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We describe an action principle, within the framework of the Eddington gravity, which
incorporates the matter fields in a simple manner. Interestingly, the gravitational field equations
derived from this action is identical to Einstein’s equations, in contrast with the earlier attempts in
the literature. The cosmological constant arises as an integration constant in this approach. In fact,
the derivation of the field equations demands the existence of a nonzero cosmological constant,
thereby providing the raison d’être for a nonzero cosmological constant, implied by the current
observations. Several features of our approach strongly support the paradigm that gravity is an
emergent phenomenon and, in this perspective, our action principle could have a possible origin in
the microstructure of the spacetime. We also discuss several extensions of the action principle,
including the one which can incorporate torsion into the spacetime. We also show that an
Eddington-like action can be constructed to obtain the field equations of the Lanczos-Lovelock
gravity.
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I. INTRODUCTION AND MOTIVATION

The usual starting point for obtaining the gravitational
field equations in general relativity is the Hilbert action,
with the metric treated as the dynamical variable. Even
though it is possible to derive Einstein’s equations from
the variation of this action (with respect to the metric), it
is not completely straightforward because the variational
problem is ill-posed. This is because of the presence of
second derivatives of the metric in the Ricci scalar,
which is the Lagrangian for the Hilbert action [1–5].
The well-posed version of the Hilbert action can only be
obtained by adding suitable boundary terms to the
Hilbert action, which crucially depend on the choice
of the boundary surface [6–12]. Though these boundary
terms do not affect Einstein’s equations, they have
important thermodynamical as well as geometrical
implications [13–15].
Such complications, associated with the Hilbert action,

provide one possible motivation for an alternative pro-
posal, originally suggested by Eddington [16,17]. In this
approach, one takes the gravitational Lagrangian to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðRabÞ

p
, where Rab is the Ricci tensor. Since the

Ricci tensor Rab [in the (0,2) form] can be constructed
solely from the connection Γp

qr, we can consider the
connection to be the dynamical variable and vary it in
the Eddington action. Interestingly, the outcomes are the

Einstein equations with a nonzero cosmological constant.
Thus Eddington’s action is a viable alternative to the
Hilbert action and, as we will describe below, is also
well-posed.
There is, however, a major issue with the Eddington

proposal, viz. that it does not include the matter degrees
of freedom. Surprisingly, the inclusion of matter in the
Eddington framework has turned out to be not very
straightforward. Most of the proposals in the literature
are motivated by the Born-Infeld-like structure [18–26].
Broadly speaking, this requires the action to be depen-
dent on the connection Γp

qr, the matter degrees of
freedom Ψ and the metric gab, though the connection
and the metric are considered independent. Setting the
variation of the action with respect to the metric to zero,
i.e., ðδA½Γ; g;Ψ�=δg ¼ 0Þ, one obtains g ¼ gðΓ;ΨÞ. This
result, when substituted back to the action, yields the on-
shell action, A½Γ;Ψ�, which is a function of the connection
and the matter fields alone. The final step is the variation of
this action with respect to the connection which yields the
desired gravitational field equations. However, none of
these attempts, as far as we know, yields the Einstein
equations; rather, they lead to additional corrections
[21,27–31].
In this paper, we will discuss a completely new

approach to deriving the Einstein equations in the
spirit of Eddington gravity. Most importantly, we will
construct an action principle such that its variation,
with respect to the connection, leads precisely to the
Einstein equations without any additional corrections.
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In addition, as we will demonstrate, our variational
principle will be well-posed.1

The paper is organized as follows: In Sec. II, the
modified action for the gravity (incorporating the matter
field) along the lines of Eddington gravity is presented. Its
variation, leading to the gravitational field equation, is
described in Sec. III. Finally, the relationship of this action
with the microstructure of the spacetime is briefly dis-
cussed in Sec. IV.
Notations and Conventions: We will assume c ¼ 1 ¼ ℏ

and use the mostly positive signature convention. We will
work in d-dimensional spacetime except when specified
otherwise. Latin sub/superscripts run over all the spacetime
indices.

