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We numerically investigate the validity of recent modifications of the Penrose inequality that include
angular momentum. Formulations expressed in terms of asymptotic mass and asymptotic angular
momentum are contradicted. We analyze numerical solutions describing polytropic stationary toroids
around spinning black holes.
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I. INTRODUCTION

The cosmic censorship hypothesis, originally formulated
by Roger Penrose more than half a century ago [1], can be
understood as a statement that classical general relativity is
self-contained when describing regions exterior to black
holes. Penrose has argued that the cosmic censorship
hypothesis cannot be true if a body collapsing to a black
hole fails to satisfy the inequality

MADM ≥
ffiffiffiffiffiffiffiffi
S
16π

r
; ð1Þ

where S is the area of the outermost apparent horizon that
surrounds the body andMADM is the asymptotic mass of the
spacetime [2]. (Herein and in what follows, we always
assume asymptotic flatness of a spacetime.) Failure to
satisfy Eq. (1) would imply the existence of a “naked
singularity” and a loss of predictability in a collapsing
system. There is probably no exaggeration in saying that
this idea has shaped the development of classical and
mathematical general relativity in the last five decades.
The Penrose inequality has been proven or checked

numerically in a number of special cases—conformally flat
systems with matter [3], Brill gravitational waves in Weyl
geometries [4], and various foliations of spherically sym-
metric systems [5,6]. Most remarkably, it was proven in the
important so-called Riemannian case, when the apparent
horizon coincides with a minimal surface [7–9]. There exist
scenarios for a general proof [10,11], but there are no easy
prospects for their implementation. For more information,
see specialized reviews, for instance Refs. [12,13].
Christodoulou introduced the concept of an irreducible

mass Mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=ð16πÞp

[14], where S is the area of the
event horizon. It appears that for the Kerr spacetime
endowed with the asymptotic mass MADM and the angular
momentum JADM, one has the relation M2

ADM ¼ M2
irrþ

J2ADM
4M2

irr
¼ S

16π þ
4πJ2ADM

S . An analog of this formula might be

used in order to define the quasilocal mass of a black hole
(assuming that the linear momentum of the black hole
vanishes) in terms of its area and quasilocal angular

momentum JBH: MBH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

irr þ J2BH
4M2

irr

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

16π þ
4πJ2BH

S

q
.

This concept of the quasilocal mass of a black hole is
commonly used in the literature.
There exist formulations of the Penrose inequality that

involve the asymptotic mass and quasilocal angular
momentum [13,15],

MADM ≥
�

S
16π

þ 4πJ2BH
S

�
1=2

; ð2Þ

here S and JBH are the area and quasilocal angular
momentum of the outermost apparent horizon. Anglada
[16] and Khuri [17] have proved other versions of Eq. (2)
under the assumption of axial symmetry,

MADM ≥
�

S
16π

þ J2BH
R̃2ðSÞ

�
1=2

; ð3Þ

where R̃ðSÞ is some linear measure of the boundary of the
black hole.
In what follows, we shall study numerically the validity

of Eq. (2) and related inequalities in a class of stationary
configurations consisting of a black hole and a torus. The
order is as follows: Section II contains a short description of
equations and relevant quantities. Section III gives a
concise summary of the numerical procedure. The main
results are reported in Sec. IV.We conclude the paper with a
summary.
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II. EQUATIONS

We assume a stationary metric of the form

ds2 ¼ −α2dt2 þ r2 sin2 θψ4ðdφþ βdtÞ2
þ ψ4e2qðdr2 þ r2dθ2Þ: ð4Þ

Here t is the time coordinate, and r, θ, φ are spherical
coordinates. In this paper, the gravitational constant G ¼ 1
and the speed of light c ¼ 1. We assume axial symmetry
and employ the stress-momentum tensor

Tαβ ¼ ρhuαuβ þ pgαβ;

where ρ is the baryonic rest-mass density, h is the specific
enthalpy, and p is the pressure. Metric functions α, ψ , q,
and β in Eq. (4) depend on r and θ only.
The forthcoming Einstein equations have been found in

Ref. [18] and checked by the authors of Refs. [19,20]; the
present formulation follows closely the description of
Refs. [19,20].
Below, Kij denotes the extrinsic curvature of the t ¼

const: hypersurface. The conformal extrinsic curvature K̂ij

is defined as K̂ij ¼ ψ2Kij. The only nonzero component β
of the shift vector is separated into two parts: β ¼ βK þ βT.
Here βT is a part of the shift vector related to the rotating
torus [18]. Functions βK and βT are determined as follows.
The nonzero components of K̂ij can be written in the form

