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BFV quantization of the nonprojectable (2 + 1)-dimensional Horava theory
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We show that the Batalin-Fradkin-Vilkovisky (BFV) quantization scheme can be implemented in the
nonprojectable (2 + 1)-Hotava theory. This opens the possibility of imposing more general gauge
conditions in the quantization of this theory. The BFV quantization is based on the canonical formalism,
which is suitable to incorporate the measure associated to the second-class constraints that the theory has.
Special features of the Hamiltonian density and the matrix of second-class constraints allow that the system
be involutive in terms of Dirac brackets, which is a nontrivial requisite for implementing the BFV
formalism. We present the Becchi-Rouet-Stora-Tyutin symmetry transformations in the canonical
variables. The theory is of rank one in the classification introduced by Fradkin and Fradkina. The
originally called relativistic gauge-fixing conditions of the BFV formalism can be implemented in the
nonprojectable Horava theory, extended to nonrelativistic forms. We show that the nonlocal gauge

condition introduced in the projectable theory can be included among these gauges.

DOI: 10.1103/PhysRevD.103.064039

I. INTRODUCTION

The Horava theory of quantum gravity [1] can be
formulated in two different versions. One is the projectable
case, defined by the condition of the lapse function, and is a
function only of time. The other version, the nonprojectable
theory, has a lapse function that depends in general in time
and space. The Lagrangian of the nonprojectable case was
extended in Ref. [2].

An essential goal in the study of the Horava theory is to
prove its renormalization, which for the projectable case
has been already proved [3]. A characteristic of the proof in
the projectable case is the inclusion of a nonlocal gauge-
fixing condition. The nonlocal gauge leads to regular
propagators for all field variables, and consequently the
renormalization can be achieved by following criteria
similar to the Lorentz-violating (nongravitational) field
theories [4-6]. Moreover, the projectable (2 + 1)-Horava
theory has been proven to be asymptotically free [7].
Besides these analyses, the renormalizability and other
quantum aspects of the Horava theory have been studied by
various authors. Among them, studies on several aspects of
the renormalization flow of the projectable theory, using
the functional renormalization group, can be found in
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Refs. [8,9]. Even the nonprojectable case was considered
in Ref. [10]. Early analysis on renormalizability are
Refs. [11,12], and further advances in the renormalization
of the projectable theory has been developed in Refs. [13,14].

On the other hand, the proof of the renormalization of the
nonprojectable case is pending. A central issue in this
case is that the Hamiltonian constraint, together with an
associated constraint, is a second-class constraint. This was
emphasized in the nonprojectable theory, considering the
extended Lagrangian of [2], in the Hamiltonian analysis of
Refs. [15-17] (in the kinetic-conformal or critical formu-
lation more second-class constraints arise [18]). The pres-
ence of second-class constraints suggests to consider
different schemes of quantization, since these constraints
are not associated to gauge symmetries. The canonical
formalism is particularly suitable for the quantization of
this kind of theories. In the path integral, the measure
associated to the second-class constraints is defined in terms
of its matrix of Poisson brackets [19,20] (a symplectic-
geometry approach for the measure is given in Ref. [21]).
This is also the case of the operatorial quantization based
on the Dirac brackets. We presented advances in the path
integral quantization of the nonprojectable (2 + 1)-Hofava
theory in the canonical formalism in Ref. [22].

The nonlocal gauge used in the projectable theory [3] is a
noncanonical gauge, since it involves a Lagrange multiplier.
If one wants to apply a similar procedure in the nonproject-
able case, then a more general quantization scheme is
required, specially for being able to use noncanonical gauges.
In this sense, a very general scheme of quantization of field
theories in the canonical language is the so-called Batalin-
Fradkin-Vilkovisky (BFV) formalism. This formalism was
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developed in a series of papers, Refs. [23-27]. In particular, in
Ref. [27] Fradkin and Fradkina extended the formalism to
theories with second-class constraints and of general rank, the
rank being the order of the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry generator and the Hamiltonian in one of the fields
used in the extension of the phase space. The extension to the
case with second-class constraints incorporates Dirac brackets
in the path integral. The BFV formalism was originally
introduced with the aim of implementing relativistic gauge-
fixing conditions, like the Lorentz gauge, in the canonical
quantization of relativistic theories like Yang-Mills and general
relativity. The relativistic gauge-fixing conditions are nonca-
nonical gauges (in the context of the primary canonical theory).
An important achievement is that with the BFV quantization
the unitarity of the S matrix can be proved, which results from
showing the independence of the path integral on the gauge
condition chosen and its equivalence with the canonical
physical system, that is, the system without redundant or
unphysical canonical degrees of freedom.