II. ACTION FOR EDDINGTON GRAVITY
WITH MATTER

In this section, we will introduce our action principle for
gravity plus matter and describe some of its key features.
We will vary this action and derive the field equations in the
next section.
Motivated by the original form of the Lagrangian

associated with the Eddington gravity, we propose the
following action, in d > 2 spacetime dimensions, to
describe gravity coupled to matter:

A ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet ðRðabÞðΓÞ − κT̄abÞj

q
;

T̄ab ¼ Tab −
1

ðd − 2ÞTgab; ð1Þ

where κ ¼ 8πG, with G being the Newton gravitational
constant. There are several features of this action which are
worth emphasizing.

(i) The action given above (with an integration measure
ddx rather than

ffiffiffiffiffiffiffiffiffiffiffiffiffijdet gjp
ddx) is indeed a scalar,

since the determinant of any second rank tensor field
transforms identically to

ffiffiffiffiffiffiffiffiffiffiffiffiffijdet gjp
, thereby making

the action a generally covariant scalar. The action is
also dimensionless. These features, of course,
should be obvious to those familiar with the standard
Eddington gravity, which is obtainable from Eq. (1)
by setting Tab ¼ 0.

(ii) In the above action, RðabÞðΓÞ≡ ð1=2Þ½RabðΓÞ þ
RbaðΓÞ� is the symmetric part of the Ricci tensor,
which is constructed solely from the connection Γa

bc.
Thus the gravitational sector is independent of the

metric and depends only on the connection. For
simplicity in the main discussion, we will assume
that the connection is symmetric, i.e., Γa

bc ¼ Γa
cb.

This assumption can be relaxed—and torsion can
be included through the antisymmetric part of
the connection—rather easily, as demonstrated in
Appendix C of [33].

(iii) Since we are not assuming any a priori relation
between Γa

bc with the metric gcd, it follows that the
Ricci tensor need not be symmetric. This is due to
the term ∂aΓc

bc in the Ricci tensor, which is not
symmetric in ða; bÞ unless Γa

bc is given by the
Christoffel symbol corresponding to a metric. There-
fore, we have constructed the action out of the
symmetric part of the Ricci tensor.

(iv) The Tab is the matter energy-momentum tensor,
whose trace is denoted by T. This can—and indeed it
does—depend on the metric. However, we will
assume that Tab is independent of the connection;
this criterion is satisfied by almost all the matter
stress tensors we will be interested in. As already
stated, the connection and the metric are treated as
independent variables at this stage, somewhat in the
spirit of the Palatini formulation in Einstein’s stan-
dard theory (the assumption that the matter sector
does not explicitly depend on the connection is an
assumption usually made in the standard Palatini
approach, as well).

(v) The most significant departure of the action princi-
ple proposed above from those in the previous
literature is in the treatment of the matter degrees
of freedom. Instead of working with a separate
matter Lagrangian, we will work with the matter
energy-momentum tensor Tab itself. Though it may
appear somewhat surprising at first sight, everything
will work out satisfactorily due to the following two
facts. First, given a Lagrangian for the matter field,
the energy-momentum tensor can be uniquely de-
termined and hence there is a clear correspondence
between the two. Second, as we shall show, the
gravitational field equations will lead to ∇aTa

b ¼ 0

(as in Einstein’s standard theory) from which one
can derive the equations of motion for the matter
field. To reiterate, variation of the above action with
respect to the connection Γa

bc will yield the gravi-
tational field equations, which, as we will demon-
strate in the next section, will be identical to the
Einstein equations sourced by Tab (and a cosmo-
logical constant). Then Bianchi identity will yield
the field equations for the matter field through
∇aTa

b ¼ 0 (we will comment again on this aspect
later, after the derivation of the field equations have
been presented).

We conclude this section with some brief comments on
the relation between a second rank tensor and a matrix.

