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A Hamiltonian variational approach is used to study asymptotic charges and entropy of Kerr–anti–de
Sitter black holes in the general Poincaré gauge theory, with both even and odd parity modes. The results
turn out to be the same as those found earlier in the sector of parity invariant Lagrangians.
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I. INTRODUCTION

The Poincaré gauge (PG) theory is a well-founded
approach to gravity based on gauging the Poincaré group
of spacetime symmetries [1]. The dynamical content of PG
is expressed in terms of a Riemann-Cartan (RC) geometry
of spacetime, characterized by the presence of two field
strengths, the torsion Ti and the curvature Rij; for a
comprehensive analysis of the subject, see the reader [2],
the lectures [3], and/or the monographs [4].
In the last half a century, various dynamical and geo-

metric aspects of PG, as well as its relation to physics, have
been intensively studied. Thus, successes in constructing a
number of black hole solutions [2] inspired a detailed
analysis of their asymptotic charges, energy and angular
momentum; for an advanced exposition of the subject, see
Ref. [5]. However, it is somewhat surprising that systematic
studies of black hole entropy were rather neglected in the
literature. Quite recently, the subject came to life in the
work [6], where the idea that “black hole entropy is
the Noether charge” [7] was given a natural Hamiltonian
extension. In the papers [8–10], this approach was used to
study both the asymptotic charges and entropy of stationary
black holes in PG with parity invariant Lagrangians. The
results obtained for spherically and axially symmetric
solutions on the Minkowski or anti–de Sitter (AdS) back-
ground confirmed the validity of the first law of black hole
thermodynamics. On the other hand, in the last decade, one
can notice an increased interest in exploring various
dynamical aspects of the general parity violating PG, such
as cosmological applications, exact solutions, and particle
spectrum [11–17]. In the present paper, our attention is
focused on exploring energy, angular momentum, and
entropy of Kerr-AdS black holes in the general PG, with
both even and odd parity modes.
The paper is organized as follows. In Sec. II, we give a

short account of the general PG [2,17], as well as an outline

of the variational Hamiltonian approach to the thermody-
namic charges of black holes with torsion [6]. In Sec. III, we
analyze geometric and dynamical aspects of Kerr-AdS black
holes, as a preparation for studying their thermodynamic
charges. Then, in Secs. IVand V, we apply the Hamiltonian
approach to calculate the Kerr-AdS asymptotic charges and
entropy. The results are summarized in Sec. VI, and the
Appendix is devoted to some technical details.
Our general conventions remain the same as in

Refs. [9,10]. The Latin indices ði; j;…Þ refer to the local
Lorentz frame, the Greek indices ðμ; ν;…Þ refer to the
coordinate frame, bi is the orthonormal coframe (tetrad)
dual to the frame hi, with hi┘b

k ¼ δki , the local Lorentz
metric is ηij ¼ ð1;−1;−1;−1Þ, and ωij is a metric com-
patible (antisymmetric) connection. The exterior product of
forms is implicit, the volume 4-form is ϵ̂ ¼ b0b1b2b3, the
Hodge dual of a form α is ⋆α, ⋆1 ¼ ϵ̂, and the totally
antisymmetric symbol is normalized to ε0123 ¼ þ1.

II. PG DYNAMICS AND BOUNDARY TERMS

Basic dynamical variables of PG are the tetrad field bi

and the antisymmetric spin connection ωij (1-forms), the
gauge potentials associated to the translation, and Lorentz
subgroups of the Poincaré group, respectively. The corre-
sponding field strengths are the torsion Ti ¼ dbi þ ωi

kbk

and the curvature Rij ¼ dωij þ ωi
kω

kj, and the underlying
structure of spacetime is characterized by a Riemann-
Cartan geometry. In the absence of matter, dynamical
properties of PG are determined by the gravitational
Lagrangian LGðbi; Ti; RijÞ (4-form), which is assumed to
be at most quadratic in the field strengths.
The gravitational field equations are obtained by varying

