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We show that the Batalin-Fradkin-Vilkovisky (BFV) quantization scheme can be implemented in the
nonprojectable (2þ 1)-Hořava theory. This opens the possibility of imposing more general gauge
conditions in the quantization of this theory. The BFV quantization is based on the canonical formalism,
which is suitable to incorporate the measure associated to the second-class constraints that the theory has.
Special features of the Hamiltonian density and the matrix of second-class constraints allow that the system
be involutive in terms of Dirac brackets, which is a nontrivial requisite for implementing the BFV
formalism. We present the Becchi-Rouet-Stora-Tyutin symmetry transformations in the canonical
variables. The theory is of rank one in the classification introduced by Fradkin and Fradkina. The
originally called relativistic gauge-fixing conditions of the BFV formalism can be implemented in the
nonprojectable Hořava theory, extended to nonrelativistic forms. We show that the nonlocal gauge
condition introduced in the projectable theory can be included among these gauges.
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I. INTRODUCTION

The Hořava theory of quantum gravity [1] can be
formulated in two different versions. One is the projectable
case, defined by the condition of the lapse function, and is a
function only of time. The other version, the nonprojectable
theory, has a lapse function that depends in general in time
and space. The Lagrangian of the nonprojectable case was
extended in Ref. [2].
An essential goal in the study of the Hořava theory is to

prove its renormalization, which for the projectable case
has been already proved [3]. A characteristic of the proof in
the projectable case is the inclusion of a nonlocal gauge-
fixing condition. The nonlocal gauge leads to regular
propagators for all field variables, and consequently the
renormalization can be achieved by following criteria
similar to the Lorentz-violating (nongravitational) field
theories [4–6]. Moreover, the projectable (2þ 1)-Hořava
theory has been proven to be asymptotically free [7].
Besides these analyses, the renormalizability and other
quantum aspects of the Hořava theory have been studied by
various authors. Among them, studies on several aspects of
the renormalization flow of the projectable theory, using
the functional renormalization group, can be found in

Refs. [8,9]. Even the nonprojectable case was considered
in Ref. [10]. Early analysis on renormalizability are
Refs. [11,12], and further advances in the renormalization
of the projectable theory has been developed inRefs. [13,14].
On the other hand, the proof of the renormalization of the

nonprojectable case is pending. A central issue in this
case is that the Hamiltonian constraint, together with an
associated constraint, is a second-class constraint. This was
emphasized in the nonprojectable theory, considering the
extended Lagrangian of [2], in the Hamiltonian analysis of
Refs. [15–17] (in the kinetic-conformal or critical formu-
lation more second-class constraints arise [18]). The pres-
ence of second-class constraints suggests to consider
different schemes of quantization, since these constraints
are not associated to gauge symmetries. The canonical
formalism is particularly suitable for the quantization of
this kind of theories. In the path integral, the measure
associated to the second-class constraints is defined in terms
of its matrix of Poisson brackets [19,20] (a symplectic-
geometry approach for the measure is given in Ref. [21]).
This is also the case of the operatorial quantization based
on the Dirac brackets. We presented advances in the path
integral quantization of the nonprojectable ð2þ 1)-Hořava
theory in the canonical formalism in Ref. [22].
The nonlocal gauge used in the projectable theory [3] is a

noncanonical gauge, since it involves a Lagrange multiplier.
If one wants to apply a similar procedure in the nonproject-
able case, then a more general quantization scheme is
required, specially for beingable to use noncanonical gauges.
In this sense, a very general scheme of quantization of field
theories in the canonical language is the so-called Batalin-
Fradkin-Vilkovisky (BFV) formalism. This formalism was
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developed in a series of papers, Refs. [23–27]. In particular, in
Ref. [27] Fradkin and Fradkina extended the formalism to
theories with second-class constraints and of general rank, the
rank being the order of theBecchi-Rouet-Stora-Tyutin (BRST)
symmetry generator and the Hamiltonian in one of the fields
used in the extension of the phase space. The extension to the
case with second-class constraints incorporates Dirac brackets
in the path integral. The BFV formalism was originally
introduced with the aim of implementing relativistic gauge-
fixing conditions, like the Lorentz gauge, in the canonical
quantization of relativistic theories likeYang-Mills and general
relativity. The relativistic gauge-fixing conditions are nonca-
nonical gauges (in the context of the primary canonical theory).
An important achievement is that with the BFV quantization
the unitarity of the Smatrix can be proved, which results from
showing the independence of the path integral on the gauge
condition chosen and its equivalence with the canonical
physical system, that is, the system without redundant or
unphysical canonical degrees of freedom.
In this studywe show that the BFV scheme of quantization