1Another key motivation for this approach is the following.
The action we will be using here is closely related to an effective
action in the emergent gravity paradigm, when we integrate out
certain microscopic degrees of freedom of spacetime in a path
integral. We will not pursue this idea in this paper—except for a
brief comment in the last section—but will discuss it in a separate
work [32].
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Given any second rank tensor Sab (equivalently Sab, or, S
ab),

one can construct a matrix Ma
b, such that the ath row and

the bth column of the matrix coincides with the ða; bÞth
element of the tensor [given in (0,2), (1,1) or (2,0) form].
The determinant of the tensor is then defined as the
determinant of the matrix to which its components are
mapped.2 This is precisely what we do while computing the
determinant of the metric tensor gab in general relativity;
the determinant in Eq. (1) is computed exactly as we
compute the determinant of the metric tensor gab in general
relativity [once again, this should be clear to those who are
familiar with standard Eddington gravity, which is obtain-
able from Eq. (1) on setting Tab ¼ 0].

III. VARIATION OF THE ACTION AND THE
GRAVITATIONAL FIELD EQUATIONS

We will now vary the action in Eq. (1) for arbitrary
variation of the connection and shall obtain the gravita-
tional field equations. For this purpose, it will be conven-
ient to define the tensor Mab ≡ RðabÞ − κT̄ab, which, by
construction, is symmetric. As mentioned earlier, the
definition of the determinant appearing in Eq. (1) requires
us to map the (components of) tensor Mab to (the elements
of) a matrix Ma

b. Given the matrix Ma
b, one can define

the inverse matrix N a
b, such that Ma

bN b
c ¼ δac ¼

N a
bMb

c. Again, one can map the inverse matrix N a
b

back to a tensor Nab, such that NabMbc ¼ δac ¼ McbNba

(for some pedagogical details, see Appendix A of [33]).
This tensor Nab will be useful in the ensuing analysis.
The variation of our action in Eq. (1), under arbitrary

variation of the symmetric connection Γa
bc, leads to:

δA ¼
Z

ddx
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det ðMÞjp j det ðMÞj ×N a

bδMb
a

¼ 1

2

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
NabδMba; ð2Þ

where det ðMÞ denotes the determinant of the matrixMa
b.

Since the matter energy-momentum tensor T̄ab is indepen-
dent of the connection, the variation of the tensorMab (due
to an arbitrary variation of the connection) will arise only
from the Ricci term. The variation of the Ricci tensor, due
to variation of the connection, is given by:

δRðabÞ ¼ ∇cδΓc
ab −∇ðaδΓc

bÞc; ð3Þ

so the variation of the action A becomes

δA ¼ 1

2

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Nbað∇cδΓc

ab −∇aδΓc
bcÞ

¼ 1

2

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δcdabN

pa∇dδΓb
cp;

δabcd ≡ δacδ
b
d − δadδ

b
c; ð4Þ

where we have used the fact that Nab is symmetric. In
deriving the above variation of the action we have adopted
the usual convention of writing the determinant of a matrix,
det ðMÞ, as the determinant of the tensor, det ðMÞ, since
no confusion is likely to arise in the subsequent discussion.
The above variation can be simplified further. As a first

step, we will rewrite the above expression by separating out
a total derivative term:

δA ¼ 1

2

Z
ddx∇d½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δcdab N

paδΓb
cp�

−
1

2

Z
ddx∇d½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δcdabN

pa�δΓb
cp: ð5Þ

We next want to convert the total divergence term to a
surface term, as is usually done, so that it will vanish with
the usual boundary conditions, viz. δΓb

cp ¼ 0 at the
boundary. This is, of course, trivial if the expression had
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det ðgÞjp
in place of a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det ðMÞjp
in the first

integrand. Due to the presence of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det ðMÞjp

factor,
it may appear that such a conversion of the total divergence
term to a boundary term will not be possible in the present
context. Fortunately, it turns out that one can indeed convert
the first term in Eq. (5) into a surface term because the
following identity holds (see Appendix B of [33] for a
derivation):

