
 

Ultraviolet sensitivity of the cosmological sequester
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We revisit the “sequester” proposal of Kaloper, Padilla and collaborators, in which the amplitude of the
cosmological constant is decoupled from large contributions due to loops containing Standard Model
particles. We review the different formulations of the model that have appeared in the literature, and
estimate the importance of a particular class of quantum corrections—those that dress the interaction
between the “rigid” scalars and infrared properties of the spacetime such as its 4-volume and integrated
curvature. In formulations that do not adequately sequester graviton loops we argue that dressing of these
interactions causes further failures of complete sequestration. We estimate the size of the effect and find that
it is typically smaller than the cosmological term directly induced by loops containing a single virtual
graviton. Meanwhile, in the most developed formulation of the scenario (where a rigid scalar couples to the
Gauss–Bonnet density), this dressing can be absorbed into a rescaling of the rigid fields and is therefore
harmless.
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I. INTRODUCTION

It is nearly 40 years since the cosmological constant
problem was first stated clearly [1,2]. (For the earlier
history, see Ref. [3,4].) Despite immense efforts over the
intervening decades, it remains the most enigmatic com-
ponent of the concordance cosmological model. The
problem is simple to state. Observation requires the
cosmological constant Λ to dominate the present Hubble
rate, and therefore 3H2

0M
2
P ≈ Λ. The measured value of H0

gives an estimate Λ ≈ 10−12 eV4. Meanwhile quantum
contributions to Λ from Standard Model particles are much
larger. Why, then, is the measured value so small?
The case for “fine tuning”.—The operational meaning

of Λ is less clear than other quantities that are known to
receive large quantum corrections, such as the running
couplings that appear in scattering amplitudes, because it
couples only at wave number zero where scattering does
not occur. Nevertheless, like any low-energy constant, Λ
presumably can be divided into an incalculable ultraviolet
contribution ΛUV from unknown physics lying above the
StandardModel, and an infrared contributionΛIR generated
by quantum corrections with Standard Model particles

running in the loops. We expect ΛIR ∼m4
t from loop

diagrams containing the top quark, which is the heaviest
Standard Model particle.1

It follows that Λ ¼ ΛUV þ ΛIR should be of order m4
t ∼

ð175 GeVÞ4 or larger unless ΛUV is accurately balanced to
cancel large contributions from ΛIR. The measurement Λ ∼
10−12 eV4 apparently implies that ΛUV is balanced so that
cancellation occurs to roughly 56 decimal places.2 The
scales that contribute to ΛUV and ΛIR are very different, so
there is no reason why ΛUV should be related to Standard
Model energies. This makes it unlikely that cancellation
happens by accident.
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1It is often said that the low-energy calculation yields
ΛIR ∼M4

P, but this is not justified. Although the vacuum energy
computed with a hard momentum cutoff is quartically divergent,
it must be remembered that cutoffs do not track dependence on
heavy masses [5]. The low-energy theory cannot yield a trust-
worthy dependence on any mass scale heavier than it contains
itself, and the heaviest mass described by the effective Lagran-
gian for the Standard Model is the top mass mt. See also Sec. 4.2
of Ref. [6], and Refs. [7–9], which show explicitly that the
quartically divergent terms cannot be interpreted as a dark energy
component.

If there is a contribution to the cosmological constant of order
∼M4

P, it comes from ΛUV and not ΛIR. For example, this might
happen if local field theory remains valid all the way up to the
Planck scale, and the low-energy gravitational force is generated
by integrating out one or more particles of mass ∼MP. But the
outcome could be different if local field theory fails as a good
approximation to Nature at some much lower scale.

2The large number of decimal places required is because
cancellation has to occur in ΛUV þ ΛIR.
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Unless new physics changes the relationship between Λ,
ΛIR and ΛUV, the most plausible conclusion is that what-
ever determines ΛUV must be constrained by some prin-
ciple forcing Λ to be nearly zero. Such a principle would
strongly violate decoupling, because it would make the
Wilson coefficients of the low-energy action into highly
sensitive functions of the ultraviolet boundary condition.
The apparent tuning we observe would be a consequence of
this exquisite sensitivity.
It is certainly possible that the correct resolution of the

cosmological constant problem involves a failure of decou-
pling along these lines. Unfortunately, modern ideas in
particle physics have not yielded any candidate principle
that could be responsible for the smallness of Λ. Moreover,
the failure of decoupling makes robust low-energy model
building difficult. For these reasons it is now more common
to look for an alternative resolution.
Overview of this paper.—In this paper we revisit the

“sequester” proposal of Kaloper & Padilla [10–13]. This is
a concrete scenario for new physics that changes the
argument given above by removing (“sequestering”) the
low-energy contribution from all Standard Model particles.
The outcome is that the observed cosmological constant Λ
would be set by ΛUV, unless there are further contributions
from new unsequestered sectors.
By itself the sequester (or at least its simplest versions)

would not explain the observed magnitude ofΛ.3 Even if all
matter species participate in sequestration, there would still
be a puzzle if we expect ΛUV to receive contributions larger
than 10−3 eV. This might be the case, for example, if low-
energy Einstein gravity is an effective description generated
by integrating out one or more Planck-mass particles. The
advantage of the sequester is that the small observed value
no longer requires cancellations between ΛUV and ΛIR. We
express this by saying that its value is technically natural
within the Standard Model. Whether or not it is technically
natural with respect to the ultraviolet model is a question
that can be resolved only when that theory is specified.
The status of arguments based on technical naturalness

has been called into question following the discovery of a
Higgs particle at M ∼ 125 GeV without new accompany-
ing particles [14,15]. In the formulation we are using,
“naturalness” has a clear meaning in terms of sensitivity—
or lack of it—to large corrections between widely separated
scales [16–18].4 This is not merely an aesthetic choice, and

accordingly Nature may or may not be “natural” in our
sense. Nevertheless, it is reasonable to expect this concept
of naturalness to be a useful guide because experience has
shown that the vast majority of physical phenomena do
decouple in this way.
Clearly we should not be satisfied with a theory in which

