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We give a formal treatment of the “correlated worldline” theory of quantum gravity. The generating
functional is written as a product over multiple copies of the coupled matter and gravitational fields; paths
for fields are correlated via gravity itself. In the limit where the gravitational coupling G → 0, conventional
quantum field theory is recovered; in the classical limit ℏ → 0, general relativity is recovered. A formal
loop expansion is derived, with all terms up to one-loop order ∼Oðl2PÞ given explicitly, where lP is the
Planck length. We then derive the form of a perturbation expansion in l2P around a background field, with
the correlation functions given explicitly up to ∼Oðl2PÞ. Finally, we explicitly demonstrate the on shell
gauge independence of the theory, to order l2P in gravitational coupling and to all orders in matter loops, and
derive the relevant Ward identities.
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I. INTRODUCTION

A. Background

The effort to find a consistent theory of quantum gravity,
which incorporates key features of both quantum mechan-
ics and general relativity, has been going on now for many
decades [1–4]. Roughly speaking, one can discern two
points of view on how to do this:
On the one hand, one can assume that quantummechanics

(QM) is universally valid and try to “quantize” general
relativity (GR).Anyproblems that emerge—as they certainly
do at very high energy—are then taken as a signal of the
breakdown of QM in favor of some more fundamental
theory, valid up to and beyond the Planck energy. This view
is the most popular, and is assumed in, e.g., string theory [5],
loop quantum gravity [6], or supersymmetric theories [7]. It
is also often (but not always) assumed that at low energies,
some effective quantum theory of gravity describes nature.
Alternatively, one can argue that it is QM that should

break down, even at low energies, for sufficiently massive
objects. Such arguments are very old and have been
extensively reviewed [8,9]. They typically derive from
the apparent contradictions inherent in macroscopic quan-
tum states [10], with no particular connection to gravity.
Nevertheless, many authors, focusing on apparent contra-
dictions between QM and GR, have suggested that some
sort of breakdown in QM might derive from gravity; this
qualitative idea also has a long history [11–14].

There are thus two diametrically opposed points of view
here. In connection with the latter view—that we should
look for a breakdown of QM—it is useful to emphasize
several features of this question:

(i) Some of the apparent contradictions between QM
and GR are not restricted to high energies. A
frequently cited example is the infamous black hole
information paradox [15], which, judging by recent
literature, can certainly not be considered as resolved
[16–18]. Older arguments of Wald [17], as well as
more recent replica and entanglement wedge dis-
cussions of the “Page curve” [18], all indicate that
the paradox arises at energies well below the Planck
scale; on the other hand, other arguments suggest
that the paradox only exists at the Planck scale [16].
The problems associated with superpositions of
different metric fields [13,14,19] are of course
manifested at any energy.

(ii) The current evidence for the existence of truly macro-
scopic quantum states is slim. Superpositions involv-
ing large numbers ofCooper pairs in a superconductor
have been seen [20,21], although how macroscopic
they are is still controversial [22,23]. However,
Cooper pair superpositions involve no mass displace-
ments, and so far [24], there is no evidencewhatsoever
for any position state superpositions involvingmasses
larger than ∼105 atomic units (i.e., ∼10−22 kg, or
∼10−14MP, where MP is the Planck mass).
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(iii) Nonlinearity in the Schrodinger equation is known
to lead to inconsistencies with Bell inequalities and
causality [25–27]. All Bell inequality experiments
done so far on microscopic systems have verified the
QM predictions, and no violation of causality has
ever been found in physics.

We can divide theoretical attempts to modify QM by
gravitational effects into two classes, according to whether
they deal with nonrelativistic QM or relativistic quantum
fields.
The first of these starts with the nonrelativistic

Schrodinger equation; gravity is introduced using
Newton’s interaction potential. One set of such theories—
the “collapse” theories—then introduces an ad hoc noise
field, connected with gravity, which leads to wave function
collapse on a timescale depending on the mass of the object
concerned [28]. A related analysis of Penrose argues that the
“mismatch” between, e.g., two different branches of a
quantum superposition can be related to an uncertainty in
the proper time in these branches.
Although the Penrose and collapse models are physically

quite different (there is no noise field in Penrose’s discus-
sion), they lead to a similar “Schrodinger-Newton” equation
for the system dynamics—this nonlinear equation is sup-
posed to replace the Schrodinger equation. Experiments
designed to test these models [29] suffer from the fact that
predictions vary widely depending on arbitrary assumptions
about, e.g., how the mass distribution of solid bodies should
be modeled [30]).
Clearly, one would like a theory here which makes

unambiguous predictions, and which is in some sense
“natural”; i.e., it fits in naturally with those parts of physics
that are already well established—including large parts of
relativistic quantum field theory (QFT), as well as of
classical GR. In our opinion, the first attempt at such a
theory was the remarkable early work of Kibble et al.
[13,31,32], who attempted to bring in gravitation as the
source of a nonlinearity in relativistic QFT. As Kibble
himself pointed out, one inevitably finds inconsistencies
between such nonlinearity and the usual QM toolbox of
measurements, operators, and Hilbert space. Kibble’s work
also stressed the inconsistencies involved in all “semi-
classical” treatments of quantum gravity, in which the
nonlinear dynamics is sourced by the expectation value
hTμνðxÞi of the stress-energy tensor.
The work of Kibble—which has strongly influenced us

—makes it clear that one not only requires some sort of
“natural” mechanism for the breakdown of QM, but also a
consistent theory—consistent not only internally, but with
other parts of physics that are well established experimen-
tally. It also makes it clear that if one is to go beyond QM,
one will need a formal approach in which measurements,
operators, etc., no longer play the central role that they do in
standard QM.
The correlated worldline (CWL) theory discussed in this

paper is an attempt to find a consistent theory of quantum

gravity in which gravity causes a breakdown on QM. CWL
theory is formulated in terms of path integrals over both
matter field andmetric field configurations [33–35]. In CWL
theory, QM breaks down because there are gravitationally
mediated correlations between all paths in the path integral.
These correlations then inevitably violate the superposition
principle and lead to a “path-bunching” effect [33,34], in
which nearby paths in a path integral are attracted to each
other (see Fig. 1); this suppresses their usual tendency to
spread over whatever domain may be accessible to them.
The “naturalness” of the theory comes because the form

of the coupling between all paths is determined solely by
the equivalence principle [34]. The CWL theory thus has no
adjustable parameters—within the limitation that it is a
low-energy theory (valid for energies ≪ MP, the Planck
energy); it is self-contained and requires no additional
ad hoc ingredients. We reemphasize the key role of the path
integral framework in the formulation of CWL theory [34].
Path integrals allow a more general formulation of QM than
the usual wave function/state formulation [36], and they
can even go beyond QM, allowing us to formulate theories
in which paths are correlated, so that the superposition
principle is violated.
Note at this point that one might imagine, in a purely

formal way, having correlations between paths mediated by
other gauge interactions as well as the gravitational one.
However, we emphasize that this would have no physical
justification—the physical arguments leading to CWL
theory imply that only gravitational correlations can act
between paths [34].
In a previous paper [35], it was shown that there is a

unique form of CWL theory (the “product” form), which
has a sensible classical limit, and which appears to have a
well-defined perturbation expansion in powers of the
gravitational coupling (i.e., in powers of the Planck length

Source

Source

P

P

(a)

(b)

FIG. 1. The effect of interpath CWL gravitational correlations.
In (a), some paths are shown for a QM particle moving through a
2-slit system from the source to a point P on the screen. In (b), we
have the same arrangement but with CWL correlations between
the paths.
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lP). In the present paper, we wish to explore the structure of
this CWL theory and establish a number of key conclusions
about it. In particular, we want to derive the form of the
semiclassical expansion about the classical limit, and we
also want to show how one derives formal expansions in
powers of lP about some classical background field
configuration. Finally, we wish to show that the theory
is gauge invariant (including invariance under diffeomor-
phisms) and satisfies all the Ward identities which express
the conservation laws of the system.
These are all essential steps in (a) developing CWL

theory as a practical tool for doing calculations of exper-
imental phenomena and (b) showing that it is internally
consistent. We note that it is in general not a simple job to
establish complete consistency for any field theory, and we
cannot cover everything in this paper. In particular, one
needs to define a consistent notion of causality, and we
would also like to understand if CWL theory is renorma-
lizable. These questions are being dealt with separately.
In key parts of this paper, we will use the formal

covariant approach first introduced by DeWitt [37,38],
which allows very general investigations of, e.g., gauge
invariance, without having to specify objects like the action
or a state space. As we shall see, this approach lends itself
very naturally to theories going beyond standard QFT, and
we will see how to extend it to CWL theory. For those
unused to this approach, some explanation is given at
various points in the text.

B. Organization of paper

In the next section (Sec. II), we describe the basic
structure of CWL theory—this is done by first comparing
the generating functional Q½J� of CWL theory with the
analogous functional Z½J� of conventional quantum gravity
[where JðxÞ is an external current coupling to the matter
field]. Both theories are defined here by path integrals, and
since both require a proper treatment of boundary con-
ditions and of gauge invariance, we then introduce the
relevant terms in the action—including a third ghost field—
as well as introducing our notation.
In Sec. III, we discuss semiclassical expansions about the

classical limit of Einstein’s theory. This is done as far as
∼Oðl2PÞ and displays the form of the relevant correlation
functions involved, between matter, metric, and ghost fields.
In Sec. IV, we show how one makes perturbative

expansions in the gravitational coupling between matter
and metric fields. This is done for the generating functional
about a saddle point metric gμν0 ðxÞ, in powers of the Newton
coupling G (or equivalently, in terms of l2P ¼ 16πGℏ,
where lP is the Planck length). Because we are dealing
with three different fields, there is a proliferation of terms,
even at order l2P; however, this lowest order also yields the
first term corresponding to a deviation from conventional
quantum gravity, in the form of a path bunching term in the
CWL generating functional. We give a detailed analysis of

this term and also show how it affects the correlation
functions of the system (these being defined in the usual
way as functional derivatives of the generating functional).
In Sec. V, we proceed to the most technically demanding

part of the paper, the analysis of gauge dependence of the
two gauge fields in the system (the metric field and the
ghost field). We focus in this section on demonstrating that
the CWL path bunching term is indeed invariant on shell
under a change of gauge conditions—this being the
cornerstone of the Faddeev-Popov gauge fixing procedure.
One thing that we do not do in this paper is give explicit

expressions for the field propagators of the theory (these
being the generalization to CWL theory of the Feynman
propagators for fields in conventional QFT). Such propa-
gators are quite distinct from the field correlators (which
were already discussed in our previous paper [35]); they
require a rather lengthy treatment on their own and are
discussed in a separate paper [39].

