσ ¼

1

2
M2Qα

μνPα
μν: ð88Þ

Thus, neither HEREof the two ingredients of CGR (and its
generalizations), the metric and the symmetric teleparallel
covariant derivative,6 are in the least way ad hoc. They
emerge as dynamical variables from the first principles of
the axiomatic approach to gravity theory.

B. From Stueckelberg to Kibble?

1. Electromagnetism

In the formulation that was originally due to Kibble, the
Stueckelberg theory was embedded in a free Abelian Higgs
model. A complex scalar field Φ, charged under the U(1)
symmetry, was introduced such that its U(1)-covariant
derivative is

6In metric teleparallel gravity, the relevance of the pure-gauge
Lorentz connection has been emphasized often [11,47–49]. It
would seem more difficult to justify this structure from the
premetric approach.
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DμΦ ¼ ð∂μ − ieAμÞΦ: ð89Þ

The quite elegant action then reads

LKibble ¼
1

4
FμνFμν −

1

2
jDΦj2 þ VðjΦj2Þ: ð90Þ

A suitable potential can lead to a spontaneous symmetry
breaking which sets the modulus of the complex scalar field
to jΦ0j ¼ m=e. Thus, at the minimum,

Φ0 ¼
m
e
exp

�
ieBðxÞ
m

�
; ð91Þ

and we can identify the phase of the complex scalar with
the Stueckelberg field B. Up to a possibly nonzero
VðjΦ0j2Þ, we obviously recover (80) at the minimum.

2. Gravity

Since as far as we know, all massive elementary particles
and gauge fields have acquired their mass via the Higgs
mechanism, it is reasonable to assume that this is the case
also for the massM of the gravitational gauge field Aαβ

μ. In
fact, there is plenty of evidence for scale invariance in
physics. Starting from the basic argument of Weyl [50]
which many still find compelling enough by itself [51], in
modern particle physics technical arguments have kept
suggesting the nonexistence of an absolute scale at the level
of fundamental physics. In a scale-invariant theory, dimen-
sional regularization introduces only logarithmic runnings
of the coupling constants, and in such a case the large
hierarchy of the interactions might be better explained [52].
If the scale symmetry was restored in the absence of the
cosmological constant, its exceedingly small value would
be technically natural [53]. The Higgs mass parameter sits
at the edge of the stability bound [54] and its quartic
coupling seems to run to zero near the Planck scale, which
suggests that scale symmetry is indeed restored there if not
at lower scales, possibly solving the stability issue of the
Standard Model [55].
For the reasons stated above, we believe the Planck scale

should be the result of a spontaneous symmetry breaking.
The most straightforward analogy of Kibble’s Abelian
Higgs model does not however satisfactorily incorporate
such a mechanism within our present formalism. We could
write the Kibble-type action for gravity as

LK ¼ 1

2
ðDαΦμνÞ�ξαμνβρσðDβΦρσÞ þ VαβΦαβ: ð92Þ

To remain in the premetric framework, we have taken the
potential term to be determined by the (generally nonlinear)
constitutive relation Vαβ for our new complex field Φαβ.
When the radial component of the field has settled to an
isotropic constant value such that

Φαβ
0 ¼ M exp ðiBαβÞ; ð93Þ

we recover the Stueckelberg-type action. However, either
we would have to invoke an inhomogeneous covariant
derivative for the field such that

DμΦαβ ¼ ∂μΦαβ þ 2iMAαβ
μ; ð94Þ

or introduce a metric such that we would be allowed to
write

∇̂μΦαβ ¼ ∂μΦαβ þ iΓ̂α
μρΦρβ þ iΓ̂β

μρΦαρ: ð95Þ

On the other hand, in any case it is difficult to see how now
to specify the constitutive relation in practice without
invoking a metric.
As the purpose of this paper was only the axiomatic

formulation of purified gravity, we leave the intriguing
problem of the actual symmetry breaking mechanism and
its dynamics to a further study. Recently, a promising way
has been pointed out, first by realizing an observer space
[56] in Cartan geometry [57] by using merely a Lorentz
connection and a Higgs-like scalar (in particular, no metric
or a frame field) in a polynomial quadratic action (thus, not
only a local and linear but even a polynomial constitutive
relation) to give rise to a spacetime in the spontaneously
broken phase [58], and then by embedding this scenario to
the general linear bundle [59], thus bringing it a step closer
to our present premetric construction of purified gravity.7

C. Impurities near the Planck scale?

There is a complete analogy between purified gravity
and massive electromagnetism, except that the gravitational
force is imposed to vanish. This raises the question why
should we not allow a kinetic term for gravity as well, and
then to recover the predictions of GR, restrict to solutions
with vanishing field strength. Actually, such solutions are
naturally the relevant ones at the classical level. Since the
connection Aμν

α is massive, it interacts only at finite
distances. The range of the force is of the order of the
Planck length, about 1.6 × 10−35 meters. At the macro-
scopic scales, the gauge field does not propagate.
Therefore, for practical purposes Fμν

αβ ≈ 0 and we obtain
the same predictions by considering the theory with the
canonical kinetic term, instead of imposing the vanishing of
the field strength with a Lagrange multiplier. It is interest-
ing to consider that purified gravity becomes impure as one
probes microscopic distances approaching the Planck scale.
We would thus predict that at those scales, gravity is no
longer pure inertia, and the equivalence principle may in
some sense be broken.

