
 

Deep learning for clustering of continuous gravitational wave candidates. II.
Identification of low-SNR candidates

B. Beheshtipour 1,2,* and M. A. Papa 1,2,3,†

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Callinstrasse 38, 30167 Hannover, Germany

2Leibniz Universität Hannover, D-30167 Hannover, Germany
3University of Wisconsin Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, USA

(Received 9 December 2020; accepted 22 February 2021; published 15 March 2021)

Broad searches for continuous gravitational wave signals rely on hierarchies of follow-up stages
for candidates above a given significance threshold. An important step to simplify these follow-ups and
reduce the computational cost is to bundle together in a single follow-up nearby candidates. This step is
called clustering and we investigate carrying it out with a deep learning network. In our first paper
[B. Beheshtipour and M. A. Papa, Phys. Rev. D 101, 064009 (2020)], we implemented a deep learning
clustering network capable of correctly identifying clusters due to large signals. In this paper, a network is
implemented that can detect clusters due to much fainter signals. These two networks are complementary
and we show that a cascade of the two networks achieves an excellent detection efficiency across a wide
range of signal strengths, with a false alarm rate comparable/lower than that of methods currently in use.
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I. INTRODUCTION

The detection of gravitational waves from binary mergers
represents a historical breakthrough and marks the beginning
of the era of gravitational wave astronomy [1–3]. Continuous
gravitational waves are everlasting nearly monochromatic
gravitational waves which have not yet been detected, most
probably due to their weakness [4–8]. They are expected
from rotating compact objects when their shape or motion
deviates from perfect axisymmetry [9–12].
Broad-frequency surveys for continuous gravitational

waves are routinely carried out [13–15], which investigate a
very large number—Oð1017Þ—of possible waveforms, and
require a so-called “clustering” of the initial results.
Why is clustering important? A gravitational wave signal

or a disturbance may trigger not only one template but a
number of nearby templates, to rise above the average noise
level. This produces many “candidates,” each needing to be
followed up and resulting in a high computing cost. To keep
the computing cost in check one could increase the
threshold that the detection statistic of a candidate has to
exceed in order to be worthy of follow-up. But this
obviously results in a loss of sensitivity. To tip the balance
toward higher sensitivities at the same computing cost,
clustering is used.
Clustering identifies nearby candidates due to the same

root-cause and bundles them together as one. Only the most

significant candidate of the set is followed-up and this
reduces the computational cost.
Clustering algorithms used in broad continuous waves

surveys have evolved over time [15–18]. The shape of
signal-clusters depends on the signal parameters and on
the search parameters, and it is impossible to predict. The
reason for this is that the mismatch reduction function
can be computed analytically—using the metric approach
[19–21]—only at distances from the signal parameters that
are too small to be informative for clustering, i.e., at
distances smaller than the typical template-grid spacings
and certainly much smaller than typical signal-cluster sizes.
This means that in all deterministic clustering approaches,
one has to resort to extensive Monte Carlos in order to see
what signal clusters look like and then tune the clustering
parameters accordingly. These studies have to be repeated
for every new search and across the entire the parameter
space searched, and are very time consuming.
In our first paper [22] we explored the idea of using

the computational cost normally used for the tuning of
Monte Carlos, to generate search results with clusters from
simulated signals and to train a deep learning neural
network on these.
Deep learning or deep neural networks are a subfield

of machine learning which is inspired by the way brain
works. A network consists of layers of nodes/neurones that
endeavor to recognize features in the input data. Neural
networks have proven successful in many applications,
including ones in gravitational waves physics: noise studies
and de-noising [23–26], detection of binary inspiral signals
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and estimation of their parameters [27–33]. Recently
[34–36] have proposed to use deep neural networks for
detecting continuous gravitational waves. See [37] for a
review.
We begun the clustering-network development in [22]

tackling the simpler clustering problem, that is to cluster
candidates from loud signals. We now want to explore the
clustering of weaker signals.
The paper is organized as follows. In Sec. II we recall

what the general context is, for gravitational wave search
results from broad surveys, and we concentrate on the
broadest existing surveys, i.e., the Einstein@Home ones. In
Sec. III we present the new network, capable of detecting
weak-signal clusters; in Sec. IV we discuss a composite
network. Finally in Sec. V we recap the main results, and
compare and contrast the performance of our newly
developed clustering schemes with existing methods.