II. BASIC STRUCTURE OF CWL THEORY

In this section, we review the basic structure of CWL
theory in its product form [35]. The detailed rationale for
CWL theory has already been given in previous papers
[33–35], and various arguments have also been given in the
past for some sort of theory of this kind [13,14,40].
We begin with the form of the generating functional for

CWL theory, which is used to generate all correlation
functions in a way similar to conventional quantum field
theory (QFT). We specify the form of the action and
boundary conditions on the fields, including ghost fields.
Amongst other things, this allows us to compare CWL
theory with conventional QFT and establishes our notation.

A. Generating functional

One can write a generating functional for CWL theory in
a way which parallels that in conventional QFT. We will
formulate both theories in path integral theory language.
Although the use of path integrals in discussing gravity can
pose serious problems [3], path integrals nevertheless allow
very general formulations of quantum field theories and
analysis of their consistency [41,42], and they are also the
natural language for CWL theory.

1. Conventional theory

To define the conventional QFT of quantum gravity, let
us consider a scalar field ϕðxÞ coupled to gravity, which in
general has some self-coupling terms as well. Then one
writes a generating functional in QFT of form,

Z½J� ¼
Z

DgeiSG½g�=ℏZM½g; J�; ð1Þ

in which SG½g�≡ SG½gμνðxÞ� is the gravitational Einstein
action, and the functional integration over the metric field is
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for the moment heuristic—we discuss it properly in the
next subsection. The quantity ZM½g; J�, given by

ZM½g; J� ¼
Z

DϕeiðSM ½g;ϕ�þ
R

JϕÞ=ℏ; ð2Þ

is the generating functional for ϕðxÞ in the presence of a
fixed gμνðxÞ and a fixed external source JðxÞ coupling
to ϕðxÞ.
For most of this paper, we will be looking at the limit

JðxÞ → 0, where we can write

ZM½g� ¼ eiWM ½g�=ℏ ¼
Z

DϕeiSM ½ϕ;g�=ℏ; ð3Þ

so that

WM½g� ¼ −iℏ lnZM½g� ð4Þ

is the generating functional for connected diagrams for the
matter field in the presence of a frozen background metric
field. In the same way, we define W ¼ −iℏ lnZ½J ¼ 0� as
the total connected generating functional and Wg ¼
−iℏ lnZg as the connected generating functional for the
gravitational field alone, with Zg ¼

R
DgeiSG½g�=ℏ.

It is well known that the theory as written in (1) and (2) is
not renormalizable, and that the path integrals suffer from
various pathologies [3]. However, one can regard the path
integrals as describing a low-energy effective theory, where
parameters like the gravitational couplingG in the effective
action are derived from experiment and result from
unknown very high-energy physics. In this case, there is
an effective high-energy cutoff built into the path integrals,
and one can treat loops in a consistent and finite way [43].
One also expects any very large changes in the metric to be
eliminated (including those involving topology changes),
so that problems defining the measure of the path integral
are less severe. In what follows, we will assume that we can
implement a consistent quantization procedure under these
circumstances.

2. CWL theory

Let us now consider the generating functional in CWL
theory. In product CWL theory, because we are dealing
with interactions between multiple paths for the same
particle and/or matter field and hence, with multiple copies
of the matter field, one starts by replacing the single field
ϕðxÞ appearing in (1) by a “tower” ΦnðxÞ≡ fϕkðxÞg of
multiple copies of ϕðxÞ, with k ¼ 1; 2;…n, and one then
writes a generating functional,

Q½J� ¼
Y∞
n¼1

Qn½J�;

Qn½J� ¼
Z

DgeinSG½g�=ℏ
�
ZM

�
g;

J
cn

��
n
; ð5Þ

in which we take the product over all n; i.e., we take the
product of all the towers ΦnðxÞ of different n. In this
formula, cn is a regulating factor, which increases with n
(and whose detailed behavior we will uncover), and the
gravitational action in the nth tower level is rescaled by a
factor n. This rescaling of SG½g� to nSG½g� is equivalent to a
scaling G → G=n for the metric gn in the nth tower, which
reduces the effect of metric fluctuations at high n.
As discussed in [35], we can understand (5) a little better

by also introducing a set of metric fields gn, with one such

field for each tower of matter fields ϕðnÞ
k , where again

k ¼ 1; 2;…n. We can then write (5) in the form,

Q½J� ¼
Y∞
n¼1

Z
DgneinSG½gn�=ℏ

�
ZM

�
gn;

J
cn

��
n
: ð6Þ

Because the generating functional in (6) factorizes, we
see that its logarithm—the generator of connected graphs—
is just a sum over single g integrals, as in (5), and we do not
have correlations between gn and gm unless n ¼ m. It is
then often easier to think of the generating functional in the
form in (5).
We then have

Qn½J� ¼
Z

DgeinðSG½g�þWM ½g;J=cn�Þ=ℏ: ð7Þ

All of the theory in this paper will start from the
generating functional Q½J� written as (5), with Qn given
by (7), or one of its equivalent forms. The correlation
functions for this theory are given as functional derivatives
of Q½J� with coefficients such that the correspondence
principle is obeyed in the limit of vanishing gravitational
interaction [see Eqs. (34)–(35) below]—this was described
in detail in our previous paper [35]. One can also do
semiclassical expansions (in ℏ) and perturbative expansions
(in l2P) of the generating functional, by fairly simple
adjustments to the usual techniques, which take into
account the dependence of the action terms on n in Qn.
These expansions reveal terms which have no analogue

in any orthodox quantum field theory; they come from the
correlation between different paths in the path integral,
mediated by gravity. Following previous work [34], we will
refer to these either as worldline correlations, or as “path
bunching” terms (since they cause paths in a path integral to
congregate). At any order in l2P, we can isolate the terms
contributing to this path bunching.
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B. Effective action

The discussion immediately above was somewhat sche-
matic, because in doing the path integrals we need to deal
with gauge and diffeomorphism invariance of the relevant
fields. To do this, we will use the standard device [44,45] of
introducing in Eqs. (5)–(7) a gauge-fixing procedure and
the relevant contribution from Faddeev-Popov ghost fields.
We will also need to specify boundary conditions on the
fields. In what follows, we do this and establish our
notational conventions.
We will henceforth set the velocity of light c ¼ 1, define

the Planck length lP such that l2P ¼ 16πGℏ, and write the
gravitational action SG½g� as SG½g� ¼ ℏI½g�=l2P. We will also
write ℏ ¼ 1 except when it is necessary, as in, e.g., the
discussion of semiclassical expansions.
To do the functional integration over the metric field

gμνðxÞ, we introduce a gauge-fixing function χμðgðxÞÞ in
the usual way. We suppose that under a diffeomorphism
xμ → ξμ þ ξμðxÞ, so that gμνðxÞ → gξμνðxÞ, the action is
invariant; to get rid of the gauge redundancy in the path
integral under these transformations, we add to the gravi-
tational action a gauge-breaking term χμ, quadratic in gauge
functions, and introduce into the integrand the functional
determinant,

Δ½g� ¼ DetΞμ
νðx; x0jgÞ; ð8Þ

where the Faddeev-Popov ghost operator [45] is

Ξμ
νðx; x0jgÞ ¼ δχμðgξðxÞÞ

δξνðx0Þ
����
ξ¼0

: ð9Þ

We then have the conventional generating functional (1)
in the form [46–48],

Z½J� ¼
Z

DgeiðSG½g�þ1
2
χμcμνχν−iTr lnΞÞZM½g; J�; ð10Þ

where we write DetΞ ¼ eTr lnΞ.
To specify the form of the gravitational action we also

need to specify the boundary conditions for the system. The
spacetime domain we will assume, in Fig. 2, involves a
boundary hypersurface Σ divided into future and past parts,
along with a region ΣB at spatial infinity. Then, including
the gauge-fixing term in the gravitational action, we write
I½g�≡ l2PðSG þ 1

2
χμcμνχνÞ=ℏ as

I½g� ¼ IoG þ IYGHG þ 1

2

Z
χμðxÞcμνðx; x0Þχνðx0Þ; ð11Þ

where IoG ¼ R
g1=2ðxÞRðxÞ is the bulk Einstein action, with

RðxÞ the Ricci scalar curvature; where IYGH is the York-
Gibbons-Hawking (YGH) boundary term [49]; and where
the last term is the gauge-fixing term from (10). The YGH

term is required here on the boundary hypersurface Σ, in
order to cancel the second derivative terms coming from the
bulk action; it is usually written as

IYGH ¼ 2ϵM2
P

I
Σ
d3y

ffiffiffiffiffiffi
jhj

p
K; ð12Þ

where h is the determinant of the induced metric on Σ [not
to be confused with hðxÞ, to be defined later as a
gravitational fluctuation amplitude], where K is the trace
of the extrinsic curvature Kab of Σ, and where ϵ ¼ �1,
depending on whether Σ is timelike or spacelike.
In the present paper, as well as in a subsequent paper on

propagators in CWL theory [50], we will be interested in
initial states defined on an initial time slice, which evolve to
final states defined on a later time slice, and will assume
that all fields vanish fast enough at ΣB that we can integrate
by parts freely on spatial derivatives without picking up
surface terms.
Clearly, other spacetime boundary conditions could be

assumed, leading to a different form for the effective action.
Our choice here is largely determined by the ways in which
wewill be applying the theory in the near future, to problems
involving experimental masses moving at velocities ≪ c,
where we are interested in calculating correlators, propa-
gators, and other relevant quantities between two time slices.
Note thatwe need theYGH term for such calculations even in
the limit of linearized gravity.
Consider now the way in which gauge invariance is

implemented. Under an infinitesimal diffeomorphism xμ →
xμ þ ξμðxÞ, the metric transforms as gμνðxÞ → gμνðxÞþ
δξgμνðxÞ, where

δξgμν ¼ ðgαν∇μ þ gαμ∇νÞξα; ð13Þ

and we write this as

δξgμνðxÞ ¼
Z

d4x0Rμν;αðx; x0Þξαðx0Þ; ð14Þ

�B

�i

�f

FIG. 2. The boundary hypersurface Σ of the spacetime region
considered in this paper. It comprises future and past parts Σf and
Σi, along with a region ΣB at spatial infinity.
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so that Rμν;αðx; x0Þ, the generator of this infinitesimal gauge
transformation, is given by

Rμν;αðx; x0Þ ¼ ðgανðx0Þ∇μ þ gαμðx0Þ∇νÞδðx; x0Þ: ð15Þ

The diffeomorphism invariance of the gravitational action
under infinitesimal transformations, viz., the statement that
I½g� ¼ I½gþ δξg�, can then be written in the form of a
Noether identity as

