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Respecting the angular momentum conservation of torque-free systems, it is natural to consider
rotating solutions of massive objects. Besides that, motivated by the realistic astrophysical black holes that
rotate, we consider a nonlinearly charged regular rotating black hole. We investigate the geometrical
properties of the metric by studying the boundary of ergosphere. We also analyze thermodynamic
properties of the solution in anti–de Sitter spacetime and examine thermal stability and the existence of
phase transition. In addition, we perturb the black hole by using of a real massless scalar field as a probe to
investigate its dynamic stability. We also obtain an analytic expression for the real and imaginary parts of
the quasinormal frequencies.
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I. INTRODUCTION

One of the main open questions in theoretical physics is
the existence of singularity in different theories. From the
gravitational point of view, there might be something
mysterious about the spacetime singularity. Thus, inves-
tigation of such a pathology is a hot topic, either in physical
and mathematical communities or in philosophical circles.
The Einstein general relativity not only admits different

solutions including singularity, but expresses that such a
singularity may be unavoidable a real-world scenario. For
this reason, one has to perceive the nature of singularity to
understand the nature of singular spacetimes. Nonetheless,
since the general relativity could not describe the nature and
physical properties of the spacetime singularity, one may
look for alternative viewpoint. The possibility of construct-
ing a nonsingular (regular) spacetime might be potentially
important implication for avoiding the breakdown of
physical laws near the singularity, a region with extreme
curvature and vanishing volume. In addition, there is as yet
no consistent theory of quantum gravity and some scientists
believe that the singularity would not occur in such a
theory. Fortunately, the Einstein general relativity allows
some regular solutions without curvature singularity which
contain at most coordinate singularity [1]. It is worth
mentioning that such regular black holes are not vacuum
solutions of the Einstein field equations. These regular

solutions often include a special class of nonlinear electro-
dynamics violating energy conditions in the vicinity of the
black hole [2–8]. Till date there has been a lot of significant
work in regular solutions of gravitating systems [9–21].
On the other hand, according to the published results of

the gravitational wave observatories by the collaborations
LIGO and VIRGO [22–24] and shadow of black hole by
Event Horizon Telescope [25–28], one finds that the
astrophysical black holes are not static and spherically
symmetric, but asymmetric due to they have rotation. In
other words, one of the most realistic features of relativistic
black holes is that they have angular momentum in a
stationary manner. Hence, in order to have a pragmatic
black hole solution, one has to consider rotating spacetime.
However, introducing a new rotating black hole solution,
directly, is a nontrivial task as it turns out to be a rather long
process to obtain the Kerr solution. However, one may use
the Newman-Janis algorithm to convert static solutions to
rotating ones [29–37]. A special solution of the Kerr black
hole in the presence of electromagnetic field is obtained in
[38]. Phase transition of the Kerr-Newman-AdS (anti–
de Sitter) black holewith amodel of dark energy is discussed
in [39] and its extension to nonlinear magnetic charge in
[40]. The astrophysical aspects of rotating black holes, such
as shadow images and the geodetic precession frequency,
have already been studied in [41,42]. Besides that, other
physical properties of rotation black holes, in particular
thermodynamic behavior and photon sphere are of interest.
Taking into account the quantum effects near a black

hole, one has to regard it as a thermodynamical entity with a
temperature and an entropy. Such a statement help us to
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understand a deep connection among three interesting
theories: general relativity, quantum field theory and
thermodynamics. In other words, the black hole thermo-
dynamics can be used as a bridge to connect two apparently
independent theories: general relativity and quantum field
theory. Black hole thermodynamics began, seriously, with
the pioneering works of Hawking and Beckenstein, and has
recently become very fascinating in the extended phase
space by considering the cosmological constant as a
thermodynamic quantity. Taking a dynamical cosmological
constant Λ ¼ −8πP into account, the consistent first law
of black hole thermodynamics and the associated Smarr
relation are modified by including a PV term. Comparing
such a modified first law of black hole thermodynamics
with that of everyday system, we find that, in this
representation, the mass of the black hole M is considered
as the enthalpy of the system instead of the internal energy
[43–61]. Exploring the phase transition and critical behav-
ior of the black hole solutions in the extended phase space
is another interesting issue which is reported for different
gravitating systems [54–58]. Thermal stability of a black
hole plays an important role in exploring its behavior near
the equilibrium. It is notable that a thermally stable black
hole has a non-negative heat capacity.
In addition to thermal stability criteria, one has to

examine dynamical stability of black holes under pertur-
bations of the geometry and matter fields. The robustness
check of black holes against small perturbations is suffi-
ciently strong to veto some mathematical black holes.
Regarding a perturbative black hole, one may observe
some oscillated behavior, named as quasinormal modes
(QNMs) which are related to some quasinormal frequencies
(QNFs). It is shown that QNMs are the intrinsic imprints of
the black hole response to external perturbations which
means that such QNMs are independent of initial pertur-
bations. The authors of Refs. [62,63] show that the
asymptotic behavior of QNMs is related to the quantum
nature of gravitation. It is also reported that for AdS black
holes, the imaginary parts of QNFs are corresponding to the
perturbations damping of a thermal state in the conformal
field theory [64,65]. So, the investigation of QNMs help us
to find the features of compact objects, the evolution of
fields and also the properties of spacetime [66–68].
There are several approaches to the study black

hole’s QNMs. Ferrari and Mashhoon [69,70], working on
the potential barrier in the effective one-dimensional
Schrödinger equation and obtain simple exact solutions.
Such a barrier is related to the photon sphere of the black hole
[71]. We should note that QNMs of regular black holes have
been studied before [72–74]. The behavior of QNMs at the
thermodynamics phase transitions has been studied in
[75,76]. Moreover, the relation between the QNFs and the
thermodynamical quantities at eikonal limit for static sol-
ution [77] and for rotating one [78] has been studied.Cardoso
et al. [79] showed that the real part of the QNMs is related to

the angular velocity of the last circular null geodesic while
Stefanov et al. [80] found a connection between black hole’s
QNMs in the eikonal limit and lensing in the strong
deflection limit. Furthermore, in Ref. [81] the connection
between the QNMs and the shadow radius for static black
hole and recently for rotating one [82] has been obtained.
The paper is organized as follows. In Sec. II, we study

the geometric properties of an interesting class of regular
rotating black hole. We study the thermodynamics of
rotating AdS black hole and look for possible phase
transition in Sec. III. Section IV is devoted to study the
QNMs and their connection to the properties of photon
sphere in the eikonal limit. The paper ends with our
concluding remarks in Sec. V.

