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Via dei Musei 41, 25121 Brescia, Italy

(Received 5 February 2021; accepted 11 February 2021; published 9 March 2021)

The general relativistic Poynting-Robertson effect is a dissipative and nonlinear dynamical system
obtained by perturbing through radiation processes the geodesic motion of test particles orbiting around a
spinning compact object, described by the Kerr metric. Using the Melnikov method, we find that in a
suitable range of parameters, chaotic behavior is present in the motion of a test particle driven by the
Poynting-Robertson effect in the Kerr equatorial plane.
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I. INTRODUCTION

Chaos is a widespread feature in many physical nonlinear
dynamical systems. A chaotic system hides behind the
visible randomness of the complex dynamics, some under-
lying rich mathematical structures, such as constant feedback
loops, self-similarities, fractals, and self-organization [1,2].
Although a universally accepted formal definition of chaos
does not exist, the one due to Robert L. Devaney is widely
accepted, and it is based on the following three propri-
eties [3]:

(i) Sensitive dependence on initial conditions, i.e., tiny
perturbations on the initial conditions lead to sig-
nificantly different future behaviors.

(ii) Topologically mixing, i.e., any given region or open
set of the phase space eventually overlaps with any
other given region in the phase space.

(iii) Presence of a dense set of periodic orbits, i.e., every
point in the dynamical real space is approached
arbitrarily close by periodic orbits.

General relativity (GR), being a nonlinear theory, can
potentially exhibit chaotic phenomena [4]. The studies on
chaos in GR can be mainly divided in two branches:
(1) problems of geodesic/nongeodesic motion of a particle
in a given gravitational field and (2) evolution of cosmo-
logical models. Regarding works on the first class, it is
important to mention the motion in spaces with negative
curvature [5], motion around two fixed black holes (BHs)
[4,6,7], relativistic restricted three-body problem [8],
Schwarzschild BH affected by high-frequency periodic
perturbations [9], spinning particle motion around a Kerr

and Schwarzschild BH [10,11], and gravitational waves
from spinning compact binaries [12–14]. Moreover, studies
on chaos in cosmology include the model of Belinski-
Khalatnikov-Lifshitz dealing with the dynamic evolution
of the Universe near the initial gravitational singularity,
described by an anisotropic, chaotic solution of the Einstein
field equation of gravitation. [15,16], Bianchi IX (“mix-
master universe”) [17–19], Friedmann-Robertson-Walker
(FRW) plus a massive scalar field [20], and the nonlinear
interaction among dark matter, dark energy, normal matter,
and radiation on the FRW spacetime [21].
In high-energy astrophysics, dealing with electromag-

netic radiation processes around compact objects, like
neutron stars or BHs, relatively small-sized test particles
can drastically depart from their geodesic motion. The
gravitational pull is contrasted by the radiation pressure,
and in the process of absorption and reemission of radiation
from the test particle an additional radiation torque appears,
acting as a drag force opposite to the test particle orbital
motion [22,23]. This is the so-called Poynting-Robertson
(PR) effect, which configures thus as a dissipative nonlinear
dynamical system efficiently removing energy and angular
momentum from the affected test particle. There are several
models of the general relativistic PR effect in Kerr and also
other spacetimes from the two-dimensional (2D) [24–26] to
the 3D formulations [27–31]. They all exhibit the existence
of a critical hypersurface, a region where gravitational and
radiation forces balance and the test particle moves on it
stably [25,32,33].
Here, we focus our attention on the general relativistic

PR effect in the equatorial plane around a Kerr compact
object. To search for chaotic behavior, we employ the
Melnikov method [1,34], which is an independent diag-
nostic procedure, complementary to other numerical and
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analytical methods [2,34,35]. Its strength relies on the fact
that it requires only the knowledge of few elements without
having any insight into the solution of the perturbed
dynamics, i.e., (1) invariant subsets in the phase space
of the unperturbed dynamics (homoclinic orbits) and
(2) explicit expression of the perturbations.
The paper is organized as follows: in Sec. II, we briefly

recall the general relativistic PR effect model, underlining
also how to derive its dissipative perturbations; in Sec. III,
the homoclinic orbits in the equatorial plane of the Kerr
spacetime are described; in Sec. IV, we apply the Melnikov
method to the general relativistic PR effect; in Sec. V, we
discuss our results and draw the conclusions.