Λ is made technically natural at the expense of other low-
energy constants that receive large ultraviolet corrections. If
this occurs we have not removed the problem, but merely
translated it from one low-energy sector to another. In this
paper we aim to apply this test to the sequester model.
Synopsis.—Two principal variants of the sequester have

been discussed in the literature. In the first version, one
works in the Einstein frame and couples the sequestered
sectors to a conformally rescaled metric. This version was
introduced in Refs. [10,11]; see Ref. [20] for a pedagogical
description. We describe it as the “Einstein frame model.”
The conformal rescaling dynamically adjusts mass scales in
the sequestered sector relative to the fixed Planck scale. A
global constraint couples the cosmological term to this
conformal factor, allowing it to absorb contributions from
pure matter loops. In this version, loops involving virtual
gravitons are known to reintroduce unsequestered correc-
tions to the observed Λ. We discuss this model and the
degree to which it ameliorates ultraviolet sensitivity of the
cosmological constant in Sec. II.
A second variant was introduced in Refs. [12,13]. In this

version one works in the Jordan frame and there is no
auxiliary rescaled metric. There are two global constraints,
the first of which couples the gravitational scale to the mean
Ricci curvature of spacetime. The second couples the
cosmological constant to the total spacetime volume and
a physical mass scale μ, which is a priori unknown. The is
the “Jordan frame model.” In this version one can adjust the
way in which the global constraints couple to spacetime
curvature so that loops of virtual gravitons are also
absorbed. This version of the sequester and its ultraviolet
properties are discussed in Sec. III. We conclude in Sec. IV.
Notation.—We work in units where c ¼ ℏ ¼ 1. The

(reduced) Planck mass is MP ≡ ð8πGÞ−1=2 ¼ 2.435×
1018 GeV. We express the cosmological constant in terms
of an energy scale Λwith engineering dimension ½M�4. The
corresponding “cosmological term” in the Einstein equa-
tions is Λ. We generally frame our calculations in
Minkowski space to avoid unneeded complexities associ-
ated with curved spacetime; because ultraviolet properties
do not depend on these curvature scales, this procedure
does not forfeit any essential generality.

II. EINSTEIN FRAME MODEL

A. The sequester action

In this section we briefly review the sequester mecha-
nism in Einstein frame [10,11], and discuss its ultraviolet
sensitivity. The gravitational action is written in terms of
the Einstein-frame metric gμν. Sequestration of one or more

3In Sec. III D we will see that the most developed version of
the sequester would absorb ΛUV in addition to ΛIR, at the cost of
introducing a new cosmological-like term associated with an
unknown scale μ. See Eqs. (33) and (34). Therefore, no matter
what strategy we choose, it seems that one cannot arrive at an
unambiguous prediction for the observed value of Λ.

4This is a broader definition than the original concept of
technical naturalness due to t’Hooft [19]. t’Hooft’s criterion that a
small parameter y is natural if the symmetry of the theory is
enlarged in the limit y → 0 is a sufficient but not necessary
condition for widely separated scales to decouple in this sense.
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matter sectors is achieved by coupling them to a con-
formally rescaled (Jordan-frame) metric g̃μν ¼ λ2gμν, viz.

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
RðgÞ − Λþ ΛUV − λ4Lmðg̃μν;ΨÞ

�

þ σ

�
Λ

λ4μ4

�
: ð1Þ

If multiple sectors are to be sequestered their actions should
appear additively. In Eq. (1), RðgÞ ¼ gμνRμνðgÞ is the Ricci
scalar constructed using the Einstein-frame metric gμν, Lm

is a matter Lagrangian density, and Ψ schematically stands
for the different species of sequestered matter fields. We
assume these to be the Standard Model fields. The low
energy contribution to the cosmological constant, ΛIR, does
not appear in Eq. (1) explicitly. It is generated by the
infrared part of loop corrections to Lm. The bare cosmo-
logical constant (if there is one), plus any contributions
from unsequestered sectors that have been integrated out to
produce (1), are included in ΛUV.
The quantity Λ is no longer the combination ΛUV þ ΛIR,

but is rather a new field that can loosely be regarded as a
counterterm for ΛIR. In particular, although it participates in
the path integral, we take Λ to have no local degrees of
freedom. It is determined classically by extremization of
the action. The dimensionless conformal rescaling λ is
taken to be a field of the same kind.
The global term σ is a function of Λ and λ in the specific

dimensionless combination Λ=ðλμÞ4. Critically, it does not
couple to either the Einstein- or Jordan-fame metric, and
therefore does not source the global gravitational field. The
scale μ has dimension [M], but its precise meaning depends
on the definition of σ. We will discuss its significance in
more detail in Sec. III B below. Finally, for reasons to be
explained below, we should take σ to be an odd function of
its argument. It is otherwise assumed to be an arbitrary
smooth function.
The rigidity of Λ and λ is unusual, but can be given a

local, microscopic basis in terms of integrals of a four-form
flux F4 over spacetime [12]. Such a flux is a top-order form
in d ¼ 4 dimensions and therefore acts as a volume form in
the integral

R
F4. In particular, this integral can be written

without requiring a metric. Borrowing terminology from
thermodynamics, we describe terms such as

R
F4 that do

not scale with gμν as intensive. Ordinary contributions to the
action such as

R ð⋆1Þ are conversely extensive. Notice that if
σ does not scale at least with the coordinate volume of
spacetime, this violates Hawking’s suggestion that the
action should be additive over cobordant regions in order
for quantum gravitational amplitudes to superpose cor-
rectly [21].