∇c½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Vc� ¼ ∂c½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Vc�; ð6Þ

for any vector field Vc and second rank tensor field Mab,
whose determinant is det ðMÞ. Using this result, the
variation of the action in Eq. (5) becomes

δA ¼ 1

2

Z
ddx ∂d½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δcdab N

pa δΓb
cp�

−
1

2

Z
ddx∇d½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δcdab N

pa�δΓb
cp: ð7Þ

The first term provides the boundary contribution arising
out of the action when it is varied with respect to the
connection, while the second term will provide the gravi-
tational field equations. Even though the boundary term
will not contribute to the field equations, it is worth
emphasizing a few points about the boundary contribution,
as it is intimately connected with the question of whether
the action principle is well-posed. Let us take the usual
boundary of a four-dimensional volume, made out of two

2Some pedagogical subtleties in defining the determinant of an
arbitrary second rank tensor, not adequately emphasized in the
literature and textbooks, are discussed in Appendix A of [33].
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constant time hypersurfaces, t ¼ t1, t ¼ t2, along with a
timelike surface at spatial infinity. Then we will be fixing
Γa
bc at both the t ¼ t1, t ¼ t2 hypersurfaces (and assuming

that δΓa
bc vanishes at spatial infinity). Thus, in the present

context, the field equations must be of second order in Γa
bc

for the variational problem to be well-posed. As evident
from the second term of the above variation, the field
equations depend on at most the second derivatives of
the connection and hence the variational problem is indeed
well-posed. This is unlike the metric variation of the
Hilbert action, in which case not only the metric, but also
its normal derivatives need to be fixed at the boundaries.
Thus the action for Eddington gravity will not require any
additional boundary terms, in sharp contrast to the Hilbert
action.
Neglecting the boundary contribution and setting

δA ¼ 0 for arbitrary variation of the connection in the
bulk, we obtain the field equations to be:

∇d½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δcdab N

pa� þ∇d½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
δpdab N

ca�
¼ 2∇b½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Npc� − δcb∇d½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Npd�

− δpb∇d½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Ncd� ¼ 0: ð8Þ

In writing the first line, we have taken care of the fact that
δΓb

cp is symmetric in c, p. This equation can also be
simplified further, by multiplying both sides using δbc , from
which we immediately obtain ∇a½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det ðMÞjp
Nba� ¼ 0.

Substituting this expression back in Eq. (8), we finally
obtain

∇c½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Nab� ¼ 0: ð9Þ

This provides the gravitational field equations arising out of
the connection Γa

bc and is indeed a second order differential
equation in Γa

bc, leading to a well-posed boundary value
problem, as mentioned before.
If we set Tab ¼ 0, so that Mab ¼ RðabÞ, this equation

reduces to the one we would have obtained in the context of
standard Eddington gravity. In the current context, with the
presence of matter, this equation has the same structure as
that of Eddington gravity, with RðabÞ replaced by Mab. We
can proceed exactly as in the case of in Eddington gravity,
as should be obvious to those familiar with the standard
Eddington gravity analysis. Nonetheless, we will spell out
the relevant algebraic details below.
The field equation arising from the variation of the

connection, given by Eq. (9), contains second derivatives of
the connection. However, as in standard Eddington gravity,
this equation can be immediately integrated to give the first
integral (which will involve only the first derivatives of the
connection). To do this we only have to note that Eq. (9)
requires us to find a second rank symmetric tensor density
which has a vanishing covariant derivative with respect to

the connection Γa
bc, which is used to define the derivative

operator ∇c. Because Nab and Mab are inverses of each
other, Eq. (9) requires ∇cMab ¼ 0. If we expand out the
covariant derivative in this equation, we can express Γa

bc in
terms of Nab and the derivatives of Mab, exactly as we
would relate the metric to the connection using the
condition ∇cgab ¼ 0. Therefore, when we set Mab ∝ gab
the connection Γa