can be implemented for the nonprojectable Hořava theory,
incorporating its second-class constraints. To this end we
follow the program of Ref. [27].We present explicit formulas
for the (2þ 1) theory. We will see that the formalism is
general enough, such that it allows us to impose noncanonical
gauge-fixing conditions, as the kind of the nonlocal gauge
condition used in the renormalization of the projectable
theory, despite the fact that the BFV quantization was
intended for relativistic theories with relativistic gauges. In
the next section we present the BFV quantization in the
general theory, and in Sec. III we apply the formalism to the
linearized theory with the specific nonlocal gauge.

II. GENERAL FORMALISM

Once a foliation of spatial slides along an identified time
direction is given, the Hořava theory is formulated in terms
of the Arnowitt-Deser-Misner variables gij, N, and Ni over
the foliation. In the nonprojectable case, which is the one
we consider, N is a function of time and space. The
symmetry group characteristic of the theory is given by the
foliation-preserving diffeomorphisms. Given a local coor-
dinate system, the infinitesimal form of the foliation-
preserving diffeomorphisms is

δt ¼ fðtÞ; δxi ¼ ζiðt; x⃗Þ: ð2:1Þ

The action of the foliation-preserving diffeomorphisms on
the field variables has the form

δN ¼ ζk∂kN þ f _N þ _fN; ð2:2Þ

δNi ¼ ζk∂kNi þ Nk∂iζ
k þ _ζjgij þ f _Ni þ _fNi; ð2:3Þ

δgij ¼ ζk∂kgij þ 2gkði∂jÞζk þ f _gij: ð2:4Þ

Since fðtÞ is restricted to be a function only of time, only
the sector given by the general spatial diffeomorphisms
[f ¼ 0, ζiðt; x⃗Þ arbitrary] is a gauge symmetry in the strict
sense. Hence, this symmetry must be fixed in the process of
quantization, and the resulting BRST symmetry emerges
from it. The Lagrangian of the nonprojectable Hořava
theory is given by

L ¼ ffiffiffi
g

p
NðKijKij − λK2 − VÞ; ð2:5Þ

where the extrinsic curvature tensor is

Kij ¼
1

2N
ð_gij − 2∇ðiNjÞÞ; K ≡ gijKij: ð2:6Þ

The complete potential in two spatial dimensions is [28]

V ¼ −βR − αa2 þ α1R2 þ α2a4 þ α3Ra2 þ α4a2∇kak

þ α5R∇kak þ α6∇lak∇lak þ α7ð∇kakÞ2; ð2:7Þ

where

ai ¼
∂iN
N

ð2:8Þ

transforms as a vector under foliation-preserving diffeo-
morphisms. λ, β, α, and α1;…; α7 are coupling constants.
This potential has the minimal order in spatial derivatives
required by power-counting renormalization, z ¼ 2 [1], and
includes the lower order terms dominant at large distances.
To cast the theory in canonical formalism, the canonical
variables are the pairs ðgij; πijÞ, ðN;PNÞ, where the con-
dition PN ¼ 0 is a constraint since there are no time
derivatives of N in the Lagrangian (2.5). Throughout
this analysis we consider the asymptotic conditions
gij−δij¼Oðr−1Þ, πij¼Oðr−2Þ, and N−1¼Oðr−1Þ. The
primary Hamiltonian, obtained by a Legendre transforma-
tion on (2.5) is

H0 ¼
Z

d2x
ffiffiffi
g

p
N

�
πijπij
g

þ λ

1 − 2λ

π2

g
þ V

�
: ð2:9Þ

The constraint that is going to be part of the involutive
functions in the BFV quantization is given by