7As a side-product, this scheme may eliminate the need for
particle dark matter in cosmology and astrophysics [58], and
suggests the incorporation of the gauge fields of particle physics
within the Aαβ

μ [59].
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There are some similarities with this scenario and the
very interesting approach towards quantum gravity by
Percacci et al. [60–62]. In particular, they also consider
a Higgs-like mechanism that would make the gravitational
connection massive. However, their setup is also funda-
mentally different since they consider the usual (equivalent
of) Einstein-Hilbert term as the kinetic term, while the mass
terms are additional terms that give masses only to the
distorted part of the connection (torsion and nonmetricity).
In the version of purified gravity advocated in this paper,
we on the contrary see the (equivalent of the) Einstein-
Hilbert term as the mass term, and speculate further that at
extremely high energies the possible kinetic term, which as
usual would be a square of the field strength of the
connection, would become dynamically relevant. In gen-
eral, there are many interesting studies that implement the
idea of a gravitational Higgs mechanism [26,57–66], but to
our knowledge, the necessity for such a mechanism had not
been previously deduced by an axiomatic method in the
framework of the premetric program.
To be concrete, we propose the extrapolation of

purified gravity Lagrangian Lgr motivated by the massive
electromagnetic Lagrangian Lem like so (where for clarity
we divide the corresponding mass scales in the P’s out from
the p’s)

Lem ¼ 1

4
HμνFμν −

1

2
m2pμAμ;

Lgr ¼
1

4
Hαβ

μνFαβ
μν −

1

2
M2pαβ

μAαβ
μ: ð96Þ

The hypothetical photon mass has not been detected despite
conducting experiments with exquisite accuracy, and thus if
an m ≠ 0 exists, we know that this m must be very small
[24,25]. On the other hand, the hypothetical “hypercurva-
ture” has not been experimentally probed because, as we
know, M is very large, in fact the largest fundamental mass
scale known in nature. In this sense, the phenomenological
status of the two theories in (96) are the opposite: in
electromagnetism, it is only the gauge-invariant piece that
appears in the standard theory and the physicality of the
longitudinal polarization φ has not been established,
whereas for gravity it is only the invariance-breaking piece
φαβ that propagates the well-established graviton, while the
gauge-invariant kinetic term of the “hypergravitational”
gauge field Aαβ

μ is only suggested by the theoretical
argument we have put forward.

VI. PROPERTIES OF GENERAL THEORIES

In this section we investigate the implications of more
general constitutive relations. First we consider the
dispersion relation in a fully general (local and linear)
case, and then focus on the properties of the 13-parameter
theories that can be defined in the presence of a metric.

A. Wave propagation

In gravity the inhomogeneous field equation (4) has two
contributions to the current Jμα, which are the matter
energy-momentum Tμ

α and gravitational energy-momen-
tum tμα. In the geometric optics approximation we assume
that the gravitational field is sufficiently weak so that we
can neglect its energy-momentum contribution, and so we
will set tμα ¼ 0. Further, we study the propagation of waves
in vacuum only, and hence set Tμ

α ¼ 0 as well. We end up
with the source-free field equation ∇μHμν

α ¼ 0. We then
make use of the constitutive relation (16), together with
Qβ

ρσ ¼ −∇βφ
ρσ and φ½ρσ� ¼ 0. Working in the Fourier

domain, where ∇μ → qμ becomes the wave covector, we
finally obtain the dispersion relation

Mν
αρσφ

ρσ ¼ 0; Mν
αρσ ¼ qμqβ χμναρσβ: ð97Þ

We call Mν
αρσ the characteristic tensor density. Note that

not all of the irreducible components of χμναρσβ contribute
to the characteristic tensor density and hence the dispersion
relation. Following their definition (37), the components
½3�χμναρσβ and ½4�χμναρσβ are antisymmetric in their first and
last indices, so that their contribution vanishes.
We further remark that we have found 16 homogeneous,

linear equations for the 10 components of φρσ. This means
that there must be a redundancy which eliminates six of
these equations. Four equations are readily eliminated
realizing that qνMν

αρσ ¼ 0, due to the antisymmetry of
χμναρσ

β in its first two indices. The remaining redundancies
are more difficult to find and depend on the particular form
of the constitutive density. We will reveal them in the most
general metric case below.

B. Wave propagation in the metric case

For the metric constitutive density (21), (24) we find the
characteristic tensor density

Mναρσ ¼
ffiffiffiffiffiffi−gp
2

½b1ðqνgαðρqσÞ − q2gνðρgσÞαÞ
þ b2ðqνqα − q2gναÞgρσ þ b3ðqαgνðρqσÞ − gναqρqσÞ�

þ 2b4 − b6
2

ϵναβðρqσÞqβ; ð98Þ

where we have lowered the first index for convenience, and
introduced the abbreviation q2 ¼ qμqμ. We see that the
terms corresponding to the parameters b5 and b7 do not
contribute. The linearized field equations thus read

0¼Eνα¼ 2Mναρσφ
ρσ

¼ ffiffiffiffiffiffi
−g

p ½b1ðφαβqβqν−q2φναÞþb2φβ
βðqνqα−q2gναÞ

þb3ðφνβqβqα−gναφρσqρqσÞ�þð2b4−b6Þϵναβρqβqσφρσ:

ð99Þ
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As mentioned before, these equations are not independent,
and the four equations qνEνα are satisfied identically. To
find further redundancies, it is helpful to further decompose
these equations into four irreducible parts. For this purpose,
we first contract with qα, which yields the longitudinal part

Eναqα ¼ 2
ffiffiffiffiffiffi
−g

p ðb1 − b3Þqαqβφβ½αqν�: ð100Þ

Remarkably, the antisymmetric, transverse part

Eβγϵβγναqα ¼ 4ð2b4 − b6Þqαqβφβ½αqν� ð101Þ

is of the same form, but is the only part which originates
from the parity-violating terms. The trace of the field
equations reads

Eα
α ¼

ffiffiffiffiffiffi
−g

p ½ðb1 − 3b3Þφα
αq2 − ðb1 þ 3b2Þφαβqαqβ�:

ð102Þ

We are then left with the transverse and trace-free part of
the field equations, which reads