Z
d4x

δI½g�
δgμνðxÞ

Rμν;αðx; x0Þ ¼ 0: ð16Þ

It is convenient to choose a gauge-fixing function which
is linearized about a background field gauge g0. This is
typical strategy in gauge field theory—for example, in
Yang-Mills theory, one often fixes D̄μA

μ
α ¼ 0, where D̄μ is

the gauge covariant derivative with respect to a background
gauge field. We then have

χμðgðxÞÞ ¼
Z

d4x0
δχμðxÞ
δgαβðx0Þ

ðgαβðx0Þ − g0αβðx0ÞÞ

≡
Z

d4x0χμ;αβðx; x0Þðgαβðx0Þ − g0αβðx0ÞÞ; ð17Þ

and the Faddeev-Popov operator becomes

Ξμ
νðx; x0Þ ¼

Z
d4zχμ;αβðx; zÞRαβ;νðz; x0Þ: ð18Þ

The gauge fixing functional matrices χμ;αβ and cμν are
rather generic, apart from the requirement that the Faddeev-
Popov ghost operator Ξμ

ν and the matrix cμν are both
invertible.1 We also require that the matrix cμν is ultralocal,
cμνðx; x0Þ ∼ δðx; x0Þ, for otherwise, an extra ghost contri-
bution ∼Detcμν would be needed, which would not be
proportional to the power divergent terms δð0Þ usually
discarded within dimensional regularization. We will write
the inverse of Ξμ

ν as

Ξμ
νGν

λ ¼ δμλ ; ð19Þ

which defines the Green function Gν
λ.

The notation so far will be familiar from QFT (see, e.g.,
Refs. [41,44]). It is also common in the literature to express
formulas of this kind in an abbreviated “DeWitt” notation
[37,38,41,51], in which spacetime coordinates are incorpo-
rated into indices which also package together all other
variables. In this notation, for example, gμνðxÞ ¼ ga, the

discrete indices μν and spacetime coordinates x being
denoted by the a single condensed index a, so that
a ↦ fμν; xg. Then, e.g., Rαβ;νðz; xÞ ¼ Rb

ν , b ↦ fαβ; zg,
ν ↦ fν; xg, χμ;αβðx; zÞ ¼ χμb, etc., and Eqs. (16) and (18)
are written as

δI
δga

Ra
μ ¼ 0; ð20Þ

Ξμ
ν ¼ δχμ

δgb
Rb
ν ≡ χμaRa

ν ; ð21Þ

where the contraction of condensed indices includes
spacetime integration. We shall use this notation at various
points in the paper—it is particularly useful in the dis-
cussion of gauge invariance. A table with details of this
notation appears in DeWitt [38].
In the CWL theory, we replace the matter field ϕðxÞ ¼ ϕ

in the above by the set ΦnðxÞ ¼ Φn ¼ ϕ1;…ϕn of towers.
This notation is used to denote matter fields of generic spin-
tensor structure and generic statistics. For brevity, in
contrast to the case of the metric fields, we will omit in
what follows all discrete indices and spacetime coordinates
for the matter fields. As a matter sector of the theory is
much simpler than the gravitational one, this should not
lead to confusion.
The only alteration to the gravitational part of the action

is that I½g� → nI½g� (including the gauge-breaking term).
Thus, for the nth tower contribution Qn in (5) to the total
generating functional, we have

Qn ¼
Z

DgeiðnI½g�=l2P−iTr lnΞÞðZM½gn; J�Þn; ð22Þ

and we then carry on as before.
To summarize: we define quantum gravity, both conven-

tional quantum gravity theory and CWL theory, by path
integrals. Conventional quantum gravity is defined by (10),
and CWL theory by (5) and (22). The key mathematical
objects in the CWL theory are

(i) the gravitational and matter actions SG½g� and
SM½ϕ; g�, the generating functional Q½J�, along with
the functionals ZM, and Zg, plus all their associated
connected generating functionals, and

(ii) the gauge-fixing function χμðgÞ and the associated
ghost operator Ξμ

νðx; x0Þ, along with the generator
Rαβ;νðz; x0Þ of gauge transformations. Various deriv-
atives of these objects, like χμ;αβðx; x0Þ or Gν

λðx; x0Þ,
also figure in the structure of the theory.

We see that the formal structure of CWL theory
incorporates many objects from conventional quantum
gravity. Because the action is unchanged from the conven-
tional theory, we need the usual ghost field and gauge-
fixing function appear; and the symmetries are also
unchanged. The radical change appears in the form of

1Globally, on the configuration space of the theory, the
invertibility of these operators is marred by the well-known
Gribov copy problem. This, however, is only manifested within a
nonperturbative approach and goes beyond our paper because we
restrict ourselves to semiclassical and perturbative expansions.
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the generating functionalQ½J�, and at first glance, we might
expect this to completely modify things like ghost fields.
The reason that it does not is because, as noted earlier, the
CWL coupling between the different field configurations or
‘copies’ is fixed by the equivalence principle to be the same
as that occurring inside each copy. Even the introduction of
the factor nmultiplying the gravitational action SG½g� in the
nth tower of copies does not affect this.

III. CLASSICAL LIMIT, LOOP EXPANSION, AND
CORRELATORS

One thing that any CWL theory must do is have the
correct classical limit as ℏ → 0, which in this case means it
must reduce to Einstein’s theory. Here, we will also demand
that it have a well-behaved semiclassical expansion about
this limit.
In this section, we set up this expansion, around a well-

defined classical saddle point of the path integral for CWL
theory. We derive explicitly the form of the tree level and
1-loop contributions, which makes clear the overall struc-
ture of the expansion.
Note in passing here that a loop expansion is not the

same as an expansion in powers of ℏ (despite what appears
in most quantum field theory texts). In conventional
quantum gravity it was found long ago that loops contribute
to, e.g., classical perihelion precession [52], the classical
gravitational potential and gravitational light bending [53],
and so on; even in conventional QED, loops can also give
classical contributions [54]. More recently, systematic
treatments of higher-order loop contributions to classical
gravitation have appeared [55].

A. Classical limit

Although, as noted in the Introduction, we do not in
general have to distinguish between the different metric
fields gn, it is nevertheless interesting to look at the classical
limit by starting fromQ½J� written in the form (6). Consider
now the saddle point equations resulting from functional
differentiation ofQ½J� with respect to the different gn; these
equations read

n
δSG½gn�
δgn

þ
Xn
k¼1

δSM½gn;ϕðnÞ
i �

δgn
¼ 0

δSM½gn;ϕðnÞ
k �

δϕðnÞ
k

−
J
cn

¼ 0: ð23Þ

Now in the calculation of any path integral, or in the time
evolution of the system, we need to impose the same
boundary conditions for all the different copies ϕðnÞ

k of the

matter field. This is true first of all for all the ϕðnÞ
k inside a

given tower, so that the solutions for these equations

coincide for all k in the nth tower, i.e., ϕðnÞ
k ¼ ϕðnÞ.

However, this then means that all the n matter stress
tensors in the saddle point equations must also be the
same. The coefficient n in (23) then cancels out, and the
first field equation in (23) gives

δSG½gn�
δgn

þ δSM½gn;ϕðnÞ�
δgn

¼ 0; ð24Þ

which has the form of Einstein’s field equation, with source
field ϕðnÞ. Thus, inside any tower n we get the usual
Einstein equation, sourced by the stress tensor of a single
matter field ϕðnÞ.
In the absence of the source field JðxÞ in the saddle point

equations, things simplify further: all reference to the tower
index n disappears, so that gn and ϕðnÞ satisfy the same set
of equations for all n. Thus, we can write, at the J ¼ 0
saddle point, that

δSG½g0�
δg0

þ
Xn
k¼1

δSM½g0;ϕ0�
δg0

¼ 0

δSM½g0;ϕ0�
δϕ0

¼ 0; ð25Þ

in which ϕðnÞ ¼ ϕ0, and gn ¼ g0, the classical solutions.
These solutions are then the starting point for a semi-
classical expansion.
As we shall see, a key role in this expansion is played by

the factor nmultiplying the gravitational action. This leaves
quantum fluctuation effects of the matter fields untouched
at high n, but it rescales the gravitational coupling constant
G for the nth metric gn, so that G → G=n.
This weakening of the gravitational coupling then

reduces quantum fluctuation effects in gn at large n (since
the couplings ℏ → ℏ=n and l2P → l2P=n). The reduction of ℏ
to ℏ=n then helps in any semiclassical expansion, since
graviton loop corrections are suppressed with growing n.

B. Tree and 1-loop contributions

From the argument just given one might guess that the
diagram rules for this theory can be derived by simply
rescaling ℏ in the vertices and propagators. However this is
not correct, as we shall now see by calculating the terms
explicitly, up to 1-loop order in a semiclassical expansion.

1. Contributions to Wn

Let us begin by writing the Faddeev-Popov term as
lnΔ½g� ¼ Tr lnΞ½g�. Then the contribution Qn, given in
heuristic form in (7), becomes

Qn ¼
Z

Dge
in
ℏðI½g�=l2PþWM ½g;J�ÞeTr lnΞ½g�

≡ eiWn=ℏ: ð26Þ
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Note thatWn here refers to the contributions of all the fields
in the nth tower, not just the matter field.
The tree-level contribution to Wn ¼ nW ¼ −iℏ lnQn

then reads

Wtree
n ¼ nI½g0� þ

Xn
i¼1

SM½ϕi
0; g0� ¼ nðI þ SMÞ; ð27Þ

where, as shown above, the classical actions are calculated
at the stationary points of both gravity and matter field
replicas defined by Eqs. (25). Since the source (included in
the matter action) is the same for all i, the matter
contribution of a single field is just multiplied by n.
The one-loop contribution is trickier. To shorten the

expressions, we now use the compact notation described in
the Introduction. We write

Iab ≡ δ2I
δgaδgb

����
g¼g0;ϕi¼ϕi

0

;

Sab ≡ δ2SM
δgaδgb

����
g¼g0;ϕi¼ϕi

0

; ð28Þ

for the second functional derivatives with respect to g, and
for the derivatives involving the matter field, we have

Sia ≡ δ2SM
δϕiδga

����
g¼g0;ϕi¼ϕi

0

Sik ¼ δikSϕϕ0 ≡ δ2SM
δϕiδϕk

����
g¼g0;ϕi¼ϕi

0

: ð29Þ

The second order functional derivatives of these equa-
tions, with respect to both g and ϕi, are fixed to their saddle
point configurations. Note that Sϕϕ0 ¼ δ2SM=δϕδϕ0jϕi¼ϕi

0
is

then the same for all ϕi, again because at the stationary
point of the path integral, all replica fields coincide.
We also introduce Green functions Dac and Gik,

defined by

ðIab þ SabÞDbc ¼ δca; ð30Þ

SikGkm ¼ δmi ; ð31Þ

so that Dbc is the graviton Green function, and Gkm the
matter field Green function, defined on a combined back-
ground of matter and metric fields.
We then find, for the 1-loop contribution, that

W1−loop
n ¼ −iℏTr lnΞ þ iℏ

2
Tr ln

�
nðIab þ SabÞ Sak

Sib Sik

�

¼ −iℏTr lnΞ þ iℏ
2
Tr

�
lnðIab þ SabÞ

þ ln

�
δab −

1

n
DacSciGikSkb

��
; ð32Þ

where we note that Tr ln½nðIab þ SabÞ� ¼ Tr lnðIab þ SabÞ
up to an irrelevant δð0Þ-type constant.
Notice now that because Sik ¼ δikSϕϕ0 is diagonal, we

have Gik ¼ δikGϕϕ0
, and Sϕϕ0Gϕ0ϕ00 ¼ δϕ

00
ϕ , and so the 1=n

factor in the second determinant above completely can-
cels out.
It then follows that W1−loop

n ¼ W1−loop, which is just the
one-loop contribution of a theory without any CWL
correlations, with a single matter field (i.e., it is the 1-loop
term for a conventional theory in which gravitons couple to
this matter field).

