
 

Shadow cast by a rotating black hole with anisotropic matter
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We obtain the shadow cast induced by the rotating black hole with an anisotropic matter. A Killing tensor
representing the hidden symmetry is derived explicitly. The existence of a separability structure implies
complete integrability of the geodesic motion. We analyze an effective potential around the unstable
circular photon orbits to show that one side of the black hole is brighter than the other side. Further, it is
shown that the inclusion of the anisotropic matter (Kr2ð1−wÞ) has an effect on the observables of the shadow
cast. The shadow observables include approximate shadow radius Rs, distortion parameter δs, area of the
shadow As, and oblateness Dos.
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I. INTRODUCTION

It is interesting to note that a black hole is one of the
fascinating and mystical objects in the universe. Its physical
meaning and existence as a real object have developed over
the past century [1–8]. It is fair to say that black holes do
not seem to be directly observed. Therefore, they have been
proved by indirect observations like the deflection of light
rays due to the spacetime curvature [9–12], or the gravi-
tational wave by coming from the mergers of compact
binary sources [13,14].
Interestingly, the black hole has recently gained the

most attention thanks to the observational reports on the
shadow cast induced by the supermassive black hole
[15–17] at the center of the M87 galaxy obtained by
the Event Horizon Telescope collaboration [18–20]. The
shadow image indicates the bright ring surrounding a dark
region in the celestial sphere. The dark area describing the
black hole shadow has the boundary between capture orbits
and scattering orbits by photons in which photons are
coming from both the accreting disc and the light source
located behind a black hole, and they reach a distant
observer [21–28].
Let us propose an astrophysical black hole residing in the

background of matters. In this case, it is appropriate to
consider a realistic black hole surrounded by a matter field
or dark matter. It is well-known that dark matter [29–32]
makes up about 27% of the universe and more than 90% of
the matter in the Milky Way. To model a black hole in the

galaxy, it is reasonable to consider the black hole coexisting
with matter field or dark matter [33–35].
Analyzing the geodesic motion of a photon outside the

black hole horizon is an important matter when studying
astrophysical objects exposed to observations. Theoretically,
studying the geodesic motion of a photon may provide a
clear picture of geometrical properties for the neighborhood
of a rotating blackhole [36].Onemay construct astrophysical
models exposed to observations by describing the geodesic
motion [21]. Actually, the black hole shadow could be
investigated by analyzing the null geodesics around the
rotating black hole.
The black hole shadow could be used to measure

physical parameters (mass, charge, angular momentum,
inclination angle, structure of the accretion disk). All
parameters may include the effects of the black hole
surrounded with matter fields or those in modified gravity
theories. For this reason, the shadow cast has been exten-
sively investigated in gravity theory with/without matter
fields [21,23,37–56], other rotating objects [57–60], and
modified gravity theories [61–74].
Recently, two of us have obtained the rotating black

hole solution with an anisotropic matter [35] where the
anisotropic matter with parameters w and K may describe
both an extra U(1) field [62,75–78] and diverse dark
matters. It is shown that this black hole geometry can
affect the shadow when comparing with Kerr and Kerr-
Newman black holes [51]. We are also interested in
studying the shadow cast induced by the black hole with
an anisotropic matter as a subsequent study. For this
purpose, we will derive the Killing tensor and find the
separability structure to guarantee the integrability of
the geodesic motions. Also, we investigate an effective
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potential for unstable circular photon orbits to show that
one side of the black hole is brighter than the other side. As
additional shadow observables, we analyze the approxi-
mate shadow radius and distortion parameter. We hope that
all may have a complementary relationship with one
another, to describe the nature.
In this work, we wish to focus on studying the shadow

cast induced by the black hole with an anisotropic matter.
The paper is organized as follows. In Sec. II, we explore
the symmetry of the rotating black hole geometry [79].
A Killing tensor representing the hidden symmetry is con-
structed and the separability structure exists. In Sec. III, we
derive the geodesic equation by adopting the Hamilton-
Jacobi formalism. To get the information on the boundary
of the shadow cast, we study the radial null geodesic
motion by making use of the effective potential. In Sec. IV,
we employ a backward ray-tracing algorithm [80–82] to
analyze the shadow cast induced by a rotating black hole
with an anisotropic matter field described by two param-
eters w and K. We present the apparent shape of shadow
and observables characterizing the shadow. We observe that
the anisotropic matter field with w influences on the
observables. Finally, we summarize our results and discuss
on relevant matters in Sec. V.