3q2EðναÞ − 3qβqðνEαÞβ þ Eβ
βðqνqα − q2gναÞ

¼ ffiffiffiffiffiffi
−g

p
b1f6q2qβqðνφαÞβ − qνqαðq2φβ

β þ 2qβqγφβγÞ
− 3ðq2Þ2φνα þ ½ðq2Þ2φβ

β − q2qβqγφβγ�qναg ð103Þ

and, again remarkably, depends on b1 only. Note that each
of these equations must be satisfied individually.
We now find the aforementioned redundancy of the field

equations, which is apparent from the fact that the longi-
tudinal part (100) and the antisymmetric transverse part
(101) are identical, up to a constant factor, which means
that only one of them counts to the number of independent
equations. These are four equations since there is one free
index; however, they are not independent, since their
contraction with qν vanishes identically. Hence, we keep
three equations, and have eliminated three further redun-
dant equations, in addition to the four equations already
found for the general constitutive relation. In total we have
thus eliminated seven of the original 16 equations. The
remaining nine equations are the trace equation (102), the
five independent components of the symmetric, transverse,
trace-free equation (103), and the three independent com-
ponents mentioned before. Since φρσ has 10 independent
components, it thus follows that there must be a gauge
freedom eliminating one of them. This can most easily be
seen from an ansatz of the form

φρσ ¼ Ugρσ þ Vqρqσ þWðρqσÞ þ φ̃ρσ; ð104Þ

where

Wρqρ¼ 0; φ̃½ρσ� ¼ 0; φ̃ρ
ρ¼ 0; φ̃ρσqσ ¼ 0: ð105Þ

Inserting this ansatz into the field equations (99), we find
that they reduce to

ffiffiffiffiffiffi
−g

p �
2½ðb1 þ 4b2 þ b3ÞUþ ðb2 þ b3Þq2V�ðqαqν − q2gανÞ

−
b1 − b3

2
q2qαWν − b1q2φ̃να

�

−
2b4 − b6

2
ϵανρσq2qρWσ ¼ 0; ð106Þ

while the decomposed equations take the form

ffiffiffiffiffiffi
−g

p
q2½ðb1 þ 4b2 þ b3ÞU þ ðb2 þ b3Þq2V� ¼ 0;ffiffiffiffiffiffi

−g
p ðb1 − b3Þðq2Þ2Wα ¼ 0;ffiffiffiffiffiffi

−g
p

b1ðq2Þ2φ̃αβ ¼ 0;

ð2b4 − b6Þðq2Þ2Wα ¼ 0; ð107Þ
up to constant, numerical factors. We see that the
scalar, vector, and tensor modes decouple and that the
equations (106) possess the gauge freedom

U→Uþλðb2þb3Þq2; V→V−λðb1þ4b2þb3Þ; ð108Þ

and hence

φρσ → φρσ þ λ½ðb2 þ b3Þq2gρσ − ðb1 þ 4b2 þ b3Þqρqσ�:
ð109Þ

This removes one of the two scalar degrees of freedom.
Also for the second scalar mode we find that it is not
propagating, since the corresponding terms in the field
equations (106) take the form of a constraint equation.
Further, we find that nontrivial solutions for the remaining
modes are obtained only for q2 ¼ 0, so that all wave
solutions must propagate along the null directions of the
metric gαβ, i.e., on its light cone.
We remark that a particular case is given by theories

whose parameters satisfy b1 ¼ b3 and 2b4 ¼ b6. In this
case the field equations (99) and hence also (106) are
symmetric and the vector mode Wρ does not contribute.
This is in particular the case for CGR. We thus find that the
only propagating mode is the transverse, traceless tensor
mode, as expected.

C. Perturbations

Consider the perturbations δgμν of the flat metric ημν,

gμν ¼ ημν þ δgμν: ð110Þ

Using the 1þ 3 decomposition familiar from cosmological
perturbation theory, we decompose the perturbation δgμν
into scalars ϕ, ψ , β, σ, transverse vectors Bi, Ei, and
transverse and traceless tensors hij as follows:
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δg00 ¼ −2ϕ; δg0i ¼ −β;i þ Bi; δgij ¼ −2ψδij þ σ;ij −
1

3
∇2σδij þ 2Eði;jÞ þ 2hij: ð111Þ

We shall compute the linearized field equations in vacuum. Since tμν is of quadratic order, it is sufficient to consider the
equation ∇αHαμ

ν ¼ 0.
The energy-momentum could be computed from

Hi0
0 ¼ −ðb1 þ b2Þϕ;i þ ð3b2 þ b3Þψ ;i þ 1

2
ðb1 − b3Þ_β;i þ

1

3
b3∇2σ;i

þ 1

2
ðb1 − b3Þ _Bi þ 1

2
ðb6 − 2b7ÞϵijkBj;k þ

1

2
b3∇2Ei; ð112Þ

Hi0
j ¼ −δijðb2 þ b3Þ _ϕþ δijðb1 þ 3b2Þ _ψ þ ð2b5 þ b6Þϵijkϕ;k − ð2b4 þ 6b5 þ b6 þ 2b7Þϵijkψ ;k

þ 1

2
b1∂i∂jβ −

1

2
b3δij∇2β −

1

2
ð2b4 − b6Þϵijk _βk

−
1

2
b1

�
∂i∂j −

1

3
δij∇2

�
_σ þ 1

6
ð4b4 − b6 − 2b7Þϵijk∇2σ;k

þ 1

2
b1Bj

;i − b4ϵijk _Bk − b1 _E
ði
;jÞ þ b4ϵijk∇2Ek −

1

2
b6ϵjklEk;l

;i þ b7ϵiklEk;jl

− b1 _h
i
j − b6ϵjklhik;l þ 2b7ϵiklhjk;l: ð113Þ

The field equations are ∇αHαμ
ν ¼ 0, where

∇μHμ0
0 ¼ −ðb1 þ b2Þ∇2ϕþ ð3b2 þ b3Þ∇2ψ þ 1

2
ðb1 − b3Þ∇2 _β −

1

3
b3∇4σ; ð114Þ

∇μHμ0
i ¼ −ðb2 þ b3Þ _ϕ;i þ ðb1 þ 3b2Þ _ψ ;i þ

1

2
ðb1 − b3Þ∇2β;i −

1

3
b1∇2 _σ;i

þ 1

2
b1∇2ðBi − _EiÞ −

�
b4 −

1

2
b6

�
ðϵiklBk;l − 2∇2Eðj;kÞÞ; ð115Þ

∇μHμi
j ¼ ðb2 þ b3Þδijϕ̈þ b2ð∂i∂j − δij∇2Þϕ − ðb1 þ 3b2Þδijψ̈ − ðb1 þ 3b2 þ b3Þð∂i∂j − δij∇2Þψ