II. GENERAL RELATIVISTIC POYNTING-
ROBERTSON EFFECT IN THE EQUATORIAL

PLANE OF THE KERR METRIC

The general relativistic PR effect in the Kerr metric
describes the motion of a test particle influenced by the
gravitational field, the radiation pressure, and the radiation
drag force. The radiation field is modeled by photons
stemming out from a spherical and rigidly rotating radiation
source, which permits to calculate their impact parameter.
They move along null geodesics of the Kerr metric and hit
the test particle at each time instant, modifying thus its
timelike geodesic trajectory (see Sec. II A). We underline
the ranges of the model parameters, which will be useful in
Sec. IV. This model can be recast in Hamiltonian form,
convenient to extract the dissipative PR perturbations (see
Sec. II B). Finally, we discuss some a priori indications of
possible chaotic behavior in the general relativistic PR
effect (see Sec. II C).

A. The model

We consider a central compact object, whose outside
spacetime is described by the Kerr metric with signature
ð−;þ;þ;þÞ. In geometrical units (c ¼ G ¼ 1), the line
element of the Kerr spacetime, ds2 ¼ gαβdxαdxβ, in Boyer-
Lindquist coordinates, parametrized by mass M (set equal
to unity, M ¼ 1) and spin a, settled in the equatorial plane
θ ¼ π=2, reads as

ds2 ¼
�
2

r
− 1

�
dt2 −

4a
r
dtdφþ r2

Δ
dr2 þ ρdφ2; ð1Þ

where Δ≡ r2 − 2rþ a2 and ρ≡ r2 þ a2 þ 2a2=r. We
introduce the zero angular momentum observers
(ZAMOs), whose adapted orthonormal frame is given
by1 [24,25]

et̂ ≡ n ¼ ∂t − Nφ∂φ

N
; er̂ ¼

∂rffiffiffiffiffiffi
grr

p ; eφ̂ ¼ ∂φffiffiffiffiffiffiffigφφ
p ; ð2Þ

where f∂t;∂r;∂φg is the orthonormal frame adapted to the
static observer at infinity, N ¼ ð−gttÞ−1=2 is the time lapse
function, and Nφ ¼ gtφ=gφφ the spatial shift vector field,
whose explicit expressions are [25]

N ¼
ffiffiffiffi
Δ
ρ

s
; Nφ ¼ −

2a
rΔ

: ð3Þ

The radiation field is constituted by a coherent flux of
photons traveling along null geodesics in the Kerr geom-
etry. The related stress-energy tensor is [24,25,27,28]

Tμν ¼ Φ2kμkν; kμkμ ¼ 0; kμ∇μkν ¼ 0; ð4Þ
where k is the photon four-momentum field, and Φ is a
parameter linked to the radiation field intensity, whose
explicit expression is given by [25]2

Φ2 ¼ Φ2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RradðrÞ
p ; RradðrÞ ¼ rNjb tan βj; ð5Þ

where Φ0 is Φ evaluated at the emitting surface. Splitting k
with respect to the ZAMOs, we obtain [24,25]

k ¼ EðnÞ½nþ ν̂�; ν̂ ¼ sin β er̂ þ cos β eφ̂; ð6Þ
where ν̂; β; EðnÞ ¼ Epð1þ bNφÞ=N with Ep ¼ −kt the
conserved photon energy along its trajectory are, respec-
tively, the photon spatial unit relative velocity, the angle in
the azimuthal direction, and the photon energy, where all
quantities are measured in the ZAMO frame [24,25], The
radiation field is governed by the impact parameter b,
associated with the emission angle β.
The photons of the radiation field are emitted from a

spherical surface having radius R⋆ centered at the origin
of the Boyer-Lindquist coordinates and rigidly rotating
with angular velocity Ω⋆ ≥ 0. Defined the event horizon
RH ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
and the static limit RSL ¼ 2 radii in the

equatorial plane, we have that R⋆ ∈ ðRHðaÞ; R̄⋆�, where
R̄⋆ < ∞. Once R⋆ has been chosen, we want that
Ω⋆ ∈ ½Ωmin;Ωmax� ¼ ½Ω−;Ωþ� ∩ ½0;Ωþ�, where [28]

Ω� ¼
−gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gφφgtt

q
gφφ

: ð7Þ

The photon impact parameter is given by [28]

b ¼ −
�
gtφ þ gφφΩ⋆
gtt þ gtφΩ⋆

�
r¼R⋆

; ð8Þ

1The hat over the indices indicates that the corresponding
vector or tensor quantity is calculated in the ZAMO frame.