II. GRAVITATIONAL WAVE SEARCH RESULTS

We develop and benchmark our clustering method on the
results of the latest Einstein@Home all-sky search [15].
This search utilises public data from the LIGO O2 run
[38,39] spanning about 9 months, covers a signal-
frequency f between 20 Hz and ≈600 Hz and a spin-down
_f between −2.6 × 10−9 Hz=s and 2.6 × 10−10 Hz=s. The
results stem from the combination of 64 coherent searches,
each performed on data from the two LIGO detectors over a
60 hr time-span.
An Einstein@Home search [40] splits the computational

workload in to millions of separate work-units and distrib-
utes them among the volunteer computers. Each work-unit
searches just under 1011 different waveforms correspond-
ing to a 50 mHz band in frequency, the entire spin
down range, and a small patch of the sky. The central
Einstein@Home server receives back information only
about the most significant 7500 of these waveforms. We
refer to these as candidates. A candidate comprises a value
of the detection statistics, and a set of template parameter:
f; _f; α; δ.
The detection statistic that we use is the odds ratio

β̂S=GLtLr between the continuous signal (S) hypothesis,
defined by the waveform parameters, and the noise
hypothesis, given the data. The noise hypothesis is
Gaussian noise (G) or a spectral line, either persistent (L)
or transient (tL). For the purposes of this paper, the
detection statistic can just be considered a measure of
likelihood that the data contains a continuous signal with
certain parameters; the interested reader can find more
details about the detection statistics in [41,42].
Figure 1 shows the results in the 215.50–215.55 Hz

band, as a function of the candidates’ frequency and spin-
down, with the detection statistic value color-coded.
Several X-shaped areas are evident that present high values
of the detection statistic: these are due to loud fake signals

added to the data before the search. Other than for these
regions, the input data to our network can be broadly
thought of, as images like this.

III. THE WEAK-SIGNAL NETWORK

A. Target signals

In [22] we developed a network that could cluster search
results from loud signals, giving rise to structures like the
ones shown in Figure 1. We refer to this network as the
loud-signal-network (LoudSigN). The detection efficiency
of this network drops to less than 17% for signals with
detection statistic β̂S=GLtLr ∼ 20, and this is inadequate for
the level of sensitivity of the latest searches: in [15] nearly
all candidates that are followed-up have β̂S=GLtLr values
lower than 20.
The input data for the large-signal-network is “down-

sampled”: the resolution of the original f − _f images
is reduced by averaging over a certain number of pixels,

FIG. 1. Results from the Einstein@Home search in the
215.50–215.55 Hz band; the detection statistic as a function of
f and _f is shown. Fake signals appear in this result-set as
parameter space regions with enhanced values of the detection
statistic. The lower plot displays the top-down view.

B. BEHESHTIPOUR and M. A. PAPA PHYS. REV. D 103, 064027 (2021)

064027-2



12 × 12 for the O2 data. This is a necessary step because it
blurs away the structure of local “peaks and valleys”
making it easier for a network to clump everything together
as a single cluster. On the other hand this step also
decreases the contrast of the signal peak, and if the signal
is weak enough, this step blurs it away completely.
We design a network aimed at these weaker signals. We

define these signals as those that would not be visible in the
input data prepared for the loud-signal-network, but that are
visible or barely visible in the original O2 data. We refer to
this new network as the weak-signal-network (WeakSigN).
Figure 2 shows an example of a weak target signal.

B. Input data and ground truth

The input to the network are images with
512 × 512 pixels, that can be handled by the high-end
32 GB graphical processing unit (GPU). In this result-set
they correspond to slices of 1.7 mHz × 1.7 × 10−10 Hz=s.
As explained in Sec. II, the Einstein@Home results

are “top-lists” of the 7500 highest-ranking candidates from
each portion of parameter space explored. Since each
portion explores of order 1010 waveforms, this means that

no results are returned for most of the parameter space. In
our f; _f network-input images we typically find over 99%
of empty pixels. When a pixel in the input image is empty,
we assign to it a random score that is ≲ the lowest value of
the detection statistic in the image. In Fig. 2 such value is
∼ −39.3 and there are 132051137 empty pixels out of
132524538. The empty pixels can be seen in the zoomed-in
panel, they are the yellow area. It is possible that more than
one candidate is found in the same f; _f pixel, correspond-
ing to different sky positions. In such cases, as done in [22],
the candidate with the highest detection statistic value
across the sky, is picked.
We use a supervised network, which requires with each

training input the corresponding output, called ground
truth. To generate the training set, we add weak fake
signals, like the ones that we want to cluster, to the raw
LIGO data. The signals’ frequency and spindown are
within the search band of the original search, between
20–600 Hz, and −2.6 × 10−9 − 2.6 × 10−10 Hz=s, respec-
tively. The right ascension and the cosine of the declination
of the source, the cosine of its inclination angle and the
polarization angle [43] are distributed uniformly in
½0; 2πÞ; ½−1; 1Þ; ½−1; 1Þ and ½−π=4; π=4Þ, respectively. We
run a search like the Einstein@Home search on this
data and from the results we produce the corresponding
network-input image. We construct the ground truth by
selecting by eye the clustered pixels that contain traces of
the signal. Even though these are barely visible, knowing
“where to look”, i.e., knowing the signal parameters, makes
this possible. We use an image editing tool (Pixelmator) on
a tablet computer equipped with a touchscreen. We load
each training image in the editing tool and mark the cluster
region—an example is given in the zoomed-in panel of
Figure 2. This information is converted in the ground truth
matrix T α

ij, with ði; jÞ labelling the ðf; _fÞ pixels of the
image and α ¼ 1 � � �Ncl labeling the signal clusters of that
image. T α

ij ¼ 1 if that pixel is part of the α cluster, and zero
otherwise.