þ ð2b4 − b6Þϵijkð _ϕ;k þ _ψ ;kÞ

−
1

2
ðb1 þ b3Þ∂i∂j

_β þ b3δij∇2 _β −
�
b4 −

1

2
b6

�
ϵij

kðβ̈;k þ∇2β;kÞ

−
1

6
ðb1 − 2b3Þð∂i∂j − δij∇2Þ∇2σ þ 1

6
b1ð3∂i∂j − δij∇2Þσ̈ −

1

3
ð2b4 − b6Þϵijk∇2 _σ;k

−
1

2
ðb1 _Bi

;j þ b3 _Bj
;iÞ − 1

2
ðb1 − b3Þ∇2Ej

;i þ b1Ëi
;j þ

�
b4 −

1

2
b6

�
ϵij

kðB̈k −∇2 _EkÞ

− b1□hij: ð116Þ

Note that these in general have also antisymmetric components, given as

ð∇μHμ½0
jÞgi�j ¼

1

2
ðb1 − b3Þ

�
_ϕ;i þ _ψ ;i þ β̈;i þ∇2β;i −

1

3
∇2 _σ;i þ B̈i −∇2 _Ei

�
− ð2b4 − b6ÞðϵiklBk;l − 2∇2Eðj;kÞÞ; ð117Þ

ð∇μHμ½i
jÞgj�k ¼ð2b4−b6Þϵijk

�
_ϕ;kþ _ψ ;kþ

1

2
β̈;kþ

1

2
∇2β;k−

1

3
∇2 _σ;kþ B̈k−∇2 _Ek

�
þðb1−b3Þð _B½i;j�−∇2E½i;j�Þ: ð118Þ

Since the scalars, vectors, and tensors are decoupled at the linear order, we can focus on each sector separately.
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The transverse-traceless perturbations hij are the sim-
plest. We see that as long as b1 ≠ 0, there are tensor
perturbations that propagate on the light cone, obeying the
usual wave equation □hij ¼ 0.
As expected from the analysis of the characteristic

equation, the parameters b5 and b7 do not enter the field
equations. We see that the antisymmetric components of
the field equations vanish when the longitudinal and the
antisymmetric transverse part of the characteristic equation
are set to zero. In the following we will consider only the
subset of constitutive relations which yield symmetric field
equations. Thus we set b3 ¼ b1 and b6 ¼ 2b4.
Then the equations of motion for the vector perturbations

reduce to ∇2Vi ¼ 0, _Vi ¼ 0, where Vi ¼ Bi − _Ei is the
gauge-invariant combination of the two transverse 3-vec-
tors. These equations are the same as in general relativity.
Thus, we find that vector perturbations do not propagate in
vacuum.
To study the system of four coupled scalar perturbations,

let us consider the Fourier modes with frequency q0 ¼ ω
and wave vector qi ¼ ki. One readily sees that then the two
equations (114) and (115) become redundant. Using one of
them, the trace and the off-diagonal part of (116), respec-
tively, we obtain the three equations,

0 ¼ ðb1 þ b2Þϕ − ðb1 þ 3b2Þψ þ 1

3
b1σ̂; ð119Þ

0 ¼ −3ðb1 þ b2Þω2ϕþ 2b2k2ϕþ 3ðb1 þ 3b2Þω2ψ

− 2ð2b1 þ 3b2Þk2ψ − 2b1k2β̂ þ
1

3
b1k2σ̂; ð120Þ

0¼ b2ϕ− ð2b1þ3b2Þψ −b1β̂þ
1

6
b1σ̂þ

1

2
b1

ω2

k2
σ̂; ð121Þ

where we defined β̂ ¼ iωβ, σ̂ ¼ −k2σ. However, only two
of the three equations above are independent. Thus we have
only two equations for four variables. This, nevertheless, is
sufficient because there are now two gauge invariances, say
X and Y,

ϕ → ϕ −
b1 þ 3b2

2ðb1 þ 2b2Þ
X; ψ → ψ −

b1 þ b2
2ðb1 þ 2b2Þ

X;

β → β þ X; ð122Þ

ϕ → ϕþ ðb1 þ 3b2Þω2 − ðb1 þ b2Þk2
4ðb1 þ 2b2Þk2

Y;

ψ → ψ þ 3ðb1 þ b2Þω2 þ ðb1 − b2Þk2
12ðb1 þ 2b2Þk2

Y;

σ̂ → σ̂ þ Y: ð123Þ

We can therefore eliminate any two of the variables, and
solve for the rest from the above system. If b1 ¼ 0, the

system is underdetermined, but otherwise we find a trivial
dispersion relation, i.e., no propagating scalar modes in
vacuum.
In summary, the five-parameter class of theories with

b3 ¼ b1 and b6 ¼ 2b4 has the same field content in vacuum
as CGR, and thus, to the leading order, this class of theories
is perfectly viable. In contrast, most of the parameter space
of newer general relativity theory can be ruled out already
at the leading order due to the appearance of dangerous
extra degrees of freedom8 [17,36]. It could be interesting to
study further the novel class of theories that cannot (at least
in any straightforward way) be derived from a Lagrangian.
At a nonlinear order one should take into account also the
potential constitutive relation, which in the general metric
case includes seven additional parameters.
From the above system we can confirm that when

b1 ¼ −b2 ¼ b3 ¼ 1, we have ∇αHαμ
ν ¼ 2∇αPαμ

ν ¼ τμν
(setting 2c1 ¼ −2c3 ¼ −c2 ¼ c5 ¼ −1=2), where

τ00 ¼ −2∇2φ; ð124aÞ

τ0i ¼ −2 _φ;i þ
1

2
∇2Vi; ð124bÞ

τij ¼ ð−∇2ϕþ 2φ̈þ∇2φþ∇2 _βÞδij
þ
�
−ϕþ φ − _β þ 1

2
σ̈

�
;i
;j − _Vði

;jÞ þ ḧij

−∇2hij: ð124cÞ

Here, φ is shorthand for φ ¼ ψ − 1
6
∇2σ.