2The radial radiation function RradðrÞ can be equivalently
written as RradðrÞ ¼ ðr2 þ a2 − abÞ2 − Δða − bÞ2 [27,28].
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which in these premises ranges in ½bmin; bmax� ⊆ R (see
Fig. 2 in Ref. [28] for more details). The related photon
angle in the ZAMO frame is [28]

cos β ¼ bNffiffiffiffiffiffiffigφφ
p ð1þ bNφÞ ; ð9Þ

where β ∈ ½0; 2π�. For sin β > 0 (sin β < 0), we are con-
sidering outgoing (ingoing) photons; see Ref. [25].
A test particle moves with a timelike four-velocity U

and a spatial three-velocity with respect to the ZAMOs,
νðU; nÞ, which both read as [24,25,27,28]

U ¼ γ½nþ ν�; ν ¼ νðsin αer̂ þ cos αeφ̂Þ; ð10Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kνk2

p
is the Lorentz factor, ν ¼ kνk is

the magnitude of the test particle spatial velocity νðU; nÞ, α
is the azimuthal angle of the vector ν measured clockwise
from the positive φ̂ direction in the r̂ − φ̂ tangent plane in
the ZAMO frame. The energy absorbed by the test particle
affected by the incoming photon is EðUÞ ¼ −kμUμ, which
can be related to the photon energy EðnÞ in the ZAMO
frame through [24,25,27,28]

EðUÞ ¼ γEðnÞ½1 − ν sinψ cosðα − βÞ�: ð11Þ
We assume that the radiation test particle interaction

occurs through Thomson scattering, characterized by a
constant momentum-transfer cross section σ, independent
from direction and frequency of the radiation field. The
radiation force is given by [24,25,27,28]

F ðradÞðUÞα̂ ¼ σ½ΦEðUÞ�2V̂ðk; UÞα̂; ð12Þ
where the term σ̃½ΦEðUÞ�2 reads as [24,25,27,28]

σ̃½ΦEðUÞ�2
A

¼ γ2ð1þ bNφÞ2A2

N2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RradðrÞ

p ; ð13Þ

A ¼
�
γ −

prffiffiffiffiffiffi
grr

p sin β −
pφffiffiffiffiffiffiffigφφ

p cos β

�
: ð14Þ

The term A ¼ σ̃½Φ0Ep�2 is the luminosity parameter, which
can be equivalently written as A ¼ L=LEdd ∈ ½0; 1�, with L
the emitted luminosity at infinity and LEdd the Eddington
luminosity. We have that σ̃ ¼ σ=m, where m is the test
particle mass, which for easing the notations we set equal
to unity, m ¼ 1. The terms V̂ðk;UÞα̂ are the radiation field
components, which are [24,25,27,28]

V̂ r̂ ¼
1

A

�
sin β −

prffiffiffiffiffiffi
grr

p A

�
; ð15Þ

V̂φ̂ ¼ 1

A

�
cos β −

pφffiffiffiffiffiffiffigφφ
p A

�
; ð16Þ

V̂ t̂ ¼
1

A
½1 − γA�: ð17Þ

B. Hamiltonian formulation

The general relativistic PR effect in the Lagrangian
formalism has been already treated in [33,36–38], and we
now pass to its Hamiltonian formulation. In the geodesic
case, we consider the mass shell constraint gαβpαpβ ¼ −1,
where the momentum pα is canonically conjugate to xα

through the Legendre transform pα ¼ gαβ _xβ. Here the dot
stands for the derivative with respect to the affine parameter
τ. Therefore, the Hamiltonian is Hðp; xÞ ¼ gαβpαpβ=2, and
the Hamilton equations are

_xμ ¼ ∂H
∂pμ

; _pμ ¼ −
∂H
∂xμ : ð18Þ

Such formulation can be also extended to a dissipative
system, where the perturbations f ðp; xÞ ¼ ðfμ1; f2;μÞ are not
of Hamiltonian type; therefore, Eq. (18) becomes

_xμ ¼ ∂H
∂pμ

þ ϵfμ1; _pμ ¼ −
∂H
∂xμ þ ϵf2;μ; ð19Þ

where ϵ ≪ 1 is a small parameter.

1. General relativistic PR perturbations

The test particle velocity components are [24,25]

Ur̂ ≡ dr
dτ

¼ γν sin αffiffiffiffiffiffi
grr

p ; ð20Þ

Uφ̂ ≡ dφ
dτ

¼ γν cos αffiffiffiffiffiffiffigφφ
p −

γNφ

N
; ð21Þ

Ut̂ ≡ dt
dτ

¼ γ

N
; ð22Þ

where τ is the affine parameter (proper time) along the test
particle trajectory; see Eq. (10). In the PR effect case, the
conjugate momenta pμ to the xμ ¼ ðt; r;φÞ are