LG with respect to bi and ωij. They can be written in a
compact form as

δbi ∶ ∇Hi þ Ei ¼ 0; ð2:1aÞ

δωij ∶ ∇Hij þ Eij ¼ 0; ð2:1bÞ
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were Hi ≔ ∂LG=∂Ti and Hij ≔ ∂LG=∂Rij (2-forms) are
the covariant momenta, and Ei ≔ ∂LG=∂bi and Eij ≔
∂LG=∂ωij (3-forms) are the corresponding energy-
momentum and spin currents, respectively.
The content of the field equations (2.1) depends on the

structure of the Lagrangian. In the present work, the PG
Lagrangian is assumed to have the most general form, with
all possible parity even and parity odd terms,

LG ¼ Lþ
G þ L−

G; ð2:2aÞ

Lþ
G ≔ −⋆ða0Rþ 2ΛÞ þ Ti

X3
n¼1

⋆ðanðnÞTiÞ

þ 1

2
Rij

X6
n¼1

⋆ðbnðnÞRijÞ; ð2:2bÞ

L−
G ≔−ā0⋆XþTi

X3
n¼1

ānðnÞTiþ
1

2
Rij

X6
n¼1

b̄nðnÞRij: ð2:2cÞ

Here, ðan; bn;Λ0Þ and ðān; b̄nÞ are the coupling constant, R
and X are the scalar and pseudoscalar curvatures, ⋆R ¼
⋆ðbibjÞRij and ⋆X ¼ bibjRij, and ðnÞTi and ðnÞRij are the
irreducible components of the torsion and the curvature,
respectively; see Ref. [6]. Because some terms in L−

G are the
same, the corresponding coupling constants are not inde-
pendent; in particular, one can choose ā2 ¼ ā3, b̄2 ¼ b̄4,
and b̄3 ¼ b̄6; see [16,17]. Further freedom in the choice of
parameters follows from the existence of three topological
invariants [13].
With the above form of LG, the explicit expressions for

the covariant momenta read

Hi ¼ 2
X3
n¼1

½⋆ðanðnÞTiÞ þ ānTi�;

Hij ¼ −2a0⋆ðbibjÞ − 2ā0ðbibjÞ þH0
ij; ð2:3aÞ

where

H0
ij ≔ 2

X6
n¼1

½⋆ðbnðnÞRijÞ þ b̄nðnÞRij�: ð2:3bÞ

They play a crucial role not only in the structure of the field
equations, but also, as we shall see, in the analysis of the
conserved charges and entropy.
Following the ideas of Regge and Teitelboim [18],

asymptotic charges can be introduced as certain boundary
terms Γ associated to the naive canonical gauge generator
G, which is weakly vanishing. Namely, if G is not regular
(differentiable), it can be improved by adding a suitable
surface term Γ, G̃ ≔ Gþ Γ, such that

δG̃ ¼ δGþ δΓ ¼ regular: ð2:4Þ

In Ref. [6], this construction, combined with Wald’s
identification of entropy as the Noether charge on horizon
[7], is used to propose a unified approach to both the
asymptotic charges and black hole entropy in PG.
Next, consider a stationary black hole, such that its

spatial section Σ has a boundary with two components, one
at infinity and the other at horizon, ∂Σ ¼ S∞ ∪ SH. The
corresponding boundary integral has two parts, Γ ¼ Γ∞ −
ΓH (the minus sign reflects a different orientation of SH),
which are determined by the variational equations

δΓ∞ ¼
I
S∞

δBðξÞ; δΓH ¼
I
SH

δBðξÞ; ð2:5aÞ

δBðξÞ ≔ ðξ┘biÞδHi þ δbiðξ┘HiÞ þ
1

2
ðξ┘ωijÞδHij

þ 1

2
δωijðξ┘δHijÞ: ð2:5bÞ

Here, ξ is the Killing vector with values ∂t and ∂φ on S∞,
and a linear combination thereof on SH, such that ξ2 ¼ 0.
Moreover, a consistent interpretation of these equations is
based on the following simple rules:

(r1) On the boundary S∞, the variation δ acts on the
parameters of a black hole solution, but not on the
parameters of the background configuration.

(r2) On SH, the variation δ must keep surface gravity
constant.