C. The network

The clustering method is addressed by using instance
segmentation networks. The general network architecture,
the overall data structure, and preparation of the input data
set for the network is similar to [22]. Here we omit the
details already described in [22] and instead concentrate on
the key novelties and results.
The network scans the image and finds the regions that

most likely include the cluster, then classifies them and
generates definitive boundaries. The output is a pixel mask
that determines the boundaries and a score that identifies
how likely a pixel is part of a signal cluster. The score
threshold that decides whether a pixel is or not part of a
cluster is set at 0.5. The network structure is summarized in
Figure 3.

FIG. 2. Results from the Einstein@Home search in the
101.70–101.75 Hz band; the detection statistic as a function of
f and _f is shown. These plots are like the ones shown in Figure 1,
apart for the fact that the fake signal added to the data is not as
loud as any of the ones of Fig. 1. In fact, this signal is well below
the detectability level of the LoudSigNet, and it is barely visible
by eye in the results output. By comparing this figure with Fig. 1,
we show how different the target clusters from loud and weak
signals are, which illustrates why we need a specific network for
the weak signals. The zoomed-in panel shows the region where
the signal cluster is, with the red lines delimiting the ground-truth
cluster region. Note that the color-coding for the zoomed-in panel
is different than for the main figure.
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In order to train the network, we need to set model
weights and batch size. Model-weights are the set of
coefficients and biases that define how each node in the
network transforms the data. We set the starting model-
weights to be the weights of the trained network in [22].
The training input data is divided into several batches with
a size defined by the batch size parameter. The network
works through all samples in each batch before updating
the network weights. The batch size is mainly limited by
the size of the GPU memory. In [22], a large batch size of
15 made a big improvement in the network performance
because the network started with generic model weights
that were not specific to our problem. Here we start with
model-weights from [22] and this helps to significantly
lower the batch size without loosing in performance and at
the same time frees up memory to use a bigger size
subimage. Having bigger subimages gives a better picture
of the clustered structures over the background noise that
embeds them. For this network we use a batch size of 2
with subimages of 512 × 512 while in [22] the batch size
was 15 with subimages of size 256 × 256.
Similar to [22], the training is performed in 3 steps which

proved to enhance performance. Since we begin with more
reliable weights, the first two training steps can be made
shorter compared with [22]. The steps are as follows: 1)
only the first layer of the three last levels in Figure 3 is
trained, for 60 epochs rather than 100 epochs 2) using the
weights from the previous step, the first three levels are
trained for 120 epochs rather than 300 epochs 3) the
complete network is trained with the weights from the

second step for 1000 epochs. The best performance of
the network is achieved with these hyper-parameters:
learning rate ¼ 0.001, weight decay ¼ 0.00001, learning
momentum ¼ 0.9. The training process takes about
40 hours to complete, which is much less than the time
that it typically takes to tune a deterministic clustering
algorithm.
More details on the choice of the network parameters is

provided in the Appendix.

D. Results

The network, with the configuration explained in the
above section, is trained on 515 subimages and validated on
218 subimages. The network is tested on 347 subimages,
totally independent of both the training and the validation
set. Each image contains a weak signal cluster, as described
in Sec. III A. The underlying signal parameter distributions
reflect the target signal population and are those described
in Sec. III B.
The network correctly identifies 276 of such clusters,

corresponding to 80% detection efficiency, and with a
statistical error of �2%. The detection efficiency as a
function of the normalized signal amplitude is shown in
Fig. 4. We define the normalized amplitude for a signal
at frequency f with intrinsic amplitude h0 the ratio
h0=

ffiffiffiffiffiffiffiffiffiffiffi

ShðfÞ
p

, where ShðfÞ is the power spectra density at
that frequency. We note that the normalized amplitude is
the inverse of the sensitivity depth that a search should
reach in order to detect this population of signals, and has
thus units of [

ffiffiffiffiffiffi

Hz
p

].
The WeakSigN does not perform as well on loud signals.

Clusters from loud signals typically spread over more than

FIG. 3. A schematic diagram of the Mask R-CNN architecture
used for our clustering networks.

FIG. 4. Detection efficiency of the WeakSigN as a function of
fake signal normalized amplitude.
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a single subimage and present structures. The network
picks up parts of these structures as being small clusters,
which generates a higher rate of false alarms around loud
signals and disturbances. In other words, the network
misses the general picture. We show an example of this
in Figure 5, where the network does not even return a
cluster that contains the signal parameters.