prffiffiffiffiffiffi
grr

p ¼ γν sin α;
pφffiffiffiffiffiffiffigφφ

p ¼ γν cos α; pt ¼
γ

N
: ð23Þ

In such formalism, we have that ν and γ read as

ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

r
grr

þ p2
φ

gφφ
Þ

1þ ðp2
r

grr
þ p2

φ

gφφ
Þ

vuuut ; γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

r

grr
þ p2

φ

gφφ

s
: ð24Þ

Using the radiation force components (15)–(17), we obtain
F̃μ ¼ σ̃½ΦEðUÞ�2V̂ μ̂=A, where ϵ ¼ A≡ L=LEdd ≪ 1,
namely, low luminosities. The PR dissipative perturbations
are ðfμ1; f2;μÞ ¼ ð0; F̃μÞ. We note that fμ1 ¼ 0, because the
radiation field, including radiation pressure and PR drag
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force, affects only the accelerations and not the velocity
components; see Ref. [25] for more details.

C. A priori indications of chaotic behavior

The main motivations for the present study are explained
in this section. During the investigation of the general
relativistic PR effect, a series of a priori indications of
possible chaotic dynamics can be found which are as
follows:

(i) It is a dissipative and nonlinear dynamical system in
GR [38], which makes the Kerr geodesic motion not
integrable [39,40].

(ii) It has been analytically and numerically confirmed
that such effect generally behaves as a forced har-
monic oscillator [24,25] endowed with a nonlinear
driven force (close to a Duffing oscillator), respon-
sible to potentially create resonance effects [35].

(iii) A test particle under the general relativistic PR effect
can end its motion either on the critical hypersurface
or escaping at infinity. It has been already formally
proved that the critical hypersurface behaves as a
stable attractor [32], and the same holds also for the
spatial infinity (never returning back).

(iv) As proved in [24], such effect admits positive
Lyapunov exponents, which measure the mean rate
of exponential separation of neighboring trajectories
[35]. This is a useful index indicating that a
dynamical system shows sensitive dependence on
the initial conditions. This propriety has been further
confirmed by numerical simulations.

III. HOMOCLINIC ORBITS

The notion of homoclinic orbits for a dynamical
system is based on the research of recurrent invariant sets

Λ]1,34 ], such as fixed points, periodic orbits, or
n-dimensional invariant tori. The set of all trajectories
approaching an invariant setΛ asymptotically in the infinite
future (past) is a submanifold of the phase space termed
stable (unstable) manifold of Λ, usually indicated by
WsðΛÞ (WuðΛÞ). An invariant set Λ possessing both stable
and unstable manifolds is called hyperbolic.3

A trajectory is defined to be homoclinic to a hyperbolic
invariant set Λ if it approaches Λ in the infinite future as
in the infinite past, i.e., WuðΛÞ ∩ WsðΛÞ ∩ Λ ≠ ∅ [1,34].
Therefore, for determining the class of the homoclinic
orbits of a dynamical system, we need to identify the

intersections of their stable and unstable manifolds on their
hyperbolic invariant sets.

A. Homoclinic orbits in the equatorial plane
of Kerr spacetime

We consider the following dynamical system represented
by the motion of a timelike test particle governed only by
gravity and no other perturbing effects in the equatorial
plane of the Kerr metric [41,42]:

_t ¼ rρE − 2aLz

rΔ
; _r ¼ �

ffiffiffiffiffiffiffiffiffi
RðrÞp
r2

; _φ ¼ _φða; rÞ;
ð25Þ

where _φða; rÞ ¼ ½2aEþ Lzðr − 2Þ�=ðrΔÞ,4

RðrÞ ¼ −ð1 − E2Þrðr − ruÞ2ðr − raÞ; ð26Þ

E ¼ −pt, and Lz ¼ pφ are, respectively, the energy and
angular momentum with respect to the z axis (orthogonal to
the equatorial plane) conserved along the test particle
trajectory, and ru and ra are, respectively, the periastron
and apastron radii of the homoclinic orbit. Throughout the
paper, the signs � refer to prograde and retrograde orbits,
respectively.
The invariant sets are the circular orbits (defined by the

conditions RðrÞ ¼ 0 and dRðrÞ=dr ¼ 0), while the hyper-
bolic invariant sets coincide with the unstable circular orbits
(defined by circular orbit condition, and d2RðrÞ=dr2 < 0,
which corresponds to the maximum of dR=dr ¼ 0).
Among these trajectories, the homoclinic orbits are the
unstable circular orbits energetically bounded (E < 1) [42]
that we describe through the periastron and apastron radii
ðrp; raÞ. Homoclinic orbits are in a one-to-one correspon-
dence with bound energy values E < 1 and therefore
constitute a one-parameter family specified by the (peri-
astron) radius ru ¼ rp.
The one-parameter family of homoclinic orbits in the

equatorial plane of the Kerr spacetime OhcðruÞ, see Fig. 1
as an example,5 is characterized by [42]