Hi ¼ −2gij∇kπ
kj ¼ 0: ð2:10Þ

The second-class constraint of the theory are

θ1 ≡ PN ¼ 0; ð2:11Þ

θ2 ≡ ffiffiffi
g

p
N

�
πijπij
g

þ λ

1 − 2λ

π2

g
þ V

�
−

ffiffiffi
g

p
B; ð2:12Þ

where B stands for a set of total derivatives, namely
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B≡ −2α∇kðNakÞ þ 4α2∇kðNa2akÞ þ 2α3∇kðNRakÞ
− α4ð∇2ðNa2Þ − 2∇lð∇kakNalÞÞ − α5∇2ðNRÞ
− 2α6∇k∇lðN∇lakÞ − 2α7∇2ðN∇lalÞ: ð2:13Þ

A nontrivial requisite for the BFV quantization of a given
system is that it must be involutive, in this case considering
the presence of second-class constraints. This means that
there is a Hamiltonian densityH0 and a set of functionsGa,
among which the first-class constraints are included, that
satisfy the algebra [27]

fGa;GbgD ¼ Uc
abGc; fH0; GagD ¼ Vb

aGb: ð2:14Þ

The above brackets f; gD are Dirac brackets, which are
required by the presence of second-class constraints. They
are defined in the standard way,

fF;RgD ¼ fF;Rg − fF; θAgM−1
ABfθB; Rg;

MAB ¼ fθA; θBg: ð2:15Þ

It turns out that the canonical formulation of the non-
projectable Hořava theory can be given in a involutive
form. To this end, we first rewrite the Hamiltonian (2.9) in a
equivalent form: as a consequence of the asymptotic
conditions, the spatial integral of all total derivatives in
the θ2 constraint vanishes,

R
d2x

ffiffiffi
g

p
B ¼ 0. This can be used

to write the Hamiltonian (2.9) as the integral of a second-
class constraint,

H0 ¼
Z

d2xθ2: ð2:16Þ

This is key to get the involutive form. We may see how this
works before making the BFVextension of the phase space:
since θ1 commutes with itself at all points, the matrix of
Poisson brackets between the second-class constraints
acquires a triangular form,

M ¼
�

0 fθ1; θ2g
−fθ1; θ2g fθ2; θ2g

�
; ð2:17Þ

and, consequently, its inverse also acquires a triangular
form, which we may present symbolically as

M−1 ¼ ðdetMÞ−1
�
M22 −M12

M12 0

�
: ð2:18Þ

Next, since fHi; θ1g ¼ 0 strongly and M−1 is triangular,
theHi constraint (2.10) becomes involutive under the Dirac
brackets. Finally, since the primary Hamiltonian densityH0

is equivalent to a second-class constraint, automatically its
Dirac bracket with any quantity is zero strongly. Thus, we
obtain

fHi;HjgD ¼ fHi;Hjg ¼ Uk
ijHk; ð2:19Þ

fHi;H0gD ¼ 0: ð2:20Þ

The algebra of Hi corresponds to the algebra of spatial
diffeomorphisms at equal times,

fHiðxÞ;HjðyÞg¼Hi
∂
∂xjδðx−yÞþHj

∂
∂xiδðx−yÞ: ð2:21Þ

Now we proceed to perform the BFV extension of the
phase space. The shift vector Ni is the Lagrange multiplier
of the constraint (2.10). To fix the gauge symmetry of the
spatial diffeomorphisms, a gauge-fixing condition, denoted
by Φi ¼ 0, must be provided (with πi denoting its asso-
ciated Lagrange multiplier). The canonical pair ðNi; πiÞ is
incorporated to the phase space. Due to the Dirac brackets
(2.19) and (2.20), and from the fact that none of the objects
Hi, θA, H0 depends on the pair ðNi; πiÞ, the functions
Ga ¼ ðHi; πiÞ and H0 are involutive: they satisfy (2.14),
where the nonzero components Uc

ab are read from (2.21),
and Vb

a ¼ 0.
Next, for each function Ga we add the canonical pair of

BFV ghosts ðηa;PaÞ, which are Grassmann variables. It is
sometimes convenient to split the ghosts in the way
ηa ¼ ðηi1; ηi2Þ, Pa ¼ ðP1