K̂rφ ¼ HE sin2 θ
r2

þ ψ6

2α
r2 sin2 θ∂rβT;

K̂θφ ¼ HF sin θ
r

þ ψ6

2α
r2 sin2 θ∂θβT:

As in Ref. [18], we choose the functions HE and HF to be
expressed by the formulas obtained for the Kerr metric of
mass m and the spin parameter a, written in the form of
Eq. (4). In explicit terms, they read [21]

HE ¼ ma½ðr2K − a2ÞΣK þ 2r2Kðr2K þ a2Þ�
Σ2
K

;

HF ¼ −
2ma3rK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2K − 2mrK þ a2

p
cos θ sin2 θ

Σ2
K

;

where

rK ¼ r

�
1þm

r
þm2 − a2

4r2

�

and

ΣK ¼ r2K þ a2 cos2 θ:

It appears that for the Kerr metric, one has

K̂rφ ¼ HE sin2 θ
r2

and

K̂θφ ¼ HF sin θ
r

:

The function βK has to be computed from the relation [18]

∂βK
∂r ¼ 2HEα

r4ψ6
: ð5Þ

The function βT, with suitable boundary conditions (see
Sec. III), is found from the differential equation (6d) below.
In what follows, we apply the puncture method as

implemented in Ref. [18]. Let Φ ¼ αψ , and assume the
puncture at r ¼ 0. Define rs ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
, and

ψ ¼
�
1þ rs

r

�
eϕ; Φ ¼

�
1 −

rs
r

�
e−ϕB:

Then the surface r ¼ rs is an apparent horizon.
The Einstein equations read

�
∂rr þ

1

r
∂r þ

1

r2
∂θθ

�
q ¼ Sq; ð6aÞ

�
∂rr þ

2r
r2 − r2s

∂r þ
1

r2
∂θθ þ

cot θ
r2

∂θ

�
ϕ ¼ Sϕ; ð6bÞ

�
∂rr þ

3r2 þ r2s
rðr2 − r2s Þ

∂r þ
1

r2
∂θθ þ

2 cot θ
r2

∂θ

�
B ¼ SB; ð6cÞ

�
∂rr þ

4r2 − 8rsrþ 2r2s
rðr2 − r2s Þ

∂r þ
1

r2
∂θθ þ

3 cot θ
r2

∂θ

�
βT ¼ SβT ;

ð6dÞ

where the source terms Sϕ, SB, SβT , Sq are

Sq ¼ −8πe2q
�
ψ4p −

ρhu2φ
r2sin2θ

�
þ 3A2

ψ8

þ 2

�
r − rs

rðrþ rsÞ
∂r þ

cot θ
r2

∂θ

�
b

þ
�

8rs
r2 − r2s

þ 4∂rðb − ϕÞ
�
∂rϕ

þ 4

r2
∂θϕ∂θðb − ϕÞ; ð7aÞ
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Sϕ ¼ −2πe2qψ4

�
ρH − pþ ρhu2φ

ψ4r2sin2θ

�
−
A2

ψ8

− ∂rϕ∂rb −
1

r2
∂θϕ∂θb

−
1

2

�
r − rs

rðrþ rsÞ
∂rbþ cot θ

r2
∂θb

�
; ð7bÞ

SB ¼ 16πBe2qψ4p; ð7cÞ

SβT ¼
16παe2qJ̃
r2 sin2 θ

− 8∂rϕ∂rβT þ ∂rb∂rβT

− 8
∂θϕ∂θβT

r2
þ ∂θb∂θβT

r2
; ð7dÞ

and

A2 ¼ K̂2
rφ

r2sin2θ
þ K̂2

θφ

r4sin2θ
;

ρH ¼ ρhðαutÞ2 − p;

J̃ ¼ ρhαutuφ;

B ¼ eb:

In the rest of this paper, we will deal with polytropes
pðρÞ ¼ Kργ. Then, one has the specific enthalpy

hðρÞ ¼ 1þ γp
ðγ − 1Þρ :

The four-velocity ðuαÞ ¼ ðut; 0; 0; uφÞ is normalized,
gαβuαuβ ¼ −1. The coordinate angular velocity reads

Ω ¼ uφ

ut
: ð8Þ

We define the angular momentum per unit inertial mass
ρh [22]:

j≡ uφut: ð9Þ

It has been known since the early 1970s that general-
relativistic Euler equations are solvable under the condition
that j≡ jðΩÞ [23,24]. Within the fluid region, the Euler
equations ∇μTμν ¼ 0 can be integrated,