IV. THE CASCADE-NETWORK

We investigate the combination of the LoudSigN and the
WeakSigN to efficiently detect signal clusters over a broad
range of signal amplitudes. We re-train the LoudSigN of
[22] on the O2 data and we use it on the O2 data. We record
the clusters identified by this network and set the corre-
sponding pixels to “empty” in the original image. The
resulting image is fed to the WeakSigN. We record the
clusters identified by the WeakSigN.
We characterize the performance of the cascade-network

on 1684 fake signals in the frequency range 40–579 Hz and
having a wide range of signal strengths, as shown in Fig. 6.
We consider a signal detected when the cluster contains at
least a candidate from the signal. It may happen that the
first network identifies part of a signal cluster, and the
second network picks-up weaker candidates. In this case
the same injection is associated with a cluster in each
network. Figure 7 shows the efficiency in detecting the
clusters associated to the injected signal, as a function of
the signal strength.
We find that all clusters with normalized signal ampli-

tude of ≳1=40
ffiffiffiffiffiffi

Hz
p

are detected and that the network has a
detection efficiency of more than 95% up to signal
strengths of ≈1=54

ffiffiffiffiffiffi

Hz
p

. For weaker signals the new
network significantly contributes to the detection efficiency
and at ≈1=80

ffiffiffiffiffiffi

Hz
p

accounts for more than half of the
detected signals.

We evaluate the uncertainty in signal parameters for each
signal identified by the network. We use the results from
the fake signals studies as follows: We find the candidate
corresponding to the highest value of the detection statistic
in each signal cluster, and calculate the distance to the
actual signal parameters. If more than a cluster exists

FIG. 5. Performance of WeakSigN (right image) and LoudSigN
(left image) on one loud signal cluster at frequency of
459.035 Hz. The blue lines show the detection boundaries of
the clusters found by the network and the red cross shows the
injection. Left image shows the signal cluster in low-resolution
image and the right image shows this cluster in high-resolution
image. The LoudSigN observed one region contained the signal
cluster while the WeakSigN detected 2 clusters for that.

FIG. 6. Distribution of the normalized gravitational wave
amplitudes of the fake signals used to characterize the perfor-
mance of the cascade-network. The different colors shows how
the signal appeared in the search output, i.e., whether it gave rise
to a loud cluster or a weak cluster.

FIG. 7. Top: Detection efficiency of the cascade method net-
work. The distribution of each network is shown in different
colours.
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associated with the same fake signal, for the purposes of
evaluating this distance, we consider the cluster that is
closest to the signal. Figure 8 shows the cumulative rate of
candidates within a given f; _f distance of the actual signal
parameters. Our results indicate an uncertainty region of
4.5 × 10−4 Hz and 6.8 × 10−11 Hz=s for cluster from the
LoudSigN and of 6.5 × 10−4 Hz and 7.4 × 10−11 Hz=s for
clusters identified by the WeakSigN.
We evaluate the false alarm rate of the cascade-network

by running it on the Einstein@Home O2 result-set [15]. We
randomly pick 1774 50-mHz frequency bands over the
entire search range and apply the cascade-network to the
results from these bands. The false alarm rate is dominated
by the LoudSigN and the WeakSigN shows a negligible
false alarm rate.

Overall our cascade network generates about half
the false alarms than the clustering method employed in
the latest Einstein@Home all-sky search on the same
bands [15].
As shown in Fig. 10, the false alarm rate of the cascade

network is not constant in frequency. The higher false alarm
in the middle frequency range stems from the stripe-
features visible in Figs. 1 and 2, that display lower detection
statistic values in the result-set appearing periodically at
constant _f. The origin of these stripes is well understood
and comes from the “recalculation” of the detection statistic
of the candidates of the top list (see Appendix). Since the
number of templates searched in a 50 mHz band increases
with frequency, these stripes are more pronounced with
increasing frequencies. The WeakSigN is not sensitive to
them because it works on small subimages such that the
stripes just produce a constant background level that is
irrelevant. The LoudSigN, instead, works on larger sub-
images and can resolve the stripes. The appearance of the
stripes and of the signal clusters changes with frequency
and the training-sets must include enough “models” of
these different types of behaviour, in order to properly
distinguish signal clusters from other features. The
250–350 Hz region is a transition region where the images
become very smooth, with a much higher pixel density than
at lower frequency. The higher false alarm that we see
stems from our training-set on the O2 data being somewhat
coarse in this mid frequency range, and can be remedied by
increasing it in this region.

FIG. 8. Cumulative distribution of the distance between the
signal parameters and the parameters of the most significant
cluster candidate (the candidate with the highest detection
statistics value) recovered by the network. The top plot shows
the distance in frequency; the bottom plot the distance in spin-
down (right).