bc and the metric will be related in the
standard manner (that is, the connection used in ∇c will be
the one compatible with the metric). This will also, in turn,
make Nab ∝ gab and det ðMÞ ∝ det ðgÞ. With this choice,
Eq. (9) reduces to ∇c½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det ðgÞjp
gab� ¼ 0, which is just the

standard compatibility condition between the metric and
Γa
bc used to construct the connection, thereby closing the

logical loop (this is exactly the same as what is done in
standard Eddington gravity, where Tab ¼ 0).
Before proceeding further, we will mention one subtlety

in the above argument in the current context, where
Tab ≠ 0. This is related to an interesting and hidden role
played by the principle of equivalence in the presence of
matter. Suppose we introduce some metric qab from which
the connection Γa

bc can be obtained in the standard manner.
Then the first integral to Eq. (9) is indeed given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðMÞj

p
Nab ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðqÞj

p
qab; ð10Þ

where qab is the inverse of the metric tensor qab. At this
stage, formally, we actually have twometric tensors in play:
gab, which could occur in the matter sector of the action
(through T̄ab) and the tensor qab, which is introduced as the
one compatible with the connection Γc

ab, and arises in the
gravitational sector through Eq. (10). The principle of
equivalence, however, requires us to identify these two
metric tensors (i.e., set qab ¼ gab) and make Γa

bc the
Christoffel symbol associated with either of them. To
see this, note that the principle of equivalence allows us
to choose a coordinate system around any event P such that
the local physics reduces to that of special relativity and all
gravitational effects vanish to first order. This, in turn, is
possible only if we can choose a coordinate system such
that the metric reduces to the Minkowski form ðηabÞ at P
and the Christoffel symbols derived from the metric vanish
at P. Such a choice of coordinate system is clearly not
possible if there are two nontrivially different metrics gab
and qab (as well as their corresponding connections). A
single coordinate’s transformation will not be able to
reduce two nontrivially different metrics into a locally flat
form simultaneously. Since we want both the geometrical
effects governed by qab and the behavior of matter
governed by gab to reduce to special relativistic form in
the same freely falling frame, it is necessary that we
identify gab ¼ qab (a more general class of theories, called
bimetric theories of gravity, is possible if we relax this
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condition but we will not be concerned with such gener-
alizations in this work).
Returning to the main discussion, the first integral to

Eq. (10) leads to the identificationMab ∝ gab ≡ λgab where
λ is an integration constant. The introduction of the metric,
compatible with the connection, also makes the Ricci
tensor symmetric Rab ¼ Rba so that the equation Mab ¼
λgab leads to

Rab − κT̄ab ¼ λgab: ð11Þ

Taking the trace of this equation, we obtain, on the left hand
side, Rþ ð2=ðd − 2ÞÞκT and on the right hand side λd,
thereby yielding R ¼ λd − ð2=ðd − 2ÞÞκT. So, with some
simple algebra, Eq. (11) can be rewritten in terms of the
Einstein tensor Gab ≡ Rab − ð1=2ÞRgab as:

Gab þ
�
d − 2

2

�
λgab ≡Gab þ Λgab ¼ κTab; ð12Þ

where Λ≡ ½ðd=2Þ − 1�λ is the d-dimensional cosmological
constant. So we have obtained precisely the Einstein
equations with a cosmological constant term. In contrast
to other approaches to include matter in the Eddington
gravity, where the gravitational field equations themselves
are modified, while in the present approach we obtain the
exact Einstein’s equations.

A. Comments on the result

We will now make several key comments about our
result.
(a) The role played by the cosmological constant in the

above derivation is note-worthy. In sharp contrast to
the standard derivation of the Einstein equations from
the Hilbert action, our approach demands the existence
of a nonzero cosmological constant. In order to arrive
at the above field equation we must have Λ ≠ 0, i.e.,
a nonzero cosmological constant is absolutely neces-
sary if the field equation arising out of the Eddington
gravity is to make any sense. This is, of course,
gratifying because in the usual approaches, the cos-
mological constant is an “optional” parameter; you can
set it to a zero value or to a nonzero value, as desired.
Within such an approach, the observational facts,
indicating the existence of a nonzero cosmological
constant, have no fundamental explanation. That is,
the standard derivation of the Einstein equation from
the Hilbert action goes through without any hitch even
if the cosmological constant is zero. But in our
approach, the derivation of the field equations de-
mands a nonzero cosmological constant.

