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We discuss dynamics of massive Klein-Gordon fields in two-dimensional anti-de Sitter spacetimes
(AdS2), in particular conserved quantities and nonmodal instability on the future Poincaré horizon called,
respectively, the Aretakis constants and the Aretakis instability. We find out the geometrical meaning of the
Aretakis constants and instability in a parallel-transported frame along a null geodesic; i.e., some
components of the higher-order covariant derivatives of the field in the parallel-transported frame are
constant or unbounded at the late time. Because AdS2 is maximally symmetric, any null hypersurfaces have
the same geometrical properties. Thus, if we prepare parallel-transported frames along any null hyper-
surfaces, we can show that the same instability emerges not only on the future Poincaré horizon but also on
any null hypersurfaces. This implies that the Aretakis instability in AdS2 is the result of singular behaviors
of the higher-order covariant derivatives of the fields on the whole AdS infinity, rather than a blowup on a
specific null hypersurface. It is also discussed that the Aretakis constants and instability are related to the
conformal Killing tensors. We further explicitly demonstrate that the Aretakis constants can be derived
from ladder operators constructed from the spacetime conformal symmetry.
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I. INTRODUCTION

The anti-de Sitter spacetime is a maximally symmetric
spacetime with negative constant curvature and a unique
solution, which is strictly stationary, of Einstein’s equations
with a negative cosmological constant [1]. In theoretical
physics, the anti-de Sitter spacetime has a central role
because of the AdS=CFT correspondence [2]. The timelike
conformal infinity makes it fail to be globally hyperbolic,
and the negative cosmological constant realizes a confined
system. Because of that, nontrivial phenomena are induced,
e.g., turbulent instabilities, superradiant instabilities, and
holographic superconductors [3–7]. Those motivate us to
study dynamics of fields in the (asymptotically) anti-de
Sitter spacetime. The anti-de Sitter spacetime has also been
studied from the point of view of the near-horizon geometry
[8], i.e., two-dimensional anti-de Sitter spacetime (AdS2)
structures appear in the vicinity of extremal black hole
horizons. Thus, it is expected that the study of AdS2 brings
us insight into fundamental properties near the horizon of
the extremal black holes.
Aretakis has shown that the (higher-order) derivatives of

test massive scalar fields blow up at the late time along the
event horizon in the four-dimensional extremal Reissner-
Nordström black holes [9,10], which is called the Aretakis
instability. In Refs. [11–15], it has also been shown that the
same phenomena occur in other extremal black hole
spacetimes and for other fields. Many aspects of the
Aretakis instability have been studied in Refs. [16–32].

These suggest that the Aretakis instability is the robust
phenomena around the extremal black holes. Thus, it is
interesting to study the Aretakis instability from the point
of view of the near-horizon geometry [15,21–25,29].
The Aretakis instability of massive scalar fields in AdS2

has already been discussed [15,21–25,29]. It has been
argued that the higher-order radial derivatives of the scalar
field show the polynomial growth on the future Poincaré
horizon. In their study (in fact, also in the original study by
Aretakis), the divergent behavior of the higher-order
derivatives has been shown in specific coordinate systems.
Thus, it is not trivial whether this divergent behavior is just
a coordinate effect or not. In the case of the extremal
Reissner-Nordström black holes, there is a unique timelike
Killing vector V, which is the generator of the event
horizon. In the Eddington-Finkelstein coordinates ðv; rÞ
where the timelike Killing vector V is a coordinate basis,
the radial derivative operator ∂r satisfies LV∂r ¼ 0. Then,
the growth of some components of a tensor in the
Eddington-Finkelstein coordinates is not a coordinate
effect. Because the Aretakis instability, i.e., the growth
of ∂n

rΦ with an integer n, implies that ∇r∇r � � �∇rΦ ¼
∂n
rΦþ lower derivatives is divergent, this is not a coor-