Z
jðΩÞdΩþ ln

�
h
ut

�
¼ C; ð10Þ

where C is a constant.
We shall use in this paper the rotation laws obtained in

Ref. [25]:

jðΩÞ≡ −
1

1 − 3δ

d
dΩ

ln ð1 − ðaΩÞ2

−κw1−δΩ1þδð1 − aΩÞ1−δÞ: ð11Þ

Here, JBH and a ¼ JBH=m are the angular momentum and
the spin parameter of the central black hole, respectively. δ
is a free parameter, and κ ¼ 1−3δ

1þδ . Let us remark that
Eq. (11) supplements former rotation recipes that have
been formulated in Refs. [26,27] and (in the case of the
Keplerian rotation around spinning black holes)
Refs. [19,20].
The Keplerian rotation corresponds to the parameters

δ ¼ −1=3 and κ ¼ 3.
The rotation curves—angular velocities as functions of

spatial coordinatesΩðr; θÞ—can be recovered from Eq. (9):

jðΩÞ ¼ V2

ðΩþ βÞð1 − V2Þ : ð12Þ

Here, the squared linear velocity is given by

V2 ¼ r2 sin2 θðΩþ βÞ2 ψ
4

α2
:

The central black hole is defined by the puncture method
[21]. The black hole is surrounded by a minimal two-
surface S (the horizon), embedded in a fixed hypersurface
of constant time, and located at r ¼ rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
=2,

where m is a mass parameter. Its area is denoted as S, and
its angular momentum JBH follows from the Komar
expression:

JBH ¼ 1

4

Z
π=2

0

r4ψ6

α
∂rβ sin3 θdθ: ð13Þ

We would like to point out that the angular momentum is
given rigidly on the event horizon S, in terms of data taken
from the Kerr solution and independently of the content of
mass in a torus, JBH ¼ ma [18]. The mass of the black hole
is then defined in terms of its area and the angular
momentum:

MBH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
16π

þ 4πJ2BH
S

r
: ð14Þ

Asymptotic (total) mass MADM and angular momentum
JADM can be defined as appropriate Arnowitt-Deser-Misner
charges, and they can be computed by means of corre-
sponding volume integrals [18]. Thus, we have
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MADM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
− 2

Z
∞

rs

ðr2 − r2s Þdr
Z

π=2

0

sin θdθSϕ;

JT ¼ 4π

Z
∞

rs

r2dr
Z

π=2

0

sin θdθραutψ6e2qhuφ;

JADM ¼ JBH þ JT: ð15Þ

Here, JT is the angular momentum deposited within the
torus. A circumferential radius corresponding to the
coordinate r ¼ const: on the symmetry plane θ ¼ π=2 is
given by

rCðrÞ ¼ rψ2ðr; θ ¼ π=2Þ: ð16Þ

One can define an alternative mass of the apparent horizon
in terms of rCðrÞ:

MC ≡ rCðrsÞ
2

: ð17Þ

In the Kerr spacetime, one has exactly MC ¼ MBH ¼ m. It
is known that in numerically obtained spacetimes with
gaseous toroids, the first equality holds with good accuracy,
albeit depending on spin [18–20]. The second equality is
true only approximately for relatively light disks, and it is
not true for heavy tori.

III. DESCRIPTION OF NUMERICS

The numerical method is based on Ref. [18], and it has
been presented in more detail in Ref. [20]. Here we use a
more general rotation law [Eq. (11)] and different linear
algebra routines—the PARDISO library [28] instead of
LAPACK [29]. In what follows, we briefly summarize the
main points.
The solutions are found iteratively. In each iteration, one

solves the Einstein equations (6) and (7a)–(7d), Eq. (5), and
twohydrodynamic equations, (10) and (12). Equations (6a)–
(6d), with their source terms in Eqs. (7a)–(7d), are solved
using a fixed-pointmethod (we use the PARDISO library [28])
with respect to the functionsϕ,B, βT, andq. The function βK
is computed by the integration of Eq. (5). Equations (10) and
(12) are used to calculate the specific enthalpy h and the
angular velocity Ω, respectively. Constants (C and w) that
appear in these two equations are computed by solving them
at boundary points ðr1; π=2Þ and ðr2; π=2Þ, using the
Newton-Raphson method. Here r1 and r2 are the values
of the inner and outer radii of the torus, respectively; they are
given a priori.
The free hydrodynamic data consist of the maximal

baryonic density ρmax and the polytropic index γ. We
assume from now on that γ ¼ 4=3. The baryonic density ρ
is calculated from the specific enthalpy h using the
polytropic formula