2. Correlators

Consider now the form of the correlators that one derives
from the connected generating functional. As we have just
seen, W1−loop

n ¼ W1−loop, and so from Eqs. (5) and (3) we
have

W1−loop
CWL ½J� ¼

X∞
n¼1

W1−loop½J=cn�; ð33Þ

where cn is the regulator introduced in (5), and we
explicitly show the source dependence in the sum.
This infinite sum may be divergent, but the correlators

generated by it are finite. The correlators of the matter
field are given by the functional derivatives of Q½J�, in the
form [35],

hϕðx1Þ…ϕðxlÞiCWL
c ¼ GlðfxkgÞP∞

n¼1 nc
−l
n
; ð34Þ

GlðfxkgÞ ¼
�
ℏ
i

�
n δl lnQ½J�
δJðx1Þ…δJðxlÞ

����
J¼0

; ð35Þ

so that we have

hϕðx1Þ…ϕðxlÞiCWL
1−loop ¼

P∞
n¼1 c

−l
nP∞

n¼1 nc
−l
n
hϕðx1Þ…ϕðxlÞi1−loop;

ð36Þ

where hϕðx1Þ…ϕðxlÞi1−loop is the one-loop correlation
function in conventional QFT without correlated world
lines. Without specifying here the fclg, we note that their
form needs to guarantee convergence of (36).2

2Here, the choice of the sequence of normalization factors cn
remains an arbitrary element of the CWL theory, which for
consistency should provide convergence of the series in Eq. (36).
However, as will be shown in the sequel to this paper [50], if one
starts from first principles, using a specific definition of physical
observables in the CWL theory, then a concrete choice of cn can
be uniquely derived, and one also finds convergence in sums
over n.
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One can continue this expansion to higher-loop CWL
theory correlators; the principles are the same, so we do not
give the details here.

IV. PERTURBATIVE EXPANSION IN l2P AROUND
THE SADDLE POINT

In this section, we discuss how to make expansions in the
gravitational coupling G ¼ l2P=16πℏ of the CWL generat-
ing functional. This expansion will be done around a
configuration g0 ≡ g0μνðxÞ of the metric field which gives
a saddle point in the action for the system—this configu-
ration is of course not necessarily flat space.
We will only go as far as l2P in the expansion, because

(i) there are many higher order terms, the details of which
require a paper of their own, and (ii) in discussing
experimental tests of the CWL theory, the terms ∼Oðl2PÞ
turn out to be very important, since it is at this order that the
first correction to conventional quantum gravity is found.
This correction term, which correlates different matter
paths, is the lowest-order “path bunching” term [34,35];
it causes attractive correlations between different paths. In
the limit of low velocities, the path bunching term gives the
first correction to conventional quantum mechanics.
In what follows, we begin by carrying out the formal

expansion in l2P on the nth tower contribution Qn to the
generating functional and exhibit all terms up to ∼Oðl2PÞ.
There is a profusion of terms; we are interested here in the
terms involving the matter field, and there are four of these.
We focus on the “path bunching” term that we find in this
expansion and give several explicit expressions for it.
Finally, we see how the path-bunching term affects the
correlation functions for the system.

A. General form of the expansion

In this section, we will again let Φn denote the full
collection of fields at the level of the nth tower, so that
Φn ¼ ϕ1;…ϕn. We develop perturbation theory in l2P—the
gravitational coupling constant—while keeping the path
integration over the matter field exact. This means that we
change the order of functional integration, and under the
formal integral over ϕ, we perturbatively integrate over g.
In this section, and the next one, we will formulate the

l2P-expansion in Euclidean spacetime. This is done to
simplify the rather complex equations—we wish to avoid
excessive use of powers of the imaginary unit i, which is
characteristic of quantum mechanics in physical spacetime
with a Lorentzian signature. After Wick rotation to a
Euclidean theory, this difficulty does not arise. The
Euclidean form will be particularly helpful when proving
the gauge independence of the on shell CWL effective
action (see next section), which is an important part of the
consistency check on the whole formalism. The return back
to Lorentzian signature basically reduces to the replace-
ment of the Euclidean quantities by the Lorentzian

spacetime ones, by writing SG → −iSG, SM → −iSM,
I → −iI, etc. Note here that Wick rotation is a tricky
operation in any complicated nonlinear theories—includ-
ing quantum gravity—especially when performed on a
general background [56]. We emphasize that the status of
this operation in CWL theory is the same as in conventional
quantum gravity. The same remark applies to the “con-
formal rotation” operation in Euclidean Einstein theory,
required to provide convergence of the path integral over
the conformal mode, which enters the action with the
wrong sign [57].
For most of this section, we will be dealing with the nth

tower contribution Qn½J� to the generating functional
[cf. Eqs. (7) and (22)]. In Euclidean QFT, this now reads

Qn ¼
Z

DΦn

Z
Dge−

1
ℏðnI½g�=l2P−ℏTr lnΞ½g�þSM ½Φn;g�Þ; ð37Þ

in which we again emphasize the rescaling of the gravi-
tational action by a factor n.
To see the structure of the perturbative expansion, we

write the metric field in an expansion about the saddle point
as g ¼ g0 þ h and organize the integrand in powers of the
quantum field h. The background field g0 again denotes the
saddle point of the path integral over g, so that go is a
solution of the vacuum Einstein equation δI½g0�=δg0 ¼ 0.
In the expansion in powers of l2P, the matter stress tensor is
treated perturbatively and so, unlike in (25), it does not
contribute to the saddle point configuration.
Functional differentiation, with respect to ℏ, of the

various quantities in the integrand of the path integral then
involves higher order vertices of general form,

Oa1…an ¼
δnO½g�

δga1…δgan

����
g¼g0

; ð38Þ

for some quantity O (which could be I½g�, SM½g:ϕ�, or
Tr lnΞ), in which all functional derivatives are taken at the
background gravitational field g0, whereas the matter field
takes a generic value ϕ (to be integrated over in the path
integral).

1. Expansion to order l2P
It is useful, when we come to do the functional

integration over gðxÞ in (37), to introduce a simple notation
for the terms that are produced. Let us write

OðnÞ ≡ 1

n!
δnO

δga1…δgan

����
g¼g0

ha1…han; ð39Þ

hOð2nÞih ≡ ðDetIabÞ1=2
Z

Dh exp
�
−

1

2l2P
Iabhahb

�

×Oð2nÞ½h� ∝ l2nP ; ð40Þ
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h1i¼ 1; hhahbih¼ l2PD
ab; hhahbhchdi¼ l4PðDabDcdþDacDbdþDadDbcÞ;…: ð41Þ

so that the bracketed subscripts denote the orders of the Taylor expansion in the quantum field ha and angular brackets with
the subscript h denote the Gaussian integration over ha. Now doing the Gaussian integrals in (37), we find

Qn ¼ exp
�
−
nIð0Þ
l2P

þ Tr lnΞð0Þ −
1

2
Tr ln

δ2Ið0Þ
δg0δg0

�

×
Z

DΦne−SM ½Φn;g0�
�
1þ l2P

n

�I2ð3Þ
2l6P

−
Ið4Þ
l4P

þ ðTr lnΞÞð2Þ
l2P

þ
ðTr lnΞÞ2ð1Þ

2l2P
−
Ið3ÞðTr lnΞÞð1Þ

l4P

�

þ l2P
n

�S2ð1Þ
2l2P

−
Sð2Þ
l2P

−
Sð1ÞðTr lnΞÞð1Þ

l2P
þ Ið3ÞSð1Þ

l4P

�
þOðl4PÞ

	
h
; ð42Þ

for the nth tower contribution Qn to the generating func-
tional. For brevity, we have omitted the subscript M in
Sð1Þ ≡ ðSMÞð1Þ and Sð2Þ ≡ ðSMÞð2Þ.
In these averages, Dab is the graviton Green’s function,

i.e., the inverse of the operator Iab, so that

IacDcb ¼ δba; Iab ≡ δI
δgaδgb

����
g¼g0

: ð43Þ

Note that this graviton Green’s function differs from the
one defined in the previous section by Eq. (30)—this is an
artifact of the l2P expansion, which is different from the ℏ-
expansion because in the leading order it begins from the
vacuum gravitational background.
Consider now the different terms in (42). The terms

outside the integration over the matter field just describe the
background field g0. At order l2P, the group of five terms in
the first square bracket involve the graviton field h and the
Faddeev-Popov ghost field Ξ but do not contain the matter
field—these are just conventional quantum gravitational
terms. Finally, the last group of four terms in the second
square bracket does involve the matter field.
To make it clearer what is going on, let us again writeQn

in the form (26), but now in Euclidean version, so that
Qn ¼ e−Wn=ℏ. We can then write

Wn ¼ WðgÞ
n þWðMÞ

n ; ð44Þ

where the first gravitational term WðgÞ
n is derived from the

integration over graviton and ghost fields, and can be
written up to Oðl4PÞ as

WðgÞ
n ¼ n

l2P
Wg

tree þWg
1−loop þ

l2P
n
Wg

2−loop; ð45Þ

in which the tree contribution,Wg
tree ¼ I0, and the other two

terms from the integration over the graviton and ghost
fields in the first two lines of (42). We shall not further

investigate these gravitational terms here. The second

matter contribution WðMÞ
n to Wn in (44) will be written

up to Oðl4PÞ as

WðMÞ
n ¼ nWM þWðcorrÞ

n ; ð46Þ

where the first term is just the “bare” matter contribution
without any fluctuation corrections, and the second term
integrates the last line of (42) over graviton fluctuations and
over the matter field Φn.
Let us write this latter term as

WðcorrÞ
n ¼ −

l2P
n

Z
DΦne−SM ½Φn;g0�CðMÞ

n ; ð47Þ

in which CðMÞ
n is the sum of the set of four correlators in the

matter term, i.e.,

CðMÞ
n ¼

�S2ð1Þ
2l2P

−
Sð2Þ
l2P

−
Sð1ÞðTr lnΞÞð1Þ

l2P
þ Ið3ÞSð1Þ

l4P

	
h
; ð48Þ

corresponding to the four matter terms in the last line (the
second square bracket) of Eq. (42). It will be clear thatWM
denotes the contribution of the single matter field (2) in the

presence of a fixed metric background g ¼ g0, and CðMÞ
n

averages over the n different fields in the nth tower.