II. REGULAR ROTATING BLACK HOLE

The four-dimensional action governing nonlinearly
charged black holes in the presence of a negative cosmo-
logical constant is given by

A ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2
− LðF Þ

�
; ð2:1Þ

in which g is the determinant of the metric tensor, l ¼ffiffiffiffiffiffiffiffiffiffiffiffi
−3=Λ

p
denotes the AdS length related to the negative

cosmological constant,R is the Ricci scalar and LðF Þ is an
arbitrary function of the Maxwell invariant F ¼ F μνF μν.
Applying the variational principle to the action (2.1), one
can show that the field equations are given by

Gμν −
3

l2
gμν ¼ 2LFF μλF λ

ν −
1

2
gμνLðF Þ; ð2:2Þ

∇μðLFF μνÞ ¼ 0; ð2:3Þ

where in the above equations Gμν is the Einstein tensor
and LF ¼ dL=dF .
The metric of rotating charged regular black hole in the

Boyer-Lindquist coordinates is obtained as [29,30]

dS2 ¼ −
Δr

Σ

�
dt −

asin2ðθÞ
Ξ

dϕ

�
2

þ Σ
Δr

dr2 þ Σ
Δθ

dθ2

þ Δθsin2ðθÞ
Σ

�
adt −

r2 þ a2

Ξ
dϕ

�
2

; ð2:4Þ

where

Δr ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2f;

Σ ¼ r2 þ a2 cos2 θ;

Ξ ¼ 1 −
a2

l2
;

Δθ ¼ 1 −
a2

l2
cos2 θ;
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and the functional form of fðrÞ depends on the choice of
the electromagnetic Lagrangian LðF Þ. Our approximate
functional form of fðrÞ is introduced in [6,7] as

fðrÞ ¼ Mr exp

�
−

q2

2Mr

�
: ð2:5Þ

Although for the sake of simplicity we have considered the
above exponential form of fðrÞ, there are additional reasons
supporting such a functional form. The asymptotic behavior
of the metric (2.4) with (2.5) is the Kerr-Newman-AdS
black hole. Besides, this rotating regular metrics is the same
as the Kerr black hole in such a way that the mass m of the
Kerr black hole is replaced by mðrÞ. Moreover, the
exponential convergence factor is used in the formulation
of the quantum gravity that is finite to all order in the Planck
length [83]. The inclusion of such quantum gravity effects
makes other flat space quantum field theories similarly
finite. Also a finite quantum gravity theory can be used to
resolve the cosmological constant problem [7,84].
The radius of the horizon rþ can be obtained from the

following equation

Δrjr¼rþ ¼ ðr2þ þ a2Þ
�
1þ r2þ

l2

�
− 2Mrþ exp

�
−q2

2Mrþ

�
¼ 0:

The existence/nonexistence of real positive root of the
above equation indicates two scenarios: a regular black
hole or no-horizon solution. The regular black hole and no-
horizon cases may be separated by introducing the extremal
horizon of the black hole solution. The extremality con-
dition is defined by the following relation

Δrjr¼rþ ¼ Δ0
rjr¼rþ ¼ 0:

Regarding Δrðr ¼ rþÞ ¼ 0, one can obtain

M ¼ q2

2rþW
�

l2q2

ðl2þr2þÞða2þr2þÞ
� ; ð2:6Þ

where W is the “Lambert W” function satisfying
WðxÞ expðWðxÞÞ ¼ x (see [85] for more details). It is
notable that M has a minimum which is corresponding to
the extremal configuration for the black hole. So, by taking
the derivative of mass with respect to the horizon radius,
one can obtain the extremal charge which its maximum
value is

q2max ¼
�
r2þ − a2 þ r2þð3r2þ þ a2Þ

l2

�

× exp

�
3r4þ þ r2þða2 þ l2Þ − a2l2

r4þ þ r2þðl2 þ a2Þ þ a2l2

�
: ð2:7Þ

For the case of M ¼ l ¼ 1, one can obtain the following
relation between the extremal value of quantities

qext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rþ

�
1þ 1 − r2þ

1þ r2þ
W

�
;

s
ð2:8Þ

and

aext ¼
�
−1 −

2

W

�
1=2

rþ; ð2:9Þ

where W ¼ Wð−rþðr2þ þ 1Þ expðr2þ−1r2þþ1
ÞÞ.

The conditions of having the regular black hole or the
no-horizon solution in terms of the free parameters are
observed in Fig. 1. In order to have regular black holes,
there are upper limits (critical values) on the electric charge
and rotation parameter of the metric. At the critical values
(the border of the shaded and white regions) there is a
minimum horizon which corresponds to the extremal black
hole (a-r plot). The solution has no-horizon in the white
region of the a-q plot. In the case of the rotating regular
black hole (shaded region of a-q plot), by increasing the
rotation parameter a the critical value of the electric charge
decreases.
Static observers cannot exist everywhere in the space-

time, because the four velocity of static observer finally
becomes null. When this occurs the observer cannot remain
static and rotate with the black hole. Therefore, the
stationary limit surface is described by gtt ¼ 0. Similar
to the case of event horizon, one can obtain the conditions
for the critical parameter of black hole so that the solutions
of (gtt ¼ 0) merge to one. The conditions are

gtt ¼ ∂rgtt ¼ 0: ð2:10Þ

Solving the mentioned conditions, simultaneously, for
obtaining q and r in the case of M ¼ l ¼ 1, θ ¼ π=2
and plotting them, one can find Fig. 2 and obtain following
equations

(a) (b)