B. Low-energy phenomenology

We now consider low-energy solutions to (1). First,
notice that the matter contribution in (1) can be written5

Sm ≡ −
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lmðg̃μν;ΨÞ: ð2Þ

Therefore it is clear that the matter fields Ψ are minimally
coupled to the Jordan-frame metric g̃μν. By taking g̃μν to be
flat up to corrections from the Newtonian potential, it
follows that predictions for laboratory measurements in a
weak gravitational field will match those of the unseques-
tered Standard Model.
We conclude that the masses and other properties of the

Standard Model reported by the Particle Data Group [22]
are those measured in g̃μν. We denote these experimental
scales with a tilde, viz. M̃Z, m̃t. They are related to scales
measured in the metric gμν by a conformal rescal-
ing M̃Z → MZ ¼ λM̃Z.
Sequestering low-energy loops.—Extremization of (1)

with respect to Λ and λ yields,

σ0

ðλμÞ4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
; ð3aÞ

4
Λ

ðλμÞ4 σ
0 ¼

Z
d4x

ffiffiffiffiffiffi
−g̃

p
T̃μ

μ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Tμ

μ; ð3bÞ

where a prime 0 denotes differentiation of σ with respect to
its argument, and the Jordan-frame energy–momentum
tensor T̃μν measured with respect to g̃μν is defined by

T̃μν ≡ −
2ffiffiffiffiffiffi
−g̃

p δSm
δg̃μν

: ð4Þ

A similar definition applies for the Einstein-frame energy-
momentum tensor Tμν, which is measured with respect to
gμν. The two definitions are related by T̃μν ¼ λ−2Tμν. We
assume σ0 ≠ 0 at the extremum. To allow consistent
solutions with Λ < 0 but λ > 0 we require σ0ðxÞ to be
even, and hence σðxÞ must be odd, as stated above.
Taking the ratio of Eqs. (3b) and (3a) yields a constraint

for Λ,

Λ ¼ 1

4
⟪Tμ

μ⟫; ð5Þ

where ⟪ � � �⟫ denotes spacetime averaging in the metric
gμν, i.e., ⟪Q⟫≡ R

d4x
ffiffiffiffiffiffi−gp

Q=
R
d4x

ffiffiffiffiffiffi−gp
. Since we

assume σ is differentiable, Eq. (3a) requires the volume
of spacetime to be finite if we wish to avoid λ ¼ 0. (This
would conformally rescale all masses in the sequestered

5We take this as the definition of the matter action Sm.
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sector to zero.) It follows that the spacetime average ⟪Q⟫
can be defined, even if it is difficult to evaluate in practice.
The Einstein equation that follows from (1) is

M2
PGμν ¼ Tμν − ðΛ − ΛUVÞgμν

¼ Tμν −
1

4
⟪Tμ

μ⟫gμν þ ΛUVgμν; ð6Þ

where GμνðgÞ ¼ RμνðgÞ − RðgÞgμν=2 is the usual Einstein
tensor constructed from gμν. As explained above, the
σ term in the action does not couple to gμν and therefore
does not source a long-wavelength gravitational field.
Diffeomorphism invariance guarantees that any matter
loops renormalize the cosmological term in Lm measured
using g̃μν (see Fig. 2), and therefore

T̃μν ¼ Λ̃IRg̃μν þ τ̃μνðg̃;Ψ; � � �Þ; ð7Þ

where the “subtracted” energy–momentum tensor
τ̃μνðg̃;Ψ;…Þ vanishes outside matter. We have added a
tilde to ΛIR to indicate that it is built from scales such as m̃t
measured in a homogeneous gravitational field. When
expressed in terms of Tμν we obtain

Tμν ¼ λ4Λ̃IRgμν þ λ2τ̃μνðg̃;Ψ;…Þ; ð8Þ

It follows that the effective Einstein equation can be written

M2
PGμν ¼ τμν −

1

4
⟪τρρ⟫gμν þ ΛUVgμν: ð9Þ

The conclusion is that, in the Einstein equation, the low-
energy contribution ΛIR is removed to all orders in the loop
expansion of Lm.
What has been achieved?—To reiterate, this does not

“solve” the cosmological constant problem because we still
have no means to estimate ΛUV. Depending on the ultra-
violet model, it may be large. But since an estimate of ΛUV
was never the aim of the sequester, this criticism is unfair.
Instead, what has been achieved is that ifΛUV can somehow
be made small, its impact on the global spacetime geometry
is not destabilized by loops at much lower scales.
Loosely speaking, this analysis shows that the sequester

is not a field theory mechanism, in the sense that the
properties of loops are unmodified in the ultraviolet.
Rather, we have added a new form of matter Λ that is
constrained by its field equation to cancel the portion of the
vacuum energy sourced by matter loops. Ordinarily this
would be of no benefit, because the energy density
associated with Λ would itself gravitate. As explained
above, the special feature of the action forΛ is that its σ part
does not source any gravitational field. Heuristically, this
allows us to “degravitate” or “sequester” the vacuum
energy by storing it in σ. When stored in this way the
matter loops are gravitationally inert.

After vacuum loops have been sequestered, the effective
source term for the gravitational field is the subtracted
energy–momentum tensor τμν computed in the metric gμν,
together with a correction from its spacetime volume
average ⟪τρρ⟫. The size of this correction was estimated
in Refs. [10,11], who considered a model in which the
unsequestered contribution ΛUV was set to zero.
Nevertheless, there is something surprising about this

outcome. We are still working in the context of local field
theory, with its characteristic poor control of ultraviolet
effects. Where has the original ultraviolet sensitivity of the
cosmological term gone? The sequester does contain a new
physical ingredient, in the form of the σ-term that is
shielded from gravity. However, we have not introduced
a new physical principle that forcesΛ to capture the entirety
of ΛIR in this non-gravitating sector. Therefore one might
worry that quantum corrections “detune” the dynamical
equation for Λ, preventing complete sequestration of ΛIR
and reintroducing the low-energy cosmological term.
Radiative corrections.—Indeed, when discussing any

proposed solution to the cosmological constant problem it
is never sufficient to work at tree level. Like any naturalness
problem, the cosmological constant problem is intrinsically
quantum mechanical because it is only in a quantum theory
that loop corrections generate direct correlations between
widely separated scales. The conclusion is that radiative
corrections must be included before we can judge the merits
of any particular proposal.
A subset of relevant corrections were considered in

Refs. [10–13]. First, these authors considered a symmetry
λ → Ωλ, gμν → Ω−2gμν, Λ → Ω4Λ under which Eq. (1) is
invariant. They argued this was sufficient to guarantee that,
to all orders in matter loops, ΛIR would couple to Eq. (3b)
like the tree-level vacuum energy. In our presentation this
symmetry is implied by coupling Lm to the Jordan-frame
metric g̃μν but Λ to the Einstein-frame metric gμν. The loop-
level behavior of ΛIR then follows from diffeomorphism
invariance with respect to g̃μν. We will give a pedestrian
proof of these properties in Sec. II C below, based on
analysis of Feynman diagrams. As we show there, like all
global symmetries, this one is broken by coupling to
gravity.
Second, Refs. [10–13] studied the symmetry

Λ → Λþ λ4ν4, Lm → Lm − ν4 which they suggested
would guarantee that Λ absorbed ΛIR to all orders in
matter loops. [That is, that Λ and Tμν would appear
additively in the Einstein equation as in Eq. (6).] This last
symmetry is not in fact a transformation of the fields that
participate in the action, and is not respected by quantum
corrections.