D. Covariant conservation

In theories that have a Lagrangian formulation, the
concept of conservation is well understood. If the matter
couples only to the metric and no other gravitational fields
(in particular, a connection with torsion), and we assume a
diffeomorphism invariant matter action, then the matter
energy-momentum will satisfy the usual metric-covariant
conservation law. Even if matter does couple to other
gravitational fields, a generalized conservation law will
hold, which can be derived in just the same way from
diffeomorphism invariance, by looking at a variation δΦ ¼
LξΦ of all gravitational fieldsΦ given by the Lie derivative
with respect to an arbitrary vector field ξ. Then, if the
dynamics of the gravity theory is also described by a
diffeomorphism invariant action, it will satisfy an equiv-
alent of the Bianchi identities, and the gravitational field

8The situation is similar for new general relativity [67,68] and
its generalizations [69]. Yet, we should remark that the absence of
pathological degrees of freedom in the linear fluctuations does
not guarantee the viability of the theory. In particular, strongly
coupled degrees of freedom seem to be a generic flaw in modified
(metric or symmetric) teleparallel gravity theories [40,70–73].
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equations relate these generalized Bianchi identities and the
conservation of matter energy-momentum [46].
Since only one special case of the 14-parameter theory

studied above admits a Lagrangian formulation, the issue of
conservation is a crucial one and needs to be properly
addressed. Now we should understand that the consistency
condition for the covariant conservation of matter, in
particular DμTμ

ν ¼ 0, determines the equation of motion
for the connection. Thus, we still assume that the matter
sector of the theory has a Lagrangian formulation, or, at
least, that the matter fields obey the usual metric-covariant
conservation law and diffeomorphism invariance is valid in
this effective sense. It would be possible to consider some
more general situation, but that would be noncanonical (as
arbitrary prescriptions would be required, e.g., for the
connection equation of motion) and not in line with the
principles of our axiomatic approach (where the starting
point is conservation).
We begin with the field equation for the metric in the

14-parameter theory,

∇αHαμ
ν ¼ Tμ

ν þ Pμ
αβQν

αβ −
1

2
δμνPγ

αβQγ
αβ: ð125Þ

From this we derive the connection equation of motion by
studying the matter conservation

DμTμ
ν ¼ Dμ∇αHαμ

ν −DμðPμ
αβQν

αβÞ þ 1

2
∂νðPγ

αβQγ
αβÞ:
ð126Þ

The metric-covariant derivatives are easily rewritten in
terms of our commuting derivatives by noting that for any
(1,1)-covariant tensor density Xμ

ν we have (for any torsion-
free connection, in fact)

DμXμ
ν ¼ ∇μXμ

ν þ Lα
μνXμ

α − Lμ
μαXα

ν −
1

2
QμXμ

ν

¼ ∇μXμ
ν þ Lα

μνXμ
ν; ð127Þ

where in the second equality we have taken into account
that Lμ

μα ¼ − 1
2
Qα, since

Lα
μν ¼

1

2
Qα

μν −Qðμα νÞ: ð128Þ

Thus the first term in (126) is very simple,

Dμ∇αHαμ
ν ¼ Lβ

μν∇αHαμ
β: ð129Þ

However, in the following it is useful to rewrite this as

Dμ∇αHαμ
ν¼−2Lβ

μν∇αPαμ
βþΔν

¼−2Lβμν∇αPαμβ−2Lα
βνQμαγPμβγþΔν: ð130Þ

In the first equality we replaced derivative of the kinetic
excitation with derivative of the potential excitation,
denoting the difference of the corresponding terms as

Δν ¼ Lβ
μν∇αðHαμ

β þ 2Pαμ
βÞ; ð131Þ

and in the second equality we just raised the last index of
the tensor inside the derivative. The second term in (126)
can be expanded into three pieces, using again (127),

DμðPμ
αβQν

αβÞ ¼ ð∇μPμαβÞQναβ þ Pμαβð∇μQναβÞ
þ Lλ

μνPμ
αβQλ

αβ: ð132Þ

Now we note that the first term in (130) and (132) enter into
the conservation equation (126) in the combination

ð∇μPμαβÞðQναβ þ 2LαβνÞ ¼ 0; ð133Þ

because LðαβÞν ¼ − 1
2
Qν, as seen from (128). We may thus

drop those two terms. Let us then consider the remaining
three terms (forgetting Δν for the moment) we obtain by
substracting (132) from (130). By mere index rearranging,
we can sum those three terms together and obtain

− Pμαβð∇μQναβ þ 2Lγ
ανQμβγ þ Lγ

ανQμβγÞ

¼ −PμαβDνQμαβ ¼ −
1

2
∂νðPμαβQμαβÞ: ð134Þ

In the second step we used the property of the commuting
covariant derivative that ∇½μQν�αβ ¼ 0, and then identified
the metric-covariant derivative in analogy with the for-
mula (127). The third step follows from basic properties of
the metric-covariant derivative. The result neatly cancels
the remaining piece in (126), and thus we have finally
arrived at

DμTμ
ν ¼ Δν: ð135Þ

This establishes that the equation of motion for the
connection in premetric newer general relativity is given
by Δν ¼ 0, where Δν was defined in (131). Recall that the
equation in newer general relativity is given by
∇μ∇αPαμ

ν ¼ 0. CGR is the singular case that belongs to
the union of those two classes of theories, and it is also the
unique theory within either class wherein the equation of
motion for the connection trivializes.
Finally, we note that imposing the Δν ¼ 0 will not

change the conclusions of the three previous subsections,
since properties of the conservative versions of the 14-
parameter nonconservative theories may exhibit differences
only at the quadratic order. To first order in perturbations,
Δν ≈ 0, and thus the 14-parameter premetric newer general
relativity is conservative at the linear order.
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VII. CONCLUSIONS AND PERSPECTIVES

The conclusion of this paper is given by Fig. 1 and the
formula (96), where the former illustrates the axiomatic
deduction of the CGR purified gravity theory, and the latter
specifies its suggested extrapolation. In what follows we
will discuss these conclusions at more length.