E ¼ r3=2u − 2r1=2u � a

r3=4u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2u − 3r1=2u � 2a

q < 1; ð27Þ

Lz ¼
r2u ∓ 2ar1=2u þ a2

r3=4u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2u − 3r1=2u � 2a

q ; ð28Þ
3The given definition has a clear dynamical meaning. How-

ever, the rigorous definition of a hyperbolic point p for a C1

vector field F∶Rn → Rn is the following: p is a critical point for
F, i.e., FðpÞ ¼ 0, and the Jacobian matrix of F at p,
J ¼ ð∇FÞðpÞ, has no eigenvalues with zero real parts [1,34].
The stable (unstable) manifold of p consists of points q such that
ϕtðqÞ → p as t → þ∞ (t → −∞), where ϕt is the flow associated
with F.

4It is possible to factorize RðrÞ ¼ −ð1 − E2Þr4 þ 2r3 −
½a2ð1 − E2Þ þ L2

z �r2 þ 2ðaE − LzÞ2r as reported in Eq. (26).
5To plot the homoclinic orbit in the equatorial plane of Kerr

metric, we use Eq. (26c) in Ref. [42] for describing the azimuthal
coordinate φ, while the radial coordinate r ranges in ½ru; ra�.
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ra ¼
2ðaE − LzÞ2
r2uð1 − E2Þ ≡ 2ruða ∓ ffiffiffiffiffi

ru
p Þ2

r2u − 4ru � 4a
ffiffiffiffiffi
ru

p − a2
; ð29Þ

where ru ranges between the innermost bound circular orbit
(IBCO), and the innermost stable circular orbit (ISCO), i.e.,
ru ∈ ½rIBCO; rISCO� (see Fig. 2), with

rIBCO ¼ 2 ∓ aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ a

p
; ð30Þ

rISCO ¼ 3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð31Þ

Z1 ¼ 1þ 3
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p h
3

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p þ 3
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p i
; ð32Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
: ð33Þ

IV. MELNIKOV INTEGRAL

The Melnikov method is a powerful mathematical tool to
identify the occurrence of chaos in 2D and even higher-
dimensional dynamical systems affected by Hamiltonian
periodic or non-Hamiltonian perturbations [1,34,43,44].
Let Φ∶R2n → R2n be an Hamiltonian integrable

dynamical system, which for the Liouville theorem is an
area-preserving map in the phase space, possessing a
hyperbolic fixed point P and a homoclinic orbit O. Such
a Hamiltonian system is affected by dissipative perturba-
tions like Eqs. (19). In these hypotheses, the Melnikov
method goes in search of homoclinic tangles [1,9,34]; see
Fig. 3. In such structures, onceWsðPÞ andWuðPÞ intersect
each other, they will continue to intersect infinitely in a
discrete number of points, like fQ;Q0; Q00; Q000;…; Pg.
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FIG. 1. Homoclinic orbit (left panel) and its phase portrait (right panel), for a ¼ 0.1, ru ¼ 4.40. The other parameters are ra ¼ 13.61,
E ¼ 0.95, and Lz ¼ 3.52. The red dashed line represents the circular orbit of radius ru centered in (0, 0) toward which the homoclinic
orbit moves. The hyperbolic fixed red point in the phase space has coordinates ðr; prÞ ¼ ðru; 0Þ.
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FIG. 2. The shaded area, delimited by IBCO and ISCO radii, is
where ru can range in terms of the spin a. The vertical dashed red
line represents the Schwarzschild limit (a ¼ 0), the horizontal
dashed green line is the static limit radius, and the continuous
blue line is the event horizon radius. FIG. 3. Example of homoclinic tangle.
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They cannot touch the same point twice, otherwise they
will be trapped in a cycle and will not reach the point P, and
P is not touched in a finite number of steps, since P is a
fixed point (has no image or preimage of a point other
than itself). Since Φ is an area-preserving map, the areas
formed by the intersection of WsðPÞ and WuðPÞ (i.e.,
A;A0;A00; � � �) are all equivalent. The Smale-Birkhoff
theorem claims that the dynamics produced by WsðPÞ
and WuðPÞ in approaching the point P gives rise to the
Smale horseshoe’s map, which is a chaotic map [1,34].
In order to find the homoclinic tangles, we have to find a

time t0 such that WsðPt0Þ and WuðPt0Þ intersect trans-
versally. To this end, we fix an arbitrary initial time t0 or
Poincaré section (where we follow the dynamics) corre-
sponding to the hyperbolic fixed point Pt0 (see Fig. 4). We
consider a point Q ∈ O, and then we define the distance
fromWsðPt0Þ toWuðPt0Þ along a transversal direction toO
in Q, which intersects WsðPt0Þ and WuðPt0Þ, respectively,
in Qs and Qu; see Fig. 5,

dðt0Þ ≈ ϵ
Mðt0Þ

k∇HðPt0Þk
þOðϵ2Þ; ð34Þ

where k∇HðPt0Þk ≠ 0. Here Mðt0Þ is the Melnikov
integral defined as [1,9,34,43,44]

