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Eccentric binary black hole surrogate models for the gravitational
waveform and remnant properties: Comparable mass, nonspinning case
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We develop new strategies to build numerical relativity surrogate models for eccentric binary black hole
systems, which are expected to play an increasingly important role in current and future gravitational-wave
detectors. We introduce a new surrogate waveform model, NRSur2dglEcc, using 47 nonspinning, equal-
mass waveforms with eccentricities up to 0.2 when measured at a reference time of 5500M before merger.
This is the first waveform model that is directly trained on eccentric numerical relativity simulations and
does not require that the binary circularizes before merger. The model includes the (2,2), (3,2), and (4,4)
spin-weighted spherical harmonic modes. We also build a final black hole model, NRSur2dglEc-
cRemnant, which models the mass, and spin of the remnant black hole. We show that our waveform
model can accurately predict numerical relativity waveforms with mismatches ~1073, while the remnant
model can recover the final mass and dimensionless spin with absolute errors smaller than ~5 x 10~*M and
~2 x 1073 respectively. We demonstrate that the waveform model can also recover subtle effects like mode
mixing in the ringdown signal without any special ad hoc modeling steps. Finally, we show that despite
being trained only on equal-mass binaries, NRSur2dglEcc can be reasonably extended up to mass ratio
g ~ 3 with mismatches ~1072 for eccentricities smaller than ~0.05 as measured at a reference time of
2000M before merger. The methods developed here should prove useful in the building of future eccentric

surrogate models over larger regions of the parameter space.
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I. INTRODUCTION

Detection of gravitational waves (GWs) [1,2] by the
LIGO [3] and Virgo [4] detectors has opened a new window
in astrophysics to probe binary compact objects—binary
black holes (BBHs) being the most abundant source for
these detectors. Both detection and extraction of source
properties from the GW signal relies on the availability of
accurate inspiral-merger-ringdown (IMR) waveform mod-
els for BBHs. While numerical relativity (NR) provides the
most accurate gravitational waveforms for BBHs, they are
computationally expensive, taking weeks to months to
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generate a single waveform. Data-driven surrogate model-
ing strategies [5—16] have been shown to be capable of
producing waveforms that are nearly indistinguishable
from NR with evaluation times of less than 0.1 seconds.
While NR surrogate waveform models for nonspinning [7],
aligned-spin [10], and precessing BBHs [9,13] are well
developed, NR surrogate modeling of eccentric systems is
completely unexplored.

So far, all GW detections of BBHs are consistent with
signals emitted from quasicircular binaries [17-23]. In fact,
eccentricity has been traditionally ignored in most GW data
analyses (for e.g. Refs. [1,2]). This is motivated by the
expectation that even if a binary is formed with a nonzero
eccentricity, it should circularize before reaching the
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frequency band of ground based detectors, as eccentricity
gets radiated away via GWs during the long inspiral [24].
However, this assumption may not always hold, especially
for binaries formed in dense environments like globular
clusters or galactic nuclei [25-32]. Indeed, recent follow-up
analysis of GW190521 [33] claims this event to be
consistent with a BBH source with eccentricity ranging
from ~0.1 [34] up to ~0.7 [35] (see also [36,37]).

Eccentricity, if present in GW signals, carries precious
astrophysical information about the environment in which
the binary was formed. The detection of an eccentric merger
would not only be a smoking-gun signature of sources
formed via dynamical encounters, but would point towards
a specific type of interactions, namely GW captures [38],
taking place in those environments. Catching eccentric
sources in the mHz regime targeted by the LISA space
mission is also a promising avenue to distinguish astro-
physical formation channels [39-45].

Furthermore, ignoring eccentricity in our models can
lead to systematic biases if the actual signal corresponds to
an eccentric system [46]. Such biases can also lead to
eccentric systems being misidentified as a violation of
general relativity (GR). Even if all binaries are found to be
circular, eccentric models are necessary to place bounds on
the eccentricity. Therefore, including eccentricity in our
GW models is important, especially as the detectors
become more sensitive.

In the past few years, a handful of eccentric inspiral-only
[47-52] and IMR models [53—-58] have become available.
We highlight some recent eccentric IMR models in the
following. ENIGMA [55,56] is a nonspinning eccentric
BBH model that attaches an eccentric post-Newtonian (PN)
inspiral to a quasicircular merger based on an NR surrogate
model [7]. SEOBNRE [58] modifies an aligned-spin qua-
sicircular effective-one-body (EOB) waveform model [59]
to include some effects of eccentricity. Similarly, Ref. [57]
modifies a different aligned-spin EOB multipolar wave-
form model for quasicircular BBHs [60,61] to include some
effects of eccentricity. The model is then further improved
by replacing the carrier quasicircular model with a generic
eccentric one [62]. In addition to these models, Ref. [63]
recently developed a method to add eccentric modulations
to existing quasicircular BBH models.

Notably, all of these models rely on the assumption that
the binary circularizes by the merger time. While this is
approximately true for many expected sources [55,64], this
necessarily places a limit on the range of validity of these
models. In addition, none of these models are calibrated on
eccentric NR simulations, even though their accuracy is
tested by comparing against eccentric simulations.

Apart from the waveform prediction, BBH remnant
modeling from eccentric sources is also of crucial astro-
physical importance [65-68]. For example, recoils from
eccentric mergers can be up to 25% higher than the circular
case [67,68], which results in a higher likelihood of

ejections from astrophysical hosts like star clusters and
galaxies.

It is, therefore, timely to invest in building faithful
eccentric BBHs waveform and remnant models that address
some of these limitations. In this paper, we develop a
detailed framework for constructing a surrogate model with
eccentric NR data. We then build a two-dimensional
surrogate model, NRSur2dglEcc, over parameters that
describe eccentricity for equal-mass, nonspinning systems
to demonstrate the efficacy of the proposed methods. This
is the first eccentric waveform that is directly trained on
eccentric NR simulations and does not need to assume that
the binary circularizes before merger. The model can
produce waveforms that are of comparable accuracy to
the NR simulations used to train it. Furthermore, despite
being trained only on equal-mass eccentric BBHs, we find
that the model can be reasonably evaluated beyond its
training range up to mass ratio g &% 3 provided the eccen-
tricities are small.

In addition to the waveform model, we build a
surrogate  model for the remnant mass and spin,
NRSur2dglEccRemnant, which can provide accurate
predictions for the final state of eccentric binary mergers.
This work paves the way forward for building future
eccentric surrogate models: we expect that the methods
developed here can be applied straightforwardly to aligned-
spin eccentric BBHs, while the precessing case requires
significantly more work.