A. Summary

1. Fundamental equations

In the premetric program one foundational dichotomy is
the separation of extensive (how many) and intensive (how
strong) quantities. Our starting point for the extensive
objects, in the matter sector, was the conservation of energy
and momenta, in particular, a 4-component conserved
charge. For the intensive objects, in the gravitational sector,
the main assumption was the integrability postulate, in
particular, the vanishing of the field strength of a 16-
component 1-form potential. From this we arrived at a class
of theories that have a very close analogy to the theory of
massive electromagnetism (as was exhibited in Table II).
The relation that was deduced between the extensive
quantities,

(i) fundamental equation 1 : ∇αHαμ
ν ¼ Tμ

ν þ tμν,
where now the presence of tμν is the consequence of the
symmetry breaking realized by the mass of the 1-form
potential, is the fundamental equation that in the end
determines the dynamics of the fields. The other funda-
mental equation is the integrability postulate that now
determines the nature of the intensive quantities,
(ii) fundamental equation 2 : Fαβ

μν ≈ 0.

This means that the 1-form does not propagate. However,
due to the symmetry breaking the theory is not quite trivial.
Analogously to pure-gauge Proca theory where the gauge
field content reduces to one massless scalar, in our
generalization of the pure-gauge massive field theory there
remains a propagating massless tensor field, the premetric
field. This structure of the theory is schematically illus-
trated in Fig. 1.

2. Linking equations

At this stage the theorywas completelymetric-free. It was
also nonpredictive, since the quantities appearing in the
would-be dynamical fundamental equation 1 are undeter-
mined. The theory is completed by establishing the relations
that link the extensive and the intensive quantities, called the
constitutive relations. The intensive quantity in our case is
the premetric fieldBμν, and due to its Stueckelbergian origin
it appears, at the premetric level, only via its derivatives.
Assuming a linear constitutive relation, the kinetic excita-
tion appearing in the fundamental equation 1 is given as

(i) linking equation 1 : Hαμ
ν ¼ χαμρσ

β∇βBρσ.
The constitutive tensor is antisymmetric in its first indices,
otherwise in principle arbitrary. In this study we restricted to
relations which also are symmetric in the last two covariant
indices. This way the desired metric properties are inherited
by the premetric field. We considered two irreducible
decompositions of the general relation, separating it into
four and five irreducible components, respectively. They
determine the piece tμν in the fundamental equation 1,whose
form is given by (11), togetherwith the potential constitutive
relation,

FIG. 1. A schematic figure illustrating the logical structure of the premetric construction of purified gravity. The constitutive relations
are χ and ξ (with indices omitted). The kinetic excitation is related to the existence of a conserved current, and the mass excitation is
related to the presence of gravitational contribution to the current. At some level, the energy and momenta are conjugate to space and
time. The way we set up the coordinates for the latter (or, the frame) is merely a convention. The choice (which may become, even in
principle, impossible at the Planck scale) will affect our description of physics, but this effect has to be purely inertial and not a physical
force. The gauge potential is thus given by a gauge transformation. Due to the nonzero mass excitation the gauge transformation
becomes the dynamical Stueckelberg field. Thus, the constitutive relation ξ renders the Bab into a dynamical “premetric field,” and in
symmetrized conjunction with the constitutive relation χ filters from the field the properties of a metric in the unique fashion that is
dictated by the requirement of an underlying action principle.
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(ii) linking equation 2 : Pα
μν ¼ ξαμν

β
ρσ∇βBρσ.

Again, we restricted ourselves to symmetrized relations,
such that the two pairs of covariant indices are symmetrized.
We then recognized six irreducible components of the
relation: symmetric and antisymmetric principal compo-
nents, which are both reversible; symmetric and antisym-
metric skewon components, which are both irreversible; and
an axion component which is further reduced to the
reversible part and the irreversible part; recall Table I.
The total number of independent components, assuming
different conditions on the constitutive relations, is reviewed
in Fig. 2.

3. Metric purified gravity

We investigated in more detail the cases where the two
linking equations involve a metric. In particular, since the
field Bμν had emerged from the premetric structure as a
consequence of symmetry breaking, it was the canonical
candidate for the role of the metric. It had entered into the
theory as a Stueckelberg field restoring the symmetry broken
by the mass term in the potential, implied by the nontrivial
linking equation 2. The generic metric constitutive relations
have 14 independent components, contributing to all but the
antisymmetric skewon and the irreversible axion irreducible
parts of the relations. As a first viability check of the new
class of theories,which could be dubbed the premetric newer
general relativity, we explored the particle content and the
wave propagation in the weak-field limit. Preliminarily, we
could exclude only two components as they contribute to the
antisymmetric parts of the fundamental equation 1 and
would result in new, and probably dangerous, degrees of
freedom.Without additional constraints, the general theories
would alsoviolate the equivalence principle, in the sense that

matter would not follow the metric-geodesic trajectories. In
Lagrangian theories, the conservation of matter follows
from the diffeomorphism invariance of the action. However,
in our premetric construction we do not presuppose a
Lagrangian formulation. Therefore an additional constraint
may be in order, geodesic postulate : DμTμ

ν ¼ 0.
Indeed, even in the context of general relativity, the

geodesic motion of matter is sometimes introduced as an
independent postulate. However, in Lagrangian theories the
laws governing the motion of particles are inscribed in the
field equations. In the context of Lagrangian symmetric
teleparallel theory, the metric-covariant conservation of
matter energy-momentum follows from the extremization
of the action with respect to the variations of connection.
CGR is the unique quadratic theory whose action is
extremized by an arbitrary connection, meaning that the
geodesic postulate is redundant with the fundamental
equation 1. Regardless of this, in principle, the CGR is
also uniquely specified, amongst the 14 possible metric
constitutive relations, by requiring that the linking equa-
tion 1 is compatible with an action principle determined by
the linking equation 2. In the more general premetric newer
general relativity, the geodesic postulate has to be sepa-
rately imposed, and it can be regarded as the equation of
motion for the symmetric teleparallel connection that
cannot now be deduced by the usual variational methods
due to the absence of a Lagrangian. In the case of the 14-
parameter theory, the equation is Δμ ¼ 0, where Δμ was
defined in (131).