FIG. 1. The behavior of the critical value of the magnetic charge
q and radius of the event horizon r in terms of the rotation
parameter a for M ¼ 1, l ¼ 1. Notice that the a-r plots are at the
critical values of q.
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q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r½1 −Wð−r3eÞ�

q
;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
1þ r2 þ 2r2

Wð−r3eÞ
�s
; ð2:11Þ

where e ¼ expð1Þ. In the a-q plot, shaded and white plots
correspond to the regular black hole with stationary limit
surface and without stationary limit surface, respectively.
The a-r plot represents the dependence of the radius of the
stationary limit surface on a. The stationary limit surface
does not coincide with the event horizon and is located
outside the horizon. The region between the horizon and the
stationary limit surface is called the ergoregion which is
shown in the Fig. 3. In Fig. 3, size and shape of ergoregion in
the z-x plane, where z ¼ r cos θ and x ¼ r sin θ, have been
depicted. By increasing q and a, one can observe the change
in the shape and size of the ergoregion.
We now consider a possible nonlinear source for the

metric (2.4). The magnetic part of the gauge field (Am
μ ) of

charged rotating regular black hole is given by

Am
μ ¼ −

qa cos θ
Σ

δtμ þ
qðr2 þ a2Þ cos θ

ΞΣ
δϕμ ; ð2:12Þ

in which by calculating the electromagnetic field tensor,
one obtains

F ¼FμνFμν ¼ 2q2ðr4−6r2a2 cos2 θþa4 cos4 θÞ
Σ4

: ð2:13Þ

By solving the Einstein tensor for L and LF as independent
quantities, one can find

L ¼ −
6

l2
þ 8r2a2cos2θΣf00

Σ4
þ 2ðrf0 − fÞF

q2
; ð2:14Þ

LF ¼ −Σf00 þ 4ðrf0 − fÞ
2q2

: ð2:15Þ

The above definitions for L and LF satisfy all five
different Einstein field equations. In the case of a ¼ 0, one
can recover the expressions presented in [86]. Here, we
have to check the consistency between Eqs. (2.14) and
(2.15). To do so, we should check whether the total
derivative of L [in Eq. (2.14)] with respect to F is equal
to LF [presented in Eq. (2.15)]. So, the difference between
the total derivative of Eq. (2.14) with respect to F and
Eq. (2.15) in the case of θ ¼ θ0 ¼ constant is given as

ΔLF ¼ LF −
∂L
∂F ¼ LF −

∂L
∂r

∂r
∂F ≠ 0; ð2:16Þ

where its asymptotic limit (r ≫ 1) is

ΔLF ≈
−5q2a2cos2θ0

4Mr3
þ 3q4a2cos2θ0

4M2r4
þO

�
1

r5

�
: ð2:17Þ

In Fig. 4, we have shown ΔLF in terms of r at the
equatorial plane of the regular rotating black holes for

(a) (b)

FIG. 2. The behavior of the critical value of the magnetic charge
q and radius of the stationary limit surface r in terms of the
rotation parameter a for M ¼ 1, l ¼ 1, θ ¼ π=2. Notice that the
a-r plots are at the critical values of q.

(a) (b)

FIG. 3. Horizons (dashed line) and stationary limit surfaces
(solid line) for different values of a and q are depicted in the
figures.

FIG. 4. The behavior of ΔLF in terms of r at θ ¼ 0 for M ¼ 1,
a ¼ 0.1, q ¼ 0.1, 0.4, 0.8 (red to blue).
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different values of parameters. According to the Fig. 4, one
finds that the inconsistency between LF and ∂L=∂F is
smaller than 10−4. As a result, we find that the metric (2.4)
is a charged rotating solution for the Einstein equation.
According to Fig. 5, the function LðF Þ has two

branches. Indeed, the Lagrangian LðF Þ, first decreases
smoothly along the first branch (upper) from its maximum
value to Lcusp as F increases from F ¼ 0 at r ¼ 0 to
Fmin ¼ F cusp. Then, the Lagrangian increases along the
second branch (lower) from its minimal value Lcusp < 0 to
its Maxwell limit L → F → 0 as F decreases from F cusp

to F → 0 (r → ∞).

III. THERMODYNAMICS

In this section, we explore the thermodynamics of the
regular rotating-AdS black hole solution (2.4). In order to
investigate the thermodynamic properties of the black hole
in extended phase space, we need to obtain some relevant
thermodynamic quantities. In the extended phase space, we
treat the cosmological constant as a thermodynamic pres-
sure and its conjugate quantity as a thermodynamic volume
via [51,52,59]

P ¼ 3

8πl2
; V ¼ rþA

3
þ 4πJ2

3M
; ð3:1Þ

where A is the horizon area of black hole which is
calculated as

A ¼
Z

2π

0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p
dθdϕ

				
rþ

¼ 4πðr2þ þ a2Þ
Ξ

; ð3:2Þ

and M and J are, respectively, the mass and the angular
momentum of the black hole which can be obtain by using
of Altas-Tekin method [87]. Using the Killing vectors

kμ ¼ δμt =Ξ and kμ ¼ δμϕ associated with the time translation
and rotational invariance, one gets [88]

J ¼ Ma
Ξ2

; M ¼ M
Ξ2

: ð3:3Þ

The Hawking temperature for nonextremal case can be
obtained by using the surface gravity interpretation

T ¼ κ

2π
¼ 1

4πða2 þ r2þÞ
dΔr

dr

				
rþ

¼ −
ð2Mrþ þ q2Þe−ð q2

2MrþÞ

4πðr2þ þ a2Þrþ
þ rþðr2þ þ 2r2þ þ a2Þ

2πl2ðr2þ þ a2Þ ; ð3:4Þ

where κ is the surface gravity. In the case of small q and a
we have

T ¼ 1

4πrþ

�
1þ 3r2þ

l2
−
q2

r2þ

�

−
1

4πr3þ

�
2þ 2r2þ

l2
−
q2

r2þ

�
a2 þOðq3; a4Þ: ð3:5Þ

As we know, the Killing vector kμ ¼ δμt þΩδμϕ at the event
horizon of the rotating black hole is a null vector, and
therefore, we can use

kμkμ ¼ gtt þ 2Ωgtϕ þ Ω2gϕϕ ¼ 0 ð3:6Þ

to obtain the angular velocity, Ω, by inserting gtt, gtϕ and
gϕϕ from the metric (2.4)

Ω ¼ aΞððr2þ þ a2ÞΔθ − ΔrÞ
Δθðr2þ þ a2Þ2 − Δra2 sin2ðθÞ

� ΞΣ
ffiffiffiffiffiffiffiffiffiffiffi
ΔrΔθ

p
ðΔra2 sin2ðθÞ − Δθðr2þ þ a2Þ2Þ sinðθÞ ; ð3:7Þ

on the horizon ΔrðrþÞ ¼ 0, so we obtain following
expression for angular velocity