2. Diagrammatic representation

It is extremely useful to see how things are represented
graphically, in dealing with these expressions. Before we
do this, we emphasize that one must distinguish the
diagram connectedness in pure matter theory on a fixed
metric background from that of the full theory with
quantum metric field. The functional (44) generates con-
nected diagrams only if one includes and integrates over all
propagators, including the graviton one’, i.e., if we take the
logarithm of the full generating functional after integrating
over the metric field, rather than before. Thus,Wn contains
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separate matter diagrams connected by the graviton lines,
which decouple into disconnected pieces when breaking
these graviton propagators.
To begin, we note that the form of the vertices in

diagrammatic perturbation theory for CWL theory will
look exactly the same as in conventional quantum gravity.
This is of course because the action functional used in the
two theories is the same. In Fig. 3, we show this for some of
the vertices involving matter-graviton interactions, as well
as for the bare graviton propagator. We could also show the
vertices involving ghost fields, but we omit them in this
figure.
However, we also note that each line and vertex will

depend on the tower index n. From either the original form
of the action in, e.g., Eqs. (26) and (37), we can determine
the order in n carried by any diagram when we do the final
product over n in the generating functional or the sum over
n in the connected generating functional.
We then see that since any free matter line represents n

copies, it automatically brings in a factor n when summed
over [so that the termWM in (46) is multiplied by n]. From
Eq. (45), we also see that because graviton tree graphs carry
a factor n, graviton vertices like those in Figs. 3(c) and 3(d)
must also carry a factor n.
Unlike the matter field, neither gravitons nor ghosts are

replicated. It then follows that the free graviton propagator
in Fig. 3(a) carries a factor 1=n. This is also clear from the

fact that adding graviton loops in WðgÞ
n in (45) lowers the

order by a factor 1=n for each added loop.
With all this in mind, let us now return to the term CðMÞ

n

that we found in Eq. (48). We can represent its contribution

diagrammatically as shown in Fig. 4. In this figure, we see
extra vertices over and above those in Fig. 3), involving the
ghost propagator and vertices between the ghost field and
the matter and graviton fields.
The terms (a)–(d) in Fig. 4 are ordered following the

terms in (48). The most important of these four terms is the
first one, quadratic in Sð1Þ. It describes a CWL correlation
between two different worldlines of the ϕ fields, up to this
order in l2P. Writing it explicitly, we have

En ¼
�S2ð1Þ
2l2P

	
h
¼ 1

2
DabSaSb; ð49Þ

where Sa ≡ δSM=δga. As we discuss below in detail, it
contains the lowest-order path-bunching effect.
The other terms in QðMÞ

n are linear in Sð1Þ and Sð2Þ, i.e.,
they are linear superpositions of separate contributions of
ϕi individually dressed by gravitons in the full set of fields
Φn ¼ ϕ1;ϕ2;…ϕn, but with no graviton exchange between
fields (so they do not correlate worldlines). We note from

Fig. 4 that whereas the first term (49) in QðMÞ
n has a tree

structure, the second term (50) contains a graviton loop,
while (51) and (52) are tadpoles having the ghost and
graviton loops, respectively, with the attached graviton
propagator carrying at its end the matter field object Sa.
Thus, none of these other terms involves CWL corre-

lations. In terms of the graviton and ghost Green functions,
they read

�
Sð2Þ
l2P

	
h
¼ 1

2
SabDab; ð50Þ

(a) (b)

(c) (d)

O(1/n) O(1)

O(n) O(n)

FIG. 3. Diagrams for some of the lower-order vertices in CWL
theory, shown along with the order in n that they carry when one
sums over n in expressions for the connected generating func-
tional. In (a), we show the basic graviton propagator Dab;
diagrams (b), (c), and (d) show, respectively, a graviton-matter
field interaction, a 3-point graviton self-interaction, and a 4-point
graviton self-interaction. The smaller solid circle represents the
graviton-matter interaction, the slightly larger circle represents
graviton self-interactions, the solid line a matter field, and the
hatched lines represent gravitons.

Dab

Sa Sb

(a)

(d)(c)

(b)

Dab

Sab

Sa
Dab DabSa

Dcd

I bcdR ,b,
c

FIG. 4. Diagrams for the matter terms QðMÞ
n in the lowest order

result for the nth tower in Q. In (a), the term correlating matter
paths, leading to “path bunching,” is shown. The diagrams (b),
(c), and (d) show correlations generated between the matter field
and the graviton and ghost fields. The solid circles represent
derivatives like Sa, the square the second derivative Sab. Dotted
lines show the graviton propagator Dab, the dashed line the ghost
propagator Gν

μ; the small circle represents the graviton 3-point
vertex Iabc, and the large triangle the 3-point vertex Rc

ν;b. Finally,
the solid dot represents the 2-point vertex χμc . For further
explanation see text.
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�
Sð1ÞðTr lnΞÞð1Þ

l2P

	
h
¼ SaDabχμcRc

ν;bG
ν
μ ð51Þ

�
Ið3ÞSð1Þ
l4P

	
h
¼ 1

2
SaDabIbcdDcd; ð52Þ

where Rc
ν;b is the functional derivative of the gauge

generator, i.e.,

Rc
ν;b ≡ δRc

ν

δgb
; ð53Þ

which is nonzero because the gauge algebra is non-Abelian.
Note again that all three terms (50), (51), and (52) exist in
conventional quantum gravity.
As just noted, the CWL term En in (49) is the one giving

new physical effects. However, as we will see in Sec. V,
even though we will not need to explicitly evaluate the
other three terms, we do need to look at them when
discussing the gauge invariance of the theory.

B. Evaluation of lowest order terms

Now let us evaluate the four terms in the matter action
just discussed, including the CWL term En in (49). To
evaluate these four terms, we need to look at averages over
the nmembers of a given tower; in fact, we need to evaluate
terms of the form,

⟪O½Φn�⟫≡
R
DΦne−SM ½Φn;g0�O½Φn�R

DΦne−SM ½Φn;g0� ; ð54Þ

where the double angular brackets denote the quantum
average of O½Φn� with respect to all quantum matter fields
Φn ¼ ϕ1;…ϕn, DΦn ≡Dϕ1Dϕ2…Dϕn.
Now, since the multiple path integral factorizes as

Z
DΦne−SM ½Φn;g0� ¼

Yn
i¼1

Z
Dϕie−SM ½ϕi;g0�

¼ Zn
M½g0� ¼ e−nWM ½g0�; ð55Þ

the same must hold for quantum averages of products of
observables with different ϕi, i.e.,

⟪
Yn
i

Oi½ϕi�⟫ ¼
Yn
i

hOi½ϕ�i; ð56Þ

where hO½ϕ�i denotes the quantum average with respect to
a single matter field ϕ, i.e.,

hO½ϕ�i ¼
R
Dϕe−SM ½ϕ;g0�O½ϕ�R
Dϕe−SM ½ϕ;g0�

: ð57Þ

Let us now write CðMÞ ≡ CðMÞ
n ½Φn� in terms of the stress-

energy tensor. This is easy since each Sa½ϕi; g0� is in

fact the stress tensor (density) of the ith matter field, i.e., we
have

Ti
a ¼ 2

δSM½ϕi; g�
δga

����
g¼g0

; ð58Þ

and δTi
a=δgb is the local “seagull” vertex δTi

a=δgb ¼
δTi

b=δg
a ¼ 2δ2SM½ϕi; g�=δgaδgb.

Bearing in mind that in (49)–(52), we have

Sa ¼
Xn
i¼1

Sa½ϕi; g0�; ð59Þ

it then follows that we can write

1

2
SaSbDab ¼ 1

8

Xn
i¼1

Ti
aTi

bD
ab þ 1

8

Xn
i≠j

Ti
aT

j
bD

ab; ð60Þ

where the diagonal ii terms of the double sum (along with
“seagull” contributions) represent of course gravitational
dressing of separate matter world lines, whereas the non-
diagonal i ≠ j terms give the graviton entanglement of
correlated world lines. Then from (49)–(50) the matter term
can be written in terms of matter field quantum averages as

−
1

n
⟪CðMÞ

n ⟫ ¼ −
1

8
nhTaiDabhTbi

−
1

8
DabðhTaTbi − hTaihTbiÞ

þ 1

4
hδTa=δgbiDab þ 1

2
hTaiDabχμcRc

ν;bG
ν
μ

−
1

4
hTaiDabIbcdDcd; ð61Þ

where the specific n-dependent coefficients come from the
fact that the expectation values hTi

ai ¼ hTai and hTi
aTi

bi ¼
hTaTbi coincide for different i.
Expanding out the notation, so that Dab → Dαβ;μνðx; yÞ,

and Ti
a → Tαβ

i ðxÞ≡ 2δS½ϕi; g�=δgαβðxÞ, we then find that
the first term in (61) above—the path-bunching term—

leads finally to a termWCWL
n in the correlated partWðcorrÞ

n of
the connected generating functional, given explicitly by

WCWL
n ¼−

l2P
8
nhTaiDabhTbi

¼−
l2P
8
n
Z

dxdyhTαβðxÞiDαβ;μνðx;yÞhTμνðyÞi: ð62Þ

The physical effects of this lower order path-bunching
term were discussed in some detail in previous work [34]
(see also [33]). The exchange of a graviton between the two
paths is attractive and therefore pulls them together. One
sees the effect of this most simply in the dynamics of a
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single particle following some path qðsÞ, for which
we have