Mðt0Þ ¼
Z þ∞

−∞
fH; fgdt

¼
Z þ∞

−∞

Xn
μ¼1

�∂H
∂pμ

f2;μ þ
∂H
∂xμ f

μ
1

�
dt; ð35Þ

where f·; ·g are the Poisson brackets, f are the perturba-
tions of Eq. (19), and the integral is taken along
the unperturbed homoclinic orbit O. Depending on the
values assumed by the Melnikov integral, we have the
following:

(i) If Mðt0Þ admits odd order zeros, there is chaos.
(ii) If Mðt0Þ is bounded away from zero, there is no

occurrence of chaos in the perturbed dynamics.
(iii) If Mðt0Þ is identically zero or admits even order

zeros, the method cannot predict anything.

A. Application to the general relativistic PR effect
perturbing the equatorial Kerr dynamics

We apply the Melnikov method to the general relativistic
PR effect, where the perturbations are f ¼ ð0; F̃μÞ; see
Sec. II B 1. The Melnikov integral (35) reads as

M≡Mða; ru; R⋆;Ω⋆; t0Þ

¼
Z þ∞

−∞
½ðgttpt þ gtφpφÞt¼t0

F̃tðt − t0Þ

þ ðgφφpφ þ gtφptÞt¼t0
F̃φðt − t0Þ

þ ðgrrprÞt¼t0F̃rðt − t0Þ�dt: ð36Þ

This integral is evaluated along the homoclinic orbit
O ∈ OhcðruÞ at the time t0. It is important to note that if
there exists an intersection for some t0, then there will be
one for every t0 [9]. Considering pr ¼ _rgrr, pφ ¼ Lz, and
pt ¼ −E (see Eqs. (25), (28), and (27), respectively), the
explicit expressions of V̂ μ̂ [see Eqs. (13)–(17)], and passing
from the coordinate time t to the coordinate radius r
integration, cf. Eq. (25), we have

M ¼ 2

Z
ra

ru

Ψ1Ψ2dr; ð37Þ

where

_t
_r
¼ rðrρE − 2aLzÞ

Δ
ffiffiffiffiffiffiffiffiffi
RðrÞp ; ð38Þ

Ψ1 ¼
γ2ð1þ bNφÞ2
N2

ffiffiffiffiffiffiffiffi
Rrad

p A
r0Δ0

_t
_r
; ð39Þ

FIG. 4. Sketch of Poincaré sections for unperturbed (left
cartoon) and perturbed (right cartoon) dynamical systems.

FIG. 5. Cartoon to explain the Melnikov integral.
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Ψ2 ¼ ðρ0r0E − 2aLzÞð1 − γAÞ
þ ½ðr0 − 2ÞLz þ 2aE�ðcos β − BAÞ

þ
ffiffiffiffiffiffi
R0

p
Δ0

r0
ðsin β −AAÞ: ð40Þ

In order to simplify the notations, we have defined

A ¼ prffiffiffiffiffiffi
grr

p ≡ 1

r

ffiffiffiffi
R
Δ

r
≥ 0; B ¼ Lzffiffiffiffiffiffiffigφφ

p ≡ Lzffiffiffi
ρ

p > 0: ð41Þ

This implies that Eqs. (24)–(14) read, respectively, as

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2 þ B2

p
; A ¼ γ −A sin β − B cos β: ð42Þ

The quantities with a subscript zero means that they are
evaluated at the initial time t0. Since the general relativistic
PR effect dynamics does not depend explicitly on the time,
we can set without loss of generality and for simplicity
t0 ¼ 0. We will show that M has not a defined sign for
all parameters ranging in their intervals. To achieve this
goal, we will study the signs of each components of the
integrating function by performing either analytical calcu-
lations or numerical simulations, where the functions are
difficult to handle analytically.
Resuming what has been discussed in the previous

sections, we have that the set of parameters fa; ru; R⋆;Ω⋆;
r0; r; βg range over the following intervals:

a ∈ ½0; 1Þ; ru ∈ ½rIBCOðaÞ; rISCOðaÞ�;
R⋆ ∈ ðrHðaÞ; R̄⋆�; Ω⋆ ∈ ½Ωmin;Ωmax�;
r0 ∈ ðrHðaÞ; R̄�; r ∈ ½ru; raða; ruÞ�; β ∈ ½0; 2π�;