i ;P
2
i Þ; hence we use indices like

a; b; c… for the unsplitted variables. Thus, the full phase
space is given by the pairs ðgij; πijÞ, ðN;PNÞ, ðNi; πiÞ,
ðηa;PaÞ. The definition of the Poisson brackets in the
extended phase space is (qA, πA stands for all the canonical
pairs)

fF;Rg ¼ δrF
δqA

δlR
δπA

− ð−1ÞnRnF δrR
δqA

δlF
δπA

; ð2:22Þ

where r, l denote the right and left derivatives, and nR ¼ 0
(¼1) if R is a boson (fermion).
The BFV path integral of the nonprojectable Hořava

theory is given by

ZΨ ¼
Z

DVδðθ1Þδðθ2ÞeiS; ð2:23Þ

where the measure and the action are given, respectively, by

DV ¼ DgijDπijDNDPNDNkDπkDηaDPa ×
ffiffiffiffiffiffiffiffiffiffiffi
detM

p
;

ð2:24Þ

S ¼
Z

dtd2xðPN
_N þ πij _gij þ πk _N

k þ Pa _η
a −HΨÞ:

ð2:25Þ
The factor

ffiffiffiffiffiffiffiffiffiffiffi
detM

p
is the part of the measure associated to

the second-class constraints [19,20]. The quantum gauge-
fixed Hamiltonian density is
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HΨ ¼ H1 þ fΨ;ΩgD; ð2:26Þ

where Ω is a generator of a kind of BRST symmetry
andΨ is a gauge-fixing fermionic function, which can have
a general dependence on the extended phase space,
Ψ ¼ Ψðgij; πij; N; Ni; πi; ηa;PaÞ. The objects that arise
in the gauge-fixed Hamiltonian are defined by (for sim-
plicity of the notation, we write densities)

Ω ¼ Gaη
a þ

Xs

k¼1

Pbk � � �Pb1Ω
b1���bk ; ð2:27Þ

H1 ¼ H0 þ
Xs

k¼1

Pbk � � �Pb1H
b1���bk
1 : ð2:28Þ

Fradkin and Fradkina [27] defined a theory to be of rank s if
it is possible to define the expansions of Ω and H1 as
polynomials of degree s in theP s, that is, ifΩb1���bk ¼ 0 for
k > s, and similarly forH1, as shown in (2.27)–(2.28). The
coefficient functions of the first order in Pa are given by

Ωa ¼ −
1

2
Ua

bcη
bηc; Ha

1 ¼ Va
bη

b; ð2:29Þ

and, starting from them, the higher order coefficients
functions Ωa1���ak and Ha1���ak

1 , up to the rank s, are given
by recurrence relations shown in Ref. [27]. The final
generator Ω and the gauge-fixed Hamiltonian HΨ must
satisfy the following conditions,

fΩ;ΩgD ¼ 0; ð2:30Þ

fH1;ΩgD ¼ 0: ð2:31Þ

Since Ω is a fermion, Eq. (2.30) is a nontrivial condition,
according to the definition (2.22).
We obtain that the nonprojectable Hořava theory can be

casted as a theory of rank one, such that the coefficient
functions of the generator Ω and the Hamiltonian are given
by (2.29). Let us set

Ω ¼ Gaη
a −

1

2
Uc

abη
aηbPc ¼ Hkη

k
1 þ πkη

k
2 −

1

2
Uk

ijη
i
1η

j
1P

1
k;

ð2:32Þ

H1 ¼ H0 þ Va
bPaη

b: ð2:33Þ

The Dirac brackets of these objects are

fΩ;ΩgD ¼ fHiη
i
1;Hjη

j
1gD − fHiη

i
1; U

k
mnη

m
1 η

n
1P

1
kgD

þ 1

4
fUk

ijη
i
1η

j
1P

1
k; U

l
mnη

m
1 η

n
1P

1
l gD; ð2:34Þ

fH1;ΩgD ¼fH0;ΩgD þ fVb
aPaη

b;ΩgD: ð2:35Þ

In the right-hand side of Eq. (2.34), the first and second
brackets are identical,