In this study we show that the BFV scheme of quantization
can be implemented for the nonprojectable Horava theory,
incorporating its second-class constraints. To this end we
follow the program of Ref. [27]. We present explicit formulas
for the (2 4+ 1) theory. We will see that the formalism is
general enough, such that it allows us to impose noncanonical
gauge-fixing conditions, as the kind of the nonlocal gauge
condition used in the renormalization of the projectable
theory, despite the fact that the BFV quantization was
intended for relativistic theories with relativistic gauges. In
the next section we present the BFV quantization in the
general theory, and in Sec. III we apply the formalism to the
linearized theory with the specific nonlocal gauge.

II. GENERAL FORMALISM

Once a foliation of spatial slides along an identified time
direction is given, the Hofava theory is formulated in terms
of the Arnowitt-Deser-Misner variables g;;, N, and N; over
the foliation. In the nonprojectable case, which is the one
we consider, N is a function of time and space. The
symmetry group characteristic of the theory is given by the
foliation-preserving diffeomorphisms. Given a local coor-
dinate system, the infinitesimal form of the foliation-
preserving diffeomorphisms is

ot = f(1), oxt = {i(t,X). (2.1)
The action of the foliation-preserving diffeomorphisms on
the field variables has the form

SN = *O,N + fN + fN, (2.2)
5Nl:CkakNl+Nkale+CJg,j+fN,+wa (23)
8gij = £ Ok + 29x:0,)C* + f - (24)

Since f(7) is restricted to be a function only of time, only
the sector given by the general spatial diffeomorphisms
[f = 0, {(¢, X) arbitrary] is a gauge symmetry in the strict
sense. Hence, this symmetry must be fixed in the process of
quantization, and the resulting BRST symmetry emerges
from it. The Lagrangian of the nonprojectable Horfava
theory is given by

L =\/gN(K'K;; —1K* = V), (2.5)
where the extrinsic curvature tensor is
| _
Kij = N (9ij — ZV(iNj))’ K=g"K;;. (2.6)

The complete potential in two spatial dimensions is [28]

VY = —BR — aa®> + a\R* + aya* + azRa® + aya’Va*

+ asRvkak + aﬁvlakvlak + (%] (Vkak)z, (27)
where
O;N
;= 2.8
a =2 2.8

transforms as a vector under foliation-preserving diffeo-
morphisms. 4, #, @, and ay, ..., a; are coupling constants.
This potential has the minimal order in spatial derivatives
required by power-counting renormalization, z = 2 [1], and
includes the lower order terms dominant at large distances.
To cast the theory in canonical formalism, the canonical
variables are the pairs (g;;, 7/), (N, Py), where the con-
dition Py =0 is a constraint since there are no time
derivatives of N in the Lagrangian (2.5). Throughout
this analysis we consider the asymptotic conditions
gij_ ijz(/)(r_l), ﬂi'j:(/)(r_z), and N—IZO(V_I). The
primary Hamiltonian, obtained by a Legendre transforma-
tion on (2.5) is

7. A
T VA P 2.9
g T1-ug " > (29)

Hy = / dzx\/§N<

The constraint that is going to be part of the involutive
functions in the BFV quantization is given by

The second-class constraint of the theory are
HIEPNZO, (211)
g A
0, = \/gN i ———"+V)-gB, (212
= v (T ) - v @

where B stands for a set of total derivatives, namely
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= —2aVy(Nd") + 4a,V (Na*a*) + 2a;V (NRa)
—a4(V*(Na?) — 2V, (Va*Na')) — asV*(NR)

- 2a6VkVZ(NV1ak) — 20{7V2(Nvlal). (213)