dinate effect. However, in the case of AdS2, there are many
possible timelike Killing vectors, and there is no unique
way to choose one of them. Actually, if we choose a
coordinate system where one of the coordinate bases is the
global timelike Killing vector, we can show that the higher-
order derivatives do not blow up. Thus, one may think that
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the Aretakis instability in AdS2 is due to the choice of the
coordinate systems [15,23].1 In this paper, to make this
point clear, we revisit to study the Aretakis constants and
instability in AdS2. We find out the geometrical meaning
of the Aretakis instability in the parallelly propagated
(parallel-transported) null geodesics frame on the horizon;
i.e., some components of the higher-order covariant deriv-
atives of the field in the parallelly propagated frame blow
up at the late time. In general relativity, parallelly propa-
gated frames are used for studying the singular behavior of
tensors in a coordinate independent way. For example, if
the components of the Riemann tensor in the parallelly
propagated frame are divergent at some point, we regard the
point as a curvature singularity even if all scalar quantities
constructed from the Riemann tensor, e.g., the Ricci scalar
or the Kretschmann invariant, are finite [33]. Thus, our
result implies the divergent behavior of the covariant
derivatives of the fields at the late time. In the study of
the Aretakis instability, the conserved quantities on the
horizon, called the Aretakis constants, make the analysis
easier [9–15]. In this paper, we also show that Aretakis
constants in AdS2 become some components of the higher-
order covariant derivatives of the field in the parallelly
propagated frame.
Because AdS2 is maximally symmetric, any null hyper-

surfaces have the same geometrical properties. If we
prepare the parallelly propagated null geodesic frame along
any null hypersurfaces, the above discussion holds not only
on the future Poincaré horizon but also on any null
hypersurfaces. This implies that the Aretakis instability
is the result of singular behaviors of the higher-order
covariant derivatives of the fields on the whole AdS
infinity, rather than a blowup on a specific null hypersur-
face. Also, by focusing on the maximal symmetry of AdS2,
we can construct scalar quantities that are constant not only
on the future Poincaré horizon but also on any null
hypersurfaces and reduce to the Aretakis constants on
the future Poincaré horizon. In this paper, we call these
scalar quantities the generalized Aretakis constants.
Reference [34] shows that the ladder operators constructed
from the spacetime conformal symmetry of AdS2 lead to
conserved quantities on any null hypersurfaces and
checked that they coincide with the generalized Aretakis
constants for special mass squared cases. In this paper, we
explicitly show the relation with the generalized Aretakis
constants for general cases. We also discuss that the
generalized Aretakis constants and instability in AdS2
are related to the conformal Killing tensors.

This paper is organized as follows. In Sec. II, we
briefly review the Aretakis constants and instability in
AdS2 based on Ref. [15]. In Sec. III, we introduce the
parallelly propagated null geodesics frame and discuss
the Aretakis constants and instability in that frame. We
also generalize to the case for any null hypersurfaces by
using parallelly propagated frames on them. In Sec. IV,
we discuss a relation between the generalization of the
Aretakis constants and the spacetime conformal symmetry
in AdS2. In the final section, we summarize this paper. In
Appendix A, we review the mass ladder operators in AdS2
[34,35]. Appendix B gives the proof of proposition 3
introduced in Sec. IV B.

II. ARETAKIS CONSTANTS AND
INSTABILITY IN AdS2

We briefly review the Aretakis constants and instability
in AdS2 [9–11,15,21–25,29]. In the ingoing Eddington-
Finkelstein coordinates ðv; rÞ, AdS2 is described by

ds2 ¼ −r2dv2 þ 2dvdr; ð2:1Þ
where the future Poincaré horizon is located at r ¼ 0. We
consider massive scalar fields Φðv; rÞ in AdS2. The fields
obey the massive Klein-Gordon equation