The rest of the paper is organized as follows. Section II
describes the NR simulations. Section III describes data
decomposition, parametrization and construction of the
surrogate model. In Sec. IV, we test the surrogate model by
comparing against NR waveforms. We end with some
concluding remarks in Sec. V.

II. NUMERICAL RELATIVITY DATA

NR simulations for this work are performed using the
Spectral Einstein Code (SpEC) [69] developed by the
Simulating eXterme Spacetimes (SXS) collaboration
[70]. We follow the procedure outlined in Ref. [71] to
construct initial orbital parameters that result in a desired
eccentricity. The constraint equations are solved employing
the extended conformal thin sandwich formalism [72,73]
with superposed harmonic Kerr free data [74]. The evolu-
tion equations are solved employing the generalized har-
monic formulation [75,76]. The time steps during the
simulations are chosen nonuniformly using an adaptive
time stepper [77]. Further details can be found in Ref. [77]
and references within. We perform 47 new eccentric NR
simulations that have been assigned the identifiers SXS:
BBH:2266-SXS:BBH:2312, and will be made available
through the SXS public catalog [78].

The component BH masses, m, and m,, and dimension-
less spins, ¥ and y», are measured on the apparent horizons
[77] of the BHs, where index 1 (2) corresponds to the
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heavier (lighter) BH. The component masses at the relax-
ation time [77] are used to define the mass ratio g =
my/m, > 1 and total mass M = m; + m,. Unless other-
wise specified, all masses in this paper are given in units of
the total mass. When training the surrogate model, we
restrict ourselves to ¢ = 1, y,x> = 0 in this work.

The waveform is extracted at several extraction spheres
at varying finite radii from the origin and then extrapolated
to future null infinity [77,79]. These extrapolated wave-
forms are then corrected to account for the initial drift of the
center of mass [80,81]. The spin-weighted spherical har-
monic modes at future null infinity, scaled to unit mass and
unit distance, are denoted as 7,,,(¢) in this paper.

The complex strain #Z = h, —ih, is given by

o l

71,1, 0) Z

=2 m=—

Y en(t90), (1)

where h, (h,) is the plus (cross) polarization of the
waveform, _,Y,, are the spin = —2 weighted spherical
harmonics, and 7 and ¢, are the polar and azimuthal angles
on the sky in the source frame. We model modes with
(Z,m) =(2,2),(3,2), (4,4). Because of the symmetries of
equal-mass, nonspinning BBHs, all odd-m modes are
identically zero, and the m < 0 modes can be obtained
from the m > 0 modes. Therefore, we model all nonzero
¢ <3 and (4, £4) modes, except the m = 0 modes. We
exclude m = 0 memory modes because (nonoscillatory)
Christodoulou memory is not accumulated sufficiently in
our NR simulations [82]; this defect was recently addressed
in both Cauchy characteristic extraction (CCE) [8§3—85] and
extrapolation [86] approaches. The (4,2) mode, on the other
hand, was found to have significant numerical error in the
extrapolation procedure [77,79]. We expect this issue to be
resolved with CCE as well. Therefore, in future models, we
should be able to include the m = 0 modes as well as
modes like the (4,2) mode.

The remnant mass m, and spin y ; are determined from
the common apparent horizon long after the ringdown, as
described in Ref. [77]. For nonprecessing systems like the
ones considered here, the final spin is directed along the
direction of the orbital angular momentum. Unlike previous
surrogate models [13,87,88], we do not model the recoil
kick in this work, as the symmetries of equal-mass, non-
spinning BBHs restrict the kick to be zero.

III. SURROGATE METHODOLOGY FOR
ECCENTRIC WAVEFORMS

In this section, we describe our new framework to build
NR surrogate models for eccentric BBHs. We begin by
applying the following postprocessing steps that simplify
the modeling procedure.

A. Processing the training data

In order to construct parametric fits (cf. Sec. III D) for the
surrogate model, it is necessary to align all the waveforms
such that their peaks occur at the same time. We define the
peak of each waveform, 7., to be the time when the

quadrature sum,
tol | Z | % i m (2)
Lm

reaches its maximum. Here the summation is taken over all
the modes being modeled. We then choose a new time
coordinate,

I =T — Tpeaks (3)

such that Ay, (¢) for each waveform peaks at r = 0.

Next, we use cubic splines to interpolate the real and
imaginary parts of the waveform modes onto a common
time grid of [-5500M, 75M] with a uniform time spacing
of dt = 0.1M; this is dense enough to capture all frequen-
cies of interest, including near merger. The initial time of
—5500M is chosen so that we can safely eliminate spurious
initial transients in the waveform, also known as junk
radiation [77], for each waveform in our dataset.

Once all the waveforms are interpolated onto a common
time grid, we perform a frame rotation of the waveform
modes about the z axis such that the orbital phase is zero at
t = —5500M. The orbital phase is obtained from the (2,2)
mode [cf. Eq. (14)]. Because of the symmetry of the equal-
mass, equal-spin systems considered here, the odd-m
modes are identically zero and so we need not worry
about remaining ¢y, = ¢ + 7 rotational freedom as was
necessary in Refs. [7-10,13]. This preprocessing of time
and phase ensures that the waveform varies smoothly
across the parameter space, which in turn makes modeling
easier.

B. Measuring eccentricity and mean anomaly

Departure of NR orbits from circularity is measured by a
time-dependent eccentricity and mean anomaly. Eccentricity
takes values between [0, 1] where the boundary values
correspond to a quasicircular binary and an unbound orbit
[89], respectively. Mean anomaly, on the other hand, is
bounded by [0,27z). While it may seem most natural to
estimate orbital parameters from the BH trajectories, this task
is complicated by the fact that any such measurement will be
impacted by the gauge conditions chosen by the NR
simulation. We instead choose to estimate eccentricity and
anomaly parameters directly from the waveform data at
future null infinity.
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1. Measuring eccentricity

Various methods to extract the eccentricity from NR
simulations have been proposed in the literature [64,90—
92]. As the eccentricity evolves during the binary’s orbit [24],
these methods use dynamical quantities such as some
combination of the (2,2) mode’s amplitude, phase, or
frequency. All of these methods reduce to the eccentricity
parameter in the Newtonian limit. The estimated value of the
eccentricity may differ slightly depending on the method
used and the noise in the numerical data. However, as long as
they provide a consistent measurement of eccentricity that
decays monotonically with time, one can use any of the
eccentricity estimators for constructing a surrogate wave-
form model. For this work, we use the following definition of
eccentricity based on orbital frequency [93]:

where @, and w,, are the orbital frequencies at apocenter (i.e.
point of furthest approach) and pericenter (i.e. point of closest
approach), respectively. Unlike several other eccentricity
estimators proposed in literature [64,90-92], the one defined
in Eq. (4) is normalized and reduces to the eccentricity
parameter in the Newtonian limit at both low and high
eccentricities [46].
We first compute the orbital frequency,

Ao
WDorp = d—;ba (5)

where ¢y, 18 the orbital phase inferred from the (2,2) mode
[cf. Eq. (14)], and the derivative is approximated using
second-order finite differences. We then find the times
where @y, passes through a local maxima (minima) and
associate those to pericenter (apocenter) passages, to obtain
o, (w,). We find that using the local maxima/minima of the
amplitude of the (2,2) mode to identify the pericenter/
apocenter times leads to a consistent value for the eccen-
tricity. We then interpolate w,, and @, onto the full time grid
using cubic splines. This gives us w,(¢) and w,(t), which
are used in Eq. (4).