The boundary conditions must be chosen so as to ensure the
solutions for Γ∞ and ΓH to exist and be finite (δ integra-
bility). When these requirements are satisfied, Γ∞ and ΓH
are interpreted as the asymptotic charges and entropy,
respectively, of a stationary black hole.
Note that each covariant momentum is given as a sum of

parity even and parity odd terms. This allows us to make the
corresponding decomposition for the thermodynamic
charges (2.5) and simplify their calculation.
According to the variational equations (2.5), the boun-

dary terms δΓ∞ and δΓH are a priori independent quan-
tities. However, since δΓ ¼ δΓ∞ − δΓH is introduced to
ensure the regularity of the canonical gauge generator G,
see Eq. (2.4), one can conclude that if G is regular then
δΓ ¼ 0 by construction. Since the inverse statement is also
true (δΓ ¼ 0 implies G is regular), it follows that

G is regular ⇔ δΓ≡ δΓ∞ − δΓH ¼ 0: ð2:6Þ

The statement δΓ∞ ¼ δΓH is nothing but the first law of
black hole thermodynamics.
In the previous paper [10], we studied the asymptotic

charges and entropy of the Kerr-AdS black holes with
torsion, found by Baekler et al. [19] in the parity even
sector of PG. In the present work, we extend these
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considerations to the general PG Lagrangian (2.2). The
corresponding Kerr-AdS black holes were constructed
recently by Obukhov [16].

III. KERR-AdS SOLUTIONS IN PG

We find it convenient to introduce the symbols PGþ and
PG− referring to the parity sectors of PG, defined by the
Lagrangians Lþ

G and L−
G, respectively.

A. Geometry

The general Kerr-AdS solution in PG [16] and its PGþ

counterpart Kerr-AdSþ [19,10] are defined by the same
tetrad field; in Boyer-Lindquist coordinates, it has the form

b0 ¼ N

�
dtþ a

α
sin2θdφ

�
; b1 ¼ dr

N
;

b2 ¼ Pdθ; b3 ¼ sin θ
P

�
adtþ ðr2 þ a2Þ

α
dφ

�
; ð3:1aÞ

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δ=ρ2

q
; ρ2 ¼ r2 þ a2cos2θ;

Δ ¼ ðr2 þ a2Þð1þ λr2Þ − 2mr; α ¼ 1 − λa2;

P ¼
ffiffiffiffiffiffiffiffiffiffi
ρ2=f

q
; f ¼ 1 − λa2cos2θ: ð3:1bÞ

Here, m and a are the parameters of the solution,
0 ≤ θ < π, 0 ≤ φ < 2π, and a0λ ¼ −Λ=3.
The metric ds2 ¼ ηijbi ⊗ bj, which is stationary and

axially symmetric, admits the Killing vectors ∂t and ∂φ.
The metric characteristics of Kerr-AdS black holes remain
the same as for Kerr-AdSþ. In particular, this holds, res-
pectively, for the location of the outer horizon r ¼ rþ, the
horizon area AH, the angular velocity ωþ, and the surface
gravity κ,

ΔðrþÞ≡ ðr2þ þ a2Þð1þ λr2þÞ − 2mrþ ¼ 0; ð3:2aÞ

AH ¼
Z
rþ
b2b3 ¼ 4π

r2þ þ a2

α
; ð3:2bÞ

ωþ ¼ gtφ
gφφ

����
rþ

¼ aα
r2þ þ a2

; ð3:2cÞ

κ ¼ ½∂Δ�rþ
2ðr2þ þ a2Þ : ð3:2dÞ

By construction, the Kerr-AdS and Kerr-AdSþ black
holes also have the same torsion,

T0 ≔
1

N
ð−V1b0b1 − 2V4b2b3Þ þ

1

N2
b−ðV2b2 þ V3b3Þ

≕T1;

T2 ≔
1

N
b−ðV5b2 þ V4b3Þ;

T3 ≔
1

N
b−ð−V4b2 þ V5b3Þ; ð3:3aÞ

where b− ≔ b0 − b1 and the torsion functions Vn are

V1 ¼
m
ρ4

ðr2 − a2cos2θÞ; V2 ¼ −
m
ρ4P

ra2 sin θ cos θ;

V3 ¼
m
ρ4P

r2a sin θ; V4 ¼
m
ρ4

ra cos θ; V5 ¼
m
ρ4

r2:

ð3:3bÞ

The third irreducible part of Ti vanishes.
For a given torsion, one can introduce the RC connection