B. Comparison with metric teleparallelism

There are two main points of departure in the premetric
construction of purified gravity (PG) in comparison to the
premetric construction of metric teleparallel gravity (TG).
(1) Firstly, in PG it is imposed the vanishing of the force,
while an excitation is allowed. Since in TG there is a force
like in electromagnetism, the analogy with Maxwell theory
remains intact at this point. On the other hand, the fact
that gravity indeed is different from electromagnetism
(and the other interactions) in that it is equivalent to inertia,
is incorporated into the premetric structure of PG.
(2) Secondly, PG is analogous to the massive rather than
the vanilla Maxwell electromagnetism. On the other hand,
in TG one then needs to break the complete analogy by
introducing gravitational charges, which have no corre-
spondence in the Maxwell electromagnetism. Related to
this point, one could perhaps add that (20) in PG the metric
is a Stueckelberg field of the (pure-gauge) connection,
while in TG the metric is obtained from the translational
gauge connection by identifying it with the coframe field.
However, the latter identification entails the tacit introduc-
tion of a symmetry-breaking field.
Thus, through point (2), the necessary breaking of

symmetry that has been left unaddressed in the premetric
discussions of TG, is raised to a main role in the premetric

FIG. 2. The number of independent components in the con-
stitutive relations in cases satisfying certain conditions. The solid
lines indicate restrictive assumptions on the constitutive relations,
and the dashed lines in particular indicate the assumption of
reversibility of the potential constitutive relation. For example, in
the generic symmetrized case, there are in total 2560 independent
components that can determine the theory, and only 1780 if
reversibility is also assumed. In the case that the constitutive
relations are given in terms of a metric, the number reduces to
only 14, to 13 when assuming reversibility, to 8 if excluding
parity violation, and the further requirement of an action principle
leaves no freedom expect for an overall constant.
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construction of PG. Further, the proposed extrapolation of
PG towards the ultraviolet regime, recall (96), would
restore the one-to-one correspondence with massive
electromagnetism that is only apparently lost by point
(1) at macroscopic scales.

C. Implications for CGR

The premetric approach provides some new insights to
CGR, which emerges as the unique metrical theory that is
consistent with an action formulation and the axioms of the
premetric framework. In this framework, the field equation
is given by the fundamental equation 1 above, with the
constitutive relations from (17). In particular, it features the
tensor density Hαν

ν, which can be shown to reduce, in the
coincident gauge, to what is known as the Einstein energy-
momentum complex pseudotensor density. It has been
found that by using that pseudotensor density one always
obtains reasonable results for the energy-momentum of any
gravitational-matter system, whereas various other pseu-
dotensorial prescriptions sometimes fail to yield the
expected answer.9 In CGR the Einstein energy-momentum
complex is promoted to a true tensor density, and the
recently proposed characterization of the canonical frame
has removed the ambiguity from the results. However, it
was left unjustified why the tensor density τμν ¼ ∇αHαμ

ν

should be used in the determination of the gravitational
energy-momentum instead of the τ̂μν ¼ −2∇αPαμ

ν, which
is more naturally written into the action-derived field
equations. The ambiguity is related to the freedom to
add a so-called superpotential to a given energy-momentum
complex. However, the canonical premetric framework
leaves no such freedom. By construction it is obvious that
we are compelled to useHαν

ν to determine the translational
charges, for it is precisely the excitation conjugated to the
translational currents.

D. Implications for extended gravity theories

The class of extended gravity theories we studied in
more detail in this work was defined by the 14 parameters
of the general metric linear (and local) constitutive relation,
the premetric newer general relativity. As reviewed above,
the class of models survives the first consistency and
viability tests since they (given only two constraints on
the parameters) reduce to general relativity at the linear
order. This can be contrasted with the generic quadratic
metric teleparallel and quadratic symmetric teleparallel
theories (sometimes referred to as the new and the newer
general relativity, respectively), whose parameters are very
stringently constrained in the same limit (and as well
known, for quadratic pure-metric theories only the topo-
logical Gauss-Bonnet terms survive). Therefore, it could be
interesting to pursue further the newly found theories and

investigate the viability of their nonlinear solutions in view
of, for example, their possible cosmological applications.
In general, the premetric approach raises the perhaps

exotic possibility of theories without a Lagrangian formu-
lation, of which the quadratic 14-parameter class is just an
example.
Considering Lagrangian extended theories characterized

by more general constitutive relations, there are two main
observations we can make. Firstly, many of the previously
studied extended symmetric teleparallel theories, in par-
ticular such with nonlinear constitutive relations, might be
difficult to incorporate within the premetric formalism.
As a simple example, in the fðQÞ models one would
require an excitation tensor Hμν

ν such that ∇αHαμ
ν ¼

−2∇αf0ðQÞCGRPαμ
ν, which at first look would not appear

easily possible unless f0ðQÞ is a constant. Looking at things
from the other side, the premetric framework suggests a
great variety of previously unexplored ways of extending
gravity. As an example, as we imposed three symmetriza-
tions upon the constitutive relations from the beginning,
mainly motivated by the aim of obtaining a metric in the
end, it is reasonable to ask what would happen when some
or all of these symmetrizations were abandoned. This
would expand the available theory space, and provide a
remarkably simple way of realizing asymmetric gravity
which from the outset avoids the main problems that there
are in extending the purely metric theory by allowing
antisymmetric components in the metric tensor. Namely, in
the latter case one quite generally introduces ghosts since
the available invariants are of a higher order, and one also
encounters technical obstacles e.g., in the generalization of
the Levi-Civita connection.10

Another Pandora’s box is opened by allowing more extra
fields to determine the constitutive relations. One non-
minimal but rather natural extension would be to consider
the case that the constitutive relation is not determined by
the premetric field, but by an independent metric. Of
course, this kind of bimetric theory and the many other
possible novel extensions could turn out to be plagued by
ghosts or other pathologies.11 However, one may contem-
plate whether it is possible to establish a robust correspon-
dence between the field-theoretical consistency of a
purified gravity theory and the existence of its action-
compatible premetric formulation. Such quite unique cases
of consistent theories as CGR and (the symmetric tele-
parallel version of) the ghost-free Hassan-Rosen bimetric

9For comparative studies see e.g., [74,75].