ρ ¼
�
h − 1

4K

� 1
1=3

:

This yields (in each iteration) the constant K as a function
of the maximal value of the specific enthalpy hmax and ρmax:

K ¼ hmax − 1

4ρ1=3max

:

We have assumed axial and equatorial symmetry and
the puncture method with the puncture at r ¼ rs≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
=2. We should add that the mass m and the spin

a [which appears also in Eq. (11)] are given a priori. Thus,
it suffices that the numerical grid covers the region rs ≤
r < ∞ and 0 ≤ θ ≤ π=2 with suitable boundary conditions
[18]. We have at the equator (θ ¼ π=2) the conditions
∂θϕ ¼ ∂θB ¼ ∂θβT ¼ ∂θq ¼ 0. The regularity conditions
along the axis (θ ¼ 0) read ∂θϕ ¼ ∂θB ¼ ∂θβT ¼ 0. It is
required that qðθ ¼ 0Þ ¼ 0; this is due to the local flatness
of the metric. The puncture formalism implies the boundary
conditions at the horizon r ¼ rs: ∂rϕ ¼ ∂rB ¼ ∂rβT ¼
∂rq ¼ 0 and ∂rrβT ¼ ∂rrrβT ¼ 0. These last two condi-
tions on βT follow from a careful analysis of Eq. (6d) that
yields stringent conditions at r ¼ rs [18].
At the outer boundary of the numerical domain, the

boundary conditions are obtained from the multipole
expansion and the conditions of asymptotic flatness.
Thus, we have for r → ∞

ϕ ∼
M1

2r
; B ∼ 1 −

B1

r2
;

βT ∼ −
2J1
r3

; q ∼
q1sin2θ

r2
: ð18Þ

Herein, the constants M1, B1, J1, and q1 are given by

M1 ¼ −2
Z

∞

rs

ðr2 − r2s Þdr
Z

π=2

0

sin θdθSϕ; ð19Þ

B1 ¼
2

π

Z
∞

rs

dr
ðr2 − r2s Þ2

r

Z
π=2

0

dθ sin2 θSB; ð20Þ

J1 ¼ 4π

Z
∞

rs

r2dr
Z

π=2

0

sin θdθραutψ6e2qhuφ; ð21Þ

q1 ¼
2

π

Z
∞

rs

drr3
Z

π=2

0

dθ cosð2θÞSq

−
4

π
r2s

Z
π=2

0

dθ cosð2θÞqðrs; θÞ: ð22Þ

Finally, we add that the Kerr solution emerges in our
method as a vacuum limit ρmax → 0.
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IV. THE PENROSE INEQUALITY IN STATIONARY
BLACK HOLE–TORUS SYSTEMS

In the rest of the paper, we always assume that Ω > 0
and the mass parameter m ¼ 1. Corotating disks have
a > 0, while counterrotating disks have negative spins:
a < 0. The disk’s boundaries are numerically defined by
the condition that the specific enthalpy is h ¼ 1. The results
of numerical calculations are provided in the forthcoming
Table I. We shall describe its content in more detail in the
second part of this section, when referring to new proposals
of Penrose-type inequalities. In the first part, we will refer
to canonical versions.

A. On inequalities (1) and (2)

The mass MBH of the apparent horizon is defined in
terms of the area and the quasilocal (Komar-type) angular
momentum; see Eq. (14). For such a choice, one has—as
discussed above—the relationMC ≈MBH. This is a kind of
virial relation; we shall treat its fullfilment as a test for the
self-consistency and correctness of our numerical descrip-
tion. Let us remark that there exists another—exact—virial
relation, discussed in Ref. [18], that can be used to check
the numerical self-consistency.
Our polytropic matter within a torus satisfies the dom-

inant energy condition. There is no analytic proof, but there
exists numerical evidence [18–20] that the asymptotic mass
MADM is not smaller than the quasilocal mass MBH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
16π þ

4πJ2BH
S

q
. Thus, Eq. (2) should hold:

MADM ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
16π

þ 4πJ2BH
S

r
: ð23Þ

Obviously, the original Penrose inequality [Eq. (1)] also
holds true.
The above statements of this subsection should be true

whenever there exist numerical solutions. The inspection of
Table I confirms this expectation.