Figure 1 shows an example of the measured eccentricity
for the NR simulation SXS:BBH:2304. We see that our
method provides a smooth, monotonically decreasing e(r).
The estimate becomes unreliable near merger where find-
ing local maxima/minima in @y, becomes problematic as
the orbit transitions from inspiral to plunge. The estimate
also becomes problematic whenever the eccentricity is
extremely small, thereby preventing the appearance of an
identifiable local maxima/minima. This does not affect our
modeling, however, as we only require an eccentricity
value at a reference time while the binary is still in the
inspiral phase. We select a reference time of #,.; = —5500M
and parametrize our waveform model by
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FIG. 1. Time evolution of the eccentricity e(f) (upper panel)
and the orbital frequency @y, (7) (lower panel) for NR simulation
SXS:BBH:2304. w, and w, denote, respectively, the orbital
frequency at pericenter (local maxima, cyan circles) and apoc-
enter passages (local minima, green circles). From this data we
construct spline interpolants to obtain @, (f) (cyan curve) and
w,(t) (green curve). The eccentricity is then estimated
using Eq. (4). The red dashed vertical line corresponds to the
reference time ¢, = —5500M at which the surrogate model is
parametrized.

Cref = e(tref)' (6)

While estimating e, we include the data segment slightly
before 7. as this allows us to interpolate, rather than
extrapolate, when constructing e(¢) in Eq. (4).

2. Measuring mean anomaly

In the Newtonian context, the mean anomaly / of an
eccentric orbit is defined as

t—ty
=2 , 7
L )

where 7, is a time corresponding to the previous pericenter
passage and P is the radial period, which is defined to be
the time between two successive pericenter passages. In the
Newtonian case P is a constant, but in GR it changes as the
binary inspirals. However, one can continue to use Eq. (7) as
a meaningful measurement of the radial oscillation’s phase
for the purpose of constructing a waveform model [54].
For each NR waveform, we compute the times for
all pericenter passages using the same procedure as in
Sec. III B 1. We divide the time array into different orbital
windows defined as [7", 7] ), where " is the time for ith
pericenter passage. The orbital period in each window is

given by P, = tffi — % and the mean anomaly by
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FIG. 2. Time evolution of the mean anomaly /(#) (upper panel)
and the orbital frequency wgy,(7) (lower panel) for the NR
simulation SXS:BBH:2304. Green dashed vertical lines indicate
the times for pericenter passages. The anomaly /() grows linearly
with time over [0, 27) in between two successive pericenters. The
red dashed vertical line corresponds to the reference time f,; =
—5500M at which the surrogate model is parametrized.
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1

1.(1) = 2z (8)

Note that each /() grows linearly with time over [0, 27) for

the window [, #7"]). To obtain the full I(r), we simply
join each [;(¢) for consecutive orbits. Finally, the value
for mean anomaly parametrizing our waveform model is
then simply the evaluation of the mean anomaly at

tos = —5500M:

Lt = l(tref)' (9)

Figure 2 shows an example application of our method to
estimate the mean anomaly of the NR simulation SXS:
BBH:2304.

3. Targeted parameter space

In Fig. 3, we show the measured values for eccentricity
and mean anomaly at z,; for all 47 NR waveforms, which
leads to the following 2d parameter space for our model:

(i) eccentricity: e € [0,0.2];

(i) mean anomaly: [ € [0, 27).

Figure 3 shows a large gap in the parameter space, which
reflects an inherent limitation in our current approach to
achieve target eccentricity parameters from the initial data.
The method we use to construct initial orbital parameters
[71] seeks to achieve target values of (e, [f) at a time
500M after the start of the simulation. The initial orbital
frequency is chosen such that time to merger is 6000M, as
predicted by a leading-order PN calculation. Unfortunately,
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FIG. 3. The parameter space covered by the 47 NR waveforms

(circle markers) used in the construction of our surrogate model.
The axes show the eccentricity and mean anomaly values at 7.
We also show the dependence of the maximum (over the sky of
the source frame) flat-noise mismatches on the parameters
eccentricity and mean anomaly (cf. Sec. IVA 2). The colors
indicate the maximum mismatch, which systematically increases
near the high eccentricity boundary where few training data
points are available.

this is only approximate, leading to different merger times
for different simulations. Consequently, when we estimate
the eccentricity parameters at t.; = —5500M, this is no
longer a fixed time from the start of the simulation. The
eccentricity parameters evolve differently for different
simulations during this time, leading to the clustering in
Fig. 3. In the future, we plan to resolve this using a higher
order PN expression, or an eccentric waveform model
[55-57] to predict the time to merger.

C. Waveform data decomposition

Building a surrogate model becomes more challenging
for oscillatory and complicated waveform data. One sol-
ution is to transform or decompose the waveform data into
several simpler “waveform data pieces” that also vary
smoothly over the parameter space. These simpler data
pieces can then be modeled more easily and recombined to
get back the original waveform. Successful decomposition
strategies have been developed for quasicircular NR sur-
rogates [7—10,13]. In order to develop similar strategies for
eccentric waveform data, we have pursued a variety of
options. We now summarize the most successful decom-
position technique we have tried, while relegating some
alternatives to the Appendix.
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FIG. 4. Example decomposition of the amplitude and phase of the (2,2) mode. Upper left: amplitude A,, of the eccentric waveform
SXS:BBH:2304 (with eccentricity es = 0.181) along with the amplitude Agz of the noneccentric waveform SXS:BBH:1155. Lower
left: the residual amplitude AA,, = A, — Agz. Upper right: phase ¢,, of the eccentric waveform SXS:BBH:2304 and the phase gbgz of
the noneccentric waveform SXS:BBH:1155. Lower right: the residual phase A¢,y = ¢yr — (,bgz. In this work we model AA,, and Ag,,.