II. SYMMETRY AND SEPARABILITY
STRUCTURE

First of all, we consider the action

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
ðR − FμνFμνÞ þ Lam

�
þ Ib; ð1Þ

where Lam describes effective anisotropic matter fields and
Ib is the boundary term [83,84]. The rotating black hole
solution with an anisotropic matter is obtained by applying
the Newman-Janis algorithm to a static spherically sym-
metric solution as [35]

ds2 ¼ −Fðr; θÞdt2 − 2½1 − Fðr; θÞ�a sin2θdtdϕ

þ Σ
ρ2

sin2θdϕ2 þ ρ2

△
dr2 þ ρ2dθ2; ð2Þ

where

Fðr; θÞ ¼ 1 −
2Mr −Q2 þ Kr2ð1−wÞ

ρ2
;

a ¼ J
M

; ρ2 ¼ r2 þ a2cos2θ;

△ ¼ r2 þ a2 þQ2 − 2Mr − Kr2ð1−wÞ;

Σ ¼ ρ2ðr2 þ a2Þ þ ð2Mr −Q2 þ Kr2ð1−wÞÞa2sin2θ:
ð3Þ

It is important to point out that the parameters K and w
control the density and anisotropy of the fluid matter

surrounding the black hole. The K ¼ 0 case leads to the
Kerr-Newman black hole and K ¼ 0 with Q ¼ 0 corre-
sponds to the Kerr black hole, regarding as two reference
black holes. This includes the rotating version of the
Reissner-Nordström black hole with the constant scalar
hair [77] characterized by K < 0, w ¼ 1, and a ¼ 0. The
metric is asymptotically flat for w > 0 only. For
0 ≤ w ≤ 1=2, the energy density is not localized suffi-
ciently such that the total energy diverges [35]. Thus, we
consider the case with w > 1=2 to obtain the geometry
including a finite total energy with asymptotically flat
spacetime. We allow K to take either sign for representing
diverse matters surrounding the rotating black hole.
At this stage, we mention that the event (outer) horizon

(rH) for the spacetime (2) is located at the largest radius as a
solution to △ ¼ 0, leading to the event horizon for Kerr-
Newman black hole with K ¼ 0.
We are interested particularly in the ergosphere for later

use in Sec. III. The ergosphere is defined as a region
between surface of static limit (infinite redshift) and outer
horizon [85]. On the surface, the timelike Killing vector
becomes null-like as gtt ¼ 0. Let us consider a photon
emitted in the ϕ direction at radius r without r and θ
momentum components. From the condition of the null
trajectory, one obtains two angular velocities

ω� ¼ −gtϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
△ sin2 θ

p

gϕϕ
; ð4Þ

where △ sin2 θ ¼ g2tϕ − gttgϕϕ. Outside the event horizon
(△ > 0), two roots ω� are alive, while there are no real
roots inside the horizon. At the static limit surface satisfy-

ing gtt ¼ 0 and gtϕ < 0, one finds ωþ ¼ − 2gtϕ
gϕϕ

and ω− ¼ 0.

Inside the ergosphere (gtt > 0), one has ω− > 0. Therefore,
all particles are necessarily corotating with the rotating
black hole. On the event horizon, the two angular velocities
appear the same as ω� ¼ Ωjr¼rH ¼ a

r2Hþa2.

Now, we examine the symmetry and separability struc-
ture of the rotating black hole geometry. There are explicit
and hidden symmetries related to Killing vectors and
Killing tensors, respectively [79,86]. Killing vectors cor-
respond to the generators of isometries for spacetime
geometry. The geometry of (2) implying a stationary
axisymmetry, admits two commuting Killing vectors ξμðtÞ ¼
δμt and ξμðϕÞ ¼ δμϕ [87]. On the other hand, Killing tensors

correspond to a symmetric generalization of Killing vec-
tors. A hidden symmetry represents the geometric structure
of spacetime encoded in Killing tensors. This implies that
an additional integral of the motion is quadratic in
momentum as Kμνpμpν [88]. It is known that one of the
Killing tensors is the metric tensor, having the structure
of gμνpμpν ¼ −m2.
We consider the null tetrad [89,90] to construct the

Killing tensor. The null tetrad consists of two real null

BUM-HOON LEE, WONWOO LEE, and YUN SOO MYUNG PHYS. REV. D 103, 064026 (2021)

064026-2



vectors lμ and nμ and two complex null vectors mμ and m̄μ.
They satisfy lμnμ ¼ −1, mμm̄μ ¼ 1, and lμmμ ¼ lμm̄μ ¼
nμmμ ¼ nμm̄μ ¼ 0. For our purpose, we introduce an
inverse metric for (2)

gμν ¼

0
BBBBBB@

− Σ
△ρ2

0 0 − að1−FÞ
△

0 △

ρ2
0 0

0 0 1
ρ2

0

− að1−FÞ
△

0 0 △−a2sin2θ
△ρ2sin2θ

1
CCCCCCA
:

Then, gμν can be expressed in terms of the null tetrad as

gμν ¼ −lμnν − nμlν þmμm̄ν þ m̄μmν; ð5Þ

where the null vectors are given by

lμ ¼ 1

△
½ðr2 þ a2Þδμ0 þ△δμ1 þ aδμ3�;

nμ ¼ 1

2ρ2
½ðr2 þ a2Þδμ0 −△δμ1 þ aδμ3�;

mμ ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ

�
ia sin θδμ0 þ δμ2 þ

i
sin θ

δμ3

�
;

m̄μ ¼ 1ffiffiffi
2

p ðr − ia cos θÞ

�
−ia sin θδμ0 þ δμ2 −

i
sin θ

δμ3

�
: ð6Þ

Importantly, a quadratic Killing tensor is constructed by
making use of these null vectors [88,91]