C. Ultraviolet sensitivity in Einstein frame

This list does not exhaust the loop corrections to Eq. (1).
In particular, the analysis of Refs. [10–13] leaves open the
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issue of (i) corrections to the intensive global function σ
that “stores” the unwanted large loop terms; and (ii) cor-
rections to the extensive interaction

R
d4x

ffiffiffiffiffiffi−gp Λ. To study
corrections to σ would require a microscopic theory that
explains how the flux F4 is supported. The sequester
proposal does not aim to provide such a description.
(For recent attempts to describe an ultraviolet completion
of this kind, see Refs. [23–27].) We comment on this in
Sec. IV. On the other hand, the interaction term couples to
spin-2 excitations of the metric gμν, and will therefore be
“dressed” by loops containing off-shell quanta associated
with these excitations (cf. Ref. [28]). This is a model
independent effect, in the sense that it does not depend on
the microscopic origin of F4. In this section we aim to
enumerate these corrections and quantify their impact.
Loops respect diffeomorphism invariance.—First, we

pause to prove the property stated above, that pure matter
loops generate a cosmological term scaling as λ4 to all
orders in the loop expansion. This follows from diffeo-
morphism invariance with respect to g̃μν, but can also be
proved by direct analysis of Feynman diagrams. The results
will assist us in an analysis of corrections to theΛ coupling,
to be given below.
Consider any operator in Lm formed from a monomial of

nb bosonic fields and nf fermionic fields. After replacing
measured mass scales M̃ by their conformally rescaled
equivalents M ¼ λM̃, and performing the same replace-
ment k ¼ λk̃ for momenta, it can be checked that such an
operator scales like λnbþ3nf=2. Meanwhile, a boson propa-
gator scales like λ−2 whereas a fermion propagator scales
like λ−3. Therefore a diagram containing Ib internal boson
lines, Eb external boson lines, If internal fermion lines, and
Ef external fermion lines will scale like λD, where

D ¼ −2Ib − 2Eb − 3If − 3Ef þ
X
i

Ni

�
nb;i þ

3

2
nf;i

�
:

ð10Þ

Ni is the number of vertices of type i, each of which
contains nb;i bosonic fields and nf;i fermionic fields.
Each diagram must satisfy the topological identity

2I þ E ¼ P
k Nknk, where now I denotes the total number

of internal lines (whether bosons or fermions), E denotes
the total number of external lines,Nk denotes the number of
vertices of type k, and each type-k vertex connects nk lines.
To translate to an operator in the effective action we should
amputate external lines. Applying the identity separately to
the bosonic and fermionic components of the amputated
diagram, it follows that the effective operator will scale like
λDamp , where

Damp ¼ Eb þ
3

2
Ef: ð11Þ

(This analysis applies even if the bosonic and fermionic
components are disconnected, provided the assignment of
internal and external lines is the one appropriate for the
entire diagram.) No matter how complex the diagram,
Eq. (11) involves only the total number of amputated
bosonic and fermionic lines. Such a diagram will renorm-
alize operators that are polynomial in Eb bosonic fields and
Ef fermionic fields. The λ-dependence of this renormali-
zation will be λEbþ3Ef=2, the same as we deduced above for
unrenormalized operators in Lm. The conclusion, as has
already been stated, is that pure matter loops preserve the
λ-dependence of the coupling in Eq. (1).6

Stability of global constraint.—Next, we argue that
detuning the dynamical equation for Λ can prevent com-
plete sequestration. Specifically, to obtain complete can-
cellation in the Einstein equation, the factor of 4 that
appears on the far left of Eq. (3b) is required to match a
factor of 4 from the trace of the metric in Tμ

μ. Even a small
mismatch of these factors will leave a residual low-energy
cosmological term in Eq. (6).
While the 4 from the trace δμμ cannot be modified by

ultraviolet effects, the other factor of 4 is a consequence of
the power λ−4 appearing in the combination Λ=ðλμÞ4 that
enters the global function σ. We will argue below that this
factor can be renormalized by ultraviolet effects. It follows
that Eq. (1) may receive significant corrections from high
energies, and therefore fails the test for naturalness in the
sense we have defined.
How sensitive is the successful operation of the sequester

to the precise factor 4 in Eq. (3b)? If it is replaced
by 4ð1þ αÞ, the analogue of the sequestered Einstein
equation (9) becomes

M2
PGμν ¼

α

1þ α
λ4Λ̃IRgμν þ τμν

−
1

4ð1þ αÞ⟪τ
μ
μ⟫gμν þ ΛUVgμν: ð12Þ

As expected, there is now incomplete cancellation of ΛIR.
To estimate the magnitude of the residual cosmological
term requires a numerical estimate for λ. In a finite universe,
Eq. (3a) yields

λ ∼ σ0
Hage

μ
: ð13Þ

The mass scale Hage was introduced in Ref. [11] and
specifies the lifetime of the universe. This roughly deter-
mines the spacetime volume,

6Recall that this scaling applies after conformal redefinition of
the masses. From inspection of Eq. (1), one might expect the
cosmological term generated by matter to scale as λ4M̃4

SM, where
M̃SM is some characteristic Standard Model scale. This does not
conflict with (11) for Eb ¼ Ef ¼ 0 because after rescaling
MSM ¼ λM̃SM the cosmological term scales as λ0 as claimed.
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1