1. Decomposing the quadrupolar mode h,,

The complex (2,2) waveform mode,
oy = Ape 2, (10)

can be decomposed into an amplitude, A,,, and phase, ¢»,.
For nonprecessing systems in quasicircular orbit, A5, and
¢, are slowly varying functions of time, and have therefore
been used as waveform data pieces for many modeling
efforts. For eccentric waveforms, however, both amplitude
and phase show highly oscillatory modulations on the
orbital time scale (cf. Figs. 1 and 2 for the frequency, which
is a time derivative of the phase). This demands further
decomposition of the waveforms into even simpler data
pieces. One natural solution could have been to build
interpolated functions of the local maxima and minima of
A,y and ¢h,,. The secular trend of these functions can then
be subtracted out from the original amplitude and phase.
The resulting residual amplitude and phase data may be
easier to model. Unfortunately, as mentioned in Sec. III B 1,
finding the local maxima/minima becomes problematic
near the merger.

We instead follow a simpler approach whereby the
amplitude and phase of a quasicircular g = 1, nonspinning
NR waveform (SXS:BBH:1155) is used as a proxy for the
secular trend of the amplitude and phase. We then compute
the residual amplitude and phase,

AAy = Ay — A, (11)

A¢22 = ¢22 - ¢82’ (12)

where AY, and ¢9, are the amplitude and phase of the
noneccentric waveform, respectively, which have been
aligned according to the same procedure outlined in
Sec. I A. In the upper-left panel of Fig. 4, we show the
amplitude of an eccentric waveform (SXS:BBH:2304)
along with the amplitude of its noneccentric counterpart
(SXS:BBH:1155) which traces the secular trend of the
nonmonotonically increasing eccentric amplitude. The
difference of these two amplitudes, AA,,, is then plotted
in the lower-left panel. AA,, is simpler to model than A,,,
as it isolates the oscillatory component1 of A,,. Similarly, in
the right panels of Fig. 4, we show the phase evolution of
the same eccentric waveform (SXS:BBH:2304), its non-
eccentric counterpart (SXS:BBH:1155), and their differ-
ence Ag,, which isolates the oscillatory component of ¢,,.
Note that noneccentric waveform data is plentiful [77] and
accurate surrogate models have been built for noneccentric
NR waveforms [10,13]. So extending the residual ampli-
tude and phase computation to spinning, unequal-mass
systems is straightforward. For instance the surrogate
model of Ref. [10] can be used to generate A, and ¢9,
for generic aligned-spin systems.

2. Decomposing the higher order modes

In this paper, we model the quadrupolar mode and the
higher-order modes differently. For 7%,,, we model data

'In fact, the relatively simple oscillatory behavior of AA,,
suggests the use of a Hilbert transform for further simplification.
However, we found that this does not improve the accuracy of our
model. Such further simplifications may become necessary for
larger eccentricities than considered in this work, as the mod-
ulations will be more pronounced.
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FIG. 5. The waveform modes for NR simulation SXS:

BBH:2304 (e,s = 0.181) are shown. The top panel shows the
dominant (2,2) mode in the inertial frame. Two higher-order
modes (3,2) and (4,4) in the co-orbital frame are shown in the
middle and lower panels respectively. The waveform is aligned
such that the peak of the amplitude occurs at = 0 and the orbital
phase is zero at t.; = —5500M.

pieces closely associated with the amplitude and phase as
described above. On the other hand, for higher order
modes, we first transform the waveform into a co-orbital
frame in which the waveform is described by a much
simpler and slowly varying function. This is done by
applying a time-dependent rotation given by the instanta-
neous orbital phase:

1 = Ty o, (13)
¢
¢orb = % ’ (14)

where ¢,, is the phase of the (2,2) mode [cf. Eq. (10)], ¢om,
is the orbital phase, and 4C  represents the complex modes
in the co-orbital frame.

We use the real and imaginary parts of 4S as our
waveform data pieces for the nonquadrupole modes. As
shown in Fig. 5, the #C  data have less structure, making
them easier to model. We find that using quasicircular 4$
to subtract off the secular trend does not provide any
modeling advantage. We, therefore, model the real and

imaginary parts of 4AS
decomposition.

without any further data

3. Summary of waveform data pieces

To summarize, the full set of waveform data pieces we
model is as follows: AA,,, A¢,, for the (2,2) mode, and
real and imaginary parts of 4£¢ for the (3,2) and
(4,4) modes.

D. Building the waveform model

We decompose the inertial frame waveform data into
many waveform data pieces as summarized in Sec. III C 3.
For each of these data pieces, we now build a surrogate
model using reduced basis, empirical interpolation, and
parametric fits across the parameter space. The detailed
procedure is outlined in Refs. [5,9], which we only briefly
describe here.

For each waveform data piece, we employ a greedy
algorithm to construct a reduced basis [94] such that the
projection errors [cf. Eq. (5) of Ref. [9]] for the entire
dataset onto this basis are below a given tolerance. We use a
basis tolerance of 1072 radians for A¢,,, 1.5 x 1073 for
AA,, and 2 x 1075 for the real part of 4§,. For all other
data pieces, basis tolerance is set to 5 x 107>,

These choices are made so that we include a sufficient
number of basis functions for each data piece [nine for
AA,,, 12 for A¢g,,, seven (five) for the real (imaginary) part
of %%, and ten (six) for the real (imaginary) part of £5,] to
capture the underlying physical features in the simulations
while avoiding overfitting. We perform additional visual
inspection of the basis functions to ensure that they are not
noisy in which case modeling accuracy can become
comprised (cf. Appendix B of Ref. [9]).

The next step is to construct an empirical interpolant in
time using a greedy algorithm which picks the most
representative time nodes [5,95-97]. The number of the
time nodes for each data piece is equal to the number of basis
functions used. The final surrogate-building step is to
construct parametric fits for each data piece at each of the
empirical time nodes across the two-dimensional parameter
space {eps, [} We do this using the Gaussian process
regression (GPR) fitting method as described in
Refs. [87,98].

E. Evaluating the waveform surrogate

To evaluate the NRSur2dglEcc surrogate model, we
provide the eccentricity e, and mean anomaly /. as
inputs. We then evaluate the parametric fits for each
waveform data pieces at each time node. Next, the
empirical interpolant is used to reconstruct the full wave-
form data pieces (cf. Sec. III C 3).