fHiη
i
1;Hjη

j
1gD ¼ fHiη

i
1; U

k
mnη

m
1 η

n
1P

1
kgD

¼ Ui
jkη

j
1η

k
1Hi; ð2:36Þ

hence they cancel, whereas the third bracket is proportional
to the structure ηj1η

m
1 η

n
1U

k
ijU

i
mn, which is zero by the Jacobi

identity. The Dirac bracket (2.35) is zero identically, since
for the nonprojectable Hořava theory all the Va

b are zero,
and the Hamiltonian density H0 is equivalent to a second-
class constraint; hence its Dirac bracket with any quantity is
automatically zero. Thus, the BFV quantization of the
nonprojectable Hořava theory is well posed, and the theory
is of rank one. The BFV gauge-fixed Hamiltonian takes the
form

HΨ ¼ H0 þ
�
Ψ;Hkη

k
1 þ πkη

k
2 −

1

2
Uk

ijη
i
1η

j
1P

1
k

�
D
: ð2:37Þ

In the original BFV formulation, a specific form of the
gauge-fixing function Ψ was introduced with the aim of
quantizing theories using relativistic gauges. It turns out
that this form is suitable for the Hořava theory, regardless of
the fact that it is not a relativistic theory. As we commented
above, a gauge fixing condition Φi ¼ 0 must be given in
the Hořava theory in order to fix the symmetry of spatial
diffeomorphisms. On the other hand, the relativistic gauge-
fixing condition considered in the BFV formulation,
adapting the notation to the Hořava theory, has the general
form

Φi ¼ − _Ni þ χiðgij; N; πij; Ni; πi; ηa;PaÞ ¼ 0; ð2:38Þ

where χi is the chosen part of the gauge fixing. Since the
functional part χi is left free, one may use this form of
gauge fixing both for relativistic and nonrelativistic gauges.
To relate this gauge condition to the fermionic function Ψ,
one identifies χa ¼ ðNi; χiÞ, and then the specific BFV
fermionic gauge-fixing function is

Ψ ¼ Paχ
a ¼ P1

i N
i þ P2

i χ
i: ð2:39Þ

In this case the gauge-fixed Hamiltonian takes the form

HΨ ¼ H0 þ P1
kη

k
2 þHkNk þ Uk

ijN
iηj1P

1
k

þ fP2
i χ

i;ΩgD: ð2:40Þ

If χi does not depend on the BFV ghosts ηa, Pa, the bracket
indicated in (2.40) simplifies to fP2

i χ
i;Hkη

k
1 þ πkη

k
2gD.

The BRST symmetry in the BFV formalism is imple-
mented with the generator Ω in the form of transformations
with Dirac brackets,
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φ̃ ¼ φþ fφ;ΩgDμ; ð2:41Þ

where φ represents each one of the canonical fields of the
fully extended canonical phase space, and μ is the fer-
mionic global parameter of the transformation. The nilpo-
tency of Ω is obtained by means of the Jacobi identity: for
an object ϒ,

2ffϒ;ΩgD;ΩgD þ ffΩ;ΩgD;ϒgD ¼ 0; ð2:42Þ

the second term being zero by (2.30).
It is direct to check the BRST symmetry of the gauge-

fixed Hamiltonian of the nonprojectable Hořava theory
(2.37). Its transformation is

δΩHΨ ¼ fH0;ΩgD þ ffΨ;ΩgD;ΩgD: ð2:43Þ

The first bracket in the right-hand side is zero since H0 is
equivalent to a second-class constraint, and the last bracket
is zero by the nilpotency of Ω. Explicitly, the BRST
transformations (2.41) of the theory take the form

δΩgij¼2gkði∇jÞηk1μ; δΩπ
ij¼−2πkði∇kη

jÞ
1 μþ∇kðπijηk1Þμ;

δΩN¼−M−1
12 fθ2;Hkη

k
1gμ; δΩPN ¼0;

δΩNk¼ ηk2μ; δΩπk¼0;

δΩη
i
1¼−

1

2
Ui

jkη
j
1η

k
1μ; δΩP1

i ¼Hiμ−Uk
ijη

j
1P

1
kμ;

