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We analyze the causal structure of McVittie spacetime for a classical bouncing cosmological model.
In particular, we compute the trapping horizons of the metric and integrate the trajectories of radial null
geodesics before, during, and after the bounce takes place. In the contracting phase up to the occurrence
of the bounce, a dynamical black hole is present. When the universe reaches a certain minimum scale,
the trapping horizons disappear and the black hole ceases to exist. After the bounce, the central weak
singularity becomes naked. In the expanding phase, for large positive values of the cosmic time, the
behavior of null geodesics indicates that the solution contains a black hole. These results suggest that
neither a contracting nor an expanding universe can accommodate a black hole at all times.
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I. INTRODUCTION

Our current understanding of the evolution of the Universe
is expressed in the so-called ΛCDM model that includes
gravity as described by the Einstein’s field equations with a
cosmological term, the standard model of particle physics, a
component of cold dark matter, and a hot initial phase. This
model is frequently complemented with an inflationary stage
that would have occurred immediately before the grand
unification epoch. Inflation requires additional physics
beyond the standard model. With or without inflation the
standard cosmological model is singular [1]. An initial
cosmological singularity is a very undesirable feature that
points out an irreparable deficiency in the representation of
the underlying physical processes [2]. Bouncing cosmologies
try to offer an alternative to overcome such problems.
There is a wide variety of proposals, either classical or

quantum, for a cosmological bounce [3]. In all these models
the universe starts from a very diluted phase and proceeds to
contract. The contraction then smoothly evolves into a bounce
that leads to the current phase of expansionas describedby the
ΛCDMmodel. These models solve the problem of the initial

cosmological singularity. As the cosmic fluid contracts most
structure is erased and the universe becomes smooth [4].
Black holes, however, might survive the bounce and play
some role in the subsequent expandinguniverse [5–7]. Since a
black hole is essentially a region of spacetimewith particular
curvature, the overall contraction and expansion of space
during the bounce should have a global-to-local effect upon
its horizons. The whole process is dynamical, and hence
cannot be investigated using the standard static solutions.
An exact solution for a central inhomogeneity in a

cosmological setting was first found by McVittie long
ago. It is now clear that such a solution describes a black
hole. McVittie solution has been investigated, so far, for
standard prescriptions of the scale factor of the universe. In
this work we extend the research to models that allow for a
bounce. We discuss whether the solution includes a black
hole before the bounce and what happens with the horizons
along the cosmological history of a bouncing universe. The
results we have found, we hope, will help to obtain a better
understanding of both the McVittie solution and the fate of
a dynamical black hole through a cosmic bounce.

II. DYNAMICAL SPACETIMES

A. McVittie spacetime

In 1933, McVittie [8] discovered an exact solution of
Einstein’s field equations that describes an inhomogeneity
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embedded in a Friedmann-Lemaître-RobertsonWalker
(FLRW) cosmological background. In isotropic coordi-
nates ðt; r; θ;ϕÞ its line element takes the form:

ds2 ¼ −
ð1 − m0

2raðtÞÞ2
ð1þ m0

2raðtÞÞ2
dt2 þ a2ðtÞ

�
1þ m0

2raðtÞ
�

4

× ½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�: ð1Þ

Here, aðtÞ is the scale factor of the background cosmo-
logical model and m0 is a non-negative constant. Setting
aðtÞ≡ 1, Eq. (1) reduces to the Schwarzschild line element
in isotropic coordinates, and in the limitm0 → 0 the FLRW
metric is recovered. For the upcoming discussion, it is
convenient to express Eq. (1) in terms of R, the areal radius
coordinate [9]:

R≡ aðtÞr
�
1þ m0

2raðtÞ
�

2

: ð2Þ

Using this expression, the McVittie line element can be
written as

ds2 ¼ −fðt; RÞdt2 − 2HðtÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R

p dtdRþ dR2

1 − 2m0=R

þ R2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ

where

fðt; RÞ≡ 1 − 2m0=R −HðtÞ2R2: ð4Þ

Here, HðtÞ≡ _aðtÞ=aðtÞ is the Hubble factor corresponding
to the background cosmological model. There are two key
assumptions on which McVittie’s solution is based. The
first one is that the matter represented in the field equations
is described by a perfect fluid with density ρ and isotropic
pressure p. The second one is that the fluid is at rest with
respect to the chosen reference frame. There are no addi-
tional hypothesis regarding the properties of the matter that
sources the geometry. In particular, an equation of state, for
instance of the form p ¼ pðρÞ, is not assumed. The relation
between ρ and p is obtained a posteriori by solving
Einstein field equations when the scale function aðtÞ is
specified. For further details on the derivation of the
McVittie solution see Refs. [11–13].
There has been a long debate in the literature about the

physical interpretation of the McVittie spacetime, focused
mainly on deciding whether the solution characterizes a
black hole in an expanding universe or not. A recent series
of works [12–16] has been crucial to establish that the
McVittie metric represents a dynamical black hole
embedded in a cosmological background. The details of
the solution and its possible analytical extension depend of

the behavior of HðtÞ for t → ∞ [16]. The solution displays
a curvature singularity at R ¼ 2m0 for finite values of t, as
evidenced by the Ricci scalar, given by:

R ¼ 12H2 þ 6 _Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0

R

q : ð5Þ

The singularity is spacelike and, as shown by Nolan [14],
gravitationally weak [17].
The key feature associated with black holes is the

presence of an event horizon, i.e., a boundary between
two regions of spacetime that are causally disconnected.
Events inside the black hole are separated from events in
the global external future of spacetime. In dynamical
spacetimes, in order to identify the event horizon, we
would need to know the entire spacetime manifold to future
infinity, which is impossible if the metric is not com-
pletely known.
In order to determine whether a black hole is embedded

in a dynamical background, a full analysis of the causal
structure of the spacetime is necessary. This includes
studying the existence of trapping horizons, the determi-
nation of regular, trapped, and antitrapped regions, and the
computation of the trajectories of ingoing and outgoing
radial null geodesics. In what follows, we briefly review
the main results of Refs. [12–16] that prove the assertion
that the McVittie spacetime describes a black hole in a
cosmological environment.
The trapping horizons of a spacetime are defined as the

surfaces where null geodesics change their focusing proper-
ties [18]. Mathematically, this kind of horizon is deter-
mined by the condition

θinθout ¼ 0; ð6Þ

where θin stands for the expansion of ingoing radial
null geodesics while θout denotes the expansion of out-
going radial null geodesics, respectively. Regions where
θinθout < 0 are called regular. In the opposite case,
θinθout > 0, the region is called anti-trapped if θin > 0
and θout > 0, and trapped if θin < 0 and θout < 0. In this
section, we are only considering expanding spacetimes, i.e.,
HðtÞ > 0. The trapping horizons for the McVittie metric
occur for θin ¼ 0, and null outgoing geodesics are always
expanding (θout > 0) [15,16].
We show in Figs. 1 and 2 the location of the trapping

horizons in the McVittie spacetime for the ΛCDM model
[19] and for a dust background. In the first case, the
corresponding Hubble factor is HðtÞ ¼ H0 coth ð3=2H0tÞ,
where H0 is the Hubble constant, while in the second case
HðtÞ ¼ 2=3t [16]. The essential difference between these
two cosmological models is the asymptotic behavior of the
Hubble factor in the future: HðtÞ → H0 for t → ∞ in the
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ΛCDM model whereas HðtÞ → 0 for t → ∞ in a dust-
dominated background.
There is a moment in time, denoted t⋆, when just one

trapping horizon exists. It can be computed by solving the
following equation:

m0Hðt⋆Þ ¼
1

3
ffiffiffi
3

p : ð7Þ

If the cosmological background corresponds to the ΛCDM
model,

t⋆ΛCDM ¼ 2

3H0

arcoth

�
1

3
ffiffiffi
3

p
m0H0

�
; ð8Þ

and when the cosmological background is dust-dominated,

t⋆dust ¼ 2
ffiffiffi
3

p
m0: ð9Þ

Inspection of Figs. 1 and 2 reveals that when t > t⋆ there
are two trapping horizons: an inner (denoted R−) and an
outer one (denoted Rþ), such that Rþ > R−. No trapping
horizons are present for t < t⋆. In both figures, the regular
region of the spacetime is indicated in white while the
antitrapped region is painted in light pink. The dot-dashed
curve indicates the location of the singularity.
Due to spherical symmetry, the equation for the ingoing

and outgoing radial geodesics can be derived by setting
dθ ¼ dϕ ¼ 0 in ds2 ¼ 0, thus obtaining

dR
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R

p �
HR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R

p �
; ð10Þ

where the “−” (“þ”) corresponds to the ingoing (outgoing)
case. We see that dR=dt > 0 for the outgoing branch, i.e.,
such geodesics are always diverging. This result is con-
sistent with the fact that θout > 0, as mentioned above. We
plot these trajectories in Figs. 3 and 4.
As seen from Eq. (10), only radial ingoing null geodesics

have a turning point, defined by dR=dt ¼ 0, and specified
by those values of the coordinates R and t that obey the
following equation:

f̃ðt; RÞ ¼ HðtÞ2R3 − Rþ 2m0 ¼ 0: ð11Þ

Clearly, Eq. (11) is equivalent to θin ¼ 0. From Figs. 5
and 6 we see that the radial ingoing geodesics are
expanding in the antitrapped region (θin > 0) and they
converge in the regular zone (θin < 0). When they cross the
trapping horizon (θin ¼ 0 or equivalently f̃ðt; RÞ ¼ 0),
their convergence changes sign.
We emphasize that trapping horizons are not equivalent