Ωþ ¼ aΞ
r2þ þ a2

: ð3:8Þ

However, we should note that the thermodynamical angular
velocity is the differences between the angular velocity
measured by the observer at the infinity and the angular
velocity at the horizon, yielding

Ω ¼ Ωþ −Ω∞ ¼ Ωþ þ a2

l2
¼ a

r2þ þ a2

�
1þ r2þ

l2

�
: ð3:9Þ

The electric part of vector potential is given as

FIG. 5. The behavior of LðF Þ in terms of F at θ ¼ π=2 for
M ¼ 1, a ¼ 0.5, q ¼ 0.5.
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Ae
μ ¼ −

qr
Σ
δtμ þ

qar sin2ðθÞ
ΣΞ

δϕμ ; ð3:10Þ

so the electrostatic potential of the event horizon with
respect to spatial infinity as an electrostatic potential
reference is obtained as

Φ ¼ Ae
μkμj∞ − Ae

μkμjrþ ¼ qrþ
r2þ þ a2

; ð3:11Þ

where kμ ¼ δμt þ Ωþδ
μ
ϕ is the null generator of the horizon.

By computing the flux of electromagnetic field tensor by
using of the standard Gauss’s law, one can obtain the
electric charge as follow

Q ¼ 1

4π

Z
⋆F ¼ q

Ξ
; ð3:12Þ

where ⋆F is the dual of the Faraday 2-form. For a black
hole embedded in AdS spacetime, employing the relation
between the cosmological constant and thermodynamic
pressure, would result in the interpretation of the black hole
mass as the enthalpy. Using the expressions (3.3), (3.12)
and (3.2) for mass, angular momentum, electric charge and
entropy, and the fact that ΔrðrþÞ ¼ 0, one obtains the
enthalpy in terms of thermodynamic quantities as

H ¼ M ¼
�
8πPJ2

3
þ πJ2

S
þ πQ4

Sϒ2

�1
2

;

ϒ ¼ W
�

3πQ2

8PSðSþ 3
8PÞ

�
ð3:13Þ

by using (3.13), one can determine the temperature,
electrostatic potential, volume and angular momentum,
respectively, as

T¼
�∂H
∂S

�
Q;P;J

¼−
πJ2

2MS2
−
πQ4½ϒðPSþ3=8Þ−ð3SPþ3=8Þ�

MS2ϒ2ð1þϒÞð3þ8PSÞ ; ð3:14Þ

Φ ¼
�∂H
∂Q

�
S;P;J

¼ πQ3

2MSϒð1þϒÞ ; ð3:15Þ

V¼
�∂H
∂P

�
Q;S;J

¼4πJ2

3M
þ 2πQ4

Mð3þ8PSÞϒ2ð1þϒÞ ; ð3:16Þ

Ω ¼
�∂H
∂J

�
Q;P;S

¼ πJð8PSþ 3Þ
3MS

: ð3:17Þ

Calculations show that the intensive quantities calculated
by Eqs. (3.14)–(3.17) coincide with Eqs. (3.1), (3.4), (3.8)
and (3.11), respectively. Thus, these thermodynamic quan-
tities satisfy the first law of black hole thermodynamics in
the enthalpy representation

dH ¼ TdSþΦdQþ VdPþΩdJ: ð3:18Þ

In addition, for the sake of completeness, we calculate the
Smarr relation. Using the scaling argument, it should be
given as

H ¼ 2TSþQΦþ 2ΩJ − 2PV: ð3:19Þ

A. Phase transition and stability

Thermodynamic stability tells us how a system in
thermodynamic equilibrium responds to fluctuations
of thermodynamic parameters. We should distinguish
between global and local stability. In global stability,
the preferred phase of the system is the one that minimizes
the Gibbs free energy while the positivity of the heat
capacity is related to local stability. Due to the presence of
the nonlinearity in the structure of electrodynamic back-
ground of the solutions, we have to check both local and
global stabilities as requirements of having physical
solutions. These criteria are sufficiently strong to veto
some models.
To investigate global stability, we use the following

expression for the Gibbs free energy in terms of S, Q and J

G ¼ H − TS ¼
4J2ð128S2P2 þ 120SPþ 27Þ þ 3Q4½3ð3ϒþ1Þþ8SPð3ϒ−1Þ�

ð1þϒÞϒ2

4Sð8SPþ 3Þ
h
3
πS

�
32SJ2Pþ 12J2 þ 3Q4

ϒ2

�i
1=2 :

Regarding the functional form of Gibbs free energy, it is
obvious that its analytical investigation is a nontrivial task.
So, we use some figures to find the behavior ofG. In Fig. 6,
we have shown the Gibbs free energy in terms of entropy.
Considering Fig. 6(a), we find that for constant J andQ, the
Gibbs free energy is a decreasing function of S for both

small and large event horizon entropy, while, in general, it
can be an increasing function for intermediate S. This
behavior confirms that intermediate black holes are glob-
ally unstable. In addition, since the large black holes have
negative Gibbs free energy, they are more stable than small
black holes. Also, Fig. 6 shows that by increasing the
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pressure the black hole is more stable. Also, we have
shown the behavior of the Gibbs free energy in terms
of S for constant pressure and angular momentum
in Fig. 6(b) and for constant pressure and electric charge
in Fig. 6(c). It is obvious that by increasing the angular
momentum and electric charge the black hole is more
stable.
Now, we investigate the local stability by analyzing the

sign of the heat capacity. The form of CP, plotted in Fig. 7,
is explicitly as follows

CP ¼ T

�∂S
∂T

�
P
¼ −2Sð1þϒÞ2Γ3ð4J2ϒ2Γ3 þ 3Q4ÞΘ1

Θ2

;