(b) The cosmological constant arises in the first integral to
the equations of motion in the form of an integration
constant. It has been stressed in the previous literature
that this is indeed the only way the cosmological

constant problem can be addressed (see e.g., [15,34]).
This is reminiscent of the manner in which the
cosmological constant arises in the emergent gravity
paradigm (see e.g., [14]). Just as in these approaches,
its numerical value has to be fixed using some other
general principle (see e.g., [35]) since it is an inte-
gration constant. We will say more about the con-
nection between this approach and emergent gravity
paradigm in the last section.

(c) We never varied the metric in the action principle and
only needed to vary the connection. The resulting
equations of motion, Eq. (9), involves second deriv-
atives of the connection, but it was trivial to find the
first integral to this equation of the form Mab ¼ λgab
which involves only the first derivatives of the con-
nection and hence the second derivatives of the metric.
All of these are true even in the standard approach to
Eddington gravity. The only modification is that, in the
absence of matter, the action in Eq. (1) is independent
of the metric, while our action has a possible depend-
ence on the metric though the energy-momentum
tensor Tab. The variational principle treats the con-
nection and the metric as independent variables and
we have only varied the connection. Of course,
just because some quantity appears in the action does
not mean that we must vary it. More formally, the
complete specification of any variational principle has
three ingredients: (i) The form of the action functional,
(ii) The entities which are varied, (iii) The nature of the
variation and the boundary conditions. We have
complete liberty to prescribe these; as long as we
choose a consistent set of these three ingredients we do
have a valid variational problem, as in our case.

(d) Closely related to the above comment is the dual
role played by the field equations, as in Eq. (9). Its
first integral, given by Mab ¼ λgab, achieves two
things: First, this choice transforms Eq. (9) to read
as ∇cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp
gabÞ ¼ 0, which is the standard com-

patibility condition between the metric and the con-
nection. We obtain this without having to vary the
metric, unlike, say, in the standard Palatini approach
(this happens in the usual Eddington gravity without
matter as well). Second, using Mab ¼ Rab − κTab, we
obtain the Einstein equations in the form
Rab − κTab ¼ λgab. The original equation, i.e.,
Eq. (9) (which is second order in the connection),
would suggest that the connection is the dynamical
variable of the theory but once we obtain the first
integral, Rab − κTab ¼ λgab (which is first order in the
connection but second order in the metric) we see that
the metric acquires a status similar to the dynamical
variable, even though we never needed to vary the
metric in the action principle. So the metric becomes,
in the Wheelerian language, a “dynamical variable
without (being) a dynamical variable.” This is not only
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consistent with the emergent gravity paradigm but
even strongly suggests thinking of the metric as an
emergent variable.

(e) The Bianchi identity immediately gives ∇aTa
b ¼ 0,

which is a consistency condition on Ta
b, which is used

in the action. In addition, this will lead to the equations
of motion for the matter field without having to
vary the matter variables separately (“spacetime tells
matter how to move”). This is perfectly adequate in a
completely classical theory, in which the action is just
a tool to get the equations of motion incorporating the
relevant symmetries in the most economical way.
However, there could be some contexts, like in the
study of quantum fields in a fixed curved geometry, in
which we would like to get the equations of motion for
the matter sector from variation of matter variables in
the total action. The same issue arises in the emergent
gravity paradigm as well (see the discussion in the
third paragraph after Eq. (40) in [36]), and can be
taken care of by the following prescription. The total
action is taken to be the sum of Lmatter and the action in
Eq. (1). The connection is varied at first and the
solution to the gravitational field equations is sub-
stituted into the action to obtain the on-shell action as
far as gravity is concerned. The matter degrees of
freedom are then varied in this on-shell action to obtain
matter equations of motion; one can also perform a
path integral over matter variables in the on-shell
action to do standard quantum field theory in curved
spacetime. Note that the gravitational part of the on-
shell action will be the one obtained by replacing
det ðRðabÞ − κT̄abÞ by λd det ðgÞ, which is devoid of
any matter degrees of freedom. Thus the new on-shell
action will involve only the matter Lagrangian Lmatter
plus an additional metric dependent term, proportional
to λd=2. Therefore, the variation of the matter degrees
of freedom is identical to the variation of the matter
Lagrangian Lmatter in a given curved spacetime and
will lead to the correct evolution equation for the
matter fields.