to event horizons in the context of dynamical spacetimes.
As shown in Figs. 3 and 4, some outgoing geodesics cross
both R− and Rþ. In Fig. 5, the green, yellow, brown, and
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FIG. 1. The black line indicates the location of the trapping
horizons in McVittie spacetime for the ΛCDM model. The white
zone corresponds to the regular region while the light pink
corresponds to the antitrapped region, respectively. The dot
dashed line denotes the location of the singularity. Here, we
fixed m0 ¼ 0.479 and H0 ¼ 1=3 as an example.
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FIG. 2. The black line indicates the location of the trapping
horizons in McVittie spacetime for a dust background model. The
white zone corresponds to the regular region while the light pink
corresponds to the anti-trapped region, respectively. The dot
dashed line denotes the location of the singularity. Here, we fixed
m0 ¼ 0.479 as an example.
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blue geodesics cross Rþ and enter the regular region of
the spacetime; as time goes by, they get closer and closer
to the surface R−. We stress that for finite values of the
time coordinate, R− is just a trapping horizon. Only in the
limit t → ∞, R− becomes an event horizon and outgoing
geodesics cannot travel out of the black hole. In fact,
Kaloper and collaborators [15] proved that, under certain
assumptions, the analysis of the behavior of ingoing null
geodesics in the limit t → ∞ reveals the presence of an
event horizon.
Assuming that Hðt → ∞Þ → H0 ¼ constant, two surfa-

ces are particularly relevant in this spacetime [15]:
(i) A null surface at R ¼ R−, t → ∞, where R−

is the smaller positive root of f̃ðt → ∞; RÞ ¼
H2

0R
3 − Rþ 2m0 ¼ 0.

(ii) A null surface at R ¼ Rþ, t → ∞, where Rþ
is the larger positive root of f̃ðt → ∞; RÞ ¼
H2

0R
3 − Rþ 2m0 ¼ 0.

If the null energy condition is satisfied, it was demonstrated
in Ref. [15] that:
(1) Null ingoing geodesics in the regular region of the

spacetime cross the surface R ¼ R−, t → ∞ at a
finite value of the affine parameter.

(2) Such surface is regular (i.e., all the squared curvature
invariants constructed with the Riemann tensor and
its contractions are finite on it) [20].

(3) Once the geodesics transverse the surface R ¼ R−,
t ¼ t∞, they are in a trapped region since
θinθout > 0 there.

Consequently, those geodesics that go through the surface
R ¼ R−, t → ∞, will not cross it again in the opposite
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FIG. 4. Radial outgoing null geodesics in McVittie spacetime
for a dust cosmological background. The black line indicates the
location of the trapping horizons and the dot-dashed line denotes
the singular surface R ¼ 2m0. Here, we fixed m0 ¼ 0.479 as an
example.
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FIG. 5. Radial ingoing null geodesics in McVittie spacetime for
the ΛCDM model. The black line indicates the location of the
trapping horizons and the dot-dashed curve denotes the singular
surface R ¼ 2m0. Here, we fixed m0 ¼ 0.479 and H0 ¼ 1=3 as
an example.
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FIG. 3. Radial outgoing null geodesics in McVittie spacetime
for the ΛCDM model. The black line indicates the location of the
trapping horizons and the dot-dashed line denotes the singular
surface R ¼ 2m0. Here, we fixed m0 ¼ 0.479 and H0 ¼ 1=3 as
an example.
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FIG. 6. Radial ingoing null geodesics in McVittie spacetime for
a dust cosmological background. The black line indicates the
location of the trapping horizons and the dot-dashed curve
denotes the singular surface R ¼ 2m0. Here, we fixed m0 ¼
0.479 as an example.
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direction. This is precisely the situation in the presence of
an event horizon. The conclusion is that the solution
represents a black hole with an horizon at R ¼ R− at
large times.
Using a similar procedure as the one describe above,

Lake and Abdelqader (see Appendix D in [16]) also
demonstrated that in the case Hðt → ∞Þ → H0 ¼ 0 (for
instance, the dust-dominated background previously dis-
cussed), the McVittie metric represents a black hole in
the future.
Having presented the main features of the McVittie

solution, we introduce in the next section the cosmological
background model that we adopt in this work.

III. SCALE FACTOR FOR A BOUNCING
COSMOLOGICAL MODEL

Cosmological models that display a bounce solve by
construction the initial singularity problem, as well as the
horizon and flatness problems of the standard cosmological
model [21]. Such models can also produce primordial
cosmological perturbations from vacuum fluctuations, with
an almost scale-invariant spectrum [22], and can be viewed
either as an alternative or a complement to inflation (see
for instance Ref. [23]). Typically, models with a bounce
join a contracting phase, in which the Universe was very
large and almost flat initially, to a subsequent expanding
phase. The bounce can be either generated classically (see,
e.g., Refs. [24–26]), or by quantum effects (see, e.g.,
Refs. [22,27–29]). Since our aim is to investigate the
effects of the bounce on the McVittie solution, with no
intention at this stage to build a complete cosmological
model, our choice of the regular model will be guided by
simplicity. The expression for the scale factor we adopt as
background in our work, given by