TμνðxjqÞ ¼ m
Z

dsuμðsÞuνðsÞδð4Þðx − qðsÞÞ; ð63Þ

where uμðsÞ≡ dqμðsÞ=ds is the 4-velocity of the particle.
The dynamics of one path in the presence of the other is

then just that of two relativistic particles exchanging a
graviton. In the nonrelativistic limit, where the particle is
moving with velocity v ≪ c, we get the simple
“Newtonian” result,

lim
v≪c

WCWL
n ¼ −

1

2

Z
t2

t1

dt
Z

d3rd3r0
Gm2

jrðtÞ − r0ðtÞj ; ð64Þ

where rðtÞ and r0ðtÞ are the 3D spatial coordinates of the
two paths for the particle, and m is its rest mass. This
attractive Newtonian potential in then easily shown
(cf. Ref. [34], Sec. 5.2.3) to be governed by a length scale
lGðmÞ ¼ ðMP=mÞ3lP (the analogue of the Bohr radius for
this potential), and an energy scale ϵGðmÞ ¼ ðm=MPÞ5EP
(the analogue of the Coulomb binding energy, i.e., the
ionization energy).
The effect of this potential is utterly negligible for, e.g.,

an electron [where lGðmÞ ∼ 3.6 × 106RH, where RH is the
Hubble radius, and ϵGðmÞ ∼ 1.4 × 10−84 eV]. Thus, this
CWL interaction can cause no measurable path-bunching
effect on, e.g., the 2-slit setup shown in Fig. 1, for a
microscopic mass.
However, the effects increase rapidly with mass, although

their calculation is more complicated for an extended mass;
whenm ∼Oð10−14 kgÞ, one finds that ϵGðmÞ ∼OðeVÞ. We
caution that once one reaches this mass scale, it is no longer
sufficient to use the l2P approximation—wemust take account
of higher order contributions [34].
We can, in the same way as for the path-bunching term in

(62), expand the other terms in ⟪CðMÞ
n ⟫, to find their

contributions to WðcorrÞ
n . However there is a key difference

between the CWL-correlated term in (62) and all the other
terms in (61), viz., the presence of the factor n in (62). This
factor of n comes from the double sum in (60) and is absent

in the other terms in WðcorrÞ
n . As we will see below, this is

crucial.
The CWL path-bunching term is of course only the first

correction to standard quantum gravity. At higher orders in
l2P, such corrections proliferate; a proper enumeration of
them all requires a lengthy analysis, which will be given
elsewhere.
This concludes our analysis of the lowest order (in l2P)

terms in a perturbative analysis of the generating functional
for CWL theory.

C. CWL correlation functions

Having dealt with the generating functional, we can now
turn to the correlation functions that are derived from it by
functional differentiation. In an earlier paper [35], the
general form of these correlation functions was given
already; see also Eqs. (34)–(36) above.
We now wish to see how the correlations functions are

affected by the CWL term just computed. We therefore add
the source term −Jϕi=cn to the classical action of each field
ϕi, so that the average in (54) becomes

⟪O½Φn�⟫J ≡
R
DΦne

−S½Φn�þJ
P

i
ϕi=cnO½Φn�R

DΦne
−S½Φn�þJ

P
i
ϕi=cn

; ð65Þ

and a similar off shell extension hO½ϕ�i → hO½ϕ�iJ holds
for a single field average (57). Therefore, the same
factorization results as those in (55) and (56) apply.
Correlation functions are then given in the usual way by

differentiating with respect to J, for which the simple rule,

δ

δJ
hO½ϕ�iJ ¼

1

cn
ðhO½ϕ�ϕiJ − hO½ϕ�iJhϕiJÞ; ð66Þ

can be used. We see here explicitly the subtraction of
the disconnected part in any Feynman diagram for the
correlators.
As an example, let us apply these results to the

calculation of the two-field correlator up to ∼Oðl2PÞ. By
using the Euclidean version of (34)–(35), we have

hϕ1ϕ2iCWL ¼ 1P
mmc−2m

X∞
n¼1

δ2Wn

δJ1δJ2

����
J¼0

¼ hϕ1ϕ2i −
l2PP

mmc−2m

X∞
n¼1

1

n
δ2⟪CðMÞ

n ½Φ�⟫
δJ1δJ2

����
J¼0

;

ð67Þ

where the first three terms of Wn defined by (44), (45) do
not contribute at all (since they are independent of the
source J), and the term nWM reproduces the correlator
hϕ1ϕ2i of a single quantum field in a fixed gravitational
field—the classical background g ¼ g0.
Using the expression (61) and the rule (66) we then get

the answer as a sum of several terms which we present for a
special case when they have a clear interpretation in terms
of connected matter field graphs. This is the case of a
vanishing expectation value of ϕ, hϕi ¼ 0, and a vanishing
full vertex hTaϕi ¼ 0 (i.e., corresponding to the case when
the matter action SM½ϕ; g� does not contain odd powers of
ϕ). One then finds
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hϕ1ϕ2iCWL ¼ hϕ1ϕ2i −
l2P
4
hTaϕ1ϕ2icDabhTbi −

l2P
8

P
nc

−2
nP

nnc
−2
n

�
DabhTaTbϕ1ϕ2ic

− 2Dab

�
δTa

δgb
ϕ1ϕ2

	
c
− 4hTaϕ1ϕ2icDabχμcRc

ν;bG
ν
μ þ 2hTaϕ1ϕ2icDabIbcdDcd

�
: ð68Þ

Here the subscript “c” denotes the connected part of the relevant single field correlators, which in the aforementioned case
reduces to the set of expressions,

hTaϕ1ϕ2ic ¼ hTaϕ1ϕ2i − hTaihϕ1ϕ2i; ð69Þ

hTaTbϕ1ϕ2ic ¼ hTaTbϕ1ϕ2i − hTaTbihϕ1ϕ2i − 2hTðaihTbÞϕ1ϕ2i þ 2hTaihTbihϕ1ϕ2i; ð70Þ
�
δTa

δgb
ϕ1ϕ2

	
c
¼

�
δTa

δgb
ϕ1ϕ2

	
−
�
δTa

δgb

	
hϕ1ϕ2i: ð71Þ

It is very useful here to represent the different terms
diagrammatically—see Fig. 5. The diagram rules are the
same as those in Fig. 4, except that now we add external
insertions corresponding to the field configurations ϕðx1Þ
and ϕðx2Þ (labeled as “1” and “2” in the diagram), whose
mutual correlation we are asking for. If we now go through

the different terms in (68), we have the following
contributions:

(i) the “free” correlator hϕ1ϕ2i, i.e., the correlator
without any gravitational interactions (if the scalar
field has, e.g., a ϕ4 self-coupling in it, then this
“free” correlator would also include these self-
interactions). This graph is not shown in Fig. 5 [it
would simply appear as a black line connecting
ϕ1ðxÞ and ϕ2ðxÞ]. This contribution is of course
entirely conventional.

(ii) the path-bunching term of the tadpole structure, in
Fig. 5(a), in which a path b decorates, via the
interaction Dab, the path a on which correlations
are being determined (Ta and Tb belonging to
different matter species associated with these paths).
The diagram here represents this term in a compact
connected form, implying the subtraction of dis-
connected parts as in Eq. (69). Note that in conven-
tional quantum gravity there is also a contribution of
this form; however, a and b entries then belong to
one and the same single matter field, so that one then
has a ¼ b.

(iii) a “self-energy” graph without path-bunching—both
Ta and Tb belonging to one and the same matter
replica—shown in Fig. 5(b), which again implies the
subtraction of disconnected parts as in Eq. (70).

(iv) the seagull graph, in Fig. 5(c), which involves the
4-vertex δ2ðδTa=δgbÞ=δϕδϕ≡ 2δ4SM=δgaδgbδϕδϕ.
This contribution is also familiar from conventional
quantum gravity.

(v) the two “tadpole” diagrams in Figs. 5(d) and 5(e);
these contain ghost and graviton loops. Again, terms
of this form, with a and b entries belonging to a
single matter field, are familiar from conventional
quantum gravity.

Returning now to Eq. (68), we observe that, as expected,
all of these diagrams except the path-bunching tadpole

Dab

T a T b

(a)

(d)

(c)(b)

Dab

Ta/ gb

T a
Dab Dab

T a

Dcd

I bcdR ,b,
c

T a T b

Dab

(e)

1 2

1

1
1

1

22

2

2

FIG. 5. Diagrams for the different terms in the correlator
hϕ1ϕ2iCWL in Eq. (68), between field configurations ϕ1ðxÞ
and ϕ2ðxÞ (labeled as “1” and “2” in the diagram, and shown
as straight solid line insertions). All terms in Eq. (68) are shown
in the order in which they appear, except for the first term hϕ1ϕ2i.
In (a), we have the “path-bunching” term, while (c) shows the
“seagull” contribution, and the diagrams in (d) and (e) show
contributions coming from the coupling between the matter field
and the graviton and ghost fields. The solid circles represent
expectations of stress energies like Ta, the elliptical solid the
combined correlator of Ta and Tb, and the square shows the
derivative δTa=δgb. Dotted lines show the graviton propagator
Dab, the dashed line the ghost propagator Gν

μ; the small circle
represents the graviton 3-point vertex Iabc, and the large triangle
the 3-point vertex Rc

ν;b. Finally, the solid dot represents the
2-point vertex χμc . For further explanation, see text.
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diagram in Fig. 5(a) are suppressed by the “normalization”
factor χ given by

χ ¼
P∞

n¼1 c
−2
nP∞

n¼1 nc
−2
n

< 1: ð72Þ

Only the conventional term hϕ1ϕ2i coming from WM, and
the path-bunching tadpole diagram coming from WCWL in
Fig. 5(a) are not suppressed by χ. This is in full accordance
with our preceding paper [35].
From the diagrammatic point of view, what distinguishes

the CWL path-bunching term in Fig. 5(a) from the other
graphs is that, as noted above, it does not take the usual
“tadpole” form, with the entries 1 and 2 belonging to the
same replica as hTbi. The summation over n replicas of
hTbi different from those of hTbϕ1ϕ2i then gives an extra
coefficient of n, which explains the absence of suppression
of this diagram by the factor χ in (72). This coefficient n
cancels the coefficient 1=n in the reduced gravitational
coupling l2P=n. Note that for graviton and ghost tadpoles
this mechanism does not work, because unlike the n
replicas in the matter contribution hTbi, graviton and ghost
loop graphs contain only one unreplicated graviton and one
set of unreplicated Faddeev-Popov ghosts.