ð43Þ

where R̄⋆; R̄ are finite values. In addition, we know

ffiffiffi
3

p

3
≤ E < 1;

2
ffiffiffi
3

p

3
≤ Lz ≤ 4; γ ≥ 1: ð44Þ

We prove that Ψ1 > 0, because

γ2ð1þ bNφÞ2
N2

ffiffiffiffiffiffiffiffi
Rrad

p > 0;
A

r0Δ0

> 0;
_t
_r
> 0: ð45Þ

The first term is composed by positive quantities. The
second term is positive, because A > 0 [see the Appendix
and Eq. (42)]. The term _t=_r has a positive denominator, as
well as the numerator (see the proof in the Appendix).
We prove thatΨ2 has not a defined sign. Indeed, we have

that ρ0r0E − 2aLz is equal to the numerator of _t=_r, which is
non-negative,

ffiffiffiffiffiffi
R0

p
Δ0=r0 is non-negative, and

ðr0 − 2ÞLz þ 2aE > ð1 − 2Þ 2
ffiffiffi
3

p

3
þ 2

ffiffiffi
3

p

3
¼ 0: ð46Þ

The signs of Ψ2 depend therefore only by (defining
f ¼ cos β − BA, g ¼ sin β −AA, h ¼ 1 − γA)

fðA;B; βÞ ¼ cos βð1þ B2Þ þ BðA sin β − γÞ; ð47Þ

gðA;B; βÞ ¼ sin βð1þA2Þ þAðB cos β − γÞ; ð48Þ

hðA;B; βÞ ¼ −ðA2 þ B2Þ þA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2 þ B2

p
: ð49Þ

After having found the ranges of A, B (see the Appendix),
we see that for β ∈ ½0; 2π� the functions f, g, h do not have
a definite sign as can be seen in Fig. 6.
This result implies that the Melnikov integral may admit

zero values. Due to the behaviors of the f, g, h functions, it
is very difficult to analytically describe the set of param-
eters for which the Melnikov integral vanishes. Therefore,
we resort to numerical simulations to investigate this issue.
We develop a code inMathematica 12.1.1.0, which permits
to numerically check whether there are values of r0 such
that vanish the Melnikov integral [45]. We calculate also
the derivative of the Melnikov integral with respect to r0,
proving that it is nonzero at the value of r0 for which the
Melnikov integral vanishes, thus assuring that the zero is
simple and chaos occurs (see Theorem 4.5.2 in Ref. [34] for
more details).6

In our numerical simulations, we found chaotic behavior
for certain parameter values. In Fig. 7, we display the
region of the parameter space where chaos occurs. We
performed several numerical simulations, and we found
that for photon impact parameter b ¼ 3 there is the
occurrence of chaos for almost each spin value, while
for b ¼ 0, 1, 2 chaos is not present. Therefore, we conclude
that for radial radiation field, b ¼ 0, chaos does not
manifest. In addition, we checked that for values closer
to b ¼ 3, chaos still reveals its presence. Once ða�; r�uÞ and
the radius r0 for having chaotic dynamics have been found,
we calculate the initial conditions on the test particle
trajectory by calculating first A� ¼ Aða�r�u; r0Þ and

6We note that our dynamical system is autonomous with
respect to the time t. Since the model is set in the equatorial plane,
all the functions depend only by rðtÞ. Therefore, we should find
the value of r0 such that Mðr0Þ ¼ 0. In addition, the condition

∂M
∂t0 ≠ 0

can be substituted by

∂M
∂r0

�∂rðtÞ
∂t

�
t¼t0

:
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B� ¼ Bða�r�u; r0Þ, see Eq. (42), and then we can calculate
the test particle initial velocity conditions

ν0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�2 þ B�2

1þA�2 þ B�2

s
; α0 ¼ arctan

�
A�

B�

�
; ð50Þ

obtained by employing Eqs. (23), (24), and (42). As an
example, we plot in Fig. 8 a chaotic orbit together with a
normal dynamics to highlight the different behaviors.