1-form by

ωij ≔ ω̃ij þ Kij; ð3:4Þ

where ω̃ij is the Riemannian connection and Kij the
contortion 1-form,

Kij ¼ 1

2
½hi┘Tj − hj┘T

i − ðhi┘ðhj┘TkÞÞbk�: ð3:5Þ

Clearly, the connection is the same for both Kerr-AdS and
Kerr-AdSþ.
The corresponding RC curvature Rij ¼ dωij þ ωi

kω
kj

has only two nonvanishing irreducible parts; with A ¼
ð0; 1Þ and c ¼ ð2; 3Þ, they are

ð6ÞRij ¼ λbibj; ð4ÞRAc ¼ λmr
Δ

b−bc: ð3:6Þ

The quadratic invariants are regular,

Rij⋆Rij ¼ 12λ2ϵ̂; Ti⋆Ti ¼ 0: ð3:7Þ

B. Dynamics

The Lagrangian parameters of Kerr-AdS solutions are
restricted by the conditions [16]

2a1þa2¼ 0; a0−a1−λðb4þb6Þ¼ 0; a0λ¼−Λ=3;

ð3:8aÞ

ā2 − ā1 ¼ 0; ā0 − ā1 þ λðb̄4 − b̄6Þ ¼ 0; ð3:8bÞ

imposed by the field equations.
Although the dynamical variables ðbi;ωijÞ have

the same form for both Kerr-AdS and Kerr-AdSþ, the
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corresponding Lagrangians LG and Lþ
G are different. To

clarify dynamical aspects of this difference, recall that each
of the covariant momentaHi andHij, defined in Eqs. (2.3),
contains two terms, one coming from Lþ

G and the other
from L−

G. As a consequence, the formulas (2.5) for the
boundary terms imply the following:

(i) The thermodynamic charges of Kerr-AdS black
holes can be obtained by summing up the contri-
butions stemming from Lþ

G and L−
G.

Geometrically, the first term is associated to Kerr-AdSþ
black holes.1 Since the thermodynamic charges for Kerr-
AdSþ are already known, see Ref. [10], it remains only to
calculate the contributions stemming from L−

G. The related
covariant momenta are determined by the effective form of
the parity odd Lagrangian,

L−
G ¼ −ā0⋆X þ Tiðā1ð1ÞTi þ ā2ð2ÞTiÞ

þ 1

2
Rijðb̄4ð4ÞRij þ b̄6ð6ÞRijÞ; ð3:9Þ

containing only the nonvanishing irreducible parts of the
field strengths. Thus,

H̄i ¼ 2ðā1ð1ÞTi þ ā2ð2ÞTiÞ ¼ 2ā1Ti;

H̄ij ¼ −2ðā0 − λb̄6Þbibj þ 2b̄4ð4ÞRij: ð3:10Þ
The dynamical difference between Kerr-AdS and Kerr-
AdSþ, including the values of their thermodynamic
charges, is hidden just in the above expressions.

IV. ASYMPTOTIC CHARGES

Asymptotic conditions determine the behavior of
dynamical variables on the boundary S∞ where the
asymptotic charges are calculated. Hence, a precise defi-
nition of the asymptotic charges requires to have a definite
choice of the background configuration. For a Kerr-AdS
black hole, the background is defined by m ¼ 0 and
interpreted as the standard AdS spacetime, with vanishing
torsion and constant curvature. Note, however, that the AdS
metric in the Boyer-Lindquist coordinates depends on the
parameter a, which complicates the variational procedure
introduced in Sec. II. Namely, according to the rule (r1), the
variation over parameter a appearing in the AdS configu-
ration should be avoided. How to recognize those unneeded
δa terms? Technically, this can be taken care of by an
improved version of the rule (r1), specifically designed for
Kerr-AdS black holes, which is as follows:

(r10) In the variational equation (2.5) for Γ∞, the
variation δ is first applied to all the parameters
ðm; aÞ appearing in BðξÞ. Then, those δa terms that
survive the limitm ¼ 0 have to be disregarded, as they
stem from the variation of the AdS background.