Kμν ¼ 2ρ2mðμm̄νÞ − a2 cos2 θgμν

¼ a2 sin2 θδμ0δ
ν
0 þ 2aδðμ0 δ

νÞ
3 þ δμ3δ

ν
3

sin2 θ
þ δμ2δ

ν
2 − a2 cos2 θgμν; ð7Þ

which satisfies ∇ðαKμνÞ ¼ 0 and Kμν ¼ KðμνÞ.
Let us consider the separability structure [92,93] which

describes the separation of variables in the Hamilton-
Jacobi formalism. We are aware that there exist two
Killing vectors (ξμðtÞ and ξμðϕÞ) satisfying ∇ðαξμÞ ¼ 0, and

two Killing tensors (Kμν and gμν). The metric tensor also
satisfies ∇ðαgμνÞ ¼ 0 and gμν ¼ gðμνÞ. One can show that
two Killing tensors mutually commute under the Schouten-
Nijenhuis bracket

½Kμν; gμν�SN ¼ 2Kαðμ∇αgνβÞ − 2gαðμ∇αKνβÞ ¼ 0; ð8Þ

which is regarded as an alternative form of the Killing
tensor equation. Also, the Killing tensors and vectors
satisfy

½ξμðtÞ;Kμν�SN ¼ LξμðtÞ
Kμν ¼ ½ξμðϕÞ;Kμν�SN ¼ ½ξμðtÞ; gμν�SN

¼ ½ξμðϕÞ; gμν�SN ¼ ½ξμðtÞ; ξμðϕÞ�SN ¼ 0: ð9Þ

Therefore, we prove that the rotating black hole geometry
admits the separability structure. Its existence guarantees a
complete integrability of the geodesic motions.

III. GEODESIC MOTIONS

In this section, we investigate the geodesic motions
[94–97]. For the static spherically symmetric black hole,
one can construct four integrals of geodesic motion: test
particle’s energy, projection of angular momentum to an
arbitrary axis, square of total angular momentum, and
normalization of the four-velocity. These are conserved
along the geodesics. Therefore, the geodesic equation
becomes completely separable. For an axisymmetric rotat-
ing black hole, the total angular momentum is not con-
served. However, determining the orbit of a test particle is a
necessary step to find four integrals of the geodesic motion.
In this direction, Carter has obtained the fourth constant by
performing the separation of variables in the Hamilton-
Jacobi formalism [98]. Here, we wish to construct four
independent integrals of the geodesic motion by making
use of two Killing vectors and two Killing tensors.
The four integrals of the motion are given by two

conserved quantities related to Killing vectors

ξμðtÞpμ ¼ −E ¼ −Fðr; θÞ_t − ½1 − Fðr; θÞ�a sin2 θ _ϕ;

ξμðϕÞpμ ¼ Lz ¼ −½1 − Fðr; θÞ�a sin2 θ_tþ Σ sin2 θ
ρ2

_ϕ; ð10Þ

and two conserved quantities related to Killing tensors

gμνpμpν ¼ −m2;

K≡Kμνpμpν ¼ p2
θ þ ðLz − aE sin2 θÞ2= sin2 θ

þ a2m2 cos2 θ: ð11Þ

Here, we investigate the geodesic motion around the rotating
black hole by following the procedure of the separation of
variables in the Hamilton-Jacobi formalism [98]. In this case,
Carter’s fourth constant of the motion is given by

Q ¼ p2
θ þ cos2 θ½a2ðm2 − E2Þ þ L2

z= sin2 θ�; ð12Þ

which represents the separation constant for the r and θ-
directions of null geodesics. The constant of the motion is
given by

Qþ ðLz − aEÞ2 ¼ p2
θ þ ðLz − aE sin2 θÞ2= sin2 θ

þ a2m2 cos2 θ; ð13Þ
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indicating that Q may be negative but K is always non-
negative. Equation (13) has the same form as Eq. (11)
implying K≡Qþ ðLz − aEÞ2.
We notice that the geodesic motion of a neutral particle is

described by the Hamilton-Jacobi equation. The geodesic
equations as four first-order differential equations are found
to be

