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We present an analytical model for the evolution of brown dwarfs in quadratic Palatini fðRÞ gravity. We
improve previous studies by adopting a more realistic description of the partially degenerate state that
characterizes brown dwarfs. Furthermore, we take into account the hydrogen metallic-molecular phase
transition between the interior of the brown dwarf and its photosphere. For such an improved model, we
revise the cooling process of substellar objects.
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I. INTRODUCTION

Dark Matter (DM) provides a consistent explanation of
gravitational phenomena at spatial scales that roughly span
up to 10 orders of magnitude. It explains the cosmic
microwave background power spectrum [1] and the for-
mation of structures in the Universe [2]. Furthermore, DM
is invoked to explain the mismatch between the observed
dynamical mass and that inferred from observations of the
visible component in Galaxy clusters [3], elliptical and
spiral galaxies [4], and in dwarf and ultrafaint dwarf
galaxies [5,6]. Nonetheless, the nature of the DM remains
unknown and none of the proposed candidates has been
detected so far.
An alternative proposal to explain the observed dis-

crepancy in the data is to modify the theory of gravity.
Several modifications of gravity have been proposed in the
literature (e.g., [7–13]). These proposals are able to
describe gravitational phenomena at different scales, such
as the rotation curve in spiral galaxies [14,15], the
accelerating expansion of the Universe [16], or issues
related to stellar structure (e.g., [17–20]). However, it is
uncertain whether modifications of gravity are able to
provide a coherent explanation at all scales. In this work,
we focus on Palatini fðRÞ gravity, and in particular on the
Starobinsky (quadratic) model. For this theory of gravity,
we present an analytical study of the evolution of brown
dwarfs (BDs).
In vacuum, Palatini gravity—independently of the fðRÞ

model—turns out to be Einstein’s theory with a cosmo-
logical constant [11,12,21]. Moreover, the field equations
are second order partially differential equations (PDE) with
respect to the metric fðRÞ gravity (the metric formalism

gives fourth order PDE with respect to the metric1). There is
no extra degree of freedom and, the most important feature
for our purposes, is that the stellar equations are changed.
Furthermore, Palatini gravity alters the early universe phys-
ics, explains the acceleration expansion of the late universe,
provides different black hole solutions, or produces worm-
holes with no exotic fluid [23–44]. It passes current solar
system tests [45] since the modifications of energy and
momentum appearing in the Euler equation turn out not to be
sensitive enough to the experiments performed for the solar
system orbits [46]. The situationmay, however, changewhen
experiments on an atomic level will be available [47–49].
Apart from compact stars [50–56] and black holes, whose

properties are not yet fully understood [57,58], there exists a
class of stellar and substellar objects which turn out to be
well suited to test gravitational theories (e.g., [59]). In
particular, BDs are substellar objects that are not massive
enough to sustain stable hydrogen burning, and thus they
cool down as they age. The gravitational force in BDs is
balanced by electron degeneracy pressure in their cores and
thermal pressure in their atmospheres. These partially
degenerate objects have masses smaller than the hydro-
gen-minimum mass which, according to evolutionary mod-
els in General Relativity (GR), is ∼0.075 M⊙ for a solar
composition [60]. BDs emit mainly in the infrared. Since
they have low luminosities, they are difficult to observe and
they are mostly detected in the solar neighborhood.With the
advent of wide-field surveys, large and homogeneous
samples of BDs have been recently constructed [61–65],
thus enabling statistical analyses of BDs that could constrain
structural properties of our Galaxy [64], the substellar mass
function, or sub-GeV DM particle models [66].
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1However, the field equations can be rewritten as second order
PDE with respect to the metric, and a dynamical equation for a
scalar field, which gives an extra degree of freedom (e.g.,
[10,22]).
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In this work, we analytically study the time evolution of
BDs in quadratic Palatini fðRÞ gravity. We improve
previous studies by including a better description of the
partially degenerate state that characterizes BDs. The
structure of the paper is as follows: in Sec. II we discuss
the basic elements of Palatini fðRÞ gravity, and the
analytical model for the time evolution of BDs is presented
in Sec. III. Finally, we conclude in Sec. IV.