aðtÞ ¼ a0

�
1þ

�
t
t0

�
2
�
1=3

; ð12Þ

was found in [30] by considering quantum corrections to
the classical evolution of the scale factor. The corrections
were obtained by solving the Wheeler-deWitt equation in
the presence of a single perfect fluid, in the framework of
the de Broglie-Bohm quantum theory [31]. Other quanti-
zation methods yield the same evolution for the scale factor,
see Refs. [32–34]. Notice that the scale factor reduces to
that of dust for t ≫ t0, and leads to an evolution that is
dominated near the bounce by an effective fluid with
negative energy density that scales as a−6, as can be seen
from Friedman’s equation [35].

IV. MCVITTIE SPACETIME IN A BOUNCING
COSMOLOGICAL MODEL

Our goal is to compute and analyze the causal structure
of the McVittie spacetime in a classical cosmological

bouncing model. As we discussed above, under certain
assumptions, the McVittie metric represents a black hole. In
what follows, we will examine how this solution behaves
before, during, and after the bounce, and whether a black
hole is present in any of these stages of cosmological
evolution.

A. Trapping horizons and null geodesics

We begin by computing the trapping horizons using
Eq. (11) and the Hubble factor

Hðt̃Þ ¼ 2

3t0

t̃
1þ t̃2

; ð13Þ

in the time interval −∞ < t̃ < þ∞ [37]. In Eq. (13), the
new variable t̃ is defined as t̃≡ t=t0. In what follows, to
simplify the notation, we replace t̃ by t. We rewrite Eq. (11)
recovering the corresponding units:

HðtÞ2
c2

R3 − Rþ 2
Gm0

c2
¼ 0: ð14Þ

Defining a new dimensionless variable as x≡ R=
ðGm0=c2Þ, the latter equation takes the form

α2HðtÞ2x3 − xþ 2 ¼ 0; ð15Þ

where α ¼ Gm0=c3. In order to solve this cubic equation,
we express (15) as [38]

α2HðtÞ2x3 − 3α2HðtÞ2δ2xþ 2 ¼ 0: ð16Þ

Here, δ2 ≡ 1=ð3α2HðtÞ2Þ. By performing the change of
variables x ¼ 2δ sinϕ, and after some simple algebraic
manipulations, Eq. (16) becomes

2α2HðtÞ2δ3ð4 sin3 ϕ − 3 sinϕÞ þ 2 ¼ 0;

−α2HðtÞ2δ3 sin 3ϕþ 1 ¼ 0: ð17Þ

Trapping horizons exist only if 0 < sin 3ϕ < 1. In particu-
lar, let us focus on the case where the radial coordinate of
the trapping horizons coincides; this occurs for sin 3ϕ ¼ 1,
which in terms of Eq. (17) takes the form

3
ffiffiffi
3

p Gm0

c3
HðtÞ ¼ 1;⇒ t2 − 2

ffiffiffi
3

p Gm0

c3t0
tþ 1 ¼ 0: ð18Þ

The solutions for (18) are

t ¼
ffiffiffi
3

p Gm0

c3t0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffi
3

p Gm0

c3t0

�
2

− 1

s
: ð19Þ
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Thus, depending on the value of the mass of the central
source m0 and t0, which fixes the timescale of the bounce,
we have the following three cases [39]:
(1) If

ffiffi
3

p
Gm0

c3 > t0, then there are two values of t
where X− ¼ Xþ.

(2) If
ffiffi
3

p
Gm0

c3 ¼ t0, then there is only one value of t
where X− ¼ Xþ.

(3) If
ffiffi
3

p
Gm0

c3 < t0, then there is no value of t
where X− ¼ Xþ.

According to Frion and collaborators [36], 103tPlanck <
t0 < 1040tPlanck, that is tmin

0 ¼10−41 s<t0<tmax
0 ¼10−4 s.

We show in Fig. 7 the range of allowed values for m0 (in
units of solar massesM⊙) according to the three conditions
described above: the black line indicates the conditionffiffiffi
3

p
Gm0=c3 ¼ t0. The light yellow zone corresponds to

values of m0 and t0 such that
ffiffiffi
3

p
Gm0=c3 > t0, while the

light red region satisfies the condition
ffiffiffi
3

p
Gm0=c3 < t0.