V. GAUGE DEPENDENCE AND WARD
IDENTITIES

The discussion of gravitational gauge invariance is
notoriously difficult. Ordinary flat space QFT can deal
with gauge invariance in various ways—by, e.g., defining
“physical states” [47,58–60], or, in path integral theory, by
using a Faddeev-Popov procedure [45]. However in quan-
tum gravity things are more complicated—one would like
to define meaningful local physical observables, but this is
incompatible with diffeomorphism invariance. In spite of
this, attempts to define physical states have been made
[59,61], and various ways of defining path integrals for
quantum gravity have been given [37,38,62–65].
The corner stone of these definitions is the requirement

of on shell gauge independence of the path integral, which
guarantees the uniqueness of the resulting physical S
matrix. The general nonperturbative proof of this property
for path integrals [37,38,62,65] equally well applies to its
CWL version simply because each of the CWL factors Qn
in (26) already takes the form of a conventional path
integral for quantum gravity, in which a single metric field
couples to n matter field replicas with a standard Faddeev-
Popov gauge fixing procedure. The mechanism of this
gauge independence can then be checked order by order in
perturbation theory, and the demonstration that the purely
gravitational tree, one-loop and two-loop terms of inWn are
gauge independent, when on shell [42,66], follows conven-
tional lines.
However, there is also the nontrivial CWL matter

contribution WCWL, which first manifests itself at order

l2P, and which explicitly involves the gauge conditions χμ,
and its gauge independence at J ¼ 0 is therefore far from
being obvious. Since this contribution is tied to the CWL
path-bunching effect, the question of its gauge dependence
becomes very important.
Thus, in what follows, our main goal is to show that in a

path integral formulation, gauge independence in CWL
theory can be formulated and proven in a way analogous to
that in conventional quantum gravity. We stress again that
we are dealing with a low-energy effective theory, and so
we do not address questions surrounding the correct
definition of local observables in CWL theory.
We begin, in Sec. VA below, by recalling how gauge and

diffeomorphism invariance are formulated for a path
integral theory of conventional quantum gravity [38]. We
then adapt this treatment to CWL theory, and then we show
how in the lowest CWL correction to conventional quan-
tum gravity, gauge invariance goes through as before.
Although the demonstration is technically tedious, the
basic idea is straightforward—essentially, we want to see
that the “relative phases” between two or more correlated
paths in a CWL term do not mess up gauge invariance.

A. Gauge dependence for metric and ghost field objects

Let us first recall how, in conventional quantum gravity,
one characterizes the gauge dependence of objects like
Green functions, or contributions to the effective action,
under a change of gauge conditions in the Faddeev-Popov
gauge fixing procedure. We will again, in order to stream-
line the discussion, use the condensed DeWitt notation
already noted in Sec. II. B.
The diffeomorphism invariance of the pure gravitational

action is expressed by the Noether identity (16), which is
written in condensed form as

Ra
μSGa ¼ 0: ð73Þ

In the same way, gauge invariance for the matter action
SM ¼ SM½ϕ; g� involves gauge transformations of both
gravitational and matter fields, so that

Ra
μSa þ Rϕ

μSϕ ¼ 0; ð74Þ

where, similarly to the discussion in Sec. II B., Rϕ
μ denotes

the generator of the gauge transformation of ϕ,
and Sϕ ≡ δSM=δϕ.
These identities hold for all field configurations, includ-

ing off shell ones. They can then be used to generate, e.g.,
Ward identities for bare vertices, which follow from func-
tionally varying (73). We then get

Ra
μSGab ¼ −Ra

ν;bS
G
a

Ra
μSGabc ¼ −Ra

ν;bS
G
ac − Ra

ν;cSGab; ð75Þ
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as well as a combined Ward identity for gauge and ghost
propagators, viz.,

cμνχνaDba ¼ Gν
μRa

ν þGν
μRb

ν;cSGb D
ca: ð76Þ

For on shell gravitational configurations, i.e., those for
which g ¼ g0, the last term in (76) vanishes, and SGb ¼ 0,
and so we are thus led to an identity relating the gauge and
ghost propagators taking the simple form,

cμνχνaDba ¼ Gν
μRa

ν : ð77Þ

In all discussion, from now, on we will calculate all the
quantities on shell, that is for g ¼ g0. We then have the
graviton operator,

Iab ¼ SGab þ χμacμνχνb; ð78Þ

and the variation of its Green function with respect to the
infinitesimal change of the gauge conditions matrix χμa
reads

δχDab ¼ −2DðacχμccμνδχνdD
dbÞ

¼ −2Rða
ν Gν

μδχ
μ
dD

dbÞ; ð79Þ

where the round brackets around two indices imply
symmetrization, so that, e.g., XðabÞ ¼ 1

2
ðXab þ XbaÞ.

All path integrals for the action are gauge independent on
shell, i.e., for g ¼ g0 and with sources switched off. The
same should hold order by order in an l2P expansion; i.e., we
expect that if we sum all diagrams contributing to a given
order in l2P, this sum will be gauge invariant, even if
individual diagrams are not.

B. Gauge independence in CWL theory

If we are to have gauge invariance of CWL theory, we
also expect this to hold at any given order in an l2P
expansion of the generating functional. We now wish to
investigate this. Clearly, any proof should be independent
of the number of paths that are correlated, i.e., of the
number n of copies or “replicas,” and so, as before, we
denote all of them by one symbol Φ.
In what follows, we will look at the lowest nontrivial

term in the l2P expansion, i.e., the matter term QðMÞ
n in the

effective action inQn. As we saw earlier, this term contains
both a CWL path-bunching or “entanglement” term E, plus
three other conventional terms—see Eqs. (49)–(52).
The proof of gauge independence of the CWL theory at

order l2P begins with the observation that the contribution E
in (49) or WCWL in (62) has the structure of the simplest
tree-level 2 → 2 graviton scattering amplitude—two stress
tensors mediated by the graviton propagator. Since the
change of this amplitude under the variation of the gauge

conditions (79) is proportional to the diffeomorphism
generator Ra

ν, we might expect E and WCWL to be gauge
independent in view of the stress tensor conservation
identity,

Ra
νSa ¼ −2∇μTμν ¼ 0: ð80Þ

However, this conservation law holds only on shell when
the matter equations of motion are enforced; it does not
hold before path integration over ϕ is carried out.
Therefore, the mechanism of gauge independence is a
little more subtle, and to do things properly we need to

evaluate all the diagrams contributing to QðMÞ
n , i.e., all the

contributions (49)–(52). We now take these in turn.
We will find that gauge independence holds separately

for the CWL contribution En in (49) and for the other three

terms contributing to QðMÞ
n . This is good, because as we

have seen in the last section, these terms contribute
differently to Wn.

1. CWL path-bunching term

We consider the first term of the correlation (48)
appearing in the exponentiated matter action (47), which
leads to the CWL path-bunching or “entanglement” term
(49). Let us take the integrand of the integral over the matter
fields, and then vary it; this gives

δχ

�S2ð1Þ
2l2P

	
h
e−SM ¼ 1

2
δχðDabSaSbÞe−SM

¼ e−SMðGν
μDcbSbR

ϕ
νSϕÞδχμc; ð81Þ

where we have used (79) for the variation of Dab.
In Fig. 6, we show the term ðGν

μDcbSbR
ϕ
νSϕÞδχμc which

multiplies e−SM in this expression. We have actually written
it slightly differently in the figure, as δχμcGν

μDcbSbϕR
ϕ
ν . To

see how one gets this, we rewrite (81) as follows:

R
Sb

Dab

FIG. 6. Diagrammatic representation of the term
δχμcGν

μDcbSbϕR
ϕ
ν in the integrand of Eq. (83). The square shows

the derivative δ2SM=δgbδϕ, the dotted line the graviton propa-
gator Dab, and the dashed line the ghost propagator Gν

μ. The 2-

point vertex Rϕ
ν is shown as an oval. For further explanation,

see text.
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δχ

�S2ð1Þ
2l2P

	
h
e−SM ¼ −Gν

μδχ
μ
cDcbSb

δ

δϕ
ðRϕ

ν e−SMÞ þ δð0Þð…Þ

¼ −
δ

δϕ
ðGν

μδχ
μ
cDcbSbR

ϕ
ν e−SMÞ þGν

μδχ
μ
cDcbSbϕR

ϕ
ν e−SM þ δð0Þð…Þ; ð82Þ

where in view of the field locality of the generator
δRϕ

ν =δϕ ¼ δð0Þ × ð…Þ, i.e., we get power divergent terms
which vanish, say, in dimensional regularization. We will
disregard these structures here—they are either canceled by
the local measure of the path integral, or give rise to
anomalies which go beyond this paper. On integration over
ϕ the total functional derivative term thus disappears, and
we have the result shown in Fig. 6, viz.,

Z
Dϕe−SMδχ

�S2ð1Þ
2l2P

	
h
¼

Z
Dϕe−SMðδχμcGν

μDcbSbϕR
ϕ
ν Þ:

ð83Þ

Diagrammatically, the quantity represents in the figure is
a one-loop object built of the graviton and ghost Green’s
functions joined via two different local 2-point vertices δχμc
and SbϕR

ϕ
ν (and we have shown the latter expanded into the

pair of vertices Sbϕ and Rϕ
ν , connected by a ϕϕ line).

Remarkably, the gauge variation of the term bilinear in the
matter stress tensor, Sa ¼ Ta=2, reduces here to a term linear
in Sbϕ ¼ δ2SM=δgbδϕ, which no longer contains any entan-
glement or path-bunching effect between the different paths
or histories, i.e., between the different ϕi in Φn ¼ ϕ1;…ϕn.

2. Loop terms

We have seen that the term bilinear in Sa is gauge
independent. However, to make sure of our results we must
also show that the terms linear in Sa are also gauge
independent. As we will see, the functional integration
by parts, of the type just used, will play a critical role in this
proof—which actually is nonperturbative in the quantum
effects of the matter field.
Our proof is based on checking the gauge variation of

each of the three other terms, each of which is linear in the
gravitational vertices of matter action Sð1Þ and Sð2Þ, and
each of which contains a gauge loop, in either the graviton
or ghost field.