δΩη
k
2¼0; δΩP2

k¼πkμ: ð2:44Þ

The transformations of gij and πij are spatial diffeomor-
phisms with the vector argument composed of the fermions
ηk1μ. We make a comment about the nonzero transformation
of N: the canonical action in Eq. (2.25) is invariant under
the BRST transformations (2.44) when it is evaluated on
the constrained phase space. Indeed, the kinetic term
produces a transformation δΩðPN

_NÞ ∼ PN∂tδΩN, that van-
ishes in the constrained phase space, where PN ¼ 0.
Finally, we comment that, according to Eq. (2.17), for

the Hořava theory the part of the measure associated to
second-class constraints takes the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
¼ detfθ1; θ2g; ð2:45Þ

hence we can include the measure in the Lagrangian with a
pair of fermionic ghosts ε and ε̄ [22],

detfθ1;θ2g¼
Z

Dε̄Dεexp

�
i
Z

dtd2xε̄fθ1;θ2gε
�
: ð2:46Þ

III. LINEARIZED THEORY

We introduce perturbative quantum variables around
the Minkowski spacetime, according to gij − δij ¼ hij,

N − 1 ¼ n, and the rest of canonical variables are considered
of perturbative order: πij ¼ pij, PN ¼ pn, and Ni ¼ ni. We
make the change of notation ηi1 → Ci, ηi2 → Pi, P1

i → P̄i,
and P2

i → C̄i, such that Pa _η
a ¼ P̄k

_Ck þ C̄k
_Pk. The pertur-

bative BFV path integral is given by Eq. (2.23), where the
measure and the action are given, respectively, by

DV ¼ DhijDpijDnDpnDnkDπkDηaDPa × detfθ1; θ2g;
ð3:1Þ

S ¼
Z

dtd2xðpn _nþ pij _hij þ πk _nk þ Pa _η
a −HΨÞ: ð3:2Þ

The constraint Hi and the Hamiltonian density H0, taken
from the primary Hamiltonian (2.9), at quadratic order
become

Hj ¼ −2δij∂kpki − 2∂kðhijpkiÞ þ pkl∂jhkl; ð3:3Þ

H0 ¼ pijpijþ λ

1− 2λ
p2þ β

�
1

4
h∂2h−

1

4
hij∂2hij

þ 1

2
hij∂i∂khjkþn∂2h−n∂i∂jhij−

1

2
h∂i∂jhij

�

þαn∂2nþα1ðh∂4hþhkl∂k∂l∂i∂jhij− 2h∂2∂i∂jhijÞ
−α5ðn∂4h−n∂2∂i∂jhijÞþ ðα6þα7Þn∂4n: ð3:4Þ

The sector of the BFV ghosts that play the role of
canonical momenta can be integrated, such that the
canonical formulation of this sector can be translated to
a Lagrangian formulation, at least for the case of the gauge
fixing condition (2.38)–(2.39), and if the sector χi of the
gauge fixing depends only on the primary canonical
variables hij; pij; n. Under these conditions, we examine
the dependence of the Hamiltonian (2.40) on the ghost
canonical momenta Pi; P̄i. The Dirac bracket indicated in
Eq. (2.40) reduces to

fC̄iχ
i;HkCk þ πkPkgD ¼ fC̄iχ

i;HkCkgD þ χiπi; ð3:5Þ

such that it does not depend on Pi; P̄i. Next, the second
term in Eq. (2.40) is P̄iPi, whereas the fourth term is of
cubic order in perturbations. After these considerations, the
terms of the quadratic action that depend on Pi; P̄i are

P̄k
_Ck þ C̄k

_Pk − P̄kPk ¼ ðP̄k þ _̄CkÞð−Pk þ _CkÞ þ _Ck _̄Ck:

ð3:6Þ
The variables between brackets can be integrated out
without consequences in the path integral. The second-
class constraint θ2 can be incorporated to the Lagrangian by
means of a Lagrange multiplier, which we denote by a.
Therefore, the action up to second order in perturbations,
using Eq. (2.46), is given by

BFV QUANTIZATION OF THE NONPROJECTABLE (2þ 1)- … PHYS. REV. D 103, 064039 (2021)