We compute the amplitude and phase of the (2,2) mode,

Aigz = AA§2 +A82, (15)
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P35, = APS, + ¢, (16)

where AAS, ~ AAy and AgS, ~ Ay, are the surrogate
models for AA,, and Ag,, respectively while A), and ¢9, are
the amplitude and phase of the quasicircular NR waveform
used in the decompositions [cf. Egs. (11) and (12)]. We
obtain the (2,2) mode complex strain as /453, = A22e“‘f’§2.

For the nonquadrupole modes, we similarly evaluate the
surrogate models for the real and imaginary parts of the co-
orbital frame waveform data pieces ﬁi?};‘f ~ /¢, and treat it
as figm. Finally, we use Eqgs. (10), (13), and (14) to obtain
the surrogate prediction for the inertial frame strain /’zﬁm for
these modes.

F. Building the remnant surrogate

In addition to the waveform model, we also construct the
first model for the remnant quantities of eccentric BBHs.
The new remnant model, NRSur2dglEccRemnant,
predicts the final mass m; and the component of the final
spin, y ., along the orbital angular momentum direction.
The remnant model takes eccentricity e, and mean
anomaly [ as its inputs and maps to the final state of
the binary. The final mass and spin fits are also constructed
using the GPR fitting method as described in Refs. [87,98].

IV. RESULTS

In this section we demonstrate the accuracy of
NRSur2dglEcc and NRSur2dglEccRemnant by
comparing against the eccentric NR simulations described
in Sec. II. We do this by performing a leave-one-out cross-
validation study. In this study, we hold out one NR
waveform from the training set and build a trial surrogate
from the remaining 46 eccentric NR waveforms. We then
evaluate the trial surrogate at the parameter value corre-
sponding to the held out data, and compare its prediction
with the highest-resolution NR waveform. We refer to the
errors obtained by comparing against the left-out NR
waveforms as cross-validation errors. These represent
conservative error estimates for the surrogate models
against NR. Since we have 47 eccentric NR waveforms,
we build 47 trial surrogates for each error study. We
compare these errors to the NR resolution error, estimated
by comparing the two highest available NR simulations.

A. NRSur2dqlEcc errors

1. Time domain error without time/phase optimization

In order to quantify the accuracy of NRSur2dglEcc,
we first compute the normalized L,-norm between the NR
data and surrogate approximation

S[ﬁ %] 1meft2|ﬁ/fm %fm( )|2dl
’ 2 me ftz |ﬁ’lm | dt

. (17)
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FIG. 6. Time-domain leave-one-out errors &, defined in Eq. (17),
for the full waveform as well as the individual modes considered in
the model. For comparison, we also show the NR error between the
two highest resolutions. The largest errors are found near the
parameter domain’s boundary where the trial surrogate, built as part
of the cross-validation study, is extrapolating.

where 7 (t) and 7(t) correspond to the complex strain for
NR and NRSur2dglEcc waveforms, respectively. Here,
t; and 1, denote the start and end of the waveform data. As
the NR waveforms are already aligned in time and phase,
the surrogate reproduces this alignment. Therefore, we
compute the time-domain error £ without any further time/
phase shifts.

In Fig. 6, we report both the full waveform and individual
mode errors for NRSur2dglEcc. For comparison, we also
show the NR resolution errors. When computing the full
waveform error we use all modes included in the surrogate
model (¢, m) = (2,2),(3.,2), (4,4) in Eq. (17). To compute
errors for individual modes, we restrict the sumin Eq. (17) to
only the mode of interest. The NRSur2dglEcc errors are
comparable to the NR errors in Fig. 6.
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However, we find that the surrogate errors have an
extended tail around 2 orders of magnitude larger than the
largest NR mismatch. While this could imply overfitting,
we find that highest mismatches correspond to the param-
eter space adjacent to the higher eccentricity e,; boundary
where only few (to none) training waveforms are used. As
will be discussed in Sec. IVA 2, the sparsely sampled
region of the training domain around (e = 0.2, [ s < 2)
leads to this extended high-error tail in Fig. 6.

We further note in Fig. 6 that the highest error in each
mode corresponds to the same point in the parameter space
indicating consistency in our modeling. Furthermore, as we
only deal with mass ratio ¢ = 1 waveforms, the contribu-
tion of the higher modes is expected to be negligible
compared to the dominant (2,2) mode (see for example,
Ref. [99]). Therefore, even though the (3,3) and (4,4)
modes have larger relative errors compared to the (2,2)
mode, their contribution to the total error is much smaller.
This can be verified by comparing the full waveform errors
to the (2,2) mode errors in Fig. 6.

2. Frequency domain mismatch with time/phase
optimization
In this section, we estimate leave-one-out cross-valida-
tion errors by computing mismatches between the NR
waveform and the trial surrogate waveform in the fre-
quency domain. The frequency domain mismatch between
two waveforms, /%, and /%, is defined as

fmaxﬁ %*
(Fy. 7o) :4Re/ wdﬁ (18)
1.0- = NRSur2dqlEcc
NR
2
@
a
0 05
Q
¥,
ol ..": L
O'?o 6 1073 102 101
Mismatch

where 7 (f) indicates the Fourier transform of the complex
strain % (1), * indicates a complex conjugation, Re indicates
the real part, and S,(f) is the one-sided power spectral
density of a GW detector.

Before transforming the time domain waveform to the
frequency domain, we first taper the time domain wave-
form using a Planck window [100], and then zero pad to the
nearest power of 2. The tapering at the start of the
waveform is done over 1.5 cycles of the (2,2) mode.
The tapering at the end is done over the last 20M. Once
we obtain the frequency domain waveforms, we compute
mismatches following the procedure described in
Appendix D of Ref. [9]. The mismatches are optimized
over shifts in time, polarization angle, and initial orbital
phase. We compute the mismatches at 37 points uniformly
distributed on the sky of the source frame, and use all
available modes for the surrogate model.

We consider a flat noise curve S, (f) = 1 as well as the
Advanced-LIGO design sensitivity Zero-Detuned-HighP
noise curve from Ref. [101]. We take f.;, to be the

frequency of the (2,2) mode at the end of the initial

. . . . peak peak
tapering window while f,.« is set at 4f5,", where f7,

is the frequency of the (2,2) mode at its peak. This ensures
that the peak frequencies of all modes considered in our
model are captured well, and we have confirmed that our
mismatch values do not change for larger values of f ..
Note that, when computing mismatches using Advanced
LIGO noise curve, for masses below ~70 My, foin 1S
greater than 20 Hz, meaning that the signal starts within the
detector sensitivity band.