A nontrivial requisite for the BFV quantization of a given
system is that it must be involutive, in this case considering
the presence of second-class constraints. This means that
there is a Hamiltonian density H, and a set of functions G,
among which the first-class constraints are included, that
satisfy the algebra [27]
{GuGolp = UyG,.  {Ho.Gulp = VG, (2.14)
The above brackets {, }, are Dirac brackets, which are
required by the presence of second-class constraints. They
are defined in the standard way,

{F.R}p = {F.R} = {F.0,}M3{05. R},

Map = {0465} (2.15)
It turns out that the canonical formulation of the non-
projectable Hofava theory can be given in a involutive
form. To this end, we first rewrite the Hamiltonian (2.9) in a
equivalent form: as a consequence of the asymptotic
conditions, the spatial integral of all total derivatives in
the 0, constraint vanishes, [ dzx\/ﬁB = 0. This can be used
to write the Hamiltonian (2.9) as the integral of a second-

class constraint,
HO = /d2x92.

This is key to get the involutive form. We may see how this
works before making the BFV extension of the phase space:
since 6; commutes with itself at all points, the matrix of
Poisson brackets between the second-class constraints
acquires a triangular form,

(2.16)

{61’92}>’ (217)

W — 0
B <—{91,92} {6,.0,}

and, consequently, its inverse also acquires a triangular
form, which we may present symbolically as

(2.18)

M-! = (detM)~! <M22 _M”).

Next, since {H;,8,} = 0 strongly and M~! is triangular,
the H; constraint (2.10) becomes involutive under the Dirac
brackets. Finally, since the primary Hamiltonian density H,,
is equivalent to a second-class constraint, automatically its
Dirac bracket with any quantity is zero strongly. Thus, we
obtain

(Mo H}y = {Hi M} = UM, (2.19)

{H;, Ho}p =0. (2.20)
The algebra of H; corresponds to the algebra of spatial
diffeomorphisms at equal times,

P00, (00} = Hi by o(xy). - (221)

Now we proceed to perform the BFV extension of the
phase space. The shift vector N; is the Lagrange multiplier
of the constraint (2.10). To fix the gauge symmetry of the
spatial diffeomorphisms, a gauge-fixing condition, denoted
by ®' = 0, must be provided (with z; denoting its asso-
ciated Lagrange multiplier). The canonical pair (N, z;) is
incorporated to the phase space. Due to the Dirac brackets
(2.19) and (2.20), and from the fact that none of the objects
H;, 04, Hy depends on the pair (N',z;), the functions
G, = (H;,x;) and H, are involutive: they satisfy (2.14),
where the nonzero components U¢, are read from (2.21),
and V2 =0.

Next, for each function G, we add the canonical pair of
BFV ghosts (7%, P,), which are Grassmann variables. It is
sometimes convenient to split the ghosts in the way
ne = (ni,nh), P, = (P, P?); hence we use indices like
a, b, c... for the unsplitted variables. Thus, the full phase
space is given by the pairs (g;;,7"), (N,Py), (N',7;),
(n*,P,). The definition of the Poisson brackets in the
extended phase space is (¢*, 7, stands for all the canonical
pairs)

5,F R

L ngrnp (Sr_Rél_F
5qA 5”A

5qA 571'A ’

{F.R} =

(1) (2.22)

where r, [ denote the right and left derivatives, and nr = 0
(=1) if R is a boson (fermion).

The BFV path integral of the nonprojectable Horava
theory is given by

Zy = / DVS(0,)5(6,)e'S, (2.23)

where the measure and the action are given, respectively, by

DV = Dg;/Dr'"DNDPNDN*Dry Dy*DP, x VdetM,
(2.24)

S = /dld2X(PNN + ﬂ'l]gu + ﬂ'ka —|— Pa’:]a - H\p)
(2.25)

The factor v/det M is the part of the measure associated to
the second-class constraints [19,20]. The quantum gauge-
fixed Hamiltonian density is
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H\p = H] + {T,Q}D, (226)
where Q is a generator of a kind of BRST symmetry
and Y is a gauge-fixing fermionic function, which can have
a general dependence on the extended phase space,
¥ =Y¥(g;;, 7", N,N',m;,n*,P,). The objects that arise
in the gauge-fixed Hamiltonian are defined by (for sim-
plicity of the notation, we write densities)