H4
age

∼
Z

d4x
ffiffiffiffiffiffi
−g

p
: ð14Þ

Clearly Hage < H0 ∼ 10−33 eV.
Reference [11] suggested that σ should be engineered to

obtain λ ¼ Oð1Þ. In this case, the effective gravitating
cosmological constant is roughly αΛIR ∼ αΛ̃IR ∼ αm̃4

t ,
assuming jαj ≪ 1. With these estimates, jαj must inherit
the tuning to 56 decimal places that was previously
required for the combination ΛUV þ ΛIR. If λ is made
smaller then α can be relaxed accordingly, but this scenario
encounters other difficulties [11].
Extensive corrections to the Λ coupling.—Let us now

estimate the model-independent corrections to the exten-
sive coupling −ΛV, where V ¼ R

d4x
ffiffiffiffiffiffi−gp

.
First, consider the two-loop correction that appears in the

left-hand diagram of Fig. 1. Regarded as a contribution to
the quantum effective action, this contains a single insertion
of a Λ vertex which is “bridged” to a pure Standard Model
loop by a pair of spin-2 excitations. This diagram is part of
a larger class of diagrams, represented by the right-hand
part of Fig. 1, in which an arbitrary number of Λ insertions
are bridged to a Standard Model subdiagram (of arbitrary
complexity) by graviton lines.
(These diagrams are not the only sources of renorma-

lization for the Λ coupling. We could equally well consider
diagrams in which the Λ insertions are embedded with-
in the Standard Model subdiagram. For our purpose,
it suffices to consider only a subclass of possible
renormalizations.)
According to the analysis given above, the λ dependence

of this Standard Model subdiagram can be computed from
Eq. (10). This time we are not amputating external lines, so
the scaling is λDsub where Dsub ¼ −Eb − 3Ef=2. Because
the subdiagram connects to the ring of Λ insertions via

graviton lines (which do not scale with λ) we have
Eb ¼ Ef ¼ 0. Meanwhile, counting the number of Λ
insertions and a factor M−2

P for each graviton propagator,
we conclude that such a diagram produces an operatorO in
the quantum effective action of the form

On ¼
cn

ð2πÞ4ðLþ1Þ M
4
SM

Λ
M4

P

�
Λ

M2
PM

2
SM

�
n−1

¼ cn
ð2πÞ4ðLþ1Þ Λ

nM−2ðnþ1Þ
P M6−2n

SM ; ð15Þ

where L counts the number of loops in the Standard Model
subdiagram and cn is a Wilson coefficient that can be taken
to be of order unity. The scale MSM represents a typical
Standard Model mass. After replacing MSM by its exper-
imentally-measurable counterpart M̃SM ∼ TeV, it follows
that O scales like λ6−2n.
To validate Eq. (15) we have evaluated the explicit two-

loop diagram given in the left-hand part of Fig. 1, for which
n ¼ 1. Using dimensional regularization as the ultraviolet
regulator, this yields the expected scaling

O1 ¼
c1

ð2πÞ8
λ4M̃4

SM

M4
P

Λ: ð16Þ

The factor ð2πÞ−8 is included from the measure on the loop
integrals. Equation (16) will be the leading correction
provided jΛj≲ ðMPMSMÞ2. This will generally be the case
where Λ is dynamically constrained to sequester a loop
contribution of orderM4

SM. The field equations corrected by
O1 are

ð1 − λ4ϵÞ σ0

ðλμÞ4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
; ð17aÞ

4ð1þ λ4ϵÞ Λ
ðλμÞ4 σ

0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Tμ

μ; ð17bÞ

M2
PGμν ¼ Tμν − ð1þ λ4ϵÞΛgμν þ ΛUVgμν; ð17cÞ

where ϵ≡ ð2πÞ−8c1ðM̃SM=MPÞ4 ≪ 1 and we have dropped
terms of Oðϵ2Þ. After eliminating Λ, the Einstein equation
can be written, still up to OðϵÞ [cf. (12)],

M2
PGμν ¼ ððλ4ϵÞΛIR þ ΛUVÞgab þ τμν −

1

4
⟪τρρ⟫: ð18Þ

We have omitted OðϵÞ corrections if they merely perturb
existing terms of order unity. The conclusion is that O1

corrects Eqs. (17a)–(17b) differently, and therefore renorm-
alizes the relative factor 4 between their left-hand sides.
As in the analysis leading to Eq. (12), this O1-corrected

factor no longer cancels the exact 4 coming from δμμ,
leaving a residual loop term in Eq. (18). This outcome is

FIG. 1. Loops renormalizing the coupling of Λ to the spacetime
volume. Left: loop with single insertion of Λ vertex, represented
by the open circle. Wiggly lines represent spin-2 excitations of
the metric gμν; solid lines represent Standard Model fields. This
diagram renormalizes the coefficient of Λ in σ. Right: loop
containing n insertions of Λ. This diagram renormalizes the
coefficient of Λn in σ. The shaded circle represents any Standard
Model sub-diagram. The left-hand diagram is a particularly
simple example of the class represented by the right-hand
diagram.
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practically inevitable. In this formulation of the sequester,
one is attempting to balance a protected topological
quantity δμμ against the properties of a class of unprotected
Lagrangian operators. One is immune from ultraviolet
effects but the other is not, making the balance extremely
delicate.
Size of residual loop-level term.—How significant is this

effect? Taking λ of order unity and M̃SM of order 1 TeV
makes ϵ of order 10−68, or possibly as large as 10−62 if we
omit the loop-counting factor ð2πÞ−8 on the assumption it is
partially cancelled by combinatorial factors. Meanwhile if
Λ̃IR is also of order 1 TeV then the residual loop-sourced
cosmological term in (18) is of order ð10−4 eVÞ4 to
ð10−5 eVÞ4, or ð10−4 eVÞ4 to ð10−3 eVÞ4 if the loop-
counting factor is omitted. This is on the boundary of
being acceptable given current observational constraints.
The outcome is that whether the Einstein-frame model

can survive ultraviolet corrections to the extensive coupling
is model-dependent. Assuming the sequestered sector to be
the Standard Model gives a barely acceptable phenom-
enology, with success or failure largely dependent on
whether λ is larger or smaller than unity.
Alternatively, if the sequestered sector contains particles

that are heavier than the Standard Model—for example,
perhaps from a higher-lying supersymmetric sector—then
the model is unlikely to survive unless λ is significantly
smaller than unity. If the heaviest sequestered mass scale is
even 10 TeV then the residual cosmological constant is
already in excess of the observed value.