B. On new proposals

Inequality (3) uses the size measure R̃ðSÞ of the apparent
horizon [16]. This quantity is difficult to calculate, but we
can use a bound that was shown in Ref. [16]—that R̃ðSÞ is
not larger than

ffiffiffiffiffi
10

p
MC—which in turn is approximated byffiffiffiffiffi

10
p

MBH. Thus, the necessary condition for the validity of
Eq. (3) reads

M2
ADM ≥

S
16π

þ J2BH
10M2

BH
: ð24Þ

Inequality (24) is valid in all our numerical examples
reported in the forthcoming Table I—compare relevant
values in the column denoted asMADM with suitable entries
in the last column denoted as I3. This does not mean,

however, that Eq. (3) is confirmed, since Eq. (24) con-
stitutes only the necessary condition.
The inequality

M2
BH ≥

S
16π

þ J2BH
4M2

BH
ð25Þ

follows directly from the definition of MBH, since
M2

BH ≥ S
16π. The equality occurs for a ¼ JBH=m ¼ 0.

Table I confirms this—compare relevant values in the
column denoted as MBH with suitable entries in the last
column denoted as I3.
The quasilocal inequalities (2) and (3) are awkward in a

sense, since they require the use of quasilocal measures of
the angular momentum. There exists a conserved quantity
related with Killing vectors, in stationary and axially
symmetric quantities, that gives rise to a distinguished
(Komar-type) quasilocal measure of the angular momen-
tum. We used this fact in Sec. II. Unfortunately, there is no
such quasilocal measure in general spacetimes. The ques-
tion arises whether one can replace JBH with its global
counterpart JADM—that is, whether

M2
ADM ≥

S
16π

þ 4πJ2ADM
S

; ð26Þ
or (in a weaker formulation)

M2
ADM ≥

S
16π

þ J2ADM
4M2

ADM
; ð27Þ

at least for stationary and asymptotically flat spacetimes
with compact material systems. This restriction to compact
material systems is necessary, since it is easy to envisage a
classical mechanical system, with an arbitrarily large
angular momentum, so that both inequalities (26) and
(27) are broken. In all examples considered below, the
circumferential radii of the outermost part of the tori are
smaller than 39 MADM.
Let us mention here the recent work of Kopiński and

Tafel [30], in which they consider spacetimes arising from a
class of perturbations of the spinless Schwarzschild geom-
etry. These perturbations carry an angular momentum that
yields the asymptotic value JADM. Kopiński and Tafel prove
that Eq. (27) is valid for such spacetimes.
When using Table I, in order to test the inequality (26),

one should compare entries of the column designated as
MADM with relevant terms in the column denoted as I1. One
can see that Eq. (26) is not valid for systems with heavy
toroids, irrespective of the spin of the central black holes—
see the cases H1–H15, L3MR, and L5M1–L5M5. Let us
remark that a similar conclusion can be drawn from Table II
of Ref. [31], but that numerical analysis has used a
perturbative approach, and therefore it is not convincing.
For lighter disks, the inequality (26) is valid for spins of the
black hole that are not too big, but it is broken if a is large
enough—see just a few examples corresponding to
a ¼ 0.9: L5, L10, L15, and L20.
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We have found only one counterexample to the inequal-
ity (27)—see the case L3MR and compare relevant
elements in the columns denoted as MADM and I2.

V. CONCLUSIONS

We numerically investigate the validity of various
versions of the Penrose inequality—in particular, those
that include angular momentum. This is done by analyzing

a stationary, axially symmetric system consisting of a black
hole and a rotating polytropic torus. The original version
formulated by Penrose [2] is always true. Formulations,
that bound the mass MADM by quasilocal quantities—the
area of the black hole S, its mass MBH, and angular
momentum JBH—are also satisfied in our numerical
solutions. We have found, however, counterexamples to
those versions of the inequality, that are expressed in terms
of the asymptotic angular momentum JADM.

TABLE I. Black hole–torus solutions. Subsequent columns contain (from the left to the right) the solution number, the rotation law
parameter δ, the black-hole spin parameter a, the inner radius of the torus r1, the outer radius of the torus r2, the total asymptotic mass
MADM, the black-hole mass MBH, the black-hole surface S, the toroid angular momentum JT, the total angular momentum JADM, and
variants of terms in various Penrose inequalities: I1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=ð16πÞ þ 4πJ2ADM=S

p
, I2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=ð16πÞ þ J2ADM=ð4M2

ADMÞ
p

,
I3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=ð16πÞ þ J2BH=ð4M2

BHÞ
p

. The solutions were obtained assuming m ¼ 1, κ ¼ ð1 − 3δÞ=ð1þ δÞ, and γ ¼ 4=3.