FIG. 9. Comparing the cascade-network with the deterministic
clustering method used in the analysis of the Einstein@Home
search results [15]. Our network shows a higher detection
efficiency for lower amplitude signals.
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V. CONCLUSION

In [22] we presented the first deep learning network
trained to identify signal clusters in the output of very broad
searches for continuous wave signals. That network was
aimed at large signals. In this paper we build on this and
design a second network that is capable of identifying
clusters from faint signals. We train and test the network on
the most recent results from an all-sky Einstein@Home
search of LIGO O2 data [15]. We show that a cascade-
architecture of these two networks can identify clusters of
continuous gravitational wave signal candidates over a
broad range of signal strengths.
The cascade-network shows an excellent performance,

with a detection efficiency of 92% above normalised signal
amplitudes of 1=60

ffiffiffiffiffiffi

Hz
p

. This exceeds the performance
of the deterministic clustering method used in [15] which
has a detection efficiency of 83% in that amplitude
range. For weak signals—at normalized amplitudes of
1=80

ffiffiffiffiffiffi

Hz
p

—our cascade-network maintains a detection
efficiency of ≳80% whereas the deterministic clustering
performance drops to less than 50%. Figure 9 summarizes
the performance comparison.
Over a broad frequency range the overall false alarm

rate of our cascade-network is half that of [15], albeit with
peaks up to four times larger than [15] between 250 Hz
and 350 Hz. These false alarms are due to the stripe-
features in the results set. We used a sparse distribution of
training-set signals at a few sample frequencies, and the
range between 250 Hz and 350 Hz was not very well
covered. We are confident that a training set for the
LoudSigN with adequate coverage of this range would
train the network to distinguish between signals and
stripes and hence reduce the false alarm rate in this band.
One could also imagine preprocessing the images to
suppress the stripes. However, since what really matters is

the overall false alarm rate, because that determines the
computational cost of the next stage, the higher false
alarm rate in the mid frequency range does not invalidate
the method.
The uncertainty in f and _f of our network is competitive,

being 1.68 and 1.25 times smaller than the uncertainties of
the clustering method used in [15].
As explained earlier on, each template is identified by a

sky location as well as a f and _f value. The clustering
described in this paper applies to f and _f and is immedi-
ately relevant to continuous wave searches such as
[13,14,44], where the sky position is informed by X-ray
observations with excellent accuracy and only a single sky
position is searched. For an all-sky search the question
naturally arises of how well the network identifies the sky
position of a signal, even without explicit clustering in
the sky. The uncertainty in the sky by LoudSigN is ≈ half
that of the deterministic clustering method; but the sky-
uncertainty of the WeakSigN is much larger than that of
the deterministic clustering method, in occasions yielding
seemingly unrelated sky positions. In this respect the sky-
localisation performance of the cascade network falls short
of optimal. A recent study demonstrates that a deterministic
clustering based on the density of candidates in 4D cells
(f; _f, [sky position]) works, even on weak signals [15].
This indicates that a deep-learning clustering able to
confidently identify weak signals should use the density
of candidates rather than the detection statistic, and should
consider all dimensions at once. The latter point likely
involves a significant change in the construction of the
training set and perhaps in the network architecture. This
will be our next focus and we believe that it will yield a
deep-learning clustering for the results of very broad all-sky
continuous wave searches.

ACKNOWLEDGMENTS

We thank Benjamin Steltner for providing the perfor-
mance benchmark data for the clustering procedure used in
[15]. The computing work for this project was carried out
on the GPUs of the Atlas cluster of the Observational
Relativity and Cosmology division of the MPI for
Gravitational Physics, Hannover [45]. We thank Bruce
Allen for supporting this project by granting us access to
those systems. This research has made use of search results
from our previous analyses that utilize LIGO data from
the LIGO Open Science Center [46], a service of LIGO
Laboratory, the LIGO Scientific Collaboration and the
Virgo Collaboration. LIGO is funded by the U.S.
National Science Foundation. Virgo is funded by the
French Centre National de Recherche Scientifique
(CNRS), the Italian Istituto Nazionale della Fisica
Nucleare (INFN) and the Dutch Nikhef, with contributions
by Polish and Hungarian institutes.

FIG. 10. False alarm rate versus signal frequency for our
network and for the clustering method used in [15].

DEEP LEARNING FOR …. II. IDENTIFICATION OF … PHYS. REV. D 103, 064027 (2021)

064027-7



APPENDIX A: ORIGIN OF THE
STRIPE-FEATURE IN THE EINSTEIN@HOME

RESULT SET

For the reader who is familiar with semicoherent
continuous wave searches and interested in the technical
details, in this Appendix we explain in more detail the
origin of these stripes. We also refer to Sec. 3.2 of [15]. The
recalculation of the detection statistic consists in computing
the detection statistic in each coherent search at the _f
template value of the candidate, so that the resulting
average is not any more an approximation of the average
detection statistic at such grid point. The recalculation is
performed because statistically it increases the detection
statistic value of a signal with respect to noise. This step
introduces a systematic effect in the noise, depending on
whether the original top-list candidate had a single-segment
coarse-grid _f value close to the final fine-grid template
value or not. For those candidates with coarse- and fine-
grid _f templates close to each other, the recalculation has
no effect and leaves the detection statistic value unchanged,
and hence high. For those candidates for which the coarse-
and fine- grid points are “further away” the approximated
and exact detection statistic differ more and in noise the
recalculated value is lower. This is what generates the
modulation in recomputed detection statistic values as a
function of _f, i.e., the stripes.