Q:Gan"+§s:73bk~~

k=1

Py, Qb (2.27)

Hy=Ho+ D Pp Py H

k=1

(2.28)

Fradkin and Fradkina [27] defined a theory to be of rank s if
it is possible to define the expansions of ©Q and H; as
polynomials of degree s in the P s, that is, if Q1% = 0 for
k > s, and similarly for H,, as shown in (2.27)—(2.28). The
coefficient functions of the first order in P, are given by

1
QF = _— Uzci,lbnc’

5 HYE = Vinb,

(2.29)
and, starting from them, the higher order coefficients
functions Q%% and H{' ", up to the rank s, are given
by recurrence relations shown in Ref. [27]. The final
generator  and the gauge-fixed Hamiltonian Hy must
satisfy the following conditions,

{Q.Q}, =0, (2.30)

{H,,Q}p =0. (2.31)
Since Q is a fermion, Eq. (2.30) is a nontrivial condition,
according to the definition (2.22).

We obtain that the nonprojectable Horava theory can be
casted as a theory of rank one, such that the coefficient
functions of the generator € and the Hamiltonian are given
by (2.29). Let us set

Q= G,n* _EU W1 P = Hynk + mnh — 2 Uknin| P,
(2.32)
Hy = Ho + ViP. (2.33)

The Dirac brackets of these objects are
{0} = {H,na,H Mo = {Hni. b Pidn

+ {Uzjrllrllpk! Umnrll ’717)11 }D’ (234)

{H. Qp ={Ho. Q}p +{VePun". Q}p.  (2.35)

In the right-hand side of Eq. (2.34), the first and second
brackets are identical,

{Hﬂ?li, Hj’l{ b= {Hi’ﬁ’ Ulr{nnnllnnrllpllc}D
= Ulk’h’th (2.36)

hence they cancel, whereas the third bracket is proportional
to the structure 7 1111 niuk ;U i »» Which is zero by the Jacobi
identity. The Dirac bracket (2.35) is zero identically, since
for the nonprojectable Hofava theory all the V7§ are zero,
and the Hamiltonian density H,, is equivalent to a second-
class constraint; hence its Dirac bracket with any quantity is
automatically zero. Thus, the BFV quantization of the
nonprojectable Horava theory is well posed, and the theory
is of rank one. The BFV gauge-fixed Hamiltonian takes the
form

1
Hy = Hy + {‘P Hink + mans — 3 Ummﬂ}D-

(2.37)

In the original BFV formulation, a specific form of the
gauge-fixing function W was introduced with the aim of
quantizing theories using relativistic gauges. It turns out
that this form is suitable for the Horava theory, regardless of
the fact that it is not a relativistic theory. As we commented
above, a gauge fixing condition ®' = 0 must be given in
the Horava theory in order to fix the symmetry of spatial
diffeomorphisms. On the other hand, the relativistic gauge-
fixing condition considered in the BFV formulation,
adapting the notation to the Horava theory, has the general
form

O = —N' +x'(9ij, N.# N, m;,n*., P,) =0, (2.38)
where y' is the chosen part of the gauge fixing. Since the
functional part y' is left free, one may use this form of
gauge fixing both for relativistic and nonrelativistic gauges.
To relate this gauge condition to the fermionic function ¥,
one identifies y* = (N',»"), and then the specific BFV
fermionic gauge-fixing function is

¥ =Py =PIN + Pl (2.39)

In this case the gauge-fixed Hamiltonian takes the form

Hy = Ho + Phrk + HN* + ULN7| P)

+{P/, Q}p. (2.40)
If ' does not depend on the BFV ghosts 5¢, P,,, the bracket
indicated in (2.40) simplifies to {Py’, Hynt + mins }p-

The BRST symmetry in the BFV formalism is imple-
mented with the generator Q in the form of transformations
with Dirac brackets,
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¢ =0+ {e.Qpu. (2.41)
where ¢ represents each one of the canonical fields of the
fully extended canonical phase space, and p is the fer-
mionic global parameter of the transformation. The nilpo-
tency of Q is obtained by means of the Jacobi identity: for
an object T,

2{{T. Q}p. Q}p + {{Q.Q}p. T}y =0, (2.42)
the second term being zero by (2.30).