(f) We next comment on the case of nonvanishing torsion
within the context of the Eddington gravity. The first
step, again, is to choose the appropriate Lagrangian
and thus the action. Following the previous discussion,
it seems legitimate to consider the Lagrangian to
depend on the Ricci tensor constructed out of the
symmetric Christoffel connection and the contorsion
tensor, i.e., one may again consider the following

Lagrangian
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðR̄ðabÞ − 8πGT̄abÞj

q
. Here, R̄ab is

the Ricci tensor which depends on the spacetime
torsion as well and hence is not symmetric. But it
turns out that the variation of the above action with
respect to the symmetric Christoffel connection and
the contorsion tensor does not yield appropriate

expressions for the gravitational field equations. How-
ever, as shown in Appendix C of [33], a specific
modification of the action does yield the correct
gravitational field equations for the Einstein-Cartan
theory. Of course, in the absence of any Fermionic or
nonminimally coupled matter field, the torsion tensor
will vanish identically on-shell and then the Einstein-
Cartan gravitational field equations will reduce to the
Einstein equations.

(g) Once we have broken free from the compulsion to
vary the metric, it is possible to construct the
Eddington-type action for Lanczos-Lovelock models
(coupled to matter) as well (for a review of Lanczos-
Lovelock models, see [37]). In this case, for the
mth order Lanczos-Lovelock gravity, we take the
action to be:

A ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðRðmÞ

ðabÞ − κT̄ðmÞ
ab Þj

q
;

T̄ðmÞ
ab ¼ Tab −

1

ðd − 2mÞTgab; ð13Þ

where

RðmÞ
ab ¼ Ppqr

a Rbpqr ¼ mδc1d1c2d2���cmdma1b1a2b2���ambm
× ðgb2e2Ra2

e2c2d2 � � � gbmemRam
emcmdmÞ

× δa1a gb1e1gbqRq
e1c1d1 : ð14Þ

Treating the metric and the connection as independent
and varying the connection, somewhat lengthy algebra
(see Appendix D of [33] for details) leads to the
standard field equations for the Lanczos-Lovelock
model:

RðmÞ
ðabÞ −

1

2
LðmÞgab þΛgab ¼ κTab; Λ¼

�
d− 2m
2m

�
λ:

ð15Þ

Note that for d ¼ 2m, i.e., in the critical dimension for
the mth order pure Lovelock gravity, the effect from
the cosmological constant term identically vanishes.

IV. DISCUSSION: EXTENSIONS AND THE
BROADER PERSPECTIVE

We have explicitly demonstrated that there exists a first
order formalism, in the same spirit as the Eddington gravity,
which includes matter and reproduces the Einstein equa-
tions. The dynamical variable in the action is the con-
nection, whose variation leads to the Einstein equations.
This is in contrast with the other approaches in the literature
to include matter in Eddington gravity, where the gravita-
tional field equations are different from the Einstein
equations. The variational principle proposed in this work
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is also well-posed, unlike in the case of the Hilbert action.
This is because our action differs from the Hilbert action in
two crucial respects: (a) The gravitational part of the action
involves only the connection and has no reference to the
metric, and (b) fixing the connection at the boundary turns
out to be sufficient to render the variational principle
well-posed.
Another remarkable feature of our analysis (which is