064039-5



S ¼
Z

dtd2xðpij _hij þ πk _nk þ _Ck _̄Ck −H0 −Hknk

− fC̄iχ
i;HkCkgD − χiπi þ aθ2 þ ε̄fθ1; θ2gεÞ: ð3:7Þ

An example of noncanonical gauge condition that can be
adapted to the BFV formalism in the form (2.38) is the
nonlocal gauge introduced in the projectable Hořava theory
in Ref. [3]. Since the projectable theory is a theory without
second-class constraints, to define the quantum theory a
Faddeev-Popov procedure is implemented to fix the gauge
freedom associated to spatial diffeomorphisms, which is
performed in the Lagrangian version directly. The gauge-
fixing term added to the Lagrangian has the form [3]

Lgf ∼ FiOijFj; ð3:8Þ
where

Fi ¼ _ni −
1

2σ
∂2∂khik þ

λ

2σ
ð1þ ξÞ∂2∂ih −

ξ

2σ
∂i∂j∂khjk;

ð3:9Þ

and ξ, σ are arbitrary constants. The nonlocality of the
gauge is due to the operator Oij. In Ref. [3] it is discussed
that the most general nonlocal operator that preserve the
degree of space-time anisotropy of the (2þ 1Þ theory
(z ¼ 2) has the form

Oij ¼ −½δij∂2 þ ξ∂i∂j�−1: ð3:10Þ
In order to make this anisotropic (nonrelativistic) and
nonlocal gauge-fixing condition compatible with the BFV
gauge fixing (2.38), we must include the operatorOij in the
formofΦi. For our purposes the explicit formof the operator
Oij is not needed.We just denote byO the nonlocal operator
acting onFi (the square root ofOij). The important property
of O in our computations is that it is independent of the
fields, as seen in (3.10). We may perform a canonical
transformation in the BFV formalism, given by

Oni → ni; πiO−1 → πi: ð3:11Þ
Since O is field independent, this transformation does not
alter the measure of the path integral. Thus, the nonlocal
gauge fixing condition gets the form (2.38), with

χi ¼O
�
−

1

2σ
∂2∂khikþ

λ

2σ
ð1þξÞ∂2∂ih−

ξ

2σ
∂i∂j∂khjk

�
:

ð3:12Þ

The quantum BFV action with this nonlocal gauge is
given by

S ¼
Z

dtd2x

�
pij _hij þ πk _nk −

1

2σ
πkO2ð∂2∂lhkl

− λð1þ ξÞ∂2∂khþ ξ∂k∂j∂lhjlÞ
−H0 −HkO−1nk − _̄Ck

_Ck

−
1

σ

�
1

2
− λþ ξð1 − λÞ

�
CkO∂k∂2∂iC̄i

þ 1

2σ
CkO∂4C̄k þ aθ2 þ ε̄fθ1; θ2gε

�
: ð3:13Þ

The final Lagrangian is nonlocal, as the quantum
Lagrangian used in Ref. [3] in the projectable theory.

IV. CONCLUSIONS

We find that the BFV quantization, based on the
canonical formalism, is well posed for the nonprojectable
Hořava theory. The formalism allows for the incorporation
of the second-class constraints, according to the extension
done in Ref. [27]. Its application is rather nontrivial due to
the necessity of using Dirac brackets, and obtaining after-
wards an involutive system in terms of these brackets. We
have presented explicit formulas for the case of the (2þ 1)-
dimensional theory. One advantage of this scheme of
quantization is the possibility of using more types of
gauge-fixing conditions, in particular, gauges that are
noncanonical in the primary canonical formulation of the
theory. In this sense, the applicability of the BFV formalism
goes beyond the relativistic theories and relativistic gauges.
We have shown as an example the nonlocal gauge-fixing
condition introduced in the case of the projectable Hořava
theory [3]. Despite this, the irregularity of the propagators
of the auxiliary fields associated to the second-class
constraints persists. This can be seen from Eq. (3.13):
unlike the BFV ghosts C̄i, Ci that get a kinetic term, no
kinetic terms are generated for the fields a, ε, ε̄, whose role
is to ensure the correct implementation of the second-class
constraints (we pointed out an analog behavior in
Ref. [22]). This connects with another feature we have
found: the final BRST symmetry in the BFV formulation
holds only in the constrained phase space, that is, after the
second-class constraints are imposed.
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