APPENDIX B: CHOICE OF NETWORK
PARAMETERS

We chose a MaskRCNN network because this type of
architecture has proven very effective in instance segmen-
tation problems, as our cluster identification. We have
illustrated the general network architecture in [22].
Every deep-learning network has a number of parame-

ters that must be set. Optimizing performance and comput-
ing cost is a non trivial endeavor, especially for complex
architectures such as the R-CNN deep-learning network.
Producers of GPUs even make hardware design choices
based on the deep learning network performance for certain
problems—see for instance [47].
A full-scale optimization study is well beyond the scope

of this work. The scope of this paper is to present a viable
and reasonable R-CNN network set-up and demonstrate
that a deep learning approach lends itself to avoiding the
cumbersome tuning of deterministic algorithms. With
“viable and reasonable” here we mean that the detection
performance is comparable/better with that of deterministic
approaches and that using the network on a large data set
(i.e., from a real Einstein@Home search) would be possible
within a time-scale comparable/shorter than that of deter-
ministic approaches.
In this Appendix we show that the operating points that

we have chosen are reasonable, and even close to optimal
within the constraints that we operate under.

The size of the subimage is probably the most important
parameter for our problem (in this paragraph when we say
“image” we mean “subimage”). The performance of the
clustering network increases when the image is larger,
because larger images are more likely to contain edges,
which is what the network firstly detects. As we explain in
Section III A, resolution is also important, as a higher
resolution mean higher contrast for the features that the
network identifies. The limit to image size is set by the
GPU that we have: a 512 × 512 image is manageable by
our high-end 32 GB GPU, but an image 1024 × 1024 is
not. This sets a hard limit to the image size. A 256 × 256
image is not manageable by a 6 GB GPU whereas a
64 × 64 image, is.
Subimage size in principle impacts the training time, but

within the range of viable subimage sizes not so much,
because the operations are very effectively parallelised
on the GPU: for an image with x 16 more pixels (from
128 × 128 to 512 × 512) the training time becomes only
1.6 times longer.
The training set size impacts the training time, which

scales linearly with the number of samples (subimages).
Every subimage may contain more than a signal, and the
network learns with every new signal. The trade-off on the
size of the training set was made based on the significant
effort required to generate the ground truth for every signal.
This is done by hand as described in Sec. III B, for every
signal, and takes, say, 4 minutes. This means that establish-
ing the ground truth for 100 signals takes nearly 7 hours of
concentrated work. Devoting about a week to this is still
competitive to the tuning of clustering algorithms and
provides several hundred signals to train the network on.
The detection efficiency also depends on the size of

the training set. The training set should be broad and
complete, and more training samples may help increase the
detection efficiency of the network. The preparation of the
training samples is however a time consuming process.
So, there is a trade-off between the time it takes to prepare
the training samples and the improvement that these extra
samples produce on the detection efficiency. We prepared a
set of training samples and tested the network with it. Then
added extra training samples and re-evaluated the perfor-
mance of the network. We repeated the process until we
saw no significant further improvement. For example,
128 images in the training set results in 71% detection
efficiency, 257 images results in 78% detection efficiency,
and 515 images, results in 80% detection efficiency.
The hyperparameters that we set are the learning rate,

learning momentum and weight decay. These parameters
mostly affect how the network learns from the training
samples, and only to a lesser degree the training time. The
larger the value of the learning rate and learning momentum
are, the faster the training is. But very fast training can
cause overfitting and reduce the performance, so these
values needs to be tuned. The weight decay parameter does
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not directly affect the training time and is used to increase
performance when overfitting happens.
The learning rate is set to 0.001. A value 5 times higher

results in very fast and unstable training and the network
had the overfitting problem only after 30 minutes of
training—we recall that the training time for our network
is 40 hours. A 5 times smaller value increases the training
time by 15% and decreases the detection efficiency slightly,
by about 3%. A gain of 6 minutes in training time is not
significant, whereas a 3% gain in detection efficiency is
comparable to what was achieved by increasing the number
of training samples from 257 to 515.
The learning momentum for our network is set to 0.9.

Similar to the learning rate, higher values made the

training very fast but unstable, with the network very
quickly showing signs of overfitting. For example for a
learning rate of 0.99 the network becomes unstable very
quickly, ≈3 minutes after the training begins. Smaller
value increase the training time slightly but cause a lower
detection efficiency. For example a learning momentum
of 0.7 results in 72% detection and the training time
increases by ≈7%.
The weight decay is set to 1e-4. A 5 times smaller value

doesn’t significantly change the detection efficiency.
A 5 times larger value yields a lower detection efficiency:
72% rather than 80%. The training time stays almost
the same.