From a physical point of view, it seems more attractive
to consider a bounce timescale close to the allowed upper
limit (tmax

0 ¼ 10−4 s), that is, in the limit between a
classical and quantum bounce. In such scenario, matter
inhomogeneities that existed in the contracting phase
might be able to go through the bounce and also be
present in the expanding epoch. On the other hand, Carr
and Kühnel [40] have recently showed that primordial
black holes in the mass range 10 M⊙ < M < 102 M⊙
could be relevant to provide a fraction of the dark matter
in the universe as well to explain the observed LIGO/
Virgo coalescence events in the mass range Oð10Þ M⊙.
Therefore, in what follows we choose for m0 and t0, m0 ¼
50 M⊙ and t0 ¼ 5 × 10−5 s. The structure of the trapping

horizons that will be analyzed in this work corresponds
to case 1.
The trapping horizons are plotted in Fig. 8: the lower plot

zooms into the region near the bounce. Very close to t ¼ 0,
just before and after the bounce, there is a trapping horizon.
This surface is absent, for instance, in McVittie spacetime
for the dust-dominated background (see Fig. 2). In Sec. VII,
we argue that this horizon is a particular feature related to
the presence of the bounce.
There are two additional trapping horizons for negative

and positive values of the cosmic time, respectively. The
shape of these surfaces is qualitatively similar compared to
the trapping horizons in the McVittie solution for the dust
background (see Fig. 2): for t > 0 there is a moment in time

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
0

2
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14

t0 [s]

m0 [M ]

FIG. 7. The black line indicates the conditionffiffiffi
3

p
Gm0=c3 ¼ t0. The light yellow zone corresponds to values

of m0 and t0 such that
ffiffiffi
3

p
Gm0=c3 > t0 while the light red

region satisfies the condition
ffiffiffi
3

p
Gm0=c3 < t0. Here, m0 is in

units of solar masses M⊙.
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FIG. 8. The black lines indicate the location of the trapping
horizons. The white zones correspond the regular regions, the
light pink zone indicates the antitrapped region and the light blue
zone denotes the trapped region. The dot dashed curve denotes
the location of the singularity. The lower plot zooms into the
region near the bounce. Here,m0 ¼ 50 M⊙, and t0 ¼ 5 × 10−5 s.
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when a single trapping horizon begins to exist and
immediately after an inner X− and outer Xþ trapping
horizons emerge. In the limit t → ∞, X− → 2.
The second root of Eq. (11), namely Xþ, is given by [10]

Xþ ¼ c3

Gm0

�
1

HðtÞ cosψðtÞ −
1ffiffiffi

3
p

HðtÞ sinψðtÞ
�

ð20Þ

where sin 3ψðtÞ ¼ 3
ffiffiffi
3

p
Gm0HðtÞ=c3. For the Hubble fac-

tor given by Eq. (13), Xþ → ∞ when t → �∞, and thus
Xþ becomes a FLRW null infinity [15].
The shape of the curve of the horizons is symmetric with

respect to the axis t ¼ 0. In the limit t → −∞, X− → 2. As
we approach the bounce, X− increases while Xþ decreases
up to they merge. The symmetry for the trapping horizons
with respect to t ¼ 0 is rooted in the equation that defines
these surfaces [see Eq. (11) or (15)], which is quadratic in
the Hubble factor.
The white zones in Fig. 8 indicate the regular regions of

the spacetime (θinθout < 0), the light pink zone corresponds
to the antitrapped region (θinθout > 0, being θin > 0 and
θout > 0), and the light blue zone marks the trapped
region (θinθout > 0, being θin < 0 and θout < 0). The dot-
dashed curve marks the location of the singularity x ¼ 2
for t finite.
We also compute the trajectories of ingoing and outgoing

radial null geodesics by integrating Eq. (10). The behavior
of the geodesics changes before and after the bounce:

(i) Outgoing null geodesics are always expanding
(ðdx=dtÞout > 0) for t > 0, as can be seen in Fig. 9.
Radial ingoing geodesics expand in the antitrapped
region until they cross the trapping horizon; once in
the regular region of the spacetime ðdx=dtÞin < 0,
they all seem to tend asymptotically to the surface
X− ¼ 2, t ¼ ∞, as shown in Fig. 10. Below, we
will provide a more detail analysis of the properties
of the ingoing null geodesics in the limit t → ∞,
which is essential to establish whether a black hole
is present.

(ii) Ingoing and outgoing radial null geodesics reverse
their character for t < 0. Now, all ingoing trajecto-
ries are expanding to the past of the bounce (for
increasing negative values of the t coordinate). This
is in Fig. 10. Outgoing null geodesics converge in
the trapped region. To the past of these geodesics,
they seem to come from the surface X−¼2, t ¼ −∞
(see Fig. 9). In Sec. VI we offer a possible inter-
pretation of the McVittie solution before the bounce
takes place.