2∂v∂rΦþ ∂rðr2∂rΦÞ −m2Φ ¼ 0: ð2:2Þ

For mass squared m2 ¼ lðlþ 1Þ ðl ¼ 0; 1; 2;…Þ, act-
ing the lth-order derivative operator ∂l

r on Eq. (2.2) and
evaluating it at r ¼ 0 show

∂v∂lþ1
r Φjr¼0 ¼ 0: ð2:3Þ

This shows that Hl defined by

Hl ≔ ∂lþ1
r Φjr¼0 ð2:4Þ

are independent of v. Hence, Hl are conserved quantities
along the future Poincaré horizon and then called the
Aretakis constants in AdS2. For other mass squared, such
conserved quantities on the future Poincaré horizon cannot
be found. Differentiating Eq. (2.2) (lþ 1) times with
respect to r, we obtain

∂v∂lþ2
r Φjr¼0 ¼ −ðlþ 1ÞHl: ð2:5Þ

This implies

∂lþ2
r Φjr¼0 ¼ −ðlþ 1ÞHlvþ const: ð2:6Þ

Wesee that (lþ 2)th-order derivative of the field on the future
Poincaré horizon will blow up at the late time ifHl ≠ 0. This
divergent behavior is called the Aretakis instability in AdS2.

1In Ref. [23], there is an argument that the Aretakis instability
in AdS2 × S2 is not a coordinate effect if we consider AdS2 × S2
as a near-horizon geometry of extremal black holes. This is
because the AdS structure in the near horizon geometry appears
in the Poincaré chart and the generator of the Poincaré horizon
can be regarded as the horizon generator of the original black hole
spacetime.
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We note that the (lþ 3)th- or higher-order derivatives are
polynomially divergent at the late time.
For general mass squared cases withm2 ≥ m2

BF ¼ −1=4,
wherem2

BF is the Breitenlohner-Freedman bound [36,37] in
AdS2, Ref. [15] shows that the late-time behavior of the nth
derivatives of the fields with respect to r at the future
Poincaré horizon r ¼ 0 becomes2

∂n
rΦjr¼0 ∼ vn−Δm; ð2:7Þ

where n is a non-negative integer and

Δm ≔
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

4

r
: ð2:8Þ

Hence, using the notation,

nm ≔ bΔmc þ 1; ð2:9Þ

where bΔmc denotes the integer part of Δm, the nmth-order
derivative of the field at r ¼ 0 will blow up at the late time.
This is also called the Aretakis instability in AdS2. We note
that the ðnm þ 1Þth- or higher-order derivatives are also
unbounded.

III. ARETAKIS CONSTANTS AND INSTABILITY
IN THE PARALLELLY PROPAGATED NULL

GEODESICS FRAME

In this section, we discuss the geometrical meaning of
the Aretakis constants and instability in the parallelly
propagated null geodesic frame. We shall show that some
components of the higher-order covariant derivatives of the
field in the parallelly propagated frame are constant or
unbounded, and they correspond to the Aretakis constants
and instability, respectively.

A. On the future Poincaré horizon

We first discuss the late-time divergent behavior in
Eq. (2.7). We introduce vector fields on the future
Poincaré horizon r ¼ 0,

eμð0Þ∂μ ¼ ∂v; eμð1Þ∂μ ¼ −∂r; ð3:1Þ

where these satisfy

eμð0Þ∇μeνð0Þ ¼ 0; eμð0Þ∇μeνð1Þ ¼ 0;

eμð0Þeð0Þμ ¼ 0; eμð1Þeð1Þμ ¼ 0; eμð0Þeð1Þμ ¼−1; ð3:2Þ

at r ¼ 0. Hence, eμð1Þ is parallelly transported along the

null geodesic eμð0Þ on the future Poincaré horizon. The frame

formed by ðeμð0Þ; eμð1ÞÞ is called the parallelly propagated

null geodesic frame on the future Poincaré horizon.
For the massive scalar Φðv; rÞ satisfying Eq. (2.2) with

general mass squared and positive integer n, the following
relation holds:

ð−1Þneμ1ð1Þeμ2ð1Þ � � �eμnð1Þ∇μ1∇μ2 � � �∇μnΦj
r¼0

¼ ∂n
rΦjr¼0: ð3:3Þ

Using the notation nm is defined in Eq. (2.9), the divergent
behavior of ∂nm

r Φ at r ¼ 0 implies that the nmth-order
covariant derivative is also divergent in the parallelly
propagated null geodesic frame. We note that for n ≤ nm
the components of ∇μ1 � � �∇μnΦ in the parallelly propa-
gated null geodesic frame are bounded except for the
eμ1ð1Þe

μ2
ð1Þ � � � eμnð1Þ component with n ¼ nm from Eq. (2.7).3

For the mass squared m2 ¼ lðlþ 1Þ ðl ¼ 0; 1; 2;…Þ,
we obtain

ð−1Þlþ1eμ1ð1Þe
μ2
ð1Þ � � � eμlþ1

ð1Þ ∇μ1∇μ2 � � �∇μlþ1
Φj

r¼0

¼ ∂lþ1
r Φjr¼0: ð3:5Þ

We find that the eμ1ð1Þe
μ2
ð1Þ � � � eμlþ1

ð1Þ component of the (lþ 1)

th-order covariant derivative of the field on the future
Poincaré horizon is the Aretakis constant Hl in Eq. (2.4).

B. On any null hypersurfaces

Because AdS2 is maximally symmetric, the discussion in
the previous subsection should also hold for any other null
hypersurfaces. This implies that the Aretakis instability is
the result of singular behaviors of the higher-order covar-
iant derivatives of the fields on the whole AdS infinity,
rather than a blowup on a specific null hypersurface. In this
subsection, we explicitly show that for m2 ¼ lðlþ 1Þ
ðl ¼ 0; 1; 2;…Þ cases.

1. Massive scalar fields in the global chart ðU;VÞ
For later convenience, we discuss the massive scalar

fields in the global chart [34]. In the double null global
chart ðU;VÞ defined by

tanU ¼ vþ 2

r
; tanV ¼ v; ð3:6Þ

2Note that we focus on the normalizable modes.

3For positive integers n and q, the following relation holds:

ð−1Þneμ1ð0Þ � � � e
μq
ð0Þe

ν1
ð1Þ � � � eνnð1Þ∇μ1 � � �∇μq∇ν1 � � �∇νnΦj

r¼0

¼ ∂q
v∂n

rΦjr¼0: ð3:4Þ

Other components of the covariant derivatives in the parallelly
propagated frame can be written by Eq. (3.4) and the lower-order
derivatives using the commutation relation for the covariant
derivatives.
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the line element in Eq. (2.1), which describes AdS2, is
rewritten as

ds2 ¼ −
4

HðU;VÞ dUdV; ð3:7Þ

where

HðU;VÞ ¼ sin2ðU − VÞ: ð3:8Þ
The coordinate range is −∞<U<∞;−∞<V <∞ with
0 < U − V < π, and the AdS boundary is located at V ¼ U
or V ¼ U þ π where HðU;VÞ ¼ 0. The future and past
Poincaré horizons are U ¼ π=2 and V ¼ −π=2, respec-
tively. The Penrose diagram of AdS2 is shown in Fig. 1.
In the present coordinates, the massive Klein-Gordon

equation (2.2) is rewritten as

½−HðU;VÞ∂V∂U −m2�ΦðU;VÞ ¼ 0; ð3:9Þ
where HðU;VÞ is given by Eq. (3.8). We notice that for the
massless scalar this equation shows ∂V∂UΦ ¼ 0, and hence
∂UΦ is constant along any null hypersurfaces U ¼ const.
At the future Poincaré horizon U ¼ π=2, it coincides with
the Aretakis constant H0 in Eq. (2.4). Thus, ∂UΦ is the
generalization of the Aretakis constant H0. According to
Ref. [34], for the mass squaredm2 ¼ lðlþ 1Þ, there exists
the generalization of the Aretakis constantsHl in Eq. (2.4)
for general l,4

Al ≔
�

cos2V
HðU;VÞ

�
lþ1

�
HðU;VÞ
cos2V

∂U

�
lþ1

Φ; ð3:10Þ

and they satisfy

∂vAl ¼ 0: ð3:11Þ

We call Al the generalized Aretakis constants. It is easy to
check that Al ¼ Hl at the future Poincaré horizon
U ¼ π=2. For other mass squared cases, conserved quan-
tities on a null hypersurface cannot be found.