The mismatches computed using the flat noise curve are
shown in the left panel of Fig. 7. The histograms include
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FIG. 7. Left panel: flat noise mismatch between the NRSur2dglEcc model (following the leave-one-out validation procedure) and
the highest-resolution NR waveform data. For comparison, we also show the NR resolution error, obtained by comparing the two highest
available resolutions. Right panel: NRSur2dglEcc (validation) mismatches computed using the advanced LIGO design sensitivity
noise curve, as a function of the total mass of the binary. For comparison, we also show the NR mismatches. For each mass, the
distribution of mismatches is shown as a smoothed vertical histogram (or a violin). The histograms are normalized so that all violins have
equal width. The largest errors are found near the parameter domain’s boundary where the trial surrogate, built as part of the cross-

validation study, is extrapolating.
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Real part of the waveform modes for the case that results in the largest flat noise mismatch (~0.04) for NRSur2dglEcc (red

dashed line) in the left panel of Fig 7. We also show the corresponding NR waveform, SXS:BBH:2308 (black solid line). The parameter
values for this waveform are ey = 0.176 and [ = 2.51. Note that this plot is generated using a trial surrogate that was not trained

using this NR waveform data.

mismatches for all 47 NR waveforms and source-frame sky
locations. We find that the typical surrogate mismatches are
10731073, which are comparable to but larger than the NR
errors. As an example, Fig. 8 shows the surrogate and NR
waveforms for the case that leads to the largest mismatch in
the left panel of Fig. 7.

In Fig. 3, we show the dependence of the mismatches on
the parameter space. It can be easily recognized that the
surrogate yields largest errors at and around (e.; =
0.2, 1. S2) where the training grid becomes sparse.
Further, when these sparse data points themselves are left
out when computing the cross-validation errors, the surro-
gate is effectively extrapolating in parameter space. This
indicates that the surrogate accuracy could be improved by
adding new NR simulations in this high-eccentricity region.
However, achieving target values of e, and /.; has proven
difficult. We return to this issue in the conclusions.

The right panel of Fig. 7 shows the mismatches com-
puted using advanced LIGO design sensitivity noise curve
[101] for different total masses M of the binary. For each
M, we compute the mismatches for all 47 NR waveforms
and source-frame sky locations and show the distribution of
mismatches using vertical histograms known as violin
plots. Over the mass range 20-180 M, the surrogate
mismatches are at the level of ~107~1073 but with an
extending tail as before. However, we note that these errors
are typically smaller than the mismatches for other eccen-
tric waveform models [55-57].

B. Mode mixing

NR waveforms are extracted as spin-weighted spherical
harmonic modes [102,103]. However, during the ring-
down, the system can be considered a single Kerr black
hole perturbed by quasinormal modes; perturbation theory
tells us that the angular eigenfunctions for these modes are

1071+ N

N\,
N\,
N
- \
———— R S
-2 — - NN \
1075 - AN N
TE peseeeases===U N,
e —__ N\,
= e NS AN
NN \
. NN \
1073+ SN
(2 2) A
) \,
AN
: N
\\ \‘
—4
10 (4.4)
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FIG. 9. The absolute values of different spherical-harmonic
modes are shown as dashed (solid) curves for the surrogate (NR)
for SXS:BBH:2308, for which the surrogate produces largest flat
noise mismatch (~0.04). The parameter values for this waveform
are e = 0.176 and [ ; = 2.51. Mode mixing for the (3,2) mode
is clearly seen in the ringdown signal of the NR waveform and is
accurately reproduced by the surrogate.
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FIG. 10. Leave-one-out error histograms of NRSur2dglEccRemnant (red) for the remnant mass m (left) and remnant spin y,
(right). For comparison we plot the NR errors (black), estimated by comparing the two highest resolution NR simulations, and errors for

the noneccentric model NRSur3dg8cRemnant (green).

the spin-weighted spheroidal harmonics [104,105]. A
spherical harmonic mode %,,, can be written as a linear
combination of all spheroidal harmonic modes with the
same m index. During the ringdown, each (spheroidal-
harmonic) quasinormal mode decays exponentially in
time, but each spherical-harmonic mode has a more
complicated behavior because it is a superposition of
multiple spheroidal-harmonic modes (of the same m
index) with different decay rates. This more complicated
behavior is referred to as mode mixing, since power flows
between different spherical-harmonic modes [106]. This
mixing is particularly evident in the (3,2) mode as
significant power of the dominant (2,2) spherical-har-
monic mode can leak into the (3,2) spherical-harmonic
mode. As the surrogate accurately reproduces the spheri-
cal harmonic modes from the NR simulations, it is also
expected to capture the effect of mode mixing without any
additional effort [10]. We demonstrate this for an example
case in Fig. 9 where we plot the amplitude of individual
modes of the waveform during the ringdown. We show
that the mode mixing in the (3,2) mode is effectively
recovered by the surrogate model.

C. NRSur2dglEccRemnant errors

In addition to the waveform surrogate, we also build a
remnant surrogate model, NRSur2dglEccRemnant,
that predicts the mass and spin of the final BH left behind
after the merger. This is the first such model for eccentric
BBHs (but see e.g. Refs. [67,68]). Figure 10 shows the
cross-validation errors of NRSur2dglEccRemnant in
predicting the remnant mass and spin. We find that
NRSur2dglEccRemnant can predict the final mass
and spin with an accuracy of <5x 107*M and <2 x
1073 respectively. We further compute the errors for a
noneccentric remnant model, NRSur3dg8Remnant [87],
when compared against the same eccentric NR simulations,
finding that errors in NRSur3dg8Remnant are compa-
rable with NRSur2dglEccRemnant errors. This

suggests that noneccentric remnant models may be suffi-
cient for equal-mass nonspinning binaries with eccen-
tricities e < 0.2. However, we expect such models to
disagree with eccentric simulations in the more general case
of unequal-mass, spinning binaries (see for e.g. Ref. [46]).

D. Extending NRSur2dqglEcc to
comparable mass systems

We now assess the performance of NRSur2dglEcc
when evaluated beyond its training parameter range

SXS:1371;

q = 3; eref = 0.050
_ SXS:1372;
10 l’:?I‘“g\ =" =3 = 0085
: IS Yol N Lyl ST
B e
~ 5 5
§ T T = 0e = 0.094
© SXS:1367;
g g = 2; erer = 0.092
= 10 2i*~\—*——_*_~ SXS:1366;
= : A =7 - q = 2; et = 0.093
: - R SXS:1365;
\ q = 2; eret = 0.055
SXS:1364;
—k— =0 e =0.041
1073 7 ‘ ‘ ! ! !
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Total Mass M (M.,)
FIG. 11. Mismatches against NR for the NRSur2dglEcc+

model (a simple extension of NRSur2dglEcc) when the
surrogate is evaluated beyond its training parameter range
(¢ = 1). The mismatches are shown as a function of the binary
total mass M (at 1 = z/3, ¢y = 0.0), and are computed using the
advanced LIGO design sensitivity noise curve. We show mis-
matches for ¢ =2 (¢ = 3) as solid lines (dashed lines). We use
star markers to denote waveforms with e smaller than ~0.05
and diamond markers for the rest. All eccentricity values are
computed at a reference time of ¢, = —2000M.
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FIG. 12. 'We show the NRSur2dglEcc+ prediction (red dashed line) beyond training range (¢ = 1) of the surrogate for the case that
results in the largest mismatch (Fig. 11) in the region defined by e, (at f,.,f = —2000M) smaller than ~0.05. We also show the
corresponding NR waveform SXS:BBH:1371 (black solid line). The parameters for this waveform are ¢ = 3, e, = 0.050 and [, .; =

245 (at t,,f = —2000M).