In Figs. 11 and 12 we offer a close up of the region near
the bounce showing the behavior of the outgoing and
ingoing null geodesics. Some null geodesics (painted in
blue and red in Fig. 11) start at the remote past near x ¼ 2,
go through the bounce and expand getting away from
the central inhomogeneity. The same occurs for some

ingoing geodesics. This does not happen in any McVittie
model without a bounce analyzed so far in the literature;
in those spacetimes the singularity at x ¼ 2m0, t finite,
lies in the causal past of all events, and thus it is
regarded as a cosmological big bang singularity [15].
In the present model, the existence of a cosmological
bounce renders only some spacetime trajectories geo-
desically incomplete.
The equation for the ingoing radial geodesics in terms of

the Hubble factor (13) takes the form

dx
dt

				
in
¼ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p �
2α

3

t
1þ t2

x −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p �
; ð21Þ

where α ¼ Gm0=ðc3t0Þ. Before the bounce, the Hubble
factor can be rewritten as HðtÞ ¼ −2t=ð3t0ð1þ t2ÞÞ where
t > 0. Replacing into (21):
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FIG. 9. Radial outgoing geodesics in McVittie spacetime for a
bouncing cosmological background. The black line indicates
the location of the trapping horizons while the dot dashed
curve denotes the location of the singularity. The lower plot
zooms into the region near the bounce. Here, m0 ¼ 50 M⊙,
and t0 ¼ 5 × 10−5 s.
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dx
dt

				
in
¼ −

�
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p �
2α

3

t
1þ t2

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p ��

¼ −
dx
dt

				
out
; ð22Þ

for t > 0. Thus, we can see that the trajectories of ingoing
null geodesics, before the bounce, are the reflection of the
trajectories of outgoing null geodesics after the bounce.
In the same way, we express the equation for the

outgoing null geodesics before the bounce as:

dx
dt

				
out

¼ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p �
−
2α

3

t
1þ t2

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p �

¼ −
1

α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p �
2α

3

t
1þ t2

x −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2=x

p ��

¼ −
dx
dt

				
in
; ð23Þ

for t > 0. We conclude that the congruence properties of
outgoing null geodesics before the bounce are the same that
for ingoing null geodesics after the bounce.

V. SPACETIME STRUCTURE AFTER THE
BOUNCE

In order to prove that the surface X− ¼ 2, t ¼ ∞ is an
event horizon the following conditions must be fulfilled:
(a) null ingoing radial geodesics reach X− ¼ 2, t ¼ ∞ in a
finite interval of an affine parameter; (b) the surface
X− ¼ 2, t ¼ ∞ is regular.
To check if condition (a) is met, we make the following

change of variables [16]:

z ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 −

2

x

r
; ð24Þ
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FIG. 11. Radial outgoing geodesics in McVittie spacetime for a
bouncing cosmological background in the region close to the
bounce. The black line indicates the location of the trapping
horizons while the dot dashed curve denotes the location of the
singularity. Here, m0 ¼ 50 M⊙, and t0 ¼ 5 × 10−5 s.
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FIG. 12. Radial ingoing geodesics in McVittie spacetime for a
bouncing cosmological background in the region close to the
bounce. The black line indicates the location of the trapping
horizons while the dot dashed curve denotes the location of the
singularity. Here, m0 ¼ 50 M⊙, and t0 ¼ 5 × 10−5 s.
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FIG. 10. Radial ingoing geodesics in McVittie spacetime for
a bouncing cosmological background. The black line indicates
the location of the trapping horizons while the dot dashed
curve denotes the location of the singularity. The lower plot
zooms into the region near the bounce. Here, m0 ¼ 50 M⊙,
and t0 ¼ 5 × 10−5 s.
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l ¼ 1

1þ αHðtÞ ; ð25Þ

where 0 ≤ z ≤ 1 (2 ≤ x < ∞) and 0 < l < 1.
Since we are interested in the behavior of the geodesics

for large values of t, we restrict the integration in terms of l
in the interval 0.75 ≤ l < 1.
Given the expressions (24) and (25), the equations for the

ingoing geodesics (10) take the form

dz
dl

¼ ð1 − z2Þ2
4

�
2ð1 − lÞ
lð1 − z2Þ − z

�
dt
dl

; ð26Þ

dl
dt

¼ 9þ l½−β þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−9þ βl

p �
3l4

; ð27Þ

β ¼ 18þ ðα2 − 9Þl: ð28Þ

In Fig. 13, we plot the solution of the numerical
integration of Eq. (26) for five different initial conditions.
Clearly, radial ingoing null geodesics reach the surface
x ¼ 2 (z ¼ 0) for l ¼ 1.
One way to decide whether condition (b), i.e., that X− is

regular at large values of t, is valid or not is to calculate the
components of the Riemann tensor using an appropriate
Vierbein, and evaluate them on null geodesics approaching
the surface. Since the model given by Eq. (13) behaves as a
model dominated by dust for large t, namely

HðtÞ ≈ 2

3t
; ð29Þ

we can use the result (valid for large values of t) obtained
in [15]:

t ¼ 2x

3
ffiffiffiffiffiffiffiffiffiffi
1 − 2

x

q ; ð30Þ

or, in terms of the variables z and l:

lz3 − lz − 2lþ 2 ¼ 0: ð31Þ

Figure 14 shows that the asymptotic form of the null
ingoing geodesics [given by Eq. (31)] describes extremely
well the result of the exact numerical integration. Using
GRTENSOR II [41], we have calculated the components of
the Riemann tensor in the following Vierbein:

½ejμ� ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðtÞ2r2 þ f

p
0 0 0

HðtÞr 1ffiffiffiffiffiffiffiffiffi
1−2m0

r

p 0 0

0 0 r 0

0 0 0 r sin θ

1
CCCCCA: ð32Þ

The evaluation of the components on the null ingoing
geodesics using (30) leads to finite values. Hence, the
surface is regular. We have also evaluated, in the same limit,
invariants built with first or second derivatives of tensors
associated with curvature, such as ð∇μRÞð∇μRÞ and
ð∇μ∇νRÞð∇μ∇νRÞ, using RGTC [42]. While invariants
of the first kind yield a finite result, those of the second kind
are divergent, in agreement with the result found in [15].
Such a divergence does not influence the finiteness of the
tidal forces, and is probably a consequence of the finite
differentiability of the quantities describing the fluid [43].
We conclude that the solution contains a black hole after

the bounce.
Using the change of variables given by Eqs. (24) and

(25), we also integrate the trajectories of outgoing null
geodesics. We show in Fig. 15 the trajectory of a future-
directed outgoing null geodesic that emerges from the
singular point ðl; zÞ ¼ ð0; 0Þ, that is ðt; xÞ ¼ ð0; 2Þ and
reaches z ¼ 1 (x → ∞) in a finite interval of time. Thus, we
see that a naked singularity is present in the expanding
phase up to the formation of the black hole.
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FIG. 13. Trajectories of radial ingoing null geodesics in the z–l
plane for McVittie spacetime in a bouncing cosmological model.
Here, m0 ¼ 50 M⊙, and t0 ¼ 5 × 10−5 s.
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FIG. 14. Closeup in the z–l plane showing the trajectories of
radial ingoing null geodesics approaching the surface x ¼ 2.
Expression (31) is represented by the dotted black curve. Here,
m0 ¼ 50 M⊙, and t0 ¼ 5 × 10−5 s.
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VI. SPACETIME STRUCTURE BEFORE
THE BOUNCE

We showed in Fig. 8 the existence of a trapped region,
that is θinθout > 0 where θin < 0 and θout < 0, for t < 0.
This region is bounded from below by inner ðX−Þ and outer
ðXþÞ trapping horizons for which θout ¼ 0. As we approach
the bounce, both horizons get closer and at

t ¼ t� ¼ −

 ffiffiffi
3

p Gm0

c3t0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffi
3

p Gm0

c3t0

�
2

− 1

s !
; ð33Þ

only a trapping horizon exist for X− ¼ Xþ ¼ 3. If we
choosem0¼50M⊙, and t0 ¼ 5 × 10−5 s, then t� ¼ −16.9.
In Sec. IVA, we proved that Xþ is a null infinity

(Xþ → ∞ for t → −∞). The inner horizon X−, defined
for 2 < X− ≤ 3, covers the singularity and encloses a
trapped region. We illustrate this situation in Fig. 16 where

the light cone structure for small and negative values of t is
plotted. The light cones have the trapping horizon in their
local future. Both ingoing and outgoing null rays that cross
X− enter the trapped region and are unable to turn around
and escape. This horizon, thus, acts as a one way mem-
brane, hiding the singularity at x ¼ 2. This analysis leads us
to conclude that in the time interval −∞ < t < t� the
solution contains a black hole.

VII. DISCUSSION

Given the analysis of the causal structure of the space-
time offered in the previous sections, we now provide a
description of the evolution of the solution through cos-
mic time.
A black hole is present since the beginning of the

contracting phase. The inner trapping horizon X− increases
its radius as the contraction gathers pace. The range of
values of the radial coordinate for X− is 2 < X− ≤ 3.
Ingoing and outgoing null geodesics that cross the surface
X−, enter the trapped zone of the spacetime interior to
the black hole. Close to the bounce, at t� [see Eq. (33)], the
inner X− and outer Xþ trapping horizons merge and the
black hole ceases to exist. This situation lasts for a short
time. Trapping horizons appear again right before the
bounce, and vanish right after it. These horizons are absent
in other McVittie models (for instance, compare Figs. 1
and 2 with 8). We associate these surfaces with the
peculiarities of the cosmological background model, and
more specifically to the presence of the bounce. There is no
salient feature associated with these horizons: there, null
geodesics just change their convergence properties.
Afterwards, the universe begins to expand and an inner