By a careful analysis of the asymptotic states, Henneaux
and Teitelboim [20] concluded that the Kerr-AdS metric in
Boyer-Lindquist coordinates does not obey the asymptotic
conditions compatible with the standard AdS background;
see also Carter [21]. The problem was resolved using a
suitable coordinate transformation which brings the metric
to a manifestly asymptotically AdS form. In our approach,
based on the variational equations (2.5), the inadequacy of
the Boyer-Lindquist coordinates becomes visible through
the lack of δ integrability. As we argued in [9,10], the
problem can be solved by going over to the “untwisted”
coordinates

T ¼ t; ϕ ¼ φ − λat: ð4:1aÞ

Namely, if δEt ≔ δΓ∞ð∂tÞ and δEφ ≔ δΓ∞ð∂φÞ are taken
as the naive expressions for the asymptotic charges, then
their ðT;ϕÞ transforms,

δET ¼ δEt þ λaδEφ; δEϕ ¼ δEφ; ð4:1bÞ

become δ integrable.
In further analysis, we shall focus on the unknown

thermodynamic charges associated to the parity odd sector
PG−. Using the rule (r10), we will first calculate the naive
expressions for δEφ and δEt, whereupon (4.1b) will
produce the final, δ-integrable results.

A. Angular momentum

Consider the expression Ēφ, defined by the variational
equation δĒφ ≔ δΓ∞ð∂φÞ, where the covariant momenta
are restricted to the PG− sector. To calculate δĒφ, we
rewrite it in the form δĒφ ¼ δĒφ1 þ δĒφ2, where

δĒφ1 ≔
1

2
ωij

φδH̄ij þ
1

2
δωijH̄ijφ;

δĒφ2 ≔ biφδH̄i þ δbiH̄iφ; ð4:2Þ

and the integration over S∞ is implicitly understood. Using
the relations (A1), one finds that the nontrivial content of
δĒφ1 is given by

δĒφ1 ¼ δðω02
φH̄02θφ þ ω12

φδH̄12θφ þ ω23
φδH̄23θφÞdθdφ:

For large r, δĒφ1 is quadratically divergent,

δĒφ1 ¼ α2λr2 þ α0 þO1: ð4:3Þ

Since the coefficients α2 and α0 contain onlym-independent
δa terms, the rule (r10) implies that their contribution should
be disregarded. Hence, the integration over S∞ yields
effectively δĒφ1 ¼ 0. Similar analysis of

δĒφ2 ¼ δðb0φH̄0θφ þ b3φH̄3θφÞdθdφ
1A comment on the geometric aspects of the second one is

given in the last section.
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yields δĒφ2 ¼ 0. Transition to the new coordinates ðT;ϕÞ
implies δĒϕ ¼ δĒφ. Hence:
(ii) The variation of angular momentum associated to

the PG− sector vanishes,

δĒϕ ¼ δĒφ1 þ δĒφ2 ¼ 0: ð4:4Þ

B. Energy

Following the procedure used for Kerr-AdSþ black holes
[9,10], energy stemming from the PG− sector is calculated
in two steps. First, consider the naive expression Ēt ≔
δΓ∞ð∂tÞ, where the covariant momenta are restricted to the
PG− sector and represented it as the sum of two terms,

δĒt1 ¼
1

2
ωij

tδH̄ij þ
1

2
δωijH̄ijt;

δĒt2 ¼ bitδH̄i þ δbiH̄it: ð4:5Þ
Then, the relations (A2) allow one to reduce the form of
δĒt1 as

δĒt1 ¼ ðω23
tδH̄23θφ þ δω03

θH̄03tφ þ δω13
θH̄13tφ

− δω02
φH̄02tθ − δω23

φH̄23tθÞdθdφ:
For large r, δĒt1 is found to be

δĒt1 ¼ β2λr2 þ β0 þO1; ð4:6Þ
where β2 and β0 are m independent and proportional to δa;
thus, the integration over S∞ yields δĒt1 ¼ 0. In a similar
manner, the relation

δĒt2 ¼ ðb0tδH̄0 þ b3tδH̄3 þ δb0H̄0t þ δb2H̄2t þ δb3H̄3tÞ
× dθdφ

implies that δĒt2 also vanishes. Hence, δĒt ≡ δĒt1 þ
δĒt2 ¼ 0.
In the second step, after going over to the ðT;ϕÞ

coordinates, one finds the following:
(iii) The variation of energy associated to the PG− sector

also vanishes,

δĒT ¼ δĒt þ λaδĒφ ¼ 0: ð4:7Þ

V. ENTROPY

Consider the variational equation for δΓH restricted to
the PG− sector, where

ξ ≔ ∂T −Ωþ∂φ; Ωþ ≔ ωþ þ λa ¼ að1þ λr2þÞ
r2þ þ a2

;

ð5:1aÞ

and Ωþ is the angular velocity in the new coordinates
ðT;ϕÞ. Moreover, we use the notation

Ā0 ≔ ā0 − λb̄6;

YA
ξ ≔ ξ┘Y

A; where YA ¼ ðbi;ωij; Hi; HijÞ: ð5:1bÞ

For convenience, the expression δΓH is divided into two
parts, δΓ1 and δΓ2, and in further calculations, we rely
on Eq. (A3).