(g =1). To generate surrogate predictions at a given
(g, €ret et ), We first evaluate NRSur2dglEcc at (¢ = 1,
€t ler) and refer to the output as %3, (q = 1, eef, lrer)-
We then evaluate the noneccentric surrogate model
NRHybSur3dg8 [10] at the given mass ratio g and mass
ratio ¢ =1, and refer to the output as %% (g) and
%% (q = 1). We then compute the difference in amplitude
and phase between %5 (g = 1, e, ler) and %%, (g = 1):

AAfm (q =1, Crefs lref)
= A}gm(q =1, ey, lref)

A¢S ( =1, erefvlref)
= S (q_l €refs ret)

—Ah(g=1). (19)

bpa(a=1). (20)

Even though these amplitude and phase differences are
computed at ¢ = 1, we treat them as a proxy for the
modulations due to eccentricity at any g. We then add these
modulations to the amplitude and phase of %% (q), the
noneccentric surrogate model evaluated at the given ¢, to
get the full amplitude and phase:

A}gm <q’ Crefs lref)

= AA?W[(‘] =1, Cref > lref) +A?m<Q)’ (21)
¢}gm(q’ €ref» lref)
= Agb}gm(q =1, exs, lref) + ¢(l)m<Q) (22)

The final surrogate prediction, which we view as a new,
simple model NRSur2dglEcc+, is then

= A}s’m(% Cref > lref)e_id)ls'”(q’em‘lref)- (23)

ﬁ”im(q’ €refs lref)

To assess the accuracy of NRSur2dglEcc+ we com-
pare against eight publicly available eccentric NR simu-
lations with ¢ =2 and ¢g =3 [54,77]. These NR
waveforms are shorter in length than the ones used to
train our surrogate model. To ensure fair comparison
between surrogate predictions and NR waveforms, we
build a test surrogate2 which is parametrized by e,; and
Lot at tep = —2000M.

In Fig. 11, we show mismatches computed using the
advanced LIGO design sensitivity noise curve, between the
NRSur2dqglEcc+ model and eccentric NR data at g = 2,
3. We include all modes available in the model while
computing the mismatch. For simplicity, we only consider a
single point in the source-frame sky, with an inclination
angle of /3. For e, (at f; = —2000M) smaller than
~0.05, mismatches are always smaller than 1072, As we
increase e (at f = —2000M) to 0.09, the mismatches
become significantly worse, especially for g = 3, reaching

*While building the test surrogate, we exclude SXS:BBH:2294
(erer =7 x 1074, I,y = 5.766 at t,;; = —5500M) from the train-
ing set as the binary circularizes enough by t = —2000M such
that our eccentricity estimator defined in Eq. (4) becomes
unreliable.
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FIG. 13. Importance of mean anomaly for waveform modeling and data analysis. Left panel: flat noise mismatch (optimized over time,

phase and polarization angle shifts) between NRSur2dglEcc predictions with [, s = 0.0 and /.. = Al at fixed ¢ = 1 and e,y = 0.1.
While the mismatch, as expected, is ~0 for Al s = 0.0 and Al = 2=z, it reaches values ~0.1 near Al ; = z. Right panel: the (2,2)
amplitude of the waveforms leading to the maximum mismatch, i.e. /s = 0 and [,y = z. These differences cannot be accounted for by a
time or phase shift, therefore, mean anomaly is an important parameter to include for waveform modeling and data analysis of eccentric

binaries.

values ~10~!. As an example, Fig. 12 shows the surrogate
prediction (and NR waveform) for the case that leads to the
largest mismatch in Fig. 11 with e (at t,o = —2000M)
smaller than ~0.05.

This suggests that our scheme to extend the surrogate
model to comparable mass systems produces reasonable
waveforms for small eccentricities. However, we advise
caution with extrapolation-type procedures in general.

E. Importance of mean anomaly for data analysis

Many existing waveform models [55-58] for eccentric
binaries parametrize eccentric characteristics of the wave-
form by only one parameter e,; while keeping /¢ fixed.
We, however, use both e.; and [ as parameters in our
model. We find that not allowing /s as an independent
parameter results in large modeling error, indicating that the
mean anomaly is important to consider when modeling the
GW signal from eccentric binaries.

To demonstrate the importance of mean anomaly also in
data analysis, we present a simple study. We generate
NRSur2dglEcc predictions %3, (q =1, e = 0.1, [p)
with [ € [0.0,2z]. The left panel of Fig. 13 shows
mismatches between the waveform at /.; = 0 and various
l s, parametrized by Al = I — 0. For simplicity, we
only consider a single point in the source-frame sky, at
1=1r/3, ¢y = 0.0. As expected, we find that Al = 0.0
and Al = 2z produce identical waveforms. However, the
mismatch reaches a value of ~0.1 at Al = 7. As we
already account for allowed time and frame shifts when
computing the mismatch, ignoring this difference can lead
to modeling errors or biased parameter estimation. In the
right panel of Fig. 13, we show the waveform amplitude for
the cases with /s = 0 and /.. = #. The clear differences in
the amplitude reinforce our assertion that this mismatch
cannot be accounted for by a time or frame shift.

V. CONCLUSION

We present NRSur2dqglEcc, the first eccentric NR
surrogate waveform model. This model is trained on 47 NR
waveforms of equal-mass nonspinning BBH systems with
eccentricity e.; < 0.2, defined at a reference time t,.; =
—5500M before the waveform peak. The model includes
the (2,2), (3,2) and (4,4) spin-weighted spherical harmonic
modes. Due to the symmetries of the equal-mass, non-
spinning systems considered here, this is equivalent to
including all # < 3 and (4, +4) modes, except the m = 0
modes. This is the first eccentric BBH model that is directly
trained on eccentric NR simulations and does not require that
the binary circularizes before merger. We also present
NRSur2dglEccRemnant, the first NR surrogate model
for the final BH properties of eccentric BBH mergers. This
model is also trained on the same set of simulations.
We use Gaussian process regression to construct the para-
metric fits for both models. Both NRSur2dglEcc and
NRSur2dglEccRemnant will be made publicly available
in the near future.