[1] B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari
et al., Phys. Rev. Lett. 116, 061102 (2016).

[2] A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White,
D. A. Brown, and B. Krishnan, Astrophys. J. 872, 195
(2019).

[3] B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese,
K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. X 9, 031040 (2019).

[4] P. D. Lasky, Pub. Astron. Soc. Aust. 32 (2015).
[5] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F.

Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt et al., Astrophys. J. 879, 10 (2019).

[6] B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese,
K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. D 100, 024004 (2019).

[7] V. Dergachev and M. A. Papa, Phys. Rev. D 101, 022001
(2020).

[8] V. Dergachev and M. A. Papa, Phys. Rev. Lett. 123, 101101
(2019).

[9] B. Haskell, Int. J. Mod. Phys. E 24, 1541007 (2015).
[10] A. Singh, Phys. Rev. D 95, 024022 (2017).
[11] G. Walin, J. Fluid Mech. 36, 289 (1969).
[12] M. Abney and R. I. Epstein, J. Fluid Mech. 312, 327

(1996).
[13] J. Ming et al., Phys. Rev. D 100, 024063 (2019).
[14] M. A. Papa, J. Ming, E. V. Gotthelf, B. Allen, R. Prix, V.

Dergachev, H.-B. Eggenstein, A. Singh, and S. J. Zhu,
Astrophys. J. 897, 22 (2020).

[15] B. Steltner, M. A. Papa, H. B. Eggenstein, B. Allen, V.
Dergachev, R. Prix, B. Machenschalk, S. Walsh, S. J. Zhu,
and S. Kwang, arXiv:2009.12260.

[16] B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91,
064007 (2015).

[17] M. A. Papa, H.-B. Eggenstein, S. Walsh, I. Di Palma, B.
Allen, P. Astone, O. Bock, T. D. Creighton, D. Keitel, B.
Machenschalk et al., Phys. Rev. D 94, 122006 (2016).

[18] A. Singh, M. A. Papa, H.-B. Eggenstein, and S. Walsh,
Phys. Rev. D 96, 082003 (2017).

[19] R. Prix, Phys. Rev. D 75, 023004 (2007); 75, 069901(E)
(2007).

[20] K. Wette and R. Prix, Phys. Rev. D 88, 123005 (2013).
[21] K. Wette, Phys. Rev. D 92, 082003 (2015).
[22] B. Beheshtipour and M. A. Papa, Phys. Rev. D 101, 064009

(2020).
[23] M. Razzano and E. Cuoco, Classical Quantum Gravity 35,

095016 (2018).
[24] D. George, H. Shen, and E. Huerta, Phys. Rev. D 97,

101501 (2018).
[25] H. Shen, D. George, E. A. Huerta, and Z. Zhao,

arXiv:1711.09919.
[26] W. Wei and E. Huerta, Phys. Lett. B 800, 135081

(2020).
[27] X. Fan, J. Li, X. Li, Y. Zhong, and J. Cao, Sci. China Phys.

Mech. Astron. 62 (2019).
[28] H. Shen, E. A. Huerta, Z. Zhao, E. Jennings, and H. Sharma,

arXiv:1903.01998.
[29] T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf,

Phys. Rev. D 100, 063015 (2019).
[30] D. George and E. Huerta, Phys. Rev. D 97, 044039

(2018).
[31] H. Gabbard, M. Williams, F. Hayes, and C. Messenger,

Phys. Rev. Lett. 120, 141103 (2018).
[32] Y.-C. Lin and J.-H. P. Wu, arXiv:2007.04176 [Phys. Rev. D

(to be published)].
[33] M. B. Schäfer, F. Ohme, and A. H. Nitz, Phys. Rev. D 102,

063015 (2020).
[34] C. Dreissigacker, R. Sharma, C. Messenger, R. Zhao, and R.

Prix, Phys. Rev. D 100, 044009 (2019).
[35] C. Dreissigacker and R. Prix, Phys. Rev. D 102, 022005

(2020).
[36] T. S. Yamamoto and T. Tanaka, arXiv:2011.12522 [Phys.

Rev. D (to be published)].
[37] E. Cuoco et al., arXiv:2005.03745.