II. PALATINI f ðRÞ CHEAT SHEET

Let us briefly recall the basic elements of Palatini gravity,
which is the simplest example of metric-affine theories of
gravity. Instead of taking the linear in R Lagrangian, we
will consider an arbitrary, but analytical [46], functional
fðRÞ. The action is then written as

S ¼ Sg þ Sm ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p
fðRÞd4xþ Sm½gμν;ψm�; ð1Þ

where R ¼ Rμνgμν is the Ricci scalar constructed with
the metric gμν and the Ricci tensor Rμν. The latter is a
function of the independent connection Γ̂. Adopting this,
we abandon the common assumption on g-metricity, and
thus, the connection Γ̂ might be independent of the metric
gμν. Before going further, let us comment that we use the
ð−þþþÞ metric signature convention and we follow
Weinberg’s κ ¼ − 8πG

c4 [67].
The variation of the action (1) with respect to the metric

gμν provides the following field equations:

f0ðRÞRμν −
1

2
fðRÞgμν ¼ κTμν; ð2Þ

where Tμν is the energy momentum tensor of the matter
field, i.e.,

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSm

δgμν
: ð3Þ

The perfect fluid energy tensor will be assumed to des-
cribe low-mass stars. The prime in Eq. (2) denotes
derivation with respect to the function’s argument, that

is, f0ðRÞ ¼ dfðRÞ
dR .

On the other hand, varying the action with respect to the
connection Γ̂ provides

∇̂βð
ffiffiffiffiffiffi
−g

p
f0ðRÞgμνÞ ¼ 0; ð4Þ

which indicates that ∇̂β is the covariant derivative obtained
with respect to Γ̂. Following this, we notice that there exists
a conformal metric

hμν ¼ f0ðRÞgμν; ð5Þ

for which Γ̂ is the Levi-Civita connection.

The trace of Eq. (2) taken with respect to gμν provides the
structural equation

f0ðRÞR − 2fðRÞ ¼ κT; ð6Þ
where T is the trace of the energy-momentum tensor Tμν.
When a suitable functional form of fðRÞ is chosen, it is
possible to solve the structural equation (6) in order to
obtain the relation between the Palatini-Ricci curvature
scalar R and the energy momentum trace T, i.e.,
R ¼ RðTÞ. An important feature of Palatini gravity,
independently of the fðRÞ form, is that in vacuum—as
derived from Eq. (6)—the Einstein’s vacuum solution with
the cosmological constant is recovered.
One can rewrite the field equations (2) as dynamical

equations for the conformal metric hμν [22,25] and the
undynamic scalar field denoted as Φ ¼ f0ðRÞ:

R̄μν −
1

2
hμνR̄ ¼ κT̄μν −

1

2
hμνŪðΦÞ; ð7aÞ

ΦR̄ − ðΦ2ŪðΦÞÞ0 ¼ 0; ð7bÞ

where ŪðΦÞ ¼ RΦ−fðRÞ
Φ2 and the energy momentum tensor

in Einstein’s frame is T̄μν ¼ Φ−1Tμν. It was demonstrated
in several works [40,68–71] that this representation of the
Palatini fðRÞ gravity simplifies examinations of physical
problems.
In our work we will focus on the quadratic (Starobinsky)

functional form of fðRÞ, i.e.,
fðRÞ ¼ Rþ βR2; ð8Þ

where β is the Starobinsky parameter with dimension
½m−2�. Later on, we will introduce the parameter α which
is related to the Starobinsky parameter β.

III. BROWN DWARF’S MODEL

In this section we improve the brown dwarf’s analytical
model for Palatini fðRÞ gravity considered in [72]. The
main difference with respect to the previous work is related
to the equation of state (EoS). The model discussed in [72]
used the polytropic EoS which works well in the degenerate
and ideal gas extremes, being, however, a poor description
for the intermediate zone, when one deals with a mixture of
these two gases [73]. In this work we consider the EoS first
presented in [74] which better describes a mixture of
degenerate and ideal gas states at finite temperature. We
then provide a simple cooling model for these substellar
objects.