Through a leave-one-out cross-validation study, we show
that NRSur2dglEcc accurately reproduces NR waveforms
with a typical mismatch of ~1073. We further demonstrate
that our remnant model, NRSur2dglEccRemnant, can
accurately predict the final mass and spin of the merger
remnant with errors <5 x 10™*M and <2 x 1073 respec-
tively. We showed that despite being trained on equal-mass
binaries, NRSur2dglEcc can be reasonably extended up to
mass ratio ¢ ~ 3 with mismatches ~10~2 for eccentricities
e S 0.05 at tp = —2000M. Finally, we demonstrate that
the mean anomaly, which is often ignored in waveform
modeling and parameter estimation of eccentric binaries, is
an important parameter to include. Exclusion of mean
anomaly can result in poor modeling accuracy and/or biased
parameter inference.
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The NR simulations used for this work were performed
using the Spectral Einstein Code (SpEC) [69]. SpEC’s
development efforts have been primarily focused on evo-
lutions of binary black hole systems in quasicircular orbits
[77]. To efficiently generate accurate training data for high
eccentricity systems, it may be necessary to improve certain
algorithmic subroutines. For example, as noted in
Sec. III B 3, we found it difficult to achieve target values
of (e, lef) at a reference time before merger. We also
noticed that the waveform’s numerical error was noticeably
larger near pericenters, suggesting better adaptive mesh
refinement algorithms [107] may be necessary for highly
eccentric simulations.

We have also explored several data decomposition
techniques and parametrizations for building eccentric
NR surrogate models, which can guide strategies for future
models. Our final framework for building eccentric NR
surrogates is quite general, and we expect that it can be
applied straightforwardly to higher dimensional parameter
spaces including unequal masses and aligned spins. We
leave these explorations to future work.
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APPENDIX: CHOICE OF DATA
DECOMPOSITION AND PARAMETRIZATION

In this Appendix, we describe various alternate modeling
strategies we pursued before deciding on the formalism
presented in the main text.

1. Choice of data decomposition

In this work, we have modeled the amplitude (A,,) and
phase (¢,) of the (2,2) mode by modeling the residual
(AA,,, Agy,) of these quantities with respect to a quasi-
circular NR waveform (cf. Sec. Il C). Alternatively, one
could instead model the amplitude and frequency (or their
residuals), and then integrate the frequency to obtain the
phase. The frequency of the (2,2) mode is given by

_do
Wy = 7,

(A1)
where ¢,, is defined in Eq. (10). The corresponding
residual is given by

Aa)22 = Wy — C()gz, (AZ)
where @), is the frequency of (2,2) mode for the quasi-
circular NR waveform.

We, therefore, explore four different data decomposition
strategies for the (2,2) mode, summarized below:

(i) Model {A,,, p»} directly.

(i) Model {AAy,A¢,,} and then add them to the
amplitude and phase of the quasicircular NR wave-
form to obtain {A22’ ¢22}.

(iii) Model {A,,, w,,} and integrate the frequency data to
get {Ax, ¢}

(iv) Model {AA,,, Aws,}; add them to the amplitude
and frequency of the quasicircular NR waveforms,
and finally integrate the frequency data to ob-
tain {A, ¢xn}.

In order to explore the effectiveness of these strategies,
we build a separate surrogate model using each strategy.
When building the frequency surrogates (@w,, or Amy,) we
use a basis tolerance of 1073 rad/M. For A,, (¢h,,) we use
the same tolerance as used for AA,, (A¢y,) in Sec. III D.
We compute the normalized L, norm between the NR data
and each surrogate approximation using Eq. (17). In
Fig. 14, we show the surrogate errors for all four different
strategies. We find that modeling the frequency w,, or
residual frequency Aw,, yields at least 2-to-3 orders of
magnitude larger £ than when we model the phase ¢,, or
A¢,,. Furthermore, modeling the residual amplitude AA,,
proves to be slightly more accurate than the case where we
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FIG. 14. Histograms of surrogate errors [defined in Eqs. (17)]
for the four different decomposition strategies we consider. We
find that modeling the residual amplitude AA,, and residual
phase A¢,, yields the least errors.

model the amplitude A,, directly. Therefore, in the main text,
we build surrogate models of the residual {AA,,, Ay}
(cf. Sec. ITI C).

2. Choice of fit parametrization

When building the surrogate models in the main text, fits
across parameter space are required for the waveform
model as well as the remnant model (cf. Sec. IIID).
These fits are parametrized by the eccentricity (e.s) and
mean anomaly (/) at the reference time ;. While
{€yef» Lot } 18 a natural choice, we also explore the following
choices of parametrizations:

(1) {erefv lref}’

(11) {erefv Sin<lref/2)}7

(111) {loglﬂ(l - eref)? lref}v

(IV) {logl()(l - eref)v Sin(lref/z)}'

Here sin(/,.¢/2) is considered because it maps the periodic
parameter [,.; € [0, 27) uniquely to the range [0, 1], while

e | {log1o(1 — eref), sin(I'TEf)}
= {10g10(1 i eI‘Cf)7 lrcf}
=3 {exssin(5t)}

1.0 {eref7lref}

Py

a

[0)
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ﬁ |l
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FIG. 15. Histograms of the error for the full waveform, for the

six different fit parametrizations we consider.

still mapping the physically equivalent points /. = 0 and
let = 27 to the same point [sin(/;/2) = 0]. The same is
not true for other possible parametrizations such as
Sin(ler), €0S(lrer), Or €OS(lper/2). logio(1 — erf) is consid-
ered because it flattens the spread in eccentricity, which can
be useful if the eccentricity varies over several orders of
magnitude in the NR dataset.

Similarly to the previous section, to explore the effec-
tiveness of these strategies, we build a separate surrogate
model using each strategy. Here, however, we consider all
modes included (¢, m) = (2,2),(3,2), (4,4) and evaluate
& errors [cf. Eq. (17)]. In Fig. 15, we show & errors for each
parametrization strategy. We find that while the alternative
strategies using either log;o(1 — eyf), or sin(l.¢/2), or
both, may be comparable, none of them result in errors
smaller than the original choice {ey, [r}. As we do not
achieve a noticeable improvement with these alternative
parametrizations, we stick to the original choice {e ., lof }
in the main text.
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