III. JORDAN FRAME MODEL

A. Graviton loop corrections

The radiative corrections described in Sec. II C above
involved loop diagrams containing virtual Einstein-frame
gravitons that dress the Λ coupling to the spacetime
volume. There is a further class of diagrams of this type
that are significant in the Einstein frame. These are loop
diagrams containing virtual gravitons that contribute to the
low-energy cosmological constant. As explained in
Ref. [13], and as we will review below, these contributions
escape the sequester.
Consider the left-hand diagram of Fig. 2, which is a loop

diagram containing only matter fields. As explained in the
discussion leading to Eq. (11), this diagram has Eb ¼ Ef ¼
0 external lines and therefore scales like λ0 multiplied by
M4

SM. Expressed in terms of the mass measured in a
homogeneous gravitational field this is ∝ λ4M̃SM.
Diagrams containing virtual gravitons.—Now consider

the right-hand diagram of Fig. 2. In addition to matter fields
(represented by the solid lines), this contains an internal
graviton (represented by the wiggly line). Each graviton
propagator is proportional to the fixed Planck scale M−2

P
with no conformal rescaling. It follows on dimensional
grounds that a renormalization of the cosmological term

with zero external lines, any number of internal matter
lines, and ng internal graviton lines, will scale as

M
4þ2ng
SM =M

2ng
P ∝ λ4þ2ng .7 If ng ≠ 0 these diagrams do not

preserve the λ dependence of Eq. (1) [13].

B. Jordan-frame formulation

To solve this, Ref. [13] proposed an alternative descrip-
tion of the sequester that we review below. It is based on a
reformulation of Eq. (1) in the Jordan frame [12]. We wish
to analyze the ultraviolet properties of this formulation
separately, so we discuss it here before going on to consider
the problem of capturing diagrams containing virtual
gravitons.
In Eq. (1) the gravitational action is built from gμν, but

matter couples to g̃μν. The conformal factor between gμν
and g̃μν adjusts the importance of the matter action Lm

relative to the fixed Einstein term RðgÞ. Alternatively, one
can build the action solely from the Jordan-frame metric,
leaving the relative importance of the Einstein term as a free
parameter,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κ2

2
R − Λþ ΛUV − Lm

�

þ σ

�
Λ
μ4

�
þ σ̂

�
κ2

M2
P

�
: ð19Þ

This is the Jordan-frame formulation of the sequester. The
gravitational coupling is set by κ, which is related toMP by
the global term σ̂. As with σ, this should be a smooth

FIG. 2. Diagrams contributing to renormalization of the cos-
mological constant in the Einstein frame. Solid lines represent
generic Standard Model particles, and wiggly lines represent
spin-2 excitations of the metric gμν. Left: pure Standard Model
loop. This diagram scales like λ4 when expressed in terms of
experimentally-measured mass scales, and is captured by the
sequester. Right: mixed Standard Model and graviton loop.
Because the Einstein-frame graviton propagator is proportional
to the hard scale M−2

P , this diagram must scale like λ6 rather than
λ4. As explained in the main text, this implies it is not captured by
the sequester in Einstein frame.

7Such scalings are possibly modified by powers of logarithms,
but we drop these unless they are dominant.
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function of its argument and is assumed to be produced by
integration of a second flux,

R
F̂4. The Einstein frame

metric gμν does not appear.
Sequestration of low-energy loops.—The field equations

that follow from (19) are

κ2Gμν ¼ Tμν − ðΛ − ΛUVÞgμν; ð20aÞ

1

μ4
σ0
�
Λ
μ4

�
¼

Z
d4x

ffiffiffiffiffiffi
−g

p
; ð20bÞ

1

M2
P
σ̂0
�
κ2

M2
P

�
¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p R
2
: ð20cÞ

Using the definition of spacetime average ⟪ � � �⟫ given in
Sec. II B, Eqs. (20b)–(20c) require

⟪R⟫ ¼ −2
μ4

M2
P

σ̂0

σ0
: ð21Þ

Meanwhile, tracing the Einstein equation (20a) and taking
the spacetime average, we find

⟪R⟫ ¼ −
1

κ2
½⟪Tμ

μ⟫ − 4ðΛ − ΛUVÞ�: ð22Þ

Equations (21) and (22) must hold simultaneously, and
therefore

Λ − ΛUV ¼ 1

4
⟪Tμ

μ⟫ −
μ4

2

κ2

M2
P

σ̂0

σ0
: ð23Þ

Finally, we replace Λ in the Einstein equation to obtain

κ2Gμν ¼ Tμν −
1

4
⟪Tμ

μ⟫þ μ4

2

κ2

M2
P

σ̂0

σ0
gμν: ð24Þ

Relation between Einstein- and Jordan-frame.—The
Einstein- and Jordan-frame formulations are related by a
change of frame, and therefore must presumably be
regarded as equivalent. This equivalence holds even up
to quantum corrections provided one is sufficiently careful
to include contributions from the transformation Jacobian;
see, e.g., Ref. [29]. The key issue to be addressed is how
ultraviolet modes enter each formulation, to be discussed
in §II C.
Before doing so, we enumerate the principal differences

between the sequester phenomenology in Einstein frame
and Jordan frame. First, in Jordan frame, not only the low-
energy loop contribution ΛIR is sequestered, but also the
ultraviolet part ΛUV. This happens because both sources for
the cosmological term now couple to the Jordan-frame
metric. The distinction between them is therefore arbitrary
at the level of the Einstein equation. We will see below that
this emerges from a more general conclusion, that

fluctuations coupling to the Jordan-frame metric (including
gravitons) are sequestered, whereas fluctuations coupling
to the Einstein-frame metric are not.
Second, the critical factor of 1=4 in the combination