ρ2pt ≡ ρ2
dt
dλ

¼ −aðaE sin2 θ − LzÞ þ
ðr2 þ a2ÞPðrÞ

△
;

ð14Þ

ρ2pϕ ≡ ρ2
dϕ
dλ

¼ −
�
aE −

Lz

sin2 θ

�
þ aPðrÞ

△
; ð15Þ

ρ2pr ≡ ρ2
dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
¼ △pr; ð16Þ

ρ2pθ ≡ ρ2
dθ
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
: ð17Þ

Hereþð−Þ in Eqs. (16) and (17) correspond to the outgoing
(ingoing) geodesics and

ΘðθÞ ¼ Q − cos2 θ½a2ðm2 − E2Þ þ L2
z= sin2 θ�; ð18Þ

RðrÞ ¼ P2ðrÞ −△½m2r2 þ ðLz − aEÞ2 þQ�; ð19Þ

PðrÞ ¼ ðr2 þ a2ÞE − aLz: ð20Þ

The geodesic motion of a test particle is not confined in a
plane, implying that two effective potentials for the radial
and latitudinal motions should be examined separately.
Now we are in a position to study the null geodesic

motion with m ¼ 0. It is noted that the angular size of a
light source is much bigger than the angular size of the
black hole. They are two important null geodesic motions
named as principal congruences and unstable circular
orbits. We focus on unstable circular orbits and then,
mention the principal congruences briefly. The radial
equation for null geodesic is given by

1

2

�
dr
dλ

�
2

þ VeffðrÞ ¼ 0; ð21Þ

where the effective potential in the equatorial plane is
given by

VeffðrÞ ¼ −
ððr2 þ a2Þ2 −△a2ÞE2 − 2aLzðr2 þ a2 −△ÞEþ ða2 −△ÞL2

z

2r4
: ð22Þ

Here, we note that Carter’s constant of the motion ðQÞ disappears. The local maximum in the effective potentials determines
the radii of unstable circular photon orbits. For K ¼ 0, this reduces to the Kerr-Newman potential

VKN
eff ðrÞ ¼ −

½r2ðr2 þ a2Þ þ a2ð2Mr −Q2Þ�E2 − 2aLzð2Mr −Q2ÞEþ ð−r2 þ 2Mr −Q2ÞL2
z

2r4
: ð23Þ

For unstable circular orbits, we have to take into account
Veff ¼ 0 and dVeff

dr ¼ 0. Solving these, the location of a peak
is determined as

ruco ¼
Lz − aE
Lz þ aE

�
3M −

2Q2

ruco
þ Kð1þ wÞrð1−2wÞuco

�
: ð24Þ

For K ¼ 0, this reduces to the Kerr-Newman case. For
photon circular orbits around the extremal Kerr black hole
with a ¼ M, one has either ruco− ¼ M (corotating) or
rucoþ ¼ 4M (counterrotating case).
Carter’s constant determines the test particle’s motion in

the θ-direction [99,100]. A physically arrowed region is
defined by ΘðθÞ ≥ 0. The orbits cross the equatorial plane
repeatedly for Q > 0, while they remain in the equatorial
plane for Q ¼ 0. We have the condition of Q < 0 for the
principal null congruences.

We introduce the dimensionless quantities (ā ¼ a=M,
Q̄ ¼ Q=M, K̄ ¼ K=M2w, r̄ ¼ r=M). Hereafter, we will
remove the bar for simplicity.
Figure 1(a) shows the effective potential for both

corotating and counterrotating cases in the equatorial plane.
The left concave curves correspond to the former case,
while the right concave curves to the latter case. As
reference curves, black curves correspond to the Kerr
one with a ¼ 0.9, blue dashed curves to Kerr-Newman
one [101] with Q ¼ 0.25. For our work, we note that red
curves denote the case with a ¼ 0.9, Q ¼ 0 w ¼ 3=2, K ¼
−0.13 while cyan curves represent the case with a ¼ 0.9,
Q ¼ 0.25, w ¼ 3=2, K ¼ −0.13.
Figure 1(b) shows the locations of unstable circular

orbits. The black dotted (dashed) circle indicates the
location of outer horizon (static limit). The red circle
denotes the unstable circle orbit for the corotating case,
while the blue circle represents the counter-rotating case.
We note that the unstable circle orbit for the corotating case
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is located within the ergosphere, implying that the angular
velocity of null rays for the counter-rotating case could
change the sign in the ergosphere and they move along
unstable circle orbit. Hence, the number of photons for
corotating case is larger than those for counterrotating case
when reaching the distant observer.
Now, let us consider null geodesics along θ ¼ θc ¼

const plane. Considering that _r and _θ must be real on the
geodesics in Eqs. (16) and (17), one has RðrÞ ≥ 0 and
ΘðθÞ ≥ 0 in Eq. (18). ΘðθÞ is rewritten as