A. δΓ1 = 1
2ω

ij
ξδHij + 1

2 δω
ijHijξ

The only nontrivial contributions to the first term in
δΓ1 are

ω23
ξδH23θφ ¼ K23

ξδH23θφ ¼ 2Ā0 ·
2amrþ

ðr2þ þ a2Þρ2þ
δ

�
r2þ þ a2

α

�
sin θ cos θ; ð5:2aÞ

ω02
ξδH02θφ þ ω12

ξδH12θφ ¼ ω̃02
ξδH02θφ þ K02

ξδðH02θφ þH12θφÞ

¼
�
2λb̄4

Na2

Pðr2þ þ a2Þ δ
�
mrþ
Nρ2þ

P
a
α

�
− 2Ā0

a2mrþ
NPðr2þ þ a2Þρ2þ

δ

�
PN

a
α

��
sin3θ cos θ: ð5:2bÞ

The second term in δΓ1 is determined by

δω03H03ξ þ ω13δH13ξ ¼ δω̃03
θH03ξφ þ δK03

θðH03ξφ þH13ξφÞ

¼
�
−2λb̄4δ

�
aNP
ρ2þ

�
mrþ
NPα

þ 2Ā0δ

�
amPrþ
Nρ4þ

�
Nρ2þ
Pα

�
sin θ cos θ; ð5:3aÞ

δω02H02ξ þ δω12H12ξ ¼ −δω̃02
φH02ξθ − δK02

φðH02ξθ þH12ξθÞ

¼
�
−2λb̄4δ

�
aN
Pα

�
mrþP

Nðr2þ þ a2Þ þ 2Ā0δ

�
amrþ
NPαρ2þ

�
NPρ2þ
r2þ þ a2

�
sin θ cos θ: ð5:3bÞ
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B. δΓ2 = biξδHi + δbiHiξ

The analysis of the nontrivial content of δΓ2 yields

b0ξδH0 ¼ b0ξδH0θφ ¼ −2ā1
Nρ2þ

r2þ þ a2

· δ
�
amrþ
Nαρ4þ

ðr2þ þ a2 þ ρ2þÞ
�
sin θ cos θ; ð5:4aÞ

δb0H0ξ ¼ −δb0φH0ξθ ¼ 2ā1δ
�
Na
α

�

·
a2mrþ

Nðr2þ þ a2Þρ2þ
sin3 θ cos θ; ð5:4bÞ

δb2H2ξ ¼ δPH2ξφ ¼ −2ā1δP ·
amrþ
Pαρ2þ

sin θ cos θ; ð5:4cÞ

δb3H3ξ ¼ −δb3φH3ξθ ¼ −2ā1δ
�
r2þ þ a2

Pα

�

·
amrþP

ðr2þ þ a2Þρ2þ
sin θ cos θ: ð5:4dÞ

C. Calculations and the result

In order to obtain the entropy associated to the PG−

sector, one could now apply the systematic procedure
formulated in Ref. [10] to calculate δΓH ≡ δΓ1 þ δΓ2.
However, the procedure can be enormously shortened by
noting that each term in Eqs. (5.2)–(5.4) is given as an
integral of the form