It is direct to check the BRST symmetry of the gauge-
fixed Hamiltonian of the nonprojectable Horava theory
(2.37). Its transformation is

SoMy = {Ho, Q}p + {{¥. Q}p. Q}p.  (2.43)
The first bracket in the right-hand side is zero since H,, is
equivalent to a second-class constraint, and the last bracket
is zero by the nilpotency of Q. Explicitly, the BRST
transformations (2.41) of the theory take the form

0agij= ng(ivj)”]f/"’ Son'l = —Zﬂk(ivkﬂjl)ﬂ + Vk(”ij’?]f)/"

SoN =—Mp {0, Hyn . 8Py =0,
5QNk:l’]]2€/l, 5Q”k:07
. | .
oon| = ) U.',-kﬂ{ 77]1(#, 5973} =Hpu— U{Fjﬂjl ’P;l(/«l,
597’]]2( = 0, 5Q,P% =T M. (244)

The transformations of g;; and 7'/ are spatial diffeomor-
phisms with the vector argument composed of the fermions
n’f,u. We make a comment about the nonzero transformation
of N: the canonical action in Eq. (2.25) is invariant under
the BRST transformations (2.44) when it is evaluated on
the constrained phase space. Indeed, the kinetic term
produces a transformation 8o (PyN) ~ Pyd,8oN, that van-
ishes in the constrained phase space, where Py = 0.

Finally, we comment that, according to Eq. (2.17), for
the Horava theory the part of the measure associated to
second-class constraints takes the form

det{0,,0,} = det{0,,6,}; (2.45)

hence we can include the measure in the Lagrangian with a
pair of fermionic ghosts ¢ and g [22],

det{Gl,HZ}—/Dél)eexp <i/dld2x§{91,92}e>. (2.46)

III. LINEARIZED THEORY

We introduce perturbative quantum variables around

the Minkowski spacetime, according to g;; —&;; = hyj,

N — 1 = n, and the rest of canonical variables are considered
of perturbative order: 7'/ = p'/, Py = p,, and N' = n’. We
make the change of notation 7; — C', n, - P!, P} - P,
and P2 — C;, such that P,j* = P,C* + C,PX. The pertur-
bative BFV path integral is given by Eq. (2.23), where the
measure and the action are given, respectively, by

DV = Dh,;;DpDnDp, Dn*DryDy*DP, x det{6,,6,},
(3.1)

S= [ dida(pyi+ phy + 7t + Pt = M), (32

The constraint H; and the Hamiltonian density H,, taken
from the primary Hamiltonian (2.9), at quadratic order
become

M, = =26;0p" = 20(hi;p") + pHOjhu.  (3.3)

N A 1 1
— plijpiJ AN —h 2h——]’l~~ Zl’l--
HO p-p +1—2jp +ﬂ<4 0 4 lja ij

1 1
+ Ehijaiakhjk + l’l82h - na,-ajhij - Eha,ajh,j>

+ an@zn + ap (h84h + hklakalﬁiajh,-j - 2]’18281811’11])
— a5(n84h - nazala]hu) + (a6 + a7)n84n. (34)

The sector of the BFV ghosts that play the role of
canonical momenta can be integrated, such that the
canonical formulation of this sector can be translated to
a Lagrangian formulation, at least for the case of the gauge
fixing condition (2.38)—(2.39), and if the sector y' of the
gauge fixing depends only on the primary canonical
variables h;;, p/,n. Under these conditions, we examine
the dependence of the Hamiltonian (2.40) on the ghost
canonical momenta P!, 7_7,». The Dirac bracket indicated in
Eq. (2.40) reduces to
{Co . i CH + m Py = {Ci', HiCM Yy + 4'mis - (3.5)
such that it does not depend on P, P;. Next, the second
term in Eq. (2.40) is P,;P’, whereas the fourth term is of
cubic order in perturbations. After these considerations, the
terms of the quadratic action that depend on P', P; are
Pt + TP = P Pr = (P + C)(=PF + 1) + C*Cy.