ð3:20Þ

where

Θ1 ¼ ϒΓ3½Q4 þ 4J2ϒð1þϒÞ� − 3Q4Γ1

and

Θ2 ¼ 64J4ϒ5Γ2
3Γ9=4½ϒ2 þ 3ðϒþ 1Þ� þ 18Q8Γ−3=2 þ 4096J4ϒ4Γ3

�
S2P2 þ 21

32
SPþ 27

256

�

þ 16J2Q4ϒ2Γ2
3ðϒ3Γ9=2 þ 3Γ3=2Þ þ 9Q8ϒ3Γ2

3 − 3072J2Q4ϒ4Γ3

�
S2P2 −

3

16
SP −

15

128

�

þ 3072J2Q4ϒ3Γ3

�
S2P2 þ 15

16
SPþ 21

128

�
− 1344Q8ϒ2

�
S2P2 þ 3

28
SP −

9

448

�

þ 27Q8ϒ

�
64S2P2 þ 20

3
SPþ 1

�
;

in which we used the abbreviation of Γi ¼ iþ 8SP.
Considering Fig. 7(a), one finds that there exist three

different regions for P < Pcrit, in which the critical value of
pressure, Pcrit (with Tcrit and Scrit) can be calculated via the
obtaining inflection point of isothermal P-S diagrams as
follows

�∂P
∂S

�
T
¼ 0; and

�∂2P
∂S2

�
T
¼ 0:

The partially positive specific heat for both small and
large black hole regions means that those black holes are

thermodynamically locally stable. Having negative spe-
cific heat of the intermediate black hole region represents
a locally unstable system. The unstable region disappears
at pressure P ¼ Pcrit resulting in a divergence point. When
P > Pcrit, CP is always positive and no divergent point
exists. It means that in this case the black hole is local
stable for arbitrary values of S. In Figs. 7(b) and 7(c),
the behavior of CP in terms of S for different values of
electric charge Q and angular momentum J of black hole
has been plotted. Obviously, at the critical pressure by
increasing Q and J the critical point disappears and black
hole is stable.

(a) (b) (c)

FIG. 6. The behavior of G in terms of S for P ¼ 0.0025 < Pcrit, P ¼ 0.0035 < Pcrit, P ¼ Pcrit ≈ 0.0048, P ¼ 0.006 > Pcrit and
J ¼ 0.5, Q ¼ 0.5 (top to bottom) (left), for P ¼ 0.0048, J ¼ 0.5 and Q ¼ 0.1, 0.3, 0.5, 0.7 (bottom to top) (middle), for P ¼ 0.0048,
Q ¼ 0.5 and J ¼ 0.1, 0.3, 0.5, 0.7 (bottom to top) (right).
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The behavior of heat capacity could also represent the
phase transitions. It is clear that the heat capacity has at
most two divergences which separate small stable black
holes, unstable region with medium horizon radius, and
large stable ones that are coincidence with extremum points
of temperature and Gibbs free energy. Also, the root of
temperature coincides with the point that the heat capacity
changes its signature. The root separates the nonphysical
solutions with negative temperature from physical black
holes with positive temperature (Fig. 8).
At the root the temperature is zero, which corresponds to

the extremal configurations of black hole and leads to the
maximum of the angular momentum such that

J2max ¼
ð3ð1 −ϒÞ þ 8SPð3 −ϒÞÞQ4

4ϒ2ð1þϒÞð3þ 8SPÞ : ð3:21Þ

The plot of the Gibbs free energy with respect to the
temperature shows a swallowtail behavior as presented in

Fig. 9. When P < 0.0048, the Gibbs free energy with
respect to temperature develops a swallowtail like
shape. There is a small/large first order phase transition
in the black hole, which resembles the liquid/gas change
of phase occurring in the van der Waals fluid. At the
critical pressure P ≈ 0.0048, the swallowtail disappears
which corresponds to the critical point. In the Figs. 9(b)
and 9(c), we have represented the behavior of the Gibbs
free energy in terms temperature for the different values of
Q and J. As can be seen, by increasing J and Q the critical
point disappears.
By using Eq. (3.14), we have plotted the pressure as a

function of the entropy in Fig. 10, keeping T, Q and J
fixed. The temperature of isotherm diagrams decreases
from top to bottom. The upper black solid line corresponds
to the ideal gas phase, the critical isotherm is denoted by the
red solid line, lower blue solid line corresponds to temper-
ature smaller than the critical temperature and below the
temperature the pressure becomes negative. Again, this is

(a) (b) (c)

FIG. 7. The behavior of CP in terms of S for J ¼ 0.5, Q ¼ 0.5, P ¼ 0.0025 < Pcrit, P ¼ 0.0035 < Pcrit, P ¼ Pcrit ≈ 0.0048 and
P ¼ 0.006 > Pcrit (dotted-dashed to dashed line) (left), for P ¼ 0.0048, J ¼ 0.5 and Q ¼ 0.1, 0.3, 0.5, 0.7 (dashed to dotted-dashed
line) (middle), for P ¼ 0.0048, Q ¼ 0.5 and J ¼ 0.1, 0.3, 0.5, 0.7 (dashed to dotted-dashed line) (right).

(a) (b) (c)

FIG. 8. The behavior of CP (red solid line), T (blue dotted line) and G (black dashed line) in terms of S for J ¼ 0.5, Q ¼ 0.5,
P ¼ 0.0048 (left), P ¼ 0.0035 (middle) and P ¼ 0.0025 (right).
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similar to the pressure-volume plot in the van der Waals
liquid/gas system.

IV. QNMs

Here, we are going to calculate the QNMs of constructed
black hole solutions to investigate the dynamical stability
of obtained black hole solutions undergoing scalar pertur-
bations. It is possible to obtain an analytic relation for the
real and imaginary parts of QNM as functions of the black
hole charges (M, a, q) and of the gravitational perturbation
field (j, m). To do that, we obtain the field equation for the
massless scalar probe as follows

∇α∇αΦ ¼ 0: ð4:1Þ

By using two Killing vectors of the metric ∂t and ∂ϕ, one
can use the separation of variables of the scalar field as

Φðt; r; θ;ϕÞ ¼ e−iwtþimϕRðrÞSðθÞ: ð4:2Þ

Inserting Eq. (4.2) into (4.1) leads to two differential
equations for the angular SðθÞ and radial RðrÞ terms of
wave functions

d
dr

�
Δr

dRðrÞ
dr

�
þ
�
Ξ2ðw2ðr2 þ a2Þ2 þm2a2 þ 2mawðΔr − r2 − a2ÞÞ

Δr
− E

�
R ¼ 0; ð4:3Þ

(a) (b) (c)

FIG. 9. The behavior of G in terms of T for P ¼ 0.0015 < Pcrit, P ¼ 0.0025 < Pcrit, P ¼ 0.0035 < Pcrit, P ¼ Pcrit ≈ 0.0048, P ¼
0.006 > Pcrit and J ¼ 0.5,Q ¼ 0.5 (left to right) (left), for P ¼ 0.0048, J ¼ 0.5 and Q ¼ 0.1, 0.3, 0.5, 0.7 (bottom to top) (middle), for
P ¼ 0.0048, Q ¼ 0.5 and J ¼ 0.1, 0.3, 0.5, 0.7 (bottom to top) (right).