common to the standard Eddington gravity to a certain
extent) is the emergence of a cosmological constant natu-
rally; more importantly, the cosmological constant has to be
nonzero for the variational problem to make sense. This fact
renders our action to be a better choice to derive the Einstein
equations than the Hilbert action, since the latter does not
demand a nonzero cosmological constant.
We will now mention several possible extensions of this

action principle and their consequences.
To begin with, it is possible to construct a more general

class of actions and still obtain the standard Einstein
equations, along the lines of how we have proceeded.
One such class of actions can be constructed as follows: Let
Mab ¼ L2½Rab − κTab�, where L is a constant length scale
introduced for dimensional reasons (which does not affect
the variation or the equations of motion) and let X ≡
j det Mj=j det gj be the ratio of the two determinants, which
will transform as a scalar under coordinate transformations.
We take the Lagrangian to be an arbitrary scalar function of
X so that the (dimensionless) action for the gravity plus
matter system is given by:

A¼
Z

ddx
Ld

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
f

�jdetMj
jdet gj

�
¼
Z

ddx
Ld

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p
fðXÞ:

ð16Þ

The choice of fðXÞ ¼ X reduces this action to the one in
Eq. (1). For other choices of fðXÞ, even the gravitational
sector has a dependence in the metric. However, we treat
the connection and the metric as independent and vary only
the connection in the action. It is shown in Appendix E of
[33] that the variation of the action in Eq. (16) also leads to
Einstein’s equations.
Second, let us consider the possible origin of the action

in Eq. (1). The occurrence of a determinant in the
Lagrangian is strongly suggestive of a path integral origin.
To make this connection precise, consider the standard
result of a Gaussian path integral in d ¼ 4 Euclidean space,
leading to an effective action:

Z
Dva exp

�
−
Z

d4x
L4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðgÞj

p
vaðL2MabÞvb

�

∝ exp

�
−
1

2

Z
d4x
L4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðgÞj

p
ln ðj det ðL2MabÞjÞ

�

∝ exp ð−Aeff ½Mab�Þ; ð17Þ

where va is a vector field that is integrated out and
Mab ¼ RðabÞðΓÞ − κT̄ab, is as defined earlier. Here RðabÞ
is the symmetric part of the Ricci tensor and is treated as a
functional of the connection. The L is a constant length
scale introduced purely for dimensional reasons (which will
be of the order of Planck length in the emergent paradigm).
The path integral thus gives rise to the following effective
action:

Aeff ¼
1

2

Z
d4x
L4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet ðgÞj

p
ln ðjdet ½L2ðRabðΓÞ− κT̄abÞ�jÞ;

ð18Þ

which is very similar to our action in Eq. (1) except for the
logarithmic dependence. The variation of this action also
leads to the Einstein equations, as shown in Appendix E of
[33] [the action in Eq. (18) is equivalent to the one in
Eq. (16) for the choice fðXÞ ¼ ln X, when we use the fact
that the metric dependent terms are not varied in the action;
the result follows from that for the class of actions in
Eq. (16)]. The interpretation of this analysis and its
connection with the microscopic degrees of freedom on
null surfaces will be explored in a separate publication [32].
We conclude by pointing out a key broader implication

of the results in this paper, including those of this section,
for quantum gravity. As far as classical theories are
concerned, it is only the equations of motion that are
relevant. The action principle is more of an exercise in
elegance and economy and, of course, is the simplest route
to incorporate the expected symmetries of the theory. The
situation, however, is quite different in quantum theory. In
the path integral formalism, for example, it is important to
know the form of the action principle as well as the status of
dynamical variables. We have now shown that one can
obtain Einstein’s equations from different choices of action
functionals and dynamical variables (recall that we only
varied the connection and kept the metric frozen). All of
them are equivalent at the classical level but their quantum
versions will be quite different. It is conceivable that some
of them will lead to a tractable model for quantum gravity,
at least in the matter-free case.
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