V. CONCLUSIONS

We have analyzed the general relativistic PR effect in the
equatorial plane of Kerr spacetime from a dynamical system
point of view (see Sec. II). We have employed the Melnikov
method to investigate whether it admits chaotic behaviors.
The idea behind such investigation relies on the existence of
some a priori indications of chaos, which are (i) nonintegr-
ability, (ii) presence of a stable attractor (critical hypersur-
face), (iii) strong analogy with a forced harmonic oscillator
(Duffing equations), and (iv) sensitive dependence on the
initial conditions (see Sec. II C).
The Melnikov method is based on the knowledge of

unperturbed Hamiltonian Kerr metric, general relativistic
PR dissipative perturbations (see Sec. II B 1), and homo-
clinic orbits in the equatorial plane of Kerr spacetime,
parametrized by the periastron ru (see Sec. III A). The aim
is for the existence of homoclinic tangles in the phase
space, whose dynamics reproduce that of the Smale horse-
shoe’s map, which is a chaotic map. This reduces to
determining whether the Melnikov integral, see Eq. (36),
admits zeros in terms of its parameters ða; ru; bðR⋆;Ω⋆ÞÞ
and initial condition r0; see Sec. IV. We proved that the
Melnikov integral admits simple zeros and therefore chaos
is present in the dynamics of the general relativistic PR
effect in the Kerr equatorial plane for low luminosities.
This result is relevant, because we discovered that the

general relativistic PR effect can admit chaotic orbits for a
suitable range of parameters provided by the Melnikov
method. Although several numerical simulations of the PR
trajectories have been performed in the literature (see
Refs. [24,25,31] for further details), to our knowledge
the existence of chaotic trajectories has never been reported

FIG. 6. Ranges of the f, g, h functions (blue surfaces). The orange surface corresponds to zero value of the functions.

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

a

r u
(M

)

rIBCO

rISCO

FIG. 7. Parameter space ða; ruÞ delimited by the curves rIBCO
and rISCO for the photon impact parameter value b ¼ 3. The blue
dots are the values found from our numerical simulations in
Mathematica, corresponding to chaotic dynamics.
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−
10

−
5

0
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)

x (M)

FIG. 8. Trajectories of two distinct test particles for a ¼ 0.5,
A ¼ L=LEdd ¼ 0.1, b ¼ 3.1M starting both at r0 ¼ 3.17M with
angular velocity α0 ¼ 0.11, but with different initial velocities,
ν0 ¼ 0.67 (black and chaotic orbit) and ν0 ¼ 0.60 (green orbit).
The red circle is the critical hypersurface for the black orbit
located at rcrit ¼ 5.88M, while the critical hypersurface for the
green one is located at rcrit ¼ 1.88M, very close to the event
horizon RHð0.5Þ ¼ 1.87M.
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in previous works on the PR effect. These configurations
are useful for astrophysical purposes, because they can be
exploited as a valuable tool for lighting up the compact
object around which a test particle orbits, being thus a
further source of information [46]. In other cases, the
presence of chaotic orbits may hamper the detection of
phenomena related to the general relativistic PR effect [12].
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APPENDIX: SIGNS AND RANGES OF
PARAMETERS

This appendix is devoted to prove the sign or range of
some parameters, appearing in the terms Ψ1, Ψ2.

1. Sign and range of A

The expression of A, see Eq. (14), can be equivalently
written in terms of Eq. (42) as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2 þ B2

p
−A sin β − B cos β; ðA1Þ

where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2 þ B2

p
, cf. Eq. (24). We claim that

A > 0. If sin β; cos β ≤ 0 this derives immediately from
(A1). Assuming that sin β > 0 and cos β ≤ 0, we get

A ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2 þ B2

p
−A sin β >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2

p
−A > 0;

and the same argument holds exchanging the role of cos β
and sin β. Finally, if cos β; sin β > 0, we obtain

1þA2 þ B2 > ðA sin β þ B cos βÞ2; ðA2Þ

from which we obtain

1þ ðA cos β − B sin βÞ2 > 0: ðA3Þ

2. Sign of _t=_r

The term _t=_r is the Jacobian of coordinate transforma-
tion, cf. Eq. (38); therefore, it must be nonzero. Since the
denominator is always positive, we focus only on the sign
of the numerator, which is estimated through

rρE − 2aLz ≥ rρ

ffiffiffi
3

p

3
−
4

ffiffiffi
3

p

3
>

4
ffiffiffi
3

p

3
−
4

ffiffiffi
3

p

3
¼ 0: ðA4Þ

3. Ranges of A and B

The analytical expression of A is, see Eqs. (26)–(42),

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − E2Þðr − ruÞ2ðra − rÞ

rΔ

r
; ðA5Þ

where the numerator has a maximum at rm ¼
ðru þ 2raÞ=3, while the denominator is a monotone
increasing function for r ∈ ½ru; ra�. We numerically
checked that A attains its maximum for ru ¼ RIBCOðaÞ.
It becomes a constant function independent from a, such
that Aða; RIBCOðaÞÞ ≈ 0.7, showing thus that A < 1.
The range of B can be obtained through

0 ≤ B ≤
Lz

ru
< 2: ðA6Þ
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