(a) (b) (c)

FIG. 10. The behavior of P in terms of S for T ¼ 0.038 < Tcrit, T ¼ 0.045 < Tcrit, T ¼ Tcrit ¼ 0.055, T ¼ 0.065 > Tcrit and J ¼ 0.1,
Q ¼ 0.1 (top to bottom) (left), for T ¼ 0.055, J ¼ 0.5 and Q ¼ 0.1, 0.3, 0.5, 0.7 (bottom to top) (middle), for T ¼ 0.055, Q ¼ 0.5 and
J ¼ 0.1, 0.3, 0.5, 0.7 (bottom to top) (right).
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d2SðθÞ
dθ2

þ cotðθÞ dSðθÞ
dθ

þ Ξ2

Δθ

�
−w2a2 sin2ðθÞ − m2

sin2ðθÞ þ E

�
SðθÞ ¼ 0; ð4:4Þ

where E is a separation constant.

In order to study QNMs, first one can change the radial
coordinate r ∈ ðrþ;∞Þ to tortoise coordinate x ∈ ð−∞;∞Þ
as follows

dx
dr

¼ r2 þ a2

Δr
; ψðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
RðrÞ: ð4:5Þ

Now, we can find that black hole perturbations from
Eq. (4.3) can be reduced to the following second-order
ordinary differential equation

d2ψðxÞ
dx2

þQðx; wÞψðxÞ ¼ 0; ð4:6Þ

where

Qðx; wÞ ¼ w2 þ a2m2 − 4amwfðrÞ − EΔrðrÞ
ðr2 þ a2Þ2

−
rΔrΔ0

r

ðr2 þ a2Þ3 þ
Δ2

rð2r2 − a2Þ
ðr2 þ a2Þ4 : ð4:7Þ

So, for the slowly rotating and small charged black hole
a ≪ 1, Λ ¼ 0 and for the case j ≫ 1 and m ≫ 1, the
effective potential becomes

Q ¼ w2 − V ≈ w2 −
�
1 −

2M
r

e−
q2

2Mr

�
jðjþ 1Þ

r2

−
4mMwa

r3
e−

q2

2Mr: ð4:8Þ

By using of Mashhoon’s method [69,70] for QNMs, we can
obtain an approximate expression for quasinormal frequen-
cies. The parameter set here is p ¼ ðM; q; am; w; λÞ, which
is transformed into p0 ¼ ð−iM;−iq;−am;Ω;−λÞ and
x → −ix so that

Wðx;ΩÞ ≈
�
1 −

2M
r

e−
q2

2Mr

�
jðjþ 1Þλ

r2

−
4amMΩλ

r3
e−

q2

2Mr ð4:9Þ

and the quasinormal mode problem is converted to finding
the bound states Ω > 0 of −Wðx;ΩÞ. So, by using the
analytic approximation formulas (B6)–(B8), the maximum
of W occurs at

rps ¼ 3M

�
1þ 2maΩ

jðjþ 1Þ
�
−
2q2

3M

−
17q4

216M3

�
1 −

2maΩ
jðjþ 1Þ

�
; ð4:10Þ

and therefore, rps is the radius of the photon sphere. The
value of the maximum potential is

Wm ¼ jðjþ 1Þλ
27M2

�
1þ q2

3M2
þ 13q4

81M4

�

−
4maΩλ
27M2

�
1þ q2

2M2
þ 13q4

54M4

�
ð4:11Þ

and the curvature parameter is given by [69,70]

α ¼
ffiffiffi
3

p

9M

�
1þ 5q2

18M2
þ 23q4

216M4

�

−
2

ffiffiffi
3

p
maΩ

3Mjðjþ 1Þ
�
1þ 26q2

54M2
þ 41q4

162M4

�
:

It should be noted that Ω has a crucial role for all the
above results. In order to obtain Ω, we have inserted the
above results in Eq. (B8). Solving second-order equation
for Ω, one can find the proper quasinormal frequencies as
follows

wr þ iwi ¼ ΩðiM; iq;−am;−1Þ; ð4:12Þ

where λ is scaling parameter. The real and imaginary parts
of frequency are, respectively,

wr ¼
ðjþ 1

2
Þ

3
ffiffiffi
3

p
M

�
1þ q2

6M2
þ 43q4

648M4

�

þ 2ma
27M2

�
1þ q2

2M2
þ 13q4

54M4

�
; ð4:13Þ

and

wi ¼
ðnþ 1

2
Þ

3
ffiffiffi
3

p
M

�
1þ 5q2

18M2
þ 23q4

216M4

�

þ 8maðnþ 1
2
Þ

27M2j

�
1þ 23q2

36M2
þ 983q4

2592M4

�
; ð4:14Þ
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where n ¼ 0; 1; 2;… (n ≪ j). The rotation remove the
(2jþ 1)-fold degeneracy of the spherical modes both in
real and imaginary part of frequencies in contrast to the
Schwarzschild black hole where the imaginary part of
frequencies still remains degenerate.Moreover, in the eikonal
approximation under consideration Eqs. (4.13) and (4.14) are
independent of the spin of the perturbing field and agree with
the results obtained previously in [69,70].
As a final point, we should note that there is a relation

between the quasinormal frequencies and the properties of
photon orbits in the eikonal limit. It is noted that the real
part of the quasinormal frequencies is related to the angular
velocity of the photon orbit while the imaginary part may
be related to the Lyapunov exponent. A careful attention
can be helped to confirm the fact that there is a good
agreement between the Lyapunov exponent and imaginary
part of quasinormal frequency. We examine these state-
ments in the following subsection.