DEEP LEARNING FOR …. II. IDENTIFICATION OF … PHYS. REV. D 103, 064027 (2021)

064027-9

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.3847/1538-4357/ab0108
https://doi.org/10.3847/1538-4357/ab0108
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1017/pasa.2015.35
https://doi.org/10.3847/1538-4357/ab20cb
https://doi.org/10.1103/PhysRevD.100.024004
https://doi.org/10.1103/PhysRevD.101.022001
https://doi.org/10.1103/PhysRevD.101.022001
https://doi.org/10.1103/PhysRevLett.123.101101
https://doi.org/10.1103/PhysRevLett.123.101101
https://doi.org/10.1142/S0218301315410074
https://doi.org/10.1103/PhysRevD.95.024022
https://doi.org/10.1017/S0022112069001662
https://doi.org/10.1017/S0022112096002030
https://doi.org/10.1017/S0022112096002030
https://doi.org/10.1103/PhysRevD.100.024063
https://doi.org/10.3847/1538-4357/ab92a6
https://arXiv.org/abs/2009.12260
https://doi.org/10.1103/PhysRevD.91.064007
https://doi.org/10.1103/PhysRevD.91.064007
https://doi.org/10.1103/PhysRevD.94.122006
https://doi.org/10.1103/PhysRevD.96.082003
https://doi.org/10.1103/PhysRevD.75.023004
https://doi.org/10.1103/PhysRevD.75.069901
https://doi.org/10.1103/PhysRevD.75.069901
https://doi.org/10.1103/PhysRevD.88.123005
https://doi.org/10.1103/PhysRevD.92.082003
https://doi.org/10.1103/PhysRevD.101.064009
https://doi.org/10.1103/PhysRevD.101.064009
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1103/PhysRevD.97.101501
https://doi.org/10.1103/PhysRevD.97.101501
https://arXiv.org/abs/1711.09919
https://doi.org/10.1016/j.physletb.2019.135081
https://doi.org/10.1016/j.physletb.2019.135081
https://doi.org/10.1007/s11433-018-9321-7
https://doi.org/10.1007/s11433-018-9321-7
https://arXiv.org/abs/1903.01998
https://doi.org/10.1103/PhysRevD.100.063015
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevLett.120.141103
https://arXiv.org/abs/2007.04176
https://doi.org/10.1103/PhysRevD.102.063015
https://doi.org/10.1103/PhysRevD.102.063015
https://doi.org/10.1103/PhysRevD.100.044009
https://doi.org/10.1103/PhysRevD.102.022005
https://doi.org/10.1103/PhysRevD.102.022005
https://arXiv.org/abs/2011.12522
https://arXiv.org/abs/2005.03745


[38] M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and B.
Stephens, J. Phys. Conf. Ser. 610, 012021 (2015).

[39] Ligo Open Science Center, .
[40] Einstein@Home, https://www.einsteinathome.org/.
[41] D. Keitel, R. Prix, M. A. Papa, P. Leaci, and M. Siddiqi,

Phys. Rev. D 89, 064023 (2014).
[42] D. Keitel, Phys. Rev. D 93, 084024 (2016).
[43] P. Jaranowski, A. Krolak, and B. F. Schutz, Phys. Rev. D 58,

063001 (1998).

[44] S. J. Zhu et al., Phys. Rev. D 94, 082008 (2016).
[45] Observational relativity and cosmology division of the MPI

for gravitational physics Hannover, https://www.aei.mpg
.de/obs-rel-cos.

[46] https://losc.ligo.org.
[47] Aws and Nvidia achieve the fastest training times for mask r-

cnn and t5-3b, https://aws.amazon.com/blogs/machine-
learning/aws-and-nvidia-achieve-the-fastest-training-times-
for-mask-r-cnn-and-t5-3b.https://losc.ligo.org

B. BEHESHTIPOUR and M. A. PAPA PHYS. REV. D 103, 064027 (2021)

064027-10

https://doi.org/10.1088/1742-6596/610/1/012021
https://www.einsteinathome.org/
https://www.einsteinathome.org/
https://www.einsteinathome.org/
https://doi.org/10.1103/PhysRevD.89.064023
https://doi.org/10.1103/PhysRevD.93.084024
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1103/PhysRevD.58.063001
https://doi.org/10.1103/PhysRevD.94.082008
https://www.aei.mpg.de/obs-rel-cos
https://www.aei.mpg.de/obs-rel-cos
https://www.aei.mpg.de/obs-rel-cos
https://www.aei.mpg.de/obs-rel-cos
https://losc.ligo.org
https://losc.ligo.org
https://losc.ligo.org
https://aws.amazon.com/blogs/machine-learning/aws-and-nvidia-achieve-the-fastest-training-times-for-mask-r-cnn-and-t5-3b
https://aws.amazon.com/blogs/machine-learning/aws-and-nvidia-achieve-the-fastest-training-times-for-mask-r-cnn-and-t5-3b
https://aws.amazon.com/blogs/machine-learning/aws-and-nvidia-achieve-the-fastest-training-times-for-mask-r-cnn-and-t5-3b
https://aws.amazon.com/blogs/machine-learning/aws-and-nvidia-achieve-the-fastest-training-times-for-mask-r-cnn-and-t5-3b
https://aws.amazon.com/blogs/machine-learning/aws-and-nvidia-achieve-the-fastest-training-times-for-mask-r-cnn-and-t5-3b

