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Wormbholes are hypothetical objects which can be black hole mimickers with strong gravitational fields.
Recently, Wielgus et al. have constructed reflection-asymmetric thin-shell wormholes which are composed
of the parts of a Schwarzschild spacetime and a Reissner-Nordstrom spacetime with two photon spheres
with different sizes each other in [M. Wielgus, J. Horak, F. Vincent, and M. Abramowicz, Phys. Rev. D 102,
084044 (2020)]. They have discussed observational property of the shadows with two photon rings in
different sizes as seen from an observer, and they have named their shadows double shadows. In this paper,
we study the linearization stability of the reflection-asymmetric thin-shell wormholes with the double

shadows.
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I. INTRODUCTION

Recently, LIGO and VIRGO Collaborations have
detected gravitational waves from black hole binaries
[1], and the Event Horizon Telescope Collaboration has
reported the shadow image of a black hole candidate at the
center of a giant elliptical galaxy M87 [2]. The theoretical
and observational aspects of compact objects in general
relativity will be more important than before.

Wormholes are hypothetical objects with a nontrivial
topology in general relativity [3,4]. Morris and Thorne have
discussed the passability of wormholes, and they have also
shown that energy conditions violate at least at the throat of
static and spherically symmetric wormholes if we assume
general relativity without a cosmological constant [3]. The
wormholes can be black hole mimickers because they can
have strong gravitational fields. For example, spherically
symmetric wormholes with strong gravitational fields can
have unstable (stable) circular light orbits named photon
spheres (antiphoton spheres) [5—13].

A thin-shell wormhole whose energy conditions are
broken only at a throat which is supported by a thin
shell [14—17] was considered by Visser [18] with Darmois-
Israel matching [16,17,19]. The linearization stability
of the thin shell of a Schwarzschild wormhole was investi-
gated by Poisson and Visser [20] and then the stability
of thin-shell wormholes such as Reissner-Nordstrom
wormholes [21-31], the other static and spherically sym-
metric wormholes [21-23,32-42], plane symmetric worm-
holes [43], cylindrical symmetric wormholes [44.,45],
higher-dimensional wormholes [46-51], lower-dimensional
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wormholes [52-56], and wormholes in an expanding space-
time [57] have been discussed. The passability [58] and
nonlinear stability [59] of thin-shell wormholes have been
studied.

Usually two copied manifolds are used to construct the
thin-shell wormholes. It would be difficult to distinguish a
reflection-symmetric wormhole spacetime constructed by
the parts of the copied black hole spacetimes from the
original black hole spacetime by astronomical observations
if the wormhole has photon spheres and if there are few
light sources in the other side of the throat.'

There were few researches on reflection-asymmetric
thin-shell wormholes such as [32,62,63]. Recently, the
shadow of a reflection-asymmetric thin-shell wormhole
which is composed of the parts of two Schwarzschild
spacetime with different masses were discussed by Wang
et al. [64]. Wielgus et al. have constructed a reflection-
asymmetric thin-shell wormhole which is composed of the
parts of the Schwarzschild spacetime with a photon sphere
and a Reissner-Nordstrom spacetime with another photon
sphere, and they have discussed the observational property
of the shadow [65]. They have concluded that the shadow
of the asymmetric wormhole has two photon rings in
different sizes as seen from an observer, and they have
named the shadow double shadow. The asymmetric thin-
shell wormhole with the photon spheres can be distin-
guished from the black holes by the observations since light
rays can be reflected by a potential wall near the throat [65].

'In principle, we would distinguish wormholes from black
holes. For an example, if there are stars bounded by a wormhole
in both sides of the wormhole, the orbit of the star in one side can
be affected by the gravity of the star of the other side [60,61].
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In this paper, we investigate the linearization stability of
the reflection-asymmetric thin-shell wormhole which is
composed of the parts of the Schwarzschild spacetime and
the Reissner-Nordstrom spacetime with the double shadow
constructed in [65].

This paper is organized as follows. We review the
Reissner-Nordstrom spacetime very briefly in Sec. II,
and we construct the reflection-asymmetric thin-
shell wormhole with the double shadow in Sec. III. We
investigate the linearization stability of the reflection-
asymmetric thin-shell wormhole in Sec. IV, and we con-
clude our results in Sec. V. In this paper we use the units in
which a light speed and Newton’s constant are unity.

II. REISSNER-NORDSTROM SPACETIME

A Reissner-Nordstrom spacetime has a line element,

2
ds® = —f(r)dr* + dr” + r2(d6? + sin®0d¢?),  (2.1)
f(r)
where f(r) is given by
2M  Q?
f(r)zl—T—i—Q—z, (2.2)
I

and where M >0 and Q are a mass and a charge,
respectively. It is a black hole spacetime with an event
horizon at r = rgy = M + \/M? — Q? for Q%> < M? while
it has naked singularity for M?> < Q2. There is a photon
sphere at

Ir=Tps =

(2.3)

3M + \/9M? — 80Q?
2 b

for Q> < 9M?/8, and there is an antiphoton sphere at

3M — \/9M? — 8Q?

r=7Taps = 3

(2.4)
for M?> < Q> < 9M?/8.

III. REFLECTION-ASYMMETRIC
THIN-SHELL. WORMHOLE

In this section, we construct a wormhole spacetime
without reflection symmetry or Z2 symmetry by the
Darmois-Israel matching [16,17,19]. We make two mani-
folds M. = {r > a}, where a is a constant satisfying
a > rgyy by removing Q, = {r < a} from the Reissner-
Nordstrom spacetimes. The boundaries of the manifolds
M. are timelike hypersurfaces . = {r = a}, and we
identify the hypersurfaces X=X, = X_. As a result, we
obtain a manifold M by gluing the manifolds M at a
throat located at X. The hypersurface X is filled with a Dirac
distribution matter, and it is called thin shell. We permit

a = a(z), where 7 is the proper time of the thin shell since
we are interested in the stability of the thin shell Z.
The line elements in the domains M. are given by

d 2
dst = —f.(r)ydit + — r2(d6* + sin’0dg?), (3.1)
fa(r)
where f.(r) are given by
2M 2
fe(r)=1- ri+%. (3.2)

Note the time coordinates ¢, are discontinuous on the
hypersurface X while coordinates r, 8, and ¢ are continuous
across the hypersurface Z.

We assume that we can set coordinates y' = (z, 6, ¢) on
the both sides of X. Let the thin shell be at t. = T (7)
and r = a(r). We set the unit normal vectors of the thin
shells as

n,dxt, = £(=adt. + T.dr), (3.3)
where the overdot is a differentiation with respect to 7.
The four velocity of the thin shell is given by u/}0,, =

T.9,. + ad,. From the normalization of the four velocity

' u,, = —1, we obtain

('12

sy B
f:l:(a)Ti _fj:(a) =1, (34)

where Ti should be
VIt & (3.5)

[+

By using Eq. (3.4) and the basis vectors €f, = 9x’_ /9y
given by

e 0y =T.0, +ad,, (3.6)
egiaﬂi = 0y, (3'7)
egiaﬂi = 845, (38)

the induced metric h;;, = gﬂyieﬁ’ L on the hypersurface
Y in M, is given by
dsi =dsi|y
= hijidyidyj

= —d7* + a*(d6* + sin*0d¢?). (3.9)

It guarantees that the metric on the hypersurface X is the
same as viewed from both sides.
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The thin shell satisfies Einstein equations,

1

Si—_
J 8

(K1) - [K]8)), (3.10)
where the bracket [F] denotes the jump of any function F

across 2,

[F]=F,|;

—F_|s. (3.11)

where FF, and F_ are F in M, and M_, respectively,
and S; is the surface stress-energy tensor of the thin shell
given by

S} = (o + p)U'U; + pé&', (3.12)
where U; is given by Udy' = u,. et dy' = —dr, and
where ¢ = —S7 and p = S" S¢ are the surface energy

density and the surface pressure of the thin shell, respec-
tively. Here, K;; is the extrinsic curvature given by

— H v
Kij=nye;e;,

(3.13)

where; is the covariant derivative. By using the normal
vectors (3.3), the extrinsic curvatures of the hypersurfaces
in M, are given by

K;_-——fl——-(a+-fi), (3.14)
Vi + fy 2

V@& + e
K, =K}, ==Y TIE (3.15)

a

and the traces are obtained as

+1 f/ /.
Ki —ﬁ(d 2>Z|Z— az‘l‘fi. (316)

From (z,7) and (0,0) components of the Einstein equa-
tions (3.10), we obtain

VE+f Vit f
" 4za  4za (3.17)
and
o 1 . AP+ Sy f+>
'kmw+ﬁGH a 2
1 LAt f f’_)
— ], 3.18
*_8n\/a2+-f; <a+ a 2 (3.18)

and then we get, from Eqgs. (3.17) and (3.18),

d(cA) +p dA
dr dT

=0, (3.19)

where A = 47a? is the area of the throat. Equation (3.19)
can be expressed by

ac’ +2(c+ p) =0, (3.20)
where the prime denotes the differentiation with respect to
a and ¢’ = 6/a. We assume that the thin shell is filled with
a barotropic fluid with p = p(s). From Eq. (3.20), we
notice that the surface density of the barotropic fluid is
expressed as a function of a or ¢ = o(a). The equation of
motion of the thin shell is given by, from Eq. (3.17),

a*+V(a) =0, (3.21)

where V(a) is an effective potential defined by
Vi) =F - (o) - racf,  (322)
a) = o rac)?, :

where f and A are given by

Fl-t/e (3.23)

2

and

AE&%L, (3.24)

respectively. The derivative of V with respect to a is
obtained as

A[A'ac — Ao + ad’)]

=7 - S —8r%ac(o + ad’),
(3.25)
and, from Eq. (3.20), it can be rewritten as
-, AlANac+ Alc+2
Vi =f - [ aagﬂz 3(0-3 p) + 8n%ac(c + 2p).
(3.26)

By using Eq. (3.20) again, the second derivative of V is
obtained as

_ }-// ~ A/Z B A
8n2a’c? 8rxta*ot
+ A"a?6? — 2A6(c + p)(1 +26%) +3A(c + 2p)?]
—87%[(6 +2p)* + 26(c + p)(1 + 2%)], (3.27)

[4A'(6 + 2p)ac

where *> =dp/do = p'/o’.
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FIG. 1. Permitted parameters (£, a/M_) of the asymmetric
wormhole with the double shadow are in shaded zones. M is
the part of the Reissner-Nordstrom black hole (BH) spacetime in
a deep blue shaded zone while it is the part of the Reissner-
Nordstrom naked singularity (NS) spacetime in light blue shaded
zones. M_ is the subset of the Schwarzschild black hole
spacetime. A blue dotted line denotes a = rpg,. A red dashed
line is explained in Sec. IV.

Here and hereafter, we impose a constraint,

f(a) = f-(a),

and we concentrate on the case that the manifold M_ is
the part of the Schwarzschild black hole spacetime, i.e.,
Q_ =0, as well as Ref. [65]. The constraint is expressed as

(3.28)

Q% =2aM_(¢-1), (3.29)
where & is an asymmetry parameter defined by
&= M, /M_. The reflection-asymmetric thin-shell worm-
hole with a double shadow must have the throat in domains
rgp- < a < rps_ and rgg, < a < rpg, . Permitted param-
eters (&,a/M_) for the reflectional-asymmetry thin-shell
wormhole with the double shadow are shown in Fig. 1.

IV. STABILITY OF THIN-SHELL WORMHOLE

We consider the linearization stability of a static worm-
hole with a thin shell at @ = a( under the constraint (3.28)
and Q_ = 0. The surface energy density o, and pressure p,
of the thin shell are given by

_ Vo
o0y = _FQO (41)
and
1 2fo -
g et o) 62

respectively. Here and hereafter a function with subscript
0 means the function at a = a,. Since Vo=V, =0 is

satisfied, the effective potential can be expanded around
a = ag as

Via) = 20 (a - ag)? + O((a - ao)?).

5 (4.3)
where V{j is given by
Vi = Ao — Bo(1 +243), (4.4)
where Ay and B, are defined by
~ 2o
Ay = g_Z_fo_2_fo (4.5)
and
By = 2;:2)0 - az (4.6)

respectively. The thin shell is stable (unstable) when
Vi >0 (V§ <0). Thus, the thin shell is stable when

1 A
D 0
- I 1 4.7
and BO > 0 holds or
1 A
”) 0

and By < 0 holds. Figure 2 shows the parameter zone
of (&,a9/M_) for By > 0, the one for By < 0, and their
boundary By = 0. The boundary B, = 0 is given by

3.0
28}

26

S

241

2.0

FIG. 2. By < 0 holds in a deep blue shaded zone and B, > 0
holds in a light blue shaded zone. The red dashed line ay/M_ =
(7-8)/2 for (32+6v2)/17<E<2++/2/2 denotes the
boundary By = 0.
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FIG. 3. The static thin shell is stable if it is in blue shaded zones of (aq/M _,ﬁ%). Left top, right top, left middle, right middle,
left bottom, and right bottom panels show the cases of £ = 1.0 for 2 < ag/M_ <3, £=1.2 for 2 < ag/M_ < 2.8, £=1.6 for
2 <ag/M_ <24, £=1.8 for 2<ay/M_<729/320, £=2.5 for 25/12<ay/M_<75/32, and £=3.5 for 49/20 < ag/M_ <

441/160, respectively.

V2

324+ 6V2

ag/M_ = (71-¢§)/2 for 17

<E<2+
(4.9)
On the boundary, the thin shell is unstable for any ﬁ(z). The

parameters (ao/M_, #3) for the stable thin shell are shown
in Fig. 3.

V. CONCLUSION AND DISCUSSION

We have investigated the linearization stability of the
reflection-asymmetric thin-shell wormhole which is com-
posed of the parts of the Schwarzschild and Reissner-
Nordstrom manifolds with the double shadow. We have
imposed the constraint (3.28) as well as Ref. [65].
The linearization stability given by Fig. 3 is characterized
by the boundary By =0 or ay/M_=(7-¢&)/2 for
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(32 + 6v/2)/17 < £ <2 ++/2/2 shown as the red line in
Fig. 2. In the boundary case By =0, the throat with
ayg/M_ = 2.25 is unstable for any ﬁ(z) as shown the left
bottom panel with £ = 2.5 in Fig. 3. We also note the throat
at ag/M_ = rgg_/M_ =2 for 1 < £ <2 is unstable for
any f#% as shown the panels in Fig. 3.

We comment on the Schwarzschild thin-shell wormhole
with reflection symmetry or £ = 1.0. In Fig. 2, B, vanishes
at a point (&, ag/M_) = (1.0,3.0). Thus, the throat of the
Schwarzschild reflection-symmetric wormhole with & =
1.0 at ag/M_ = 3 is unstable for any 33 as shown Fig. 3.

We also give comments on wormholes without a thin
shell while we have concentrated on the thin-shell worm-
hole on this paper. The earliest traversable wormhole filled
with a phantom scalar field [66] was investigated by Ellis
[67] and Bronnikov [68]. The Ellis-Bronnikov wormhole is
a reflection-asymmetric wormhole when it has a positive
Arnowitt-Deser-Misner (ADM) mass in a side and a
negative ADM mass in another side, and it is a reflec-
tion-symmetric wormhole when it has vanishing ADM
masses in the both sides. See Refs. [67,69] for gravitational
lensing by the Ellis-Bronnikov wormhole with the positive
ADM mass, see Refs. [70,71] for the negative ADM mass,
and see Ref. [8] and references therein for the vanishing
ADM mass. The instability of the Ellis-Bronnikov worm-
hole was reported [72-74]. Reliable stable wormholes
without thin shells have not reported yet in general
relativity, but we may construct stable wormhole solution
by choosing exotic matters other than the phantom scalar

field [75]. Recently, Shaikh et al. have suggested gravita-
tional lensing by reflection-symmetric wormholes with
multiple photon spheres and the shadow images of
the multiple photon spheres [10] and Bronnikov and
Baleevskikh have considered that all asymptotically flat,
static, spherically symmetric wormholes with reflection
symmetry have a photon sphere on a throat [71]. However,
we notice that they overlook the possibility that circular
photon orbits on the throat can form an antiphoton sphere.
The gravitational lensing by wormholes with the antipho-
ton sphere on the throat has been suggested by Shaikh et al.
in Ref. [11]. Tsukamoto has shown that the circular photon
orbits on the throats of a Damour-Solodukhin wormhole
[76] and a Simpson-Visser wormhole [77] can be the
antiphoton spheres [12,13]. In Ref. [71], Bronnikov and
Baleevskikh have discussed the deflection angle of a light
ray scattered by reflection-asymmetric wormholes with
the photon sphere which is slightly off the throat.
Gravitational lensing by reflection-asymmetric wormholes
with the antiphoton sphere which is slightly off the throat is
left as a future work.

Note added—Recently, related papers have appeared on
arXiv. Guerrero et al. have constructed reflection-
asymmetric wormholes supported by a positive energy
thin shell with a double shadow in Palatini f(R) gravity
[78]. Peng et al. have studied the observational appearance
of an accretion disk around a reflection-asymmetric thin-
shell wormhole [79].
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