2. Parallelly propagated null geodesic frame in AdS2

Now, we introduce null vector fields

eμð0Þ∂μ ¼
fðUÞHðU;VÞ

4
∂V; eμð1Þ∂μ ¼

2

fðUÞ∂U; ð3:12Þ

where fðUÞ is an arbitrary finite function. These satisfy the
relations

eμð0Þ∇μeνð0Þ ¼ 0; eμð0Þ∇μeνð1Þ ¼ 0;

eμð0Þeð0Þμ ¼ 0; eμð1Þeð1Þμ ¼ 0; eμð0Þeð1Þμ ¼−1: ð3:13Þ

Therefore, ðeμð0Þ; eμð1ÞÞ form the parallelly propagated

null geodesic frame for each null hypersurface
U ¼ const. We should note that eμð0Þ and eμð1Þ are vector

fields defined in the whole AdS2 spacetime, while eμð0Þ and
eμð1Þ in Eq. (3.2) are defined only on the r ¼ 0 surface.

Hereafter, we set fðUÞ ¼ 2. We note that this specific
choice of fðUÞ does not change the conclusion in the
following discussions.

3. Massless scalar cases

General solutions of the massless Klein-Gordon equa-
tion (3.9) are

ΦðU;VÞ ¼ FðUÞ þGðVÞ: ð3:14Þ

Then, the generalized Aretakis constant in Eq. (3.10) is
A0 ¼ ∂UFðUÞ. Now, we can see

eμð1Þ∇μΦ ¼ A0; ð3:15Þ

eμð1Þe
ν
ð1Þ∇μ∇νΦ ¼ A0

∂UHðU;VÞ
HðU;VÞ þ ∂2

UFðUÞ: ð3:16Þ

Equation (3.15) shows that the geometrical meaning
of A0 at each null hypersurface U ¼ const: is the
same as the Aretakis constant H0 at r ¼ 0; i.e., a compo-
nent of the covariant derivative in the parallelly propagated
frame is constant at each null hypersurface. Because
∂UH=H ¼ 2= tanðU − VÞ, eμð1Þeνð1Þ∇μ∇νΦ in Eq. (3.16) is

FIG. 1. The Penrose diagram for AdS2. The left and right AdS
boundaries are located at U ¼ V þ π and U ¼ V, respectively.
The future and past Poincaré horizons are located atU ¼ π=2 and
V ¼ −π=2, respectively.

4If we exchange U and V in Eq. (3.10), we can construct
conserved quantities on V ¼ const: surfaces.
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divergent linearly in ðU − VÞ−1 at the AdS boundary if
A0 ≠ 0.5 Near the AdS boundary, we further show

eμ1ð1Þe
μ2
ð1Þ � � � eμnþ2

ð1Þ ∇μ1∇μ2 � � �∇μnþ2
Φ ¼ A0OððU − VÞ−n−1Þ;

ð3:17Þ

where n ≥ 1. Eqs. (3.16) and (3.17) show that the second-
and higher-order covariant derivatives of the field on any
null hypersurfaces have singular behaviors at the AdS
boundary if A0 ≠ 0.6 We comment that other components
are bounded,

eμð0Þ∇μΦ ¼ HðU;VÞ
2

∂VGðVÞ; ð3:18Þ

eμð0Þe
ν
ð0Þ∇μ∇νΦ ¼ HðU;VÞ

4
∂VðHðU;VÞ∂VGðVÞÞ; ð3:19Þ

eμð0Þe
ν
ð1Þ∇μ∇νΦ ¼ eμð1Þe

ν
ð0Þ∇μ∇νΦ ¼