A. Equation of state for a partially
degenerate Fermi gas

The barotropic EoS p ¼ pðρÞ—where p and ρ are the
pressure and energy density, respectively—which accounts
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for a mixture of a degenerate Fermi gas of electrons at a
finite temperature and a gas of ionized hydrogen and
helium is given as follows [74]:

p ¼ C

�
ρ

μe

�5
3

�
1 −

5

16
Ψ lnð1þ e−1=ΨÞ

þ 15

8
Ψ2

�
π2

3
þ Li2½−e−1=Ψ�

�
þ aΨ

�
; ð9Þ

with C ¼ 1013 cm4 g−2=3 s−2, Li2 denotes the second order
polylogarithm function and the number of baryons per
electron is given by 1=μe ¼ X þ Y=2, where X and Y are
the mass fractions of hydrogen and helium, respectively.
The degeneracy parameter Ψ is defined as

Ψ ¼ kBT
μF

¼ 2mekBT

ð3π2ℏ3Þ2=3
�

μe
ρcNA

�
2=3

; ð10Þ

where μF is the electron’s Fermi energy in the degenerate
limit, T is the gas temperature, ρc is the density of the BDs’
core, and the rest constants have the usual meaning. Finally,
the quantity a ¼ 5

2
μeμ

−1
1 with μ1 defined as

1

μ1
¼ ð1þ xHþÞX þ Y

4
; ð11Þ

where xHþ is the ionization fraction of hydrogen. This
fraction changes from the completely ionized core to the
surface of the BD, which is composed of molecular
hydrogen and helium [74]. Its values depend on the phase
transition points [75] to which we will come back later.
The EoS (9) has a familiar polytropic form for n ¼ 3=2,

p ¼ Kρ1þ1
n ð12Þ

with K ¼ Cμ
−5
3

e ð1þ bþ aΨÞ and

b ¼ −
5

16
Ψ lnð1þ e−1=ΨÞ þ 15

8
Ψ2

�
π2

3
þ Li2½−e−1=Ψ�

�
;

ð13Þ

which takes into account the corrections due to the finite
temperature of the gas. Since we are interested in BDs, the
polytropic models with n ¼ 3=2 together with such
improvements are well suited to describe these substellar
objects.
The hydrostatic equilibrium equations in the Einstein

frame were shown to be in our case [68]

−r̄2Φðr̄Þ d
dr̄

p ¼ GMðr̄Þρðr̄Þ; Mðr̄Þ ≈
Z

r̄

0

4πρr̃2dr̃;

ð14Þ
which can be further rewritten, after introducing the
standard dimensionless variables

r̄ ¼ rcξ̄; ρ ¼ ρcθ
n; p ¼ pcθ

nþ1; ð15Þ

r2c ¼
ðnþ 1Þpc

4πGρ2c
; ð16Þ

as the Lane-Emden equation, which for quadratic Palatini
fðRÞ gravity after coming back to the Jordan frame
(ξ̄2 ¼ Φξ2) is given by

1

ξ

d2

dξ2

� ffiffiffiffi
Φ

p
ξ

�
θ −

4κ2c2ρcα
5

θ
5
2

��
¼ −

ðΦþ 1
2
ξ dΦ

dξÞ2ffiffiffiffi
Φ

p θ
3
2;

ð17Þ

where Φ ¼ 1þ 2αθ
3
2, α ¼ κc2βρc, and κ ¼ − 8πG

c4 [67].
For simplification, from now on we will use the parameter
α instead of the Starobinsky parameter β. Moreover, the
range of α is ð−0.5;þ∞Þ. The parameters ρc and pc stands
for central density and central pressure, respectively. In
such a framework, the temperature can be expressed as
T ¼ TcθðξÞ, with Tc being the central temperature, while
the density is ρ ¼ ρcθ

3=2ðξÞ. The function θðξÞ is the
solution of the (modified) Lane-Emden equation with
respect to the radial coordinate ξ ¼ rρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG=ð2pcÞ

p
.

The solution θðξÞ crosses zero at ξR which corresponds
to the dimensionless BD’s radius. For a more detailed
discussion see e.g., [68].
The BD’s radius R, central density ρc, and pressure p

can be obtained by numerically solving Eq. (17). For an
arbitrary polytropic parameter n, these parameters are
expressed as

R ¼ γn

�
K
G

� n
3−n
M

n−1
n−3; ð18Þ

ρc ¼ δn

�
3M
4πR3

�
; ð19Þ

p ¼ Kρ
nþ1
n
c θnþ1: ð20Þ

The values of the parameters γn and δn depend on the
adopted theory of gravity. In the case of Palatini fðRÞ
gravity, they take the following forms [76]:

γn ¼ ð4πÞ 1
n−3ðnþ 1Þ n

3−nω
n−1
3−n
n ξR; ð21Þ

δn ¼ −
ξR

3 Φ−1
2

1þ1
2
ξ
Φξ
Φ

dθ
dξ jξ¼ξR

; ð22Þ

ωn ¼ −
ξ2Φ3

2

1þ 1
2
ξ
Φξ

Φ

dθ
dξ

����
ξ¼ξR

: ð23Þ

Using the above definitions, the stars’ external and internal
characteristics can be obtained for the EoS given by Eq. (9)
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as functions of the mass M and the degeneracy parameter
Ψ. That is,2

R ¼ 1.19141 × 109γ

�
M⊙

M

�1
3

μ
−5
3

e ð1þ bþ aΨÞ ½cm�; ð24Þ

ρc ¼ 2.80791 × 105
δ

γ3

�
M
M⊙

�
2 μ5e
ð1þ bþ aΨÞ3 ½g=cm3�;

ð25Þ

pc ¼ 1.20403× 109
δ5=3

γ5

�
M
M⊙

�
10=3 μ20=3e

ð1þ bþ aΨÞ4 ½Mbar�:

ð26Þ
Furthermore, the central temperature takes the following
form:

Tc ¼ 1.29396 × 109
δ2=3

γ2

�
M
M⊙

�
4=3 μ8=3e

Ψð1þ bþ aΨÞ2 ½K�

ð27Þ
when one uses Eq. (25) together with the definition of the
degeneracy parameter (10). Let us just emphasize that in the
above formulas, the values of γ and δ depend on the solution
of the modified Lane-Emden equation (17) with respect to
the value of α.

B. Brown dwarfs’ surface properties

Although BDs are simpler than compact objects, there
are still missing elements in the theoretical and numerical
modeling of the BD’s interior. This introduces sizeable
uncertainties in the predicted surface temperature. Despite
this, there exist models which allow one to express the
surface temperature in an analytical form—that is based on
the isentropic BD’s interior and the phase transition
between the interior and the photosphere—which is con-
venient for our purposes. In [75] it was shown that a first
order phase transition for the metallization of hydrogen
happens for pressure and temperatures suitable for giant
planets and BDs. The effective temperature Teff can be
written then in terms of the degeneracy parameterΨ and the
photospheric density ρph as [74]

Teff ¼ b1 × 106ρ0.4ph Ψν K; ð28Þ
where the values of the parameters b1 and ν depend on the
specific model adopted for describing the phase transition
between a metallic hydrogen and helium state that character-
izes the BD’s interior and the photosphere, which is com-
posed ofmolecular hydrogen and helium.We adopt different
models presented in [75] which are summarized in Table I.
The surface temperature, given by Eq. (28), is obtained

from matching the entropy in the BD’s interior,

Sinterior ¼
3

2

kBNA

μ1mod
ðlnΨþ 12.7065Þ þ C1; ð29Þ

where C1 is an integration constant of the first law of
thermodynamics while

1

μ1mod
¼ 1

μ1
þ 3

2

xHþð1 − xHþÞ
2 − xHþ

; ð30Þ

with the photospheric entropy of nonionized molecular
hydrogen and helium mixture [74]. The detailed derivation
of this temperature can be found in [74] and in [77,78].
In order to estimate the surface luminosity, we will

follow the approach presented in [77]. The surface of a star
can be assumed to lie at the photosphere which is defined at
the radius for which the optical depth equals 2=3, i.e.,

τðrÞ ¼ κR

Z
∞

r
ρdr ¼ 2

3
; ð31Þ

where κRð¼ 0.01 cm2=gÞ is Rosseland’s mean opacity.
Since the radius of the photosphere is very close to the
stellar radius, we approximate the surface gravity as a
constant. That is,

g≡GmðrÞ
r2

∼
GM
R2

¼ const; ð32Þ

whereM ¼ mðRÞ. Then, the hydrostatic equilibrium for the
Palatini quadratic model is written as [72]

p0 ¼ −gρð1þ κc2β½rρ0 − 3ρ�Þ; ð33Þ
where now 0 ≡ d=dr in the Jordan frame. The mass
function of a nonrelativistic star in our model can be
approximated to the familiar form m0ðrÞ ¼ 4πr2ρðrÞ
allowing us to write

m00 ¼ 8πrρþ 4πr2ρ0; ð34Þ
where the second derivation of the mass m is given by
differentiating equation (32). Using this in Eq. (33) we may
write

p0 ¼ −gρ
�
1þ 8β

g
c2r

�
; ð35Þ

TABLE I. Different metallic-molecular phase transition points
taken from [75].