(3.6)

The variables between brackets can be integrated out
without consequences in the path integral. The second-
class constraint 8, can be incorporated to the Lagrangian by
means of a Lagrange multiplier, which we denote by a.
Therefore, the action up to second order in perturbations,
using Eq. (2.46), is given by

064039-5
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S = /dt({z)C(pl]hl] + ﬂ'kl;lk + Ckék - HO - Hknk

—{Cix' \ HiC*}p = y'm; + ab, + E{0,,0,}¢).  (3.7)
An example of noncanonical gauge condition that can be
adapted to the BFV formalism in the form (2.38) is the
nonlocal gauge introduced in the projectable Horava theory
in Ref. [3]. Since the projectable theory is a theory without
second-class constraints, to define the quantum theory a
Faddeev-Popov procedure is implemented to fix the gauge
freedom associated to spatial diffeomorphisms, which is
performed in the Lagrangian version directly. The gauge-
fixing term added to the Lagrangian has the form [3]

where
i ) 1 2 A 2 é:
F' = n —%3 akhik +2_G<1 + 5)8 alh - %aiﬁjakhjk,
(3.9)

and &, o are arbitrary constants. The nonlocality of the
gauge is due to the operator O;;. In Ref. [3] it is discussed
that the most general nonlocal operator that preserve the
degree of space-time anisotropy of the (24 1) theory
(z = 2) has the form
O; = —[6,0* + 0,0, (3.10)

In order to make this anisotropic (nonrelativistic) and
nonlocal gauge-fixing condition compatible with the BFV
gauge fixing (2.38), we must include the operator O;; in the
form of @'. For our purposes the explicit form of the operator
O;; is not needed. We just denote by O the nonlocal operator
acting on F (the square root of O, ;)- The important property
of O in our computations is that it is independent of the
fields, as seen in (3.10). We may perform a canonical
transformation in the BFV formalism, given by

Oni = n, 7,07 > 7, (3.11)
Since O is field independent, this transformation does not
alter the measure of the path integral. Thus, the nonlocal
gauge fixing condition gets the form (2.38), with

¢

o Laon A egont
£ =0(=5 ot (14900

aiajakhjk)
(3.12)

The quantum BFV action with this nonlocal gauge is
given by

S = / dtd2x <pljh,j + ﬂ'kilk - ziﬂka(aza,hkl
O
= A1+ &)?0h + £0,0;0,h))

— Hy = H,O "0k = G,

! (% a4 - z)) C00,0%0.C;,

o

1 _
+2—6Ck(’)84Ck+a6’2+7€{91,92}8>. (313)

The final Lagrangian is nonlocal, as the quantum
Lagrangian used in Ref. [3] in the projectable theory.

IV. CONCLUSIONS

We find that the BFV quantization, based on the
canonical formalism, is well posed for the nonprojectable
Horava theory. The formalism allows for the incorporation
of the second-class constraints, according to the extension
done in Ref. [27]. Its application is rather nontrivial due to
the necessity of using Dirac brackets, and obtaining after-
wards an involutive system in terms of these brackets. We
have presented explicit formulas for the case of the (2 + 1)-
dimensional theory. One advantage of this scheme of
quantization is the possibility of using more types of
gauge-fixing conditions, in particular, gauges that are
noncanonical in the primary canonical formulation of the
theory. In this sense, the applicability of the BFV formalism
goes beyond the relativistic theories and relativistic gauges.
We have shown as an example the nonlocal gauge-fixing
condition introduced in the case of the projectable Horava
theory [3]. Despite this, the irregularity of the propagators
of the auxiliary fields associated to the second-class
constraints persists. This can be seen from Eq. (3.13):
unlike the BFV ghosts C‘i, C! that get a kinetic term, no
kinetic terms are generated for the fields a, €, € whose role
is to ensure the correct implementation of the second-class
constraints (we pointed out an analog behavior in
Ref. [22]). This connects with another feature we have
found: the final BRST symmetry in the BFV formulation
holds only in the constrained phase space, that is, after the
second-class constraints are imposed.
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