No. δ a r1 r2 MADM MBH S JT JADM I1 I2 I3

L1 −1=3 −0.9 6 41 1.100 1.001 36.19 0.5204 −0.3796 0.8775 0.8659 0.9604
L2 −1=3 −0.5 6 41 1.100 1.003 47.26 0.5008 8.431 × 10−4 0.9697 0.9697 1.001
L3 −1=3 0 6 41 1.100 1.005 50.79 0.4846 0.4846 1.034 1.029 1.005
L4 −1=3 0.5 6 41 1.100 1.003 47.23 0.4883 0.9883 1.095 1.068 1.001
L5 −1=3 0.9 6 41 1.100 1.000 36.17 0.4947 1.395 1.181 1.059. 0.9601
L6 −1=7 −0.9 6 41 1.100 1.001 36.21 0.4758 −0.4242 0.8848 0.8704 0.9605
L7 −1=7 −0.5 6 41 1.100 1.004 47.32 0.4528 −4.716 × 10−2 0.9705 0.9704 1.002
L8 −1=7 0 6 41 1.100 1.006 50.87 0.4326 0.4326 1.029 1.025 1.006
L9 −1=7 0.5 6 41 1.100 1.004 47.28 0.4331 0.9331 1.083 1.059 1.001
L10 −1=7 0.9 6 41 1.100 1.001 36.18 0.4371 1.337 1.158 1.0436 0.9602
L11 −1=10 −0.9 6 41 1.100 1.001 36.21 0.4676 −0.4324 0.8862 0.8712 0.9605
L12 −1=10 −0.5 6 41 1.100 1.004 47.32 0.4446 −5.543 × 10−2 0.9707 0.9706 1.002
L13 −1=10 0 6 41 1.100 1.006 50.87 0.4242 0.4242 1.028 1.024 1.006
L14 −1=10 0.5 6 41 1.100 1.004 47.28 0.4242 0.9242 1.081 1.057 1.001
L15 −1=10 0.9 6 41 1.100 1.001 36.18 0.4277 1.328 1.154 1.041 0.9602
L16 0 −0.9 6 41 1.100 1.001 36.21 0.4477 −0.4525 0.8897 0.8733 0.9605
L17 0 −0.5 6 41 1.100 1.004 47.32 0.4246 −7.535 × 10−2 0.9710 0.9709 1.002
L18 0 0 6 41 1.100 1.006 50.88 0.4041 0.4041 1.026 1.023 1.006
L19 0 0.5 6 41 1.100 1.004 47.29 0.4030 0.9030 1.076 1.053 1.001
L20 0 0.9 6 41 1.100 1.001 36.18 0.4052 1.305 1.145 1.035 0.9602
H1 0 −0.9 8 20 2.000 1.011 37.88 5.307 4.407 2.683 1.403 0.9756
H2 0 0 8 20 2.000 1.079 58.49 4.879 4.879 2.506 1.628 1.079
H3 0 0.9 8 20 2.000 1.007 37.29 4.942 5.842 3.499 1.695 0.9702
H4 −0.2 −0.9 8 20 2.000 1.011 37.88 5.362 4.462 2.713 1.414 0.9755
H5 −0.2 0 8 20 2.000 1.078 58.46 4.938 4.938 2.531 1.639 1.078
H6 −0.2 0.9 8 20 2.000 1.007 37.28 5.013 5.913 3.539 1.711 0.9702
H7 −0.4 −0.9 8 20 2.000 1.011 37.87 5.406 4.506 2.737 1.422 0.9755
H8 −0.4 0 8 20 2.000 1.078 58.41 4.988 4.988 2.552 1.648 1.078
H9 −0.4 0.9 8 20 2.000 1.007 37.27 5.075 5.975 3.574 1.724 0.9701
H10 −0.6 −0.9 8 20 2.000 1.011 37.87 5.436 4.536 2.753 1.428 0.9754
H11 −0.6 0 8 20 2.000 1.077 58.35 5.032 5.032 2.572 1.656 1.077
H12 −0.6 0.9 8 20 2.000 1.007 37.26 5.134 6.034 3.608 1.737 0.9700
H13 −0.8 −0.9 8 20 2.000 1.011 37.88 5.437 4.537 2.753 1.428 0.9756
H14 −0.8 0 8 20 2.000 1.077 58.28 5.074 5.074 2.591 1.664 1.077
H15 −0.8 0.9 8 20 2.000 1.007 37.24 5.219 6.119 3.657 1.755 0.9698
L3MR −1=3 0 50 75 2.000 1.016 51.90 9.984 9.984 5.016 2.695 1.016
L5M1 −1=3 0.9 6 41 1.650 1.003 36.66 3.379 4.279 2.647 1.553 0.9646
L5M2 −1=3 0.9 6 41 2.475 1.008 37.46 8.382 9.282 5.445 2.064 0.9717
L5M3 −1=3 0.9 6 41 3.713 1.017 38.79 17.57 18.47 10.55 2.637 0.9836
L5M4 −1=3 0.9 6 41 5.569 1.033 41.17 35.47 36.37 20.11 3.389 1.004
L5M5 −1=3 0.9 6 41 8.353 1.066 46.01 72.76 73.66 38.51 4.512 1.046