X− and outer Xþ trapping horizons appear. For t → ∞, the
outer horizon becomes a FLRW null infinity, while X−
becomes an event horizon. Hence, as the universe expands
a black hole starts to form. We show in Fig. 17 the light
cone structure for the spacetime after the bounce. We see
that the surface x ¼ 2 is not in the local future of those light
cones: in the process of black hole formation (the event
horizon is not settled down) some geodesics are able to
escape from the central source. As the universe expands,
however, those outgoing geodesics that start at x < X−
have a smaller and smaller slope. In the limit t → ∞,
dx=dt → 0 for outgoing geodesics, as computed from
Eq. (10). This implies that outgoing null geodesics cannot
leave the surface x ¼ 2 and the region contained by such
boundary becomes trapped. In the distant future, the
McVittie solution for a bouncing cosmological model
harbors a black hole.
We show in Figs. 18 and 19 qualitative Penrose diagrams

of the McVittie spacetime for a bouncing cosmological
model in the expanding and contracting phase, respectively.
The dotted lines represent the trajectories of ingoing null
geodesics and the dashed lines the trajectories of outgoing
null geodesics. The black thick curve displays the trapping
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FIG. 15. Trajectory of a future-directed outgoing null geodesic
that emerges from the singular point ðl; zÞ ¼ ð0; 0Þ and reaches
z ¼ 1 (x → ∞) in a finite interval of time.
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FIG. 16. Light cone structure in McVittie spacetime for a
bouncing cosmological model in the region t < 0. The dotted
curves represent the null ingoing geodesics while the dot dashed
curves the null outgoing geodesics. The regions shaded in grey
show some light cones and the black arrow indicates the future
direction.
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inner (X−) and outer (Xþ) horizons. The straight red line
named Hþ (H−) represents X− → 2; t → ∞ (X− → 2,
t → −∞). There is a horizontal straight black line that

characterises the region where the bounce occurs, that is
t ¼ 0 and x > 2. To the left, a dashed black and yellow
line represents the singular surface x ¼ 2, t finite. As usual,
J þ (J −) denotes the future (past) null infinity.
In the expanding phase, all ingoing geodesics, regardless

of the initial conditions, reach the surface Hþ. Those
outgoing null geodesics that start at the bounce extend to
J þ. There are also future directed outgoing radial null
geodesics that emerge from the singular surface x ¼ 2,
t finite [this includes ðt; xÞ ¼ ð0; 2Þ]. The latter evidences
the existence of a spacelike naked singularity that lasts up
to the formation of the black hole which corresponds toHþ
in Fig. 18.
As shown in Sec. IVA, in the contracting phase, ingoing

and outgoing null geodesics reverse their character. Some
ingoing geodesics end up in the singular surface while
some others make it to the bounce. The same fate share
outgoing null geodesics; all of them begin in H−. A black
hole is present since the beginning of the contracting phase
until X− ¼ Xþ. The zone shaded in grey indicates the black
hole region.

VIII. CONCLUSIONS

In this work the causal structure of McVittie spacetime
for a bouncing cosmological background is analyzed. The
location of the trapping horizons is computed, and the
trajectories of null radial ingoing and outgoing null geo-
desics through cosmic time are obtained by numerical
integration. A detailed study of the asymptotic behavior of
the metric is provided. Our main result is that the solution
represents a dynamical black hole since the beginning of
the contracting phase up to shortly before the bounce, and
also in the distant future. Just before the bounce, the inner
and outer trapping horizons merge and the black hole
character of the solution is lost. After the bounce, the
central inhomogeneity starts to act again, and for large and
positive values of the cosmic time, a black hole is formed.
Thus, we see that the global dynamical state of the universe
directly affects the conditions for the existence of black
holes. In particular, for a contracting universe, black hole
solutions are possible up to certain minimum scales.
Unlike all other McVittie models analyzed in the

literature, there is no cosmological big singularity in the
present metric. In fact, the solution admits trajectories that
never encounter a singularity, that is, they are geodesically
complete. This peculiar feature of the model is related to the
occurrence of the bounce.
This work is a first step toward a better understanding of

black holes embedded in a bouncing cosmological back-
ground; the current solution does not take into account the
accretion of cosmological fluid by the central source. The
Generalized McVittie metric naturally incorporates this
effect by assuming an energy-momentum tensor of an
imperfect fluid [10]. It remains an open issue whether the
Generalized McVittie spacetime might contain a black hole

FIG. 18. Qualitative Penrose diagram of the McVittie spacetime
for a bouncing cosmological model in the expanding region
(t > 0). The dotted lines represent null ingoing geodesics while
the dashed lines null outgoing geodesics. Here, Hþ ¼ X− → 2,
t → ∞, and J þ is the future null infinity.

FIG. 19. Qualitative Penrose diagram of the McVittie spacetime
for a bouncing cosmological model in the contracting region
(t < 0). The dotted lines represent null ingoing geodesics while
the dashed lines null outgoing geodesics. Here, H− ¼ X− → 2,
t → −∞, and J − is the past null infinity.
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FIG. 17. Light cone structure in McVittie spacetime for a
bouncing cosmological model in the region t > 0. The dotted
curves represent the null ingoing geodesics while the dot dashed
curves the null outgoing geodesics. The grey shadow regions show
some light cones and the black arrow indicates the future direction.
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for a bouncing cosmological background. We shall explore
this issue in a future work.
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