A. Connection between QNMs and photon sphere
in the eikonal limit

In what follows, we want to investigate the relation
between the real part of quasinormal modes and the radius
of the shadow cast by the photon sphere of the black hole.
To do so, we use the Hamilton-Jacobi Method to obtain
the following equations of motion for null geodesics of
charged rotating regular black hole at equatorial plane (see
Appendix A) [36,89]

Σ
�
dr
dγ

�
¼

ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ΘðθÞ ¼

ffiffiffi
k

p
;

Σ
�
dt
dγ

�
¼ T; Σ

�
dϕ
dγ

�
¼ φ; ð4:15Þ

where

RðrÞ ¼ E2ðr2 þ a2 − aξÞ2

×

�
1 −

½r2 þ a2 − 2fðrÞ�½ηþ ðξ − aÞ2�
ðr2 þ a2 − aξÞ2

�
; ð4:16Þ

T ¼ E2

�
r2 þ a2

Δ
ðr2 þ a2 − aξÞ − aða − ξÞ

�
; ð4:17Þ

φ ¼ E2

�
a
Δ
ðr2 þ a2 − aξÞ − ða − ξÞ

�
; ð4:18Þ

and

ξ ¼ L
E
; η ¼ k

E2
ð4:19Þ

are two impact parameters. The conditions for the unstable
circular orbits is given by RðrÞ ¼ dRðrÞ=dr ¼ 0. Now, one
can easily obtain the expressions for ξ and η from the
conditions of unstable circular orbits. For the generic fðrÞ,
these parameters take the following simple forms

ξ ¼ ða2 þ r2Þ½rþ f0ðrÞ� − 4rfðrÞ
a½f0ðrÞ − r� ; ð4:20Þ

η ¼ r2½8fðr2 þ a2Þ þ 8rff0 − 16f2 − 2r3f0 − r2f02 − 4ra2f0 − r4�
a2ðr − f0Þ2 ; ð4:21Þ

where r is the radius of the unstable circular orbits. These two equations determine the contour of the shadow in ξ − η plane.
Furthermore, the radius of the shadow is calculated as

R2
s ¼ ξ2 þ η ¼

�
1þ ða2þ2r2Þq2

2ða2−6r2ÞMr

�
ða2 − 6r2ÞM2 þ a2ðq2 þ 2MrÞe q2

2Mr þ r2ða2 þ 2r2Þeq2

Mr

ðM − re
q2

2MrÞ2

in which for the limit of q ≪ 1, a ≪ 1 and j ≫ 1, we have

R2
s ≈

2r2ðr2 − 3M2Þ
ðr −MÞ2 þ 4Mrq2

ðr −MÞ2 þ
ðr2 þMr − 4M2Þq4

2Mðr −MÞ3 : ð4:22Þ

By inserting w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
r þ w2

i

p
into the Eq. (4.10), one can obtain the radius of photon sphere as follows
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r ¼ rps ≈ 3M

�
1 −

2q2

9M2
−

17q4

648M4

�

−
2ma

3
ffiffiffi
3

p
jM

�
1þ q2

6M2
þ 17q4

648M4

�
: ð4:23Þ

It is obvious that in the limit q ≪ 1, a ≪ 1 and by inserting
Eq. (4.23) for rps (at j ¼ m) into the Eq. (4.22), we achieve

Rs ¼ 3
ffiffiffi
3

p
M − 4a −

ffiffiffi
3

p
q2

2M
−

q4

24
ffiffiffi
3

p
M3

þ 4aq4

3M4
;

and it is easy to show that the real part of QNMs is inversely
proportional to the shadow radius as follows

wr ≈
j
Rs

¼ j

3
ffiffiffi
3

p
M

�
1þ q2

3M2
þ 13q4

108M4

�

þ 4ma
27M2

�
1þ 2q2

3M2
þ 35q4

108M4

�
; for j≫ 1: ð4:24Þ

In Fig. 11, we have done a comparison between real part of
quasi normal modes in Eq. (4.24) and Eq. (4.13). As, can be
seen, there is a good agreement between them.
In the following, we want to obtain the connection

between Lyapunov exponent and the imaginary parts of
quasinormal mode [Eq. (4.14)]. The Lyapunov behavior
exists in the systems that sensitive to the initial conditions.
So, the Lyapunov exponent which determines the value of
the sensitivity should have behavior looks like the imagi-
nary parts of quasinormal mode which determines insta-
bility of black hole. To extract the Lyapunov exponent, we
follow the method of Ref. [70]. We perturb the equatorial
geodesic equations (4.15) as

r ¼ rps½1þ ϵfðtÞ�;
γ ¼ tþ ϵhðtÞ;
ϕ ¼ jwþj½tþ ϵgðtÞ�:

Here, by perturbing the radial equation to leading order in
ϵ, we obtain

2_t2
d2fðtÞ
dt2

þ d2V
dr2

fðtÞ
				
rps

¼ 0: ð4:25Þ

Now, by solving Eq. (4.25) and using the condition
fð0Þ ¼ 0, we can find

fðtÞ ¼ sinhðςtÞ; ς ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2_t2
d2V
dr2

s 				
rps

:

So, by using of first equation for the radial and third
equation for t of Eqs. (4.15) and (4.20) and also the
Eq. (4.10) for photon sphere radius in the limit of q ≪ 1,
a ≪ 1 and j ≫ 1, we can write

ς ¼ j

3
ffiffiffi
3

p
M

�
1þ 4q2

9M2
þ 49q4

324M4

�

þ 8ma
27jM2

�
1þ 2q2

3M2
þ 20q4

81M4

�
:

For the sake of completeness, we have done a comparison
between Lyapunov exponent and imaginary part of quasi-
normal frequency in Fig. 12, and obviously, there is a good
agreement between them.

FIG. 11. The comparison between wr in Eq. (4.24) (red solid
line) and Eq. (4.13) (blue solid line).

FIG. 12. The comparison of ς (red line) and wi (blue line) in
terms of M for a ¼ q ¼ 0.1.
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V. CONCLUSION

In this study, we have addressed a rotating regular black
hole in the framework of Einstein’s general relativity
coupled to a nonlinear electrodynamics. We have shown
that for some values of parameters, there is an event horizon
for nonsingular solution and we can interpret it as a black
hole. In fact, we have obtained an upper limit for the
magnetic charge or rotation parameter in order to have
event horizon and ergosphere. We have plotted the ergo-
region and have shown that, as the magnetic charge and
rotation parameter increased, the ergoregion also increased.
Since thermodynamical behavior is of great importance in
the search for a quantum theory of gravitation, we have also
managed to perform a thermodynamic investigation of the
black hole solutions. The conserved and thermodynamic
quantities have been calculated and the validity of the first
law has been examined. In addition, we have investigated
the global stability of the black hole by plotting the Gibbs
free energy. Also, the heat capacity has been studied to
check the local stability. We have shown that the present
solutions admitted small/large phase transitions similar to
the van der Waals liquid/gas phase transition. Then, we
have analytically studied the quasinormal modes of black
hole by using of Mashhoon’s method. Finally, in order to
obtain a relation between the quasinormal frequencies and
the properties of the photon sphere, we have obtained the
shadow radius of black hole and Lyapunov exponent. As it
can be seen, there is a good agreement between the inverse
of shadow radius and Lyapunov exponent with real and
imaginary parts of quasinormal modes, respectively.