WOJCIECH KULCZYCKI and EDWARD MALEC PHYS. REV. D 103, 064025 (2021)

064025-6



[1] R. Penrose, Gravitational collapse: The role of general
relativity, Rivista del Nuovo Cimento 252 (1969).

[2] R. Penrose, Naked singularities, Ann. N.Y. Acad. Sci. 224,
125 (1973).

[3] J. Karkowski, E. Malec, and Z. Swierczynski, The Penrose
inequality in spheroidal geometries, Classical Quant. Grav.
10, 1361 (1993).

[4] J. Karkowski, P. Koc, and Z. Swierczynski, Penrose inequal-
ity for gravitational waves, Classical Quant. Grav. 11, 1535
(1994).

[5] E. Malec and N. O’Murchadha, Trapped surfaces and the
Penrose inequality in spherically symmetric geometries,
Phys. Rev. D 49, 6931 (1994); E. Malec, M. Iriondo, and N.
O’Murchadha, Constant mean curvature slices of asymp-
totically flat spherical spacetimes, Phys. Rev. D 54, 4792
(1996).

[6] S. Hayward, Inequalities Relating Area, Energy, Surface
Gravity, and Charge of Black Holes, Phys. Rev. Lett. 81,
4557 (1998).

[7] G. Huisken and T. Ilmanen, The Riemannian Penrose
inequality, Int. Math. Res. Not. 1997, 1045 (1997).

[8] G. Huisken and T. Ilmanen, The inverse mean curvature
flow and the Riemannian Penrose inequality, J. Diff. Geom.
59, 353 (2001).

[9] H. Bray, Proof of the Riemannian Penrose inequality using
the positive mass theorem, J. Diff. Geom. 59, 177 (2001).

[10] J. Frauendiener, On the Penrose Inequality, Phys. Rev. Lett.
87, 101101 (2001).

[11] E. Malec, M. Mars, and W. Simon, On the Penrose
Inequality for General Horizons, Phys. Rev. Lett. 88,
121102 (2002).

[12] J. Karkowski and E. Malec, The general Penrose inequality:
Lessons from numerical evidence, Acta Phys. Pol. B 36, 59
(2005).

[13] M. Mars, Present status of the Penrose inequality, Classical
Quant. Grav. 26, 193001 (2009).

[14] D. Christodoulou, Reversible and Irreversible Transforma-
tions in Black-Hole Physics, Phys. Rev. Lett. 25, 1596 (1970).

[15] S. Dain and M. E. Gabach-Clement, Geometrical inequal-
ities bounding angular momentum and charges in General
Relativity, Living Rev. Relativity 21, 5 (2018).

[16] P. Anglada, Comments on Penrose inequality with angular
momentum for outermost apparent horizons, Classical
Quant. Grav. 37, 065023 (2020).

[17] J. Jaracz and M. Khuri, Bekenstein bounds, Penrose
inequalities and black hole formation, Phys. Rev. D 97,
124026 (2018).

[18] M. Shibata, Rotating black hole surrounded by self-gravi-
tating torus in the puncture framework, Phys. Rev. D 76,
064035 (2007).

[19] J. Karkowski, W. Kulczycki, P. Mach, E. Malec, A.
Odrzywołek, and M. Piróg, General-relativistic rotation:
Self-gravitating fluid tori in motion around black holes,
Phys. Rev. D 97, 104034 (2018).

[20] J. Karkowski, W. Kulczycki, P. Mach, E. Malec, A.
Odrzywołek, and M. Piróg, Self-gravitating axially sym-
metric disks in general-relativistic rotation, Phys. Rev. D 97,
104017 (2018).