10See e.g., [76–80] for studies on gravitational and theories
with nonsymmetric metric.

11A bimetric constitutive relation to an extent resembles such
bimetric variational principles wherein the connection is consid-
ered as the Levi-Civita connection of an independent metric
[81,82]. The latter setups may however introduce problematical
degrees of freedom [83]. For a review of the ghost-free bimetric
gravity theory [84], see [85].
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theory turn out to be also quite unique in that they admit a
premetric formulation.
One of our conclusions at least is that without the latter, a

theory does not have a well-defined canonical energy-
momentum complex.

E. Implications for quantum gravity

First we should recall that purified gravity has already
provided insights that could be highly relevant in the
unification of gravity and quantum physics. In the canoni-
cal approach to quantum gravity, the notorious problem of
time might be taken into reconsideration from the per-
spective wherein we, besides the conventional ADM
energy of the standard Hamiltonian formalism, have also
available the unique consistent definition of localizable
energy excitation in a gravitational system. The other main
approach to quantization, the path integral formalism, can
obviously also have a more promising starting point, since
the CGR action in the canonical frame is well defined
without invoking boundary terms or counterterms that are
necessary e.g., in the standard approach to Euclidean
quantum gravity in Riemannian geometry.
In the study carried out in this paper, the question about

whether the analogy of purified gravity with Proca electro-
magnetism is complete naturally arose, the vanishing of the
field strength tensor then being a valid approximation only
at super-Planckian length scales. Though massive Abelian
gauge theories are renormalizable even without the Higgs
mechanism, from the perspective of purified gravity it is
natural to consider a spontaneous emergence of the Planck
scale since one wants to recover scale invariance at the most
fundamental level of physics. In this work we only very
tentatively discussed an actual realization of such a mecha-
nism (in particular, an analogous mechanism with Kibble’s
spontaneous mass generation), but the new way of looking
at gravity, seeing the covariant version of the Einstein

Lagrangian as the mass term for the gauge connection
instead of a kinetic term, very concretely points to a quite
novel approach to realize gravity as a renormalizable gauge
field theory with no formal difference from the others we
already know.
That the metric is a part of the connection that is curved

only at verymicroscopic distances, raises speculations about
the physical role of that curvature. One could be brought
back to pre-Einsteinian considerations of geometric theories
of gravity, in particular to Riemann and Clifford, who both
entertained the idea that matter is nothing but a tiny
disturbance in the spatial curvature, so that matter in motion
can be understood as a simple variation in space of these
disturbances. Now the fact that the metric, a macroscopic
emergent field which also can be associated with a curvature
at a less fundamental level, is interwined with matter via the
Einstein equation, could be understood as a consequence of
both the metric and the matter being aspects of the same
connection. In the premetric construction of electromagnet-
ism, one ultimately builds upon quantities that can be
counted: electric charges and magnetic fiux lines. It is clear
that energy and momentum are quantized, and thus our
starting point of the conservation of energy-momentum is in
linewith the principle of countability of extensive quantities.
Perhaps the countability of intensive quantities, in this case
the ones related to the flux lines of the “hypergravitational”
field, should be understood as a reflection of the quantized
nature of matter particles.
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[27] J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, Telepar-
allel Palatini theories, J. Cosmol. Astropart. Phys. 08 (2018)
039.

[28] C. Pfeifer and D. Siemssen, Electromagnetic potential in
premetric electrodynamics: Causal structure, propagators
and quantization, Phys. Rev. D 93, 105046 (2016).

[29] G. F. Rubilar, Linear pre-metric electrodynamics and
deduction of the light cone, Ann. Phys. (N.Y.) 11, 717
(2002).

[30] F. W. Hehl, Yu. N. Obukhov, G. F. Rubilar, and M.
Blagojevic, On the theory of the skewon field: From
electrodynamics to gravity, Phys. Lett. A 347, 14 (2005).

[31] W.-T. Ni, Spacetime structure and asymmetric metric from
the premetric formulation of electromagnetism, Phys. Lett. A
379, 1297 (2015).

[32] M. Rünkla and O. Vilson, Family of scalar-nonmetricity
theories of gravity, Phys. Rev. D 98, 084034 (2018).

[33] M. Adak, M. Kalay, and O. Sert, Lagrange formulation of
the symmetric teleparallel gravity, Int. J. Mod. Phys. D 15,
619 (2006).

[34] M. Hohmann, C. Pfeifer, J. L. Said, and U. Ualikhanova,
Propagation of gravitational waves in symmetric teleparallel
gravity theories, Phys. Rev. D 99, 024009 (2019).

[35] I. Soudi, G. Farrugia, V. Gakis, J. L. Said, and E. N.
Saridakis, Polarization of gravitational waves in symmetric
teleparallel theories of gravity and their modifications, Phys.
Rev. D 100, 044008 (2019).

[36] A. Conroy and T. Koivisto, The spectrum of symmetric
teleparallel gravity, Eur. Phys. J. C 78, 923 (2018).

[37] M. Milgrom, Noncovariance at low accelerations as a route
to MOND, Phys. Rev. D 100, 084039 (2019).

[38] T. Harko, T. S. Koivisto, F. S. N. Lobo, G. J. Olmo, and D.
Rubiera-Garcia, Coupling matter in modified Q gravity,
Phys. Rev. D 98, 084043 (2018).

[39] J. Lu, X. Zhao, and G. Chee, Cosmology in symmetric
teleparallel gravity and its dynamical system, Eur. Phys. J. C
79, 530 (2019).
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