I ¼
Z

π

0

dθfðcos2 θÞ cos θ sin θ: ð5:5Þ

Then, the change of variables x ¼ cos θ implies I ¼ 0, and
consequently the following:
(iv) The variation of entropy associated to the PG− sector

vanishes,

δΓH ≡ TδS̄ ¼ 0: ð5:6Þ

VI. CONCLUDING REMARKS

In the present paper, we performed a Hamiltonian
analysis of the thermodynamic charges for Kerr-AdS black
holes in the general PG, with both even and odd par-
ity modes.
Our methodology is compactly formulated by the varia-

tional equations (2.5), accompanied by the basic set of two
rules, (r1) and (r2), for the variation δ. When the back-
ground configuration is an AdS spacetime, the validity of
the rule (r1) is ensured by an additional instruction on how
the variation of the background should be avoided; see (r10)

in Sec. IV. These rules are a variational counterpart of the
asymptotic conditions used in Ref. [20], as well as in ½5�2,
in their analyses of Kerr-AdS spacetimes.
Kerr-AdS solutions in PG can be understood as a

superposition of two contributions, associated to the
PGþ and PG− sectors of PG. The thermodynamic charges
originating from PG− are found to be vanishing. Thus:
(v) Asymptotic charges and entropy of Kerr-AdS black

holes in PG [16] coincide with the corresponding
expressions for Kerr-AdSþ black holes, found ear-
lier in PGþ [10]. With T ≔ κ=2π, we have

ET ¼ 16πa1
m
α2

; Eϕ ¼ 16πa1
ma
α2

;

S ¼ 16πa1
AH

4
: ð6:1Þ

Using the Pontryagin and Nieh-Yan topological invar-
iants, the effective form of L−

G in (3.9) can be reduced to
just two terms, ⋆X and Rijð6ÞRij ∼ ⋆X. Thus, in spite
of the fact that the thermodynamic charges in the parity
odd sector vanish, the sector itself is not dynamically
trivial—it is essentially equivalent to the term ⋆X.
Kerr-AdS solutions cannot be consistently reduced to the

pure parity odd sector PG−. Namely, for a0;Λ ¼ 0, the
parameter λ would remain undetermined (since 3a0λ ¼ Λ),
which would be a degenerate situation. However, they can
be consistently restricted to the PG− sector extended by the
nonvanishing ða0;ΛÞ. Although the resulting solution
ðKerr-AdS−Þ0 is interesting in its own right, the Kerr-
AdS spacetime is not a proper superposition of Kerr-AdSþ
and ðKerr-AdS−Þ0, as their parameters overlap.
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APPENDIX: USEFUL FORMULAS

In this appendix, we present technical formulas which
are used in deriving the expressions for the asymptotic
charges and entropy, in Secs. IV and V,

H01
θφ ¼ H03

θφ ¼ H13
θφ ¼ 0;

b1φ ¼ b2φ ¼ 0; ω̃03
φ ¼ ω̃12

φ ¼ 0; ðA1Þ

H01
tφ ¼ H02

tφ ¼ H12
tφ ¼ H23

tφ ¼ 0;

H01
tθ ¼ H03

tθ ¼ H13
tθ ¼ 0;

b1t ¼ b2t ¼ 0; ω03
t ¼ ω12

t ¼ 0;

ω̃01
θ ¼ ω̃02

θ ¼ ω̃13
θ ¼ ω̃23

θ ¼ 0: ðA2Þ
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b0ξ ¼ N
ρ2þ

r2þ þ a2
baξjrþ ¼ 0 a ¼ 1; 2; 3;

H01
ξ ¼ H23

ξ ¼ 0; H03
ξθ ¼ H13

ξθ ¼ 0; H02
ξφ ¼ H12

ξφ ¼ 0;

ω̃03
ξ ¼ ω̃12

ξ ¼ ω̃23
ξ ¼ 0; ω̃23

ξ ¼ OðN2Þ;
ω̃12

φ ¼ 0; ω̃13
θ ¼ 0; K01

θ ¼ K23
θ ¼ 0: ðA3Þ
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Proceedings of 6th Course of the International School of
Cosmology and Gravitation on Spin Torsion and Super-
gravity, edited by P. G. Bergmann and V. de Sabbatta
(Plenum, New York, 1980), pp. 329–355.

[4] M. Blagojević, Gravitation and Gauge Symmetries (IoP,
Bristol, 2002); V. N. Ponomariov, A. O. Barvinsky, and
Y. N. Obukhov, Gauge Approach and Quantization
Methods in Gravity Theory (Nauka, Moscow, 2017);
E. W. Mielke, Geometrodynamics of Gauge Fields, 2nd ed.
(Springer, Switzerland, 2017).

[5] Ch.-M. Chen, J. M. Nester, and R.-S. Tung, Gravitational
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