[21] S. R. Brandt and E. Seidel, Evolution of distorted rotating
black holes. I. Methods and tests, Phys. Rev. D 52, 856
(1995).

[22] L. G. Fishbone and V. Moncrief, Relativistic fluid disks in
orbit around Kerr black holes, Astrophys. J. 207, 962
(1976).

[23] E. Butterworth and I. Ipser, Rapidly rotating fluid bodies in
general relativity, Astrophys. J. 200, L103 (1975).

[24] J. M. Bardeen, A variational principle for rotating stars in
General Relativity, Astrophys. J. 162, 71 (1970).

[25] W. Kulczycki and E. Malec, General-relativistic rotation
laws in fluid tori around spinning black holes, Phys. Rev. D
101, 084016 (2020).

[26] P. Mach and E. Malec, General-relativistic rotation laws in
rotating fluid bodies, Phys. Rev. D 91, 124053 (2015).

[27] J. Knopik, P. Mach, and E. Malec, General-relativistic
rotation laws in rotating fluid bodies: Constant linear
velocity, Acta Phys. Pol. B 46, 2451 (2015).

[28] O. Schenk and K. Gärtner, Solving unsymmetric sparse
systems of linear equations with PARDISO, Future Gener.
Comput. Syst. 20, 475 (2004).

[29] E. Anderson et al., LAPACK Users’ Guide (SIAM,
Philadelphia, 1999).

[30] J. Kopiński and J. Tafel, The Penrose inequality for non-
maximal perturbations of the Schwarzschild initial data,
Classical Quant. Grav. 37, 105006 (2020).

[31] J. Karkowski, P. Mach, E. Malec, M. Piróg, and N. Xie,
Rotating systems, universal features in dragging and anti-
dragging effects, and bounds of angular momentum, Phys.
Rev. D 94, 124041 (2016).

EXTENSIONS OF THE PENROSE INEQUALITY WITH ANGULAR … PHYS. REV. D 103, 064025 (2021)

064025-7

https://doi.org/10.1111/j.1749-6632.1973.tb41447.x
https://doi.org/10.1111/j.1749-6632.1973.tb41447.x
https://doi.org/10.1088/0264-9381/10/7/012
https://doi.org/10.1088/0264-9381/10/7/012
https://doi.org/10.1088/0264-9381/11/6/017
https://doi.org/10.1088/0264-9381/11/6/017
https://doi.org/10.1103/PhysRevD.49.6931
https://doi.org/10.1103/PhysRevD.54.4792
https://doi.org/10.1103/PhysRevD.54.4792
https://doi.org/10.1103/PhysRevLett.81.4557
https://doi.org/10.1103/PhysRevLett.81.4557
https://doi.org/10.1155/S1073792897000664
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4310/jdg/1090349428
https://doi.org/10.1103/PhysRevLett.87.101101
https://doi.org/10.1103/PhysRevLett.87.101101
https://doi.org/10.1103/PhysRevLett.88.121102
https://doi.org/10.1103/PhysRevLett.88.121102
https://doi.org/10.1088/0264-9381/26/19/193001
https://doi.org/10.1088/0264-9381/26/19/193001
https://doi.org/10.1103/PhysRevLett.25.1596
https://doi.org/10.1007/s41114-018-0014-7
https://doi.org/10.1088/1361-6382/ab51c1
https://doi.org/10.1088/1361-6382/ab51c1
https://doi.org/10.1103/PhysRevD.97.124026
https://doi.org/10.1103/PhysRevD.97.124026
https://doi.org/10.1103/PhysRevD.76.064035
https://doi.org/10.1103/PhysRevD.76.064035
https://doi.org/10.1103/PhysRevD.97.104034
https://doi.org/10.1103/PhysRevD.97.104017
https://doi.org/10.1103/PhysRevD.97.104017
https://doi.org/10.1103/PhysRevD.52.856
https://doi.org/10.1103/PhysRevD.52.856
https://doi.org/10.1086/154565
https://doi.org/10.1086/154565
https://doi.org/10.1086/181907
https://doi.org/10.1086/150635
https://doi.org/10.1103/PhysRevD.101.084016
https://doi.org/10.1103/PhysRevD.101.084016
https://doi.org/10.1103/PhysRevD.91.124053
https://doi.org/10.5506/APhysPolB.46.2451
https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1088/1361-6382/ab8353
https://doi.org/10.1103/PhysRevD.94.124041
https://doi.org/10.1103/PhysRevD.94.124041