It is interesting to obtain a relation between thermody-
namical quantities and quasinormal frequencies like
[77,78,90] in which a relation between the first law of
thermodynamics and real part of quasinormal frequencies
in some conditions has been obtained. We leave these work
for future work.
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APPENDIX A: EFFECTIVE POTENTIAL

Here, we want to show why we have used the original
metric instead of effective metric to study the shadow of
black hole. As we know, photons in the nonlinear electro-
dynamics do follow the null geodesics of an effective
metric rather than of the original one [36]. So, we need to
study the effective metric. The effective geometry has been
written as follows

gμνeff ¼ LFgμν − 4LFFF
μ
αFαν: ðA1Þ

So the effective metric in the plane θ ¼ π=2 can be
written as

ds2 ¼ gefftt dt2 þ geffrr dr2 þ 2gefftϕ dtdϕþ geffϕϕdϕ
2; ðA2Þ

where

gefftt ¼ −LFr6 þ 2LFfr4 þ 4LFFa2q2 þ 4LFFq2r2 − 8LFFfq2

LFr2ðLFr4 − 4LFFq2Þ
; ðA3Þ

geffrr ¼ r2

LFða2 þ r2 − 2fÞ ; ðA4Þ

gefftϕ ¼ −
2að−LFfr4 − 2LFFa2q2 − 2LFFq2r2 þ 4LFFfq2Þ

r2LFð−LFr4 þ 4LFFq2Þ
; ðA5Þ

geffϕϕ ¼ −LFa2r6 − LFr8 − 2LFa2fr4 − 4LFFa4q2 − 4LFFa2q2r2 þ 8LFFa2fq2

r2LFð−LFr4 þ 4LFFq2Þ
: ðA6Þ

Here LF is the same as that of Eq. (2.15) but at θ ¼ π=2
and LFF ¼ dLF=dF at θ ¼ π=2. It is useful to study the
effective potential that is felt by the photons. By using of
the symmetries of the metric one can achieve to the
following equation

1

2
_r2 þ Veff ¼ Ξ; ðA7Þ

where

Veff ¼
1

2grr
ðgtt_t2 þ 2gtϕ_t _ϕþ gϕϕ _ϕ

2Þ;

E ¼ gαβξαt _xβ;

L ¼ gαβξαϕ _x
β;
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and gab are the components of the metric, ξ is the Killing
vector and Ξ is the total energy. Considering Fig. 13, we
give plots of Veff for the metric (A2)(blue line) and for
metric (2.4)(red line). One can see that the difference
between the two plots is insignificant and it is thus
legitimate to use the original metric instead of effective one.

APPENDIX B: A BRIEF REVIEW ON
MASHHOON’S METHOD

According to this method the QNMs of a potential
barrier are related to the bound states of the inverted
potential [69,70]. Let p be a set of parameters associated
with the potential. These may belong to the potential
already, or they may be simply introduced as scaling
parameters. The parametrized potential is denoted by
Uðx;pÞ; the wave functions and the quasinormal frequen-
cies arc also functions of the parameters p∶ψ ¼ ψðx;pÞ
and w ¼ wðpÞ. Consider the formal transformations
x → −ix and p → p0 ¼ ΠðpÞ in such a way that the
potential remains invariant

Uð−ix;p0Þ ¼ Uðx;pÞ: ðB1Þ

Let us define ϕ and Ω such that

ϕðx;pÞ ¼ ψð−ix;p0Þ and ΩðpÞ ¼ wðp0Þ: ðB2Þ

Then ϕ satisfies the Schrödinger equation

d2ϕ
dx2

þ ð−Ω2 þ UÞϕ ¼ 0 ðB3Þ

and the boundary conditions for the QNMs are reduced to

ϕðx;pÞ ∝ expð∓ΩxÞ as x → �∞: ðB4Þ

Once ΩðpÞ is determined, the QNMs are found by the
inverse transformation

wðpÞ ¼ ΩðΠ−1ðpÞÞ and ψðx;pÞ ¼ ϕðix;Π−1ðpÞÞ:
ðB5Þ

The QNMs which are directly related, through Eq. (B5), to
the true bound states of the inverted potential will be
referred to proper QNMs. For instance, consider UðxÞ
drops exponentially to zero for x → −∞, but falls off as
x−2 for x → þ∞. In this case, one can estimate UðxÞ by
using simpler potentials that approximate it closely near
its maximum. This simple potential is the Poschl-Teller
potential

UPT ¼ U0

cosh2 αðx − x0Þ
: ðB6Þ

The quantities U0 and α > 0 are given by the height and
curvature of the potential at its maximum (x ¼ x0). Thus,

U0 ¼ Uðx0Þ; α2 ¼ −
1

2U0

d2U
dx2

				
x0

: ðB7Þ

The transition from the potential barrier UPT to the
inverted potential is achieved by the transformations
x → −ix, (U0; α)→ (U0; iα). The bound states of −UPT
are given by

ΩnðU0;αÞ ¼ α

�
−
�
nþ 1

2

�
þ
�
1

4
þU0

α2

�1
2

�
: ðB8Þ

The proper QNMs may be obtained from ΩnðU0;−iαÞ
corresponding frequencies are given by

wr ¼ �
�
U0 −

α2

4

�1
2

; wi ¼ α

�
nþ 1

2

�
: ðB9Þ

FIG. 13. The behavior of effective potential in terms of r for
M ¼ 1, θ ¼ π

2
, b ¼ E

L ¼ 0.1, q ¼ 0.5, a ¼ 0.5 (dashed line for
metric (2.4) and solid line for metric (A2).
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