Tμν − ⟪Tμ
μ⟫=4 is not ultraviolet sensitive. In particular, it

is no longer produced by balancing a topological invariant
against the properties of a particular group of Lagrangian
operators. Instead, the factor of 1=4 in Eqs. (20b) and (24)
is also produced by a trace. Therefore it is not corrected by
extensive renormalizations of the coupling of Λ to space-
time. We will consider below what is the effect of these
renormalizations in the Jordan frame.
Third, the Jordan frame formulation generates a residual

cosmological-like term. This is the last term in (24).
Assuming κ2 ∼M2

P and σ0 ∼ σ̂0 ∼Oð1Þ, it yields a residual
cosmological constant of order μ4. Ref. [13] argued that this
contribution is at least radiatively stable because it arises
from the intensive term σ, which does not couple either to
gab or the matter fields in Lm. It is therefore uncorrected by
matter and graviton loops. On the other hand, depending on
its origin, σ might be susceptible to other loop corrections
associated with unknown mass scales. If so, μ must
apparently be associated with the lowest of these scales,
because it is the most relevant terms involving Λ that
dominate Eq. (22). (However, it should be remembered that
μ does not have a precise meaning until we specify the
typical size of Taylor coefficients in σ.)
This does not preclude the possibility that μ could

typically be large. As with the cosmological constant itself
this need not be fatal for the model, because we can always
suppose that the renormalized value of μ is lower than its
natural scale. If we choose to do so, however, then
presumably we encounter a new naturalness problem in
the Λ sector. In particular, Λmust become relevant at a very
low energy scale ∼ð10−3 eVÞ4 to avoid an unwanted large
contribution.
At the level of the effective theory (19) there is nothing

further that can be said to set our expectations about the
typical size of μ. To do so would require a detailed
microscopic theory of the fluxes and how they are sourced.
Such a theory could be used to compute corrections to the
functions σ and σ̂. In this connection, see Refs. [23,25].

C. Ultraviolet dependence in Jordan frame

In Eq. (19) there will be extensive renormalizations of
the coupling of κ and Λ to spacetime. Note that Λ couples
to the spacetime volume, whereas κ2 couples to the
integrated curvature

R
d4x

ffiffiffiffiffiffi−gp
R. Renormalizations of

the Λ coupling were considered above and are unchanged
in this theory. Renormalization of the κ coupling will arise
from diagrams analogous to those of Fig. 1, but with
insertions of κ2R rather than Λ. (As before, the class of
diagrams shown on the right-hand side of Fig. 1 does not
exhaust the contributions at a given order in κ2R, but they
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provide a representative class that is simple to study.) The
leading effects can be summarized by the replacements

κ2

2
R →

κ2

2
ð1þ αϵÞR; ð25aÞ

Λ → ð1þ βϵÞΛ ð25bÞ

where α and β are Oð1Þ Wilson coefficients, and ϵ is
defined by

ϵ≡ 1

ð2πÞ8
M4

SM

κ4
≪ 1: ð26Þ

To account for renormalizations of the low-energy cosmo-
logical constant from diagrams including virtual gravitons,
as in the right-hand diagram of Fig. 2, we include a
representative term γM6

SM=κ
2 in Lm, where γ is another

Oð1Þ coefficient. A contribution of this form will be
generated by diagrams such as the right-hand side of
Fig. 2 containing a single internal graviton line. It would
typically be accompanied by contributions of higher order
in κ−2 from diagrams containing two or more internal
graviton lines, but if the scale MSM of the sequestered
sector is far below the Planck scale then the one-graviton
diagram will be dominant. Notice that this term will
contribute to the κ field equation. This is the origin of
the mismatch that allows such contributions to escape
complete sequestration.
After a short calculation, it follows that the effective

Einstein equation in this model can be written, up to OðϵÞ,

κ2Gμν ¼ ð1 − αϵÞTμν − ð1 − ðαþ βÞϵÞ⟪T
ρ
ρ⟫

4
gμν

þ βϵΛUVgμν −
γ

2

M6
SM

κ2
þ μ4

2

κ2

M2
P

σ̂0

σ0
ð1þ αϵÞgμν:

ð27Þ

We can identify a number of effects. First, dressing of the κ2

coupling (proportional to α) can be absorbed into a
redefinition of the Planck scale. It does not cause detuning
of the sequester. By comparison, we cannot simply absorb
(25b) into a redefinition of Λ because of its κ dependence.
Second, dressing of the Λ coupling (proportional to β) is

again responsible for breaking complete cancellation of the
low-energy cosmological contribution between Tμν and
⟪Tμ

μ⟫=4. The residual cosmological constant will be of
order ϵΛIR ∼ ϵM4

SM and therefore of a similar size to the
estimates for the Einstein frame given at the end of
Sec. II C. For numerical values we refer to the discussion
given there.
Third, the Λ dressing also causes inexact cancellation of

the ultraviolet part ΛUV. The leftover piece has exactly the
same structure as the left-over low energy loop contribution

in Tμν, again because there is no distinction between these
terms at the level of the Einstein equation. In the remainder
of this paper we shall drop explicit dependence on ΛUV and
include its contribution in Lm if required. Finally, we
clearly see the contribution of the right-hand diagram
in Fig. 2; this produces the term proportional to
γM6

SM=κ
2 [13].

D. Sequestering the graviton loops

Kaloper et al. observed that the troublesome γ term
appears in Eq. (27) as a consequence of its appearance in
the κ field equation [13]. If it could be removed from this
field equation then terms of any order in κ−2 contained in
Tμν would be sequestered as part of the usual cancellation
between Tμν and ⟪Tμ

μ⟫=4, at least in the absence of
renormalizations to the Λ coupling to the volume of
spacetime.
In turn, graviton-loop contributions to the low-energy

cosmological term contribute to the κ field equation only
because the graviton propagator carries a normalization of
κ−2. To decouple these contributions Kaloper et al. pro-
posed the following formulation (which they described as
“omnia sequestra”) [13,30]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ θRGB − Λ − Lm

�

þ σ

�
Λ
μ4

�
þ σ̂ðθÞ: ð28Þ

Recall that we are now absorbing ΛUV, if present, into Lm.
The normalization of the Einstein term reverts to the fixed
Planck scale MP. Meanwhile we introduce the Gauss–
Bonnet density RGB coupled to a rigid scalar θ that replaces
κ. The Gauss–Bonnet density is defined by

RGB ≡ R2 − 4RμνRμν þ RμνρσRμνρσ: ð29Þ

In four dimensions its integral is proportional to a topo-
logical invariant, the Euler characteristic χðMÞ of the
manifold M. Because it is topological (it integrates to a
boundary term), it follows that RGB does not modify the
form of the graviton propagator or its self-interaction
vertices. The conclusion is that each internal graviton line
scales like M−2