Model xHþ b1 ν

A 0.240 2.87 1.58
B 0.250 2.70 1.59
C 0.250 2.26 1.59
D 0.255 2.00 1.60
E 0.260 1.68 1.61
F 0.250 1.29 1.59
G 0.165 0.60 1.44
H 0.090 0.40 1.30

2We drop the subindex 3=2 from γ3=2 and δ3=2 for convenience.
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which with the help of Eq. (31) we integrate to the following
form:

pph ¼
2

3κR

GMð1þ 8β GM
c2R3Þ

R2
: ð36Þ

The EoS (9) near to the photosphere, where the degen-
eracy is negligible, provides the photospheric pressure in
the ideal gas form

pph ¼
ρphNAkBTeff

μ2
ð37Þ

with 1=μ2 ¼ X=2þ Y=4. Using the radius given by
Eq. (24) and the central density in Eq. (25), the photo-
spheric pressure can be written as a function of massM and
the degeneracy parameter Ψ as

pph ¼
62.3488
κRγ

2

�
M
M⊙

�
5=3 μ10=3e ð1 − 1.33 α

δÞ
ð1þ bþ aΨÞ2 bar: ð38Þ

Combining this with Eq. (37) and the surface temperature
given by (28), we may express, in a similar way, the
photospheric density as a function of the mass and the
degeneracy parameter, i.e.,

ρph ¼
62.3488
κRγ

2NAkB

�
M
M⊙

�
5=3 μ10=3e μ2ð1 − 1.33 α

δÞ
ð1þ bþ aΨÞ2b1Ψν

g
cm3

:

ð39Þ
Finally, the photospheric temperature has the following
form:

Teff ¼
2.558 × 104 K

κ0.286R

�
M
M⊙

�
0.4764 Ψ0.714ν

ð1þ bþ aΨÞ0.571

× b0.7141

�
1 − 1.33

α

δ

�
0.286

γ−0.572; ð40Þ

where μe ¼ 1.143 and μ2 ¼ 2.286 were used.
Assuming black body radiation and using the Stefan-

Boltzman law L ¼ 4πR2σT4
eff, where σ is the Stefan-

Boltzmann constant, we easily obtain the BDs’ luminosity
as a function of mass and the degeneracy parameter in the
following form:

L ¼ 0.0721L⊙

κ1.1424R

�
M
M⊙

�
1.239 Ψ2.856ν

ð1þ bþ aΨÞ0.2848

× b2.8561

�
1 − 1.33

α

δ

�
1.143

γ−0.286: ð41Þ

C. Cooling model for brown dwarfs

In order to express the luminosity (41) as a function of
time t, we need to find out an evolutionary equation for the
degeneracy parameter Ψ. Following the steps of [73,78],
together with the improved EoS first obtained in [74] and

used in this work, the evolution of the luminosity of BDs as
a function of time for Palatini gravity can be found.
Applying the energy equation from the first and the

second laws of thermodynamics we may describe the pace
of cooling and contraction related to such objects as

dE
dt

þ p
dV
dt

¼ T
dS
dt

¼ _ϵ −
∂L
∂M ; ð42Þ

where S is the entropy per unit mass while other symbols
have standard meaning. BDs are not massive enough to
sustain stable hydrogen burning; therefore, they cool as
they age and the energy generation term _ϵ can be ignored.
Integrating the previous equation over mass one has

dσ
dt

�Z
NAkBTdM

�
¼ −L; ð43Þ

where L is a surface luminosity and σ ¼ S=kBNA. Using
Eq. (10) and the polytropic relation given by (12) in order to
get rid of T and ρ, we may write

dσ
dt

NAAμeΨ
Cð1þ bþ aΨÞ

Z
pdV ¼ −L; ð44Þ

where A ¼ ð3πℏ3NAÞ23=ð2meÞ ≈ 4.166 × 10−11 while the
integral in the Jordan frame is given by

Z
pdV ¼ 2

7
ΩG

M2

R
ð45Þ

with Ω ¼ ðΦ3=2=ð1þ 1
2
ξΦ0=ΦÞÞ−4=3. It can be shown that

Ω ¼ 1 for n ¼ 3=2 [43,76].
From the entropy formula (29), the entropy rate is given

simply by

dσ
dt

¼ 1.5
μ1mod

1

Ψ
dΨ
dt

ð46Þ

and together with the luminosity (41) we may finally
write down the evolutionary equation for the degeneracy
parameter Ψ

TABLE II. Numerical values of ξR obtained from θðξRÞ ¼ 0,
and the associated values of the functions γ3=2, ω3=2, and δ3=2 for
different values of α ¼ κc2βρc.