ΘðθÞ ¼ Qþ ða2E2 þ L2
zÞ −

�
a2E2 sin2 θ þ L2

z

sin2 θ

�
: ð25Þ

For θ ¼ θc, one has

ΘðθÞjθ¼θc
¼ 0; ∂θΘðθÞjθ¼θc

¼ 0: ð26Þ

Equivalently, one finds

Lz

E
¼ asin2θc;

Q
E2

¼ −a2cos4θc: ð27Þ

If Eq. (27) is satisfied, the solution to the geodesic
equations provides the principal null geodesic. From
Eqs. (14), (15), and (16) with Eq. (27), we get

dt
dr

¼ � r2 þ a2

△
;

dϕ
dr

¼ � a
△
: ð28Þ

The outgoingðþÞ=ingoingð−Þ congruences correspond to
the two principal null congruences in Boyer-Lindquist
coordinates. We may refer Refs. [102–105] for discussion
on the Petrov-Pirani-Penrose classification.
For the Kerr-Newman case, (28) can be explicitly solved

to give

�t ¼ rþ r2þ þ a2

rþ − r−
ln jr − rþj −

r2− þ a2

rþ − r−
ln jr − r−j þ const:

ð29Þ

and

�ϕ ¼ a
rþ − r−

ln

����r − rþ
r − r−

����þ const: ð30Þ

Finally, we mention that the ingoing principal null con-
gruence crosses the event horizon when using Kerr
(Edding-Finkelstein) coordinates.

IV. SHADOW CAST

The black hole shadow corresponds to the gravita-
tional capture cross-section of photons. We adopt the
backward ray-tracing algorithm to obtain a connection
between impact parameters and celestial coordinates
[82,106]. Finally, we wish to show the shadow cast induced
by the rotating black hole with an anisotropic matter field.

A. Backward ray-tracing algorithm

The ray-tracing algorithm is designed for generating an
image by tracing the path of light scattered off the surface
of an object. There are two algorithms named forward and
backward ones. The former corresponds to the method in
which light rays emitted from a source are scattered off an
object, enter an optical device, and finally generate the
image. The latter denotes the opposite travel direction of
light rays. We may trace individual light rays backward in
time from an image plane.
We set up the image plane being perpendicular to the

observer’s line of sight to describe the black hole shadow
in the celestial sphere. It is assumed that the plane (or
observer) is located at an infinitely large distance from the
light source with an inclination angle. The light source is

0 1 2 3 4 5
0.4

0.3

0.2

0.1

0.0

0.1

r

Veff
2

4 2 0 2 4

4

2

0

2

4

r

r

(a) (b)

FIG. 1. Effective potentials and locations of unstable circular orbits in the equatorial plane.
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considered as both the photons passing near a black hole
and emitting from an accretion disk from the observ-
er’s view.
We should choose a proper set of tetrad basis vectors (eμâ)

to obtain the locally measured quantities by projecting
photon’s momentum pμ. This is related to choosing the
locally nonrotating frame or the reference frame of zero
angular momentum observer (ZAMO) [107,108]. We note
that the ZAMO frame is a local inertial frame. An observer
at rest in the ZAMO frame acquires an angular velocity as
an effect of frame-dragging caused by gravitational field of
a rotating black hole. A useful set of the tetrad is given by

eμt̂ ¼
�
1

ρ

ffiffiffiffi
Σ
△

r
; 0; 0;

ð1 − FÞaρffiffiffiffiffiffiffi
Σ△

p
�
; eμr̂ ¼

ffiffiffiffi
△

p

ρ
ð0; 1; 0; 0Þ;

eμ
θ̂
¼ 1

ρ
ð0; 0; 1; 0Þ; eμ

ϕ̂
¼ ρffiffiffi

Σ
p

sin θ
ð0; 0; 0; 1Þ: ð31Þ

Then, the locally measured energy and the momentum for
photon are given by

pt̂ ¼ 1

ρ

ffiffiffiffi
Σ
△

r
E −

ð1 − FÞaρffiffiffiffiffiffiffi
Σ△

p Lz; pr̂ ¼ ρffiffiffiffi
△

p pr;

pθ̂ ¼ ρpθ; pϕ̂ ¼ ρffiffiffi
Σ

p
sin θ

Lz; ð32Þ

with pt ¼ −E and pϕ ¼ Lz. For a static observer at spatial
infinity, the momentum of photon turns out to be (w > 1=2)

pt̂ → E; pr̂ → pr; pθ̂ → rpθ; pϕ̂ →
Lz

r sin θ
:

ð33Þ

B. Impact parameters

Wewish to construct the Cartesian-like coordinates in the
image plane to show the apparent shape of a black hole
shadow composed of individual photons. Actually, these are
the observation angles of α and β [82,106]. We expect that
these are regarded as coordinate axes in the plane at spatial
infinity. In order to get at these, we introduce two impact
parameters defined as ᾱ≡ roα and β̄≡ roβ, in which ro is
computed at the position of the observer. These impact
parameters correspond to the coordinate axes when taking
ro → ∞. Hereafter, we will remove the bar for simplicity.
We note that RðrÞ and ΘðθÞ must be non-negative. For

the photon motion, we have

RðrÞ
E2

¼ ½ðr2 þ a2Þ − aξ�2 −△½ηþ ðξ − aÞ2� ≥ 0; ð34Þ

ΘðθÞ
E2

¼ ηþ ðξ − aÞ2 −
�

ξ

sin θ
− a sin θ

�
2

≥ 0; ð35Þ

with ξ ¼ Lz=E and η ¼ Q=E2.

In general rotating spacetime, the unstable circular
photon orbits satisfy Rjr¼ruco ¼ 0, R0jr¼ruco ¼ 0, and
R00jr¼ruco > 0ðV 00

eff < 0Þ. Here the prime denotes differen-
tiation with respect to r and r ¼ ruco denotes the radius for
an unstable photon orbit. These conditions imply

½ðr2uco þ a2Þ − aξ�2 −△ðrucoÞ½ηþ ðξ − aÞ2� ¼ 0; ð36Þ

4ruco½ðr2ucoþa2Þ−aξ�−△0ðrucoÞ½ηþðξ−aÞ2� ¼ 0: ð37Þ

After eliminating η from (36) and (37) and solving for ξ,
we obtain

ξ¼ r2ucoþa2

a
; ξ¼ ðr2ucoþa2Þ△0ðrucoÞ− 4ruco△ðrucoÞ

a△0ðrucoÞ
:

ð38Þ

One of these is necessary for describing a black hole
shadow. The first is not suitable for describing the black
hole shadow because it represents principal null congruen-
ces. Taking the second solution, we solve for η from
Eq. (37) to give

η ¼ r2uco½16a2△uco − ðruco△0
uco − 4△ucoÞ2�

a2△02
uco

: ð39Þ

We note that ξ and η of unstable photon orbits describe the
contour of a shadow. Explicitly, the unstable photon orbits
are related to the boundary of a shadow. The apparent shape
of a shadow is obtained by making use of the coordinates α
and β lying in the celestial plane perpendicular to the line
joining the observer and the center of spacetime geometry.
The coordinates α and β are found to be [21,82,109]

α ¼ lim
ro→∞

�
−r2o sin θo

dϕ
dr

����
ðro;θoÞ

�
¼ −

ξ

sin θo
;

β ¼ lim
ro→∞

�
r2o

dθ
dr

����
ðro;θoÞ

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2cos2θo − ξ2cot2θo

q
;

ð40Þ
where ðro; θoÞ denote the observer’s position. A line
joining the origin with the observer is normal to the αβ-
plane. Approximately, it is an angular radius of shadow in
two orthonormal directions. From Eq. (40), one can obtain

ðα − a sin θoÞ2 þ β2 ¼ ðaþ ξÞ2 þ η; ð41Þ
which represents the rim of the black hole reconstructed
from the light rays in the unstable orbit. If θo ¼ 0, the
shadow appears spherical.
For simplicity, requiring that the observer be located in

the equatorial plane ðθo ¼ π=2Þ, α and β are directly related
to ξ and η as

α ¼ −ξ; β ¼ � ffiffiffi
η

p
: ð42Þ
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C. Shadow observables

Wemay use four shadow observables to extract the infor-
mation on parameters of a black hole [38,42,110–112].
These include the approximate shadow radius Rs, distortion
parameter δs, area of the shadow As, and oblateness Dos.
We could determine the mass, rotation (spin), and incli-
nation angle. Four observables take the forms

Rs ¼
ðαr − αtÞ2 þ β2t

2jαr − αtj
; δs ¼

Dcs

Rs
¼ jα̃l − αlj

Rs
;

As ¼ 2

Z
rmax

rmin

βα0dr; Dos ¼
αr − αl
βt − βb

: ð43Þ

Making using of Mathematica program based on Eqs. (40)
and (43), we obtain the following figures.
Figure 2 represents schematic illustrations of a black

hole shadow. The rotation direction with a > 0 is assumed
to be counterclockwise when observing from the positive
β-axis. The closed asymmetric circles represent the

gravitational capture cross section of photons. The asym-
metry occurs because the locations of unstable orbits for
corotating and counterrotating cases are different [See
Fig. 1(a)]. As we mentioned in Sec. III, the number of
photons passing through the left side of the black hole
rotation axis is different from that through right side.
Consequently, it is found that the left side of the black
hole is brighter than the right side.
In Fig. 2(a), Dcs denotes the difference between the left

endpoints of the shadow and the reference circle. The
subscript t, r, l indicate, respectively, the coordinates
of the shadow vertices at the top, right, and left endpoint,
while α̃l is the coordinate for the left edge of referenced
circle. Rs is the approximate shadow radius of the circle
passing through three points, αt, αb, and αr. ðαr; αlÞ and
ðβt; βbÞ represent the horizontal and vertical diameters of
the shadow, respectively.
Figure 2(b) shows the shadow of Kerr black hole

with increasing a. The grey dotted circle indicates the
shadow induced by Schwarzschild black hole with a ¼ 0.