P and carries no θ dependence. Operators in
the quantum effective action that are built from diagrams
containing such lines do not perturb the field equation for θ.
Further, because of its topological character, the coef-

ficient of the Gauss–Bonnet density is not renormalized. At
the level of Feynman diagrams this follows because θ does
not contribute to graviton vertices. Therefore there is no
analogue of the diagrams in Fig. 1 for RGB. For the
same reason, quantum corrections do not introduce θ-
dependence in Lm at any order in the loop expansion.
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The coupling of Λ to the spacetime volume will still be
dressed by graviton loops, yielding Eq. (25b) with the
replacement κ2 → M2

P in ϵ. However, unlike Eqs. (25b) and
(26), there is now no obstruction to absorbing the loop
correction into a redefinition of Λ. Accordingly we do not
expect detuning of the sequester in this case.
To verify this expectation consider the field equations

following from (28) with the leading loop correction to the
Λ coupling included,

M2
PGμν ¼ Tμν − ð1þ αϵÞΛgμν; ð30aÞ

σ0

μ4
¼ ð1þ αϵÞ

Z
d4x

ffiffiffiffiffiffi
−g

p ð30bÞ

σ̂0 ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
RGB ð30cÞ

From Eqs. (30b)–(30c) we conclude

σ̂0

σ0
μ4 ¼ −ð1 − αϵÞ⟪RGB⟫: ð31Þ

Because the Gauss–Bonnet density integrates to the Euler
characteristic, up to a numerical factor, this is a relatively
stringent condition on μ. Assuming the derivatives σ0 and σ̂0
are order unity8 it roughly requires μ ∼Hage, where Hage is
the quantity defined in (14). See also Ref. [30].
Meanwhile, the trace of the Einstein equations requires

R ¼ 4

M2
P
ð1þ αϵÞΛ −

1

M2
P
Tμ

μ: ð32Þ

As in the analyses given above, taking the spacetime
expectation of this formula gives an expression for Λ in
terms of ⟪R⟫ and ⟪Tμ

μ⟫. This expression should be used
to eliminate Λ from the Einstein equation. Finally, express-
ing ⟪R⟫ in terms of ⟪RGB⟫ yields

M2
PGμν ¼ Tμν −

1

4
⟪Tρ

ρ⟫gμν − Lgμν; ð33Þ

where l is defined by (cf. Eqs. (11)–(12) of Ref. [13])

L2 ¼ 3

8
M4

P

�
⟪RGB⟫ − ⟪W2⟫þ 2

M2
P
⟪ðTμν − Tgμν=4Þ2⟫

−
1

6M4
P
½⟪T2⟫ − ⟪T⟫2�

�
; ð34Þ

where T ¼ Tρ
ρ and Wμνρσ is the Weyl tensor derived from

gμν. This is exactly the result derived in Ref. [13]. As

expected, dressing of the Λ coupling has no effect at the
level of the effective Einstein equation. We conclude that
extensive renormalizations of the coupling between Λ and
the spacetime volume do not de-tune sequestration in the
formulation (28).

IV. CONCLUSIONS

In this paper we have studied a class of radiative
corrections to the sequester model proposed by Kaloper,
Padilla and collaborators. Although the corrections we
compute have previously been recognized, their effect has
not been studied explicitly. The class of diagrams we study
renormalize the couplings between the “rigid” scalar fields
that are characteristic of the sequester scenario, and infrared
properties of the spacetime such as its volume and
integrated curvature.
In both the Einstein and Jordan frame formulations

(given by Eqs. (1) and (19) in our notation), we find that
these renormalizations disrupt complete sequestration of
low-energy loop contributions. If the sequestered sector is
the Standard Model, we find that these corrections very
nearly produce an unacceptable cosmological term in
excess of the observed value Λ ∼ ð10−3 eVÞ4. Whether
or not a particular realization of the scenario yields an
acceptable phenomenology then depends on how the global
function σ is engineered (and likewise for σ̂ in the Jordan-
frame formulation).
Alternatively, if the sequestered sector contains higher

mass particles such as supersymmetric partners with
masses in excess of 10 TeV, the residual cosmological
term is likely to be fatal. The situation could possibly be
saved if physical scales are significantly rescaled in the
effective Einstein frame metric. This is easiest to see in the
explicit Einstein-frame description, where masses are
rescaled by the conformal factor λ. We can possibly arrange
for this rescaling λ to be small, but such scenarios encounter
other difficulties [11].
The simpler formulations of the sequester (those that do

not invoke the Gauss–Bonnet density) are already known to
“fail” in the sense that they do not capture contributions to
the vacuum energy from diagrams that contain virtual
gravitons. Although the renormalizations we have com-
puted are related to these known failure modes, they are not
the same. In most models the loop terms we compute are
likely to be somewhat smaller, since the leading contribu-
tion involves two virtual gravitons and therefore scale as
ðMSM=MPÞ4. This should be compared to a single-graviton
loop scaling as ðMSM=MPÞ2 as in the left-hand diagram
of Fig. 2.
We find that these renormalizations do not affect the

most developed formulation of the sequester, given by
Eq. (28) in our notation. In this formulation, dressing of the
Λ interaction can be absorbed into a redefinition of Λ itself
and is therefore harmless.

8In our presentation, we are absorbing the integrated fluxesR
F4,

R
F̂4 into the definition of σ, σ̂. If these factors are large they

may modify conclusions based on dimensional analysis of (31).
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Whether or not one finds the sequester a plausible
solution to the naturalness problem of the cosmological
constant depends on whether we are prepared to accept its
key ingredient—the introduction of nongravitating sectors
in the action that are shielded from gravity: they do not
source gravitational fields, and they do not interact with
gravitons. For related models utilising a similar premise see
Refs. [24,26,31,32]. This is the cost of entry for all versions
of the sequester scenario. Once accepted, it is only
necessary to arrange for the large low-energy loop con-
tribution to be “stored” in these non-gravitating sectors.
At the level of the effective actions used in this paper

there is little more that can be said. In particular, we have
not been able to apply “naturalness” arguments to the non-
gravitating functions σ and σ̂, because to do so would
require specification of a microscopic theory that describes
the fluxes F4, F̂4 that project out local degrees of freedom

from the rigid fields Λ, κ and θ (depending on the
formulation in use). These nongravitating sectors are the
final repository for sequestered vacuum energy. If it is
possible to build models in which these sectors have their
own microscopic description, it would be very interesting
to apply naturalness criteria to the model as a whole.
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