α ξR ω3=2ðξRÞ γ3=2ðξRÞ δ3=2ðξRÞ
−0.400 3.16 1.40 1.63 7.53
−0.100 3.64 2.39 2.25 6.67
−0.010 3.65 2.68 2.35 6.09

0 (GR) 3.65 2.71 2.36 5.97

0.006 3.66 2.73 2.36 5.95
0.010 3.66 2.75 2.37 5.93
0.015 3.66 2.77 2.46 5.89
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dΨ
dt

¼ −
1.1634 × 10−18b2.8561 μ1mod

κ1.1424R μ8=3e

�
M⊙

M

�
1.094

Ψ2.856νð1þ bþ aΨÞ1.715 γ
0.7143

Ω

�
1 − 1.33

α

δ

�
1.143

: ð47Þ

We have numerically solved the above ordinary differential equation by assuming that Ψ ¼ 1 at t ¼ 0 for the parameters’
values given in Table II. The code for solving this differential uses the GNU Scientific Library [79] and can be found at this
github repository [80].

FIG. 1. The time evolution of the degeneracy parameter Ψ in the case of GR for different BD masses (left panels) and for M ¼
0.05 M⊙ and different values of the α parameter (right panels). In the bottom panels, we show the ratio with respect to the curve with
M ¼ 0.05 M⊙ in the left. In the right bottom panel, the ratio of the time evolution in different Palatini models versus GR is depicted.

FIG. 2. Time evolution of the BDs’ luminosity. Left panels: assuming GR and different masses. In the bottom panel, we show the ratio
with respect to our fiducal mass M ¼ 0.05 M⊙. Right panels: for fixed M ¼ 0.05 M⊙ and different values of the parameter α. In the
bottom panel we show the ratio with respect to the GR case.
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As it turns out, for the examined range of the parameter
α—which is summarized in Table II—the evolution of the
degeneracy parameter does not differ significantly from GR
(α ¼ 0), as it can be seen from Fig. 1. By plugging the
numerically obtained ΨðtÞ into Eq. (41) we obtain the
evolution of the luminosity of BDs as a function of time.
This can be seen in Fig. 2.

IV. CONCLUSIONS

In this work we have updated the analytical model of
BDs considered in [72] by adopting the EoS first presented
in [74]. In addition, we have provided a cooling model for
substellar objects in quadratic Palatini gravity. This more
realistic EoS describes the BDs’ interior as a mixture of a
degenerate Fermi gas and ions of hydrogen and helium.
Our model further includes a proper treatment of the
hydrogen’s phase transition from the photosphere, in which
the hydrogen is in its molecular form, and the interior of
BDs, where the hydrogen is ionized. For this improved
description of these partially degenerate substellar objects,
we conclude that

(i) The time evolution of the degeneracy parameter in
quadratic Palatini gravity—for the values of α
adopted in this work—differs with respect to that
in GR by≲2.5%when the BD is about 1 Myr and by
≲5% at 10 Gyr.

(ii) The difference in the estimated BDs’ luminosity
between Palatini gravity and GR slightly increases
with the age of the BD. Furthermore, BDs have a

lower luminosity in Palatini gravity with positive α
values (β < 0) than in GR. On the other hand, for
negative α-values (β > 0), gravity inside BDs is
weaker and the luminosity of BDs in Palatini is
larger with respect to that estimated in GR.

(iii) For α-values smaller than 0.1 in absolute value, the
difference between the luminosity predicted in GR
and the one in Palatini gravity is smaller than 6%.
For α ¼ −0.4, this difference increases up to 50%.
Although this difference is significant, it is smaller
than the estimated difference obtained by varying
the BD’s mass. For instance, a variation in a mass of
40% produces a change in luminosity larger than a
factor of 2.

To sum up, BDs could constrain modifications of gravity
and, in particular, the observed luminosity of BDs might be
used to constrain the β Starobinsky parameter, as shown in
this work. Current and future wide-field surveys will
provide large and homogeneous samples of BDs that could
be used in this respect. Our study is a first analytical step in
this direction, and we leave to future work the comparison
of our results with more complete numerical models.
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