(a) (b)

(c) (d)

FIG. 2. Schematic illustration for observables of a black hole shadow.
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The black dot-dashed circle shows the shadow induced by
Kerr black hole with a ¼ 0.3, the dashed circle with
a ¼ 0.7, the solid circle with a ¼ 0.9, respectively. The
circle’s vertical-axis asymmetry increases and shifts to the
right as a increases.
Figure 2(c) implies the shadow of Kerr black hole with

increasing θ with a ¼ 0.9. The blue dot-dashed circle
shows the shadow by Kerr black hole with θ ¼ 17.14,
the dashed circle with θ ¼ π=4, the solid circle with
θ ¼ π=2, respectively. The circle’s vertical-axis asymmetry
increases and shifts to the right, as θ increases.
Figure 2(d) indicates the shadow of Kerr-Newman black

hole with increasingQ. The red dot-dashed circle shows the
shadow induced by Kerr-Newman black hole with a ¼ 0.8
and Q ¼ 0 (Kerr black hole), the dashed circle with
Q ¼ 0.4, the solid circle with Q ¼ 0.5, respectively. As
Q increases, the circle’s vertical-axis asymmetry increases
and shifts to the right, and the area decreases.
From now on, we consider the case that the observer is

located in the equatorial plane ðθo ¼ π=2Þ.

Figure 3 represents the shadow casts by rotating black
holes with selected parameters. Figure 3(a) and (b) are
shadow casts with Q ¼ 0, w ¼ 3=4 for (a) and w ¼ 6=4
for (b), while (c) and (d) are those with Q ¼ 0.15, w ¼
3=4 for (c) and w ¼ 6=4 for (d), respectively. In Fig. 3(a)
and (b), the black circles show shadow casts by Kerr
black hole, the red circles show those with K ¼ −0.05,
the green circles show those with K ¼ −0.07, and the
purple circle shows those with K ¼ 0.05. In Fig. 3(c) and
(d), the blue circles show shadow casts induced by Kerr-
Newman black hole, the magenta circles show those with
K ¼ −0.05, the cyan circles show those with K ¼ −0.07,
and the purple circle shows those with K ¼ 0.05. The
circle’s vertical-axis asymmetry increases and it shifts to
the right, and the area increases as K increases. The
difference among the deformed circles decreases as w
increases. Because the positive energy condition, Q2 þ
r2wo r2ð1−wÞ ≥ 0 as shown in [35], for the cases with
K ¼ 0.05, we focus on figuring out the shadow cast
depending on the negative K.

(a) (b)

(c) (d)

FIG. 3. Shadow casts induced by rotating black holes with anisotropic matter. (a) and (b) Kerr black hole withQ ¼ 0. (c) and (d) Kerr-
Newman black hole with Q ¼ 0.15.
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Figure 4 represents the approximate shadow radius Rs
with respect to K. Figure 4(a) is the case with a ¼ 0.95M
andQ ¼ 0. The black dots denote the radius with w ¼ 3=4,
while the red dots represent the radius with w ¼ 6=4.
Figure 4(b) is the case with a ¼ 0.95M and Q ¼ 0.15M.
The blue dots correspond to the radius with w ¼ 3=4, while
the magenta dots correspond to the radius with w ¼ 6=4.
The graphs show that the approximate shadow radius Rs
increases as K increases.
Figure 5 represents the distortion parameter δs versus K.

Figure 5(a) is the case with a ¼ 0.95M and Q ¼ 0. The
black dots correspond to the distortion parameter with

w ¼ 3=4, while the red dots correspond to the distortion
parameter with w ¼ 6=4. Figure 5(b) is the case with a ¼
0.95M and Q ¼ 0.15M. The blue dots represent the
distortion parameter with w ¼ 3=4, while the magenta dots
denote the distortion parameter with w ¼ 6=4. These show
that the distortion parameter δs decreases as K increases.
Figure 6 presents the area AS with respect to K.

Figure 6(a) is the case with a ¼ 0.95M and Q ¼ 0. The
black dots correspond to the area with w ¼ 3=4, while
the red dots denote the area with w ¼ 6=4. Figure 6(b) is
the case with a ¼ 0.95M and Q ¼ 0.15M. The blue dots
correspond to the area with w ¼ 3=4, while the magenta

(a) (b)

FIG. 4. Approximate shadow radius Rs as function of K.

(a) (b)

FIG. 5. Distortion parameter δs as function of K.

(a) (b)

FIG. 6. Area As as function of K.
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dots indicate the area with w ¼ 6=4. The graphs show that
the area of the shadow As increases as K increases.
Figure 7 indicates the oblateness with respect to K.

Figure 7(a) is the case with a ¼ 0.95M and Q ¼ 0. The
black dots correspond to the oblateness with w ¼ 3=4,
while the red dots correspond to the oblateness with
w ¼ 6=4. Figure 7(b) is the case with a ¼ 0.95M and
Q ¼ 0.15M. The blue dots correspond to the oblateness
with w ¼ 3=4, while the magenta dots correspond to the
oblateness with w ¼ 6=4. The graphs show that the
oblateness Dos decreases when K increases.

V. SUMMARY AND DISCUSSIONS

We have investigated the shadow cast induced by a
rotating black hole with an anisotropic matter field. For this
study, we assumed that the matter field interacts with light
rays through gravitational interaction. We first explored the
symmetry of the rotating black hole geometry and its
separability structure. We have found the Killing tensor
explicitly, implying the separability structure and integra-
bility of the geodesic motions.
The geodesic equations are derived by adopting the

Hamilton-Jacobi formalism. We have analyzed the radial
null geodesic motion for both corotating and counter-
rotating cases. The photon orbits for co-rotating cases
are located inside the ergosphere, implying that some
counter-rotating photons can change their rotating direc-
tion. Thus, it is found that one side of the black hole is
brighter than the other side. We used the backward ray-
tracing algorithm to get the relation between two impact
parameters and the coordinates axes in spatial infinity. The
size of the black hole shadow depends on its mass mainly,
while the shape depends both rotation and inclination
angle. In this work, we have taken θ ¼ π=2, large values
of Q and K to show the difference among parameters
clearly. Also, we selected specific values w. We expect that
densities for Q and K are very smaller than those for mass
and rotation for a real black hole.
We have presented the shadow cast induced by rotating

black holes in Fig. 3. The left side corresponds to the
corotating direction between the light rays and the black

hole, while the right side to the counterrotating one
between the light rays and the black hole. It is observed
that the left side becomes flattened when K decreases. We
have investigated four observables to see their dependence
on parameters of a black hole. The approximate shadow
radius Rs increases asK increases. The distortion parameter
δs decreases as K increases and w has the lower value for
both cases. The area of the shadow As increases as K
increases. Lastly, the oblateness Dos decreases as K
increases. If we require the positive energy condition
satisfying Q2 þ r2wo r2ð1−wÞ ≥ 0 as shown in [35], there will
be a small room for the positive value of K. Therefore, we
mainly analyzed four observables with negative values of
K, except for Fig. 3 to get the deformation behavior of the
shadow cast. Our results suggest that the observed black
hole mass might be either underestimated or overestimated
depending on the sign of the matter field (K), even though
the difference is very small.
According to [18], they measured emission ring diameter

d ¼ 42� 3 μas, angular size 11þ0.5
−0.3 in units of mass, and

observed inclination angle θo ≈ 17° [18,113] for M87�’s
shadow. It suggests that the supermassive black hole
(M87�) is lying at a small angle in the direction of the
observer’s line of sight. Thus, the angular size seems to be
similar to that for Schwarzschild black hole. However, one
knows that M87� rotates with an estimated rotation a ¼
0.90� 0.05 [114]. It is worth to note that a significant
difference between position angles of brightness maximum
measured in 2013 and 2017 was found in [115]. On the
other hand, there have been attempted to make an image of
SgrA� in the Milky Way [16,17,116] in the radio spec-
trum through very-long-baseline interferometry (VLBI)
experiments [25,117]. They estimated the emission ring
diameter for the source as d ∼ 50 μas [16,17,118] and the
inclination angle θo > 30° [119,120]. It is interesting to
note that SgrA� has a larger inclination angle than M87�.
Hence, one expects that its shadow cast will show an
asymmetric brighter side than M87� and be detected with
new-generation instruments.
Two research directions for the black hole shadow are

known as theoretical and observational approaches. In this
paper, we have focused on the theoretical aspect in light of

(a) (b)

FIG. 7. Oblateness Dos as function of K.
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the observation. At this stage, it is not easy to determine the
parameters of the rotating black hole exactly through the
shadow image. However, we hope that both the upgraded
EHT and the BlackHoleCam project will detect the shadow
image with a much higher resolution in the near future.
Finally, we did not consider the effect of an accretion

disk at all. For this, we should construct the accretion disk
[121–124] in the geometry of the rotating black hole with
an anisotropic matter field. This issue will be considered as
an interesting subject and thus, we remain it for a future
work.
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