(i) Seagull term: Here, we deal with the seagull graph [see Fig. 4(b)]. Using the gauge variation of the Green’s function,
along with the Ward identities derived in the previous subsection, we get

Z
Dϕe−SMδχ

�
Sð2Þ
l2P

	
h
¼

Z
Dϕe−SMδχμcGν

μDcbðSbϕRϕ
ν þ Ra

ν;bSaÞ: ð84Þ

This quantity has one-loop structure analogous to that just discussed for the path-bunching term; the first of its terms
exactly coincides with (83) up to a sign factor, so that they cancel in the gauge variation of the total sum of terms (84).

ii) Ghost loop term: Coming now to the ghost loop term in Fig. 4(c), we see that we have

Z
Dϕe−SMδχ

�
Sð1ÞðTr lnΞÞð1Þ

l2P

	
h
¼

Z
Dϕe−SM ½SϕRϕ

αGα
βD

dbδχβdχ
μ
cRc

ν;b

− SaDabðδχβbGα
βχ

μ
cRd

αRc
ν;d − δχμcRc

ν;b þ χμcRc
β;bG

β
αδχαdR

d
νÞGν

μ�: ð85Þ

However, the first contribution is again zero, as in our discussion above, because its integrand is a total functional
derivative [modulo a term Rϕ

α;ϕ ∝ δð0Þ, which we disregard], since all the factors in e−SMSϕR
ϕ
αGα

βD
dbδχβdχ

μ
cRc

ν;bG
ν
μ

except e−SMSϕR
ϕ
α are ϕ independent. Thus, we have

Z
Dϕe−SMδχ

�
Sð1ÞðTr lnΞÞð1Þ

l2P

	
h
¼ −

Z
Dϕe−SMSaDab½δχβbGα

βðRd
αRc

ν;dχ
μ
cÞ − δχμcRc

ν;b þ χμcRc
β;bG

β
αδχαdR

d
ν �Gν

μ: ð86Þ

(iii) Graviton loop term: Finally, we come to the last term (52), shown in Fig. 4(d). To calculate its variation, we note that
with a linear gauge, Ibcd ¼ SGbcd, and the contraction of this 3-point vertex with the generator equals
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SGbcdR
d
μ ¼ −SGbdRd

μ;c − SGcdR
d
μ;b: ð87Þ

Another important contraction can be derived from the Ward identity (77), evaluated on shell so that SGa ¼ 0; it then
reads

SGbdD
dc ¼ δcb − χαbG

β
αRc

β; ð88Þ

in which the right-hand side is in fact a projector on the nongauge directions in configuration space of
g, Rb

μðδcb − χαbG
β
αRc

βÞ ¼ 0.
Using these identities, we have

Z
Dϕe−SMδχ

�
Ið3ÞSð1Þ
l4P

	
h
¼

Z
Dϕe−SM ½SaDabRc

μ;bðδdc − χαcG
β
αRd

βÞδχνdGμ
ν

þ ðSb − SaRa
βG

β
αχαbÞRb

μ;dD
dcδχνcG

μ
ν þ SaDabδχνbG

μ
νRc

μ;dðδdc − χαcG
β
αRd

βÞ�: ð89Þ

The second term in the second line here with Ra
βSa ¼ −Rϕ

βSϕ again represents a total derivative in ϕ and can be discarded,
while in the third line Rc

μ;dδ
d
c ¼ δRc

μ=δgc ∝ δð0Þ and also does not contribute to the final answer. Thus, we end up with the
expression,

Z
Dϕe−SMδχ

�
Ið3ÞSð1Þ
l4P

	
h
¼
Z

Dϕe−SM ½SbRb
ν;dD

dcδχμc þSaDabðRd
ν;bδχ

μ
d − χαcRc

ν;bG
β
αRd

βδχ
μ
dÞ−SaDabδχβbG

α
βðRd

νRc
α;dχ

μ
cÞ�Gν

μ:

ð90Þ

This concludes our results for the variations of each of
the four graphs in Fig. 4; they are contained in Eqs. (83),
(84), (86), and (90). We have seen that we can establish the
gauge dependence of each term separately and establish
that the CWL term is itself gauge invariant. It now remains
to look at the sum of all four terms.

3. Gauge invariance of total matter action

The results contained in Eqs. (83), (84), (86), and (90)
are each rather complicated in appearance; and at first
glance, there is no particular reason to suppose that their
sum should be gauge invariant.
However, if we now add them all together, we obtain the

rather simple result that

δχ⟪C
ðMÞ
n ⟫ ¼

Z
Dϕe−SMSaGabδχβbG

α
β

× ðRd
αRc

ν;d − Rd
νRc

α;dÞχμcGν
μ; ð91Þ

where Rd
αRc

ν;d − Rd
νRc

α;d represents the commutator of two
diffeomorphism transformations of the gauge field Δξga ≡
Ra
μξ

μ forming theLie algebra of thegeneral coordinategroup,
andwhereΔξΔη − ΔηΔξ ¼ Δζ, and ζλðxÞ ¼ ξαðxÞ∂αη

λðxÞ−
ηαðxÞ∂αζ

λðxÞ.
Now this commutator can be read as representing the

algebra of generators of local gauge transformations; in
condensed notation, we have ζλ ¼ Cλανξαην, and

Rd
αRc

ν;d − Rd
νRc

α;d ¼ CλανRc
λ; ð92Þ

with the structure functions Cλαν ↦ Cλ;xα;y ν;z≡
δλνδðx; yÞ∂αδðx; zÞ − ðα; yÞ ↔ ðν; zÞ.
We now see that the result, for the variation δχ⟪C

ðMÞ
n ⟫ in

(91) of the matter terms in our effective action, is propor-
tional to the trace of these structure functions. It then
follows finally that the variation with respect to gauge
conditions of all these matter terms, before the integration
over matter fields, gives the result,

δχ⟪C
ðMÞ
n ⟫ ¼

Z
Dϕe−SMSaGabδχβbG

α
βC

λ
αλ

∝ δð0Þ; ð93Þ
which is proportional to the δð0Þ-type term because of the
ultralocal nature of the structure functions; from above, one
has Cλαλ ¼

R
dxCλ;xα;y λ;x ∝ δð0Þ. This power divergence

vanishes under dimensional regularization; alternatively, it
can be canceled by the local measure of the gauge field path
integral (which we have disregarded in the foregoing).
Thus, finally, we have shown that the set of four terms in

CðMÞ
n in (48) is gauge invariant.
This accomplishes the proof of on shell gauge inde-

pendence of the world line correlation term CðMÞ
n up to the

first order of our l2P expansion. Beyond this order, the
formal proof of this property is based on using a special
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change of all gravity and matter gauge integration variables
under the integration sign [38,65], and this technique also
works in the CWL case.
However, the formal implementation of this technique, at

different orders in the l2P expansion, is much trickier when
one includes CWL terms than the way it appears in the
conventional loop expansion we have used here. The
systematic classification of higher terms and their gauge
properties need their own treatment to be considered
elsewhere [39].

VI. CONCLUDING REMARKS

Let us now summarize what we have done here. We can
do this from both a mathematical standpoint and from a
physical one.
Mathematically, we have explored the structure of the

CWL theory by (i) showing how to do a loop expansion, as
well as a perturbative expansion around a background field,
and (ii) exhibiting the gauge invariance of the theory. The
results show that the CWL theory can be viewed as a
legitimate field theory, even though it does violate the
quantum mechanical superposition principle. Clearly, our
formal job is not finished here—for example, we need to
investigate the renormalizability of the theory and look at
the structure of perturbation theory at arbitrary order in l2P.
From a physical standpoint, the CWL theory is in a rather

specific sense the most natural theory one can find in which
gravitation is involved in a breakdown of QM. If one asks
for a theory in which any gravitational correlations between
paths must also satisfy the equivalence principle, then the
CWL form follows [34]. The twin requirements of con-
sistent perturbative and classical limits then dictate the
“product CWL” form [35].
It then follows that in the CWL framework there are no

adjustable parameters, nor any ex cathedra classical or
noise fields—the only fields in the theory are the matter and
gravitational fields. There is also no arbitrary distinction
between quantum and quantum worlds; one simply passes
from one to the other for sufficiently large masses [34].
Up to order l2P, we have given a fairly complete

characterization here of the theory. The leading departure
from conventional quantum gravity (and from standard
quantum theory) is given by the path-bunching term, which
we have investigated here in detail. To develop the CWL
theory into a practical tool, we need to extend our
discussion to higher orders in l2P and to physically realistic
situations.
In work following on from this, we have succeeded in

(i) working out the formal theory of propagators in CWL
theory [39], (ii) determining the dynamics of the metric
field, and the diagrammatic structure of particle and scalar
field propagators, to all orders [50] in l2P, and (iii) calculat-
ing the detailed dynamics of single particles and of
distributed masses subject to external fields [67,68]. All
of this work is a necessary preliminary to the ultimate goal

of the CWL theory, which is to make predictions for the
departure from quantum mechanics of the dynamics of
objects with mass approachingMP, where the theory can be
tested in laboratory experiments. Viewed from this per-
spective, the present work consists in laying the theoretical
foundations required to do this.
One can also speculate on more general nonperturbative

aspects of CWL theory—we stress that we do not yet have
definitive results here. Thus, we can ask whether the
presence of a large number N of interacting paths will
change the UV cutoff in the theory (in analogy with the
reduction of the Planckian cutoff 1=G ¼ M2

P to a reduced
UV cutoff M2

P=N ¼ 1=NG [69] for gravity coupled to N
matter fields). However, we note that in CWL theory, the
gravitational interaction between N paths (i.e., in the
language of this paper, between N replica fields) has the
reduced gravitational coupling G=N, so that the cutoff is
actually unchanged.
We see that caution must be applied in trying to map, to

CWL theory, any results derived within conventional
quantum gravity for a set of N matter fields coupled to
gravity. Thus, while we do find [67] that great simplifi-
cations occur in the diagrammatic structure of matter
fields at high orders in l2P, questions about the renorma-
lizability or the high-energy behavior of CWL theory still
need to be resolved. Although the CWL replication
method does preserve the BPHZ-renormalization
scheme and the BRST structures encompassing Ward-
Slavnov identities [70] inside each replica tower, it
is still not a trivial task to carry this scheme over to
the full CWL theory.
The same caution will be necessary in any attempt to

modify CWL theory in ways analogous to those proposed
for Einstein gravity (for instance, renormalizable but
nonunitary higher-derivative gravity [71], or local unitary
UV-renormalizable, but Lorentz-violating, Horava gravity
[72]). One may also speculate that some sort of asymptotic
safety program [73,74] might be incorporated within CWL
theory. In both cases, it is probably too early to give any
definitive answer to ideas like this.
We can also ask what modifications will arise in CWL

theory in the calculation of things like the effective
interaction between two masses, or in the bending of light
[53]; both mentioned earlier in the paper. Calculations for
these two cases are underway at the present time. For
microscopic masses, we expect negligible effects, and for
macroscopic masses, the results will be the same as
classical GR; the interesting regime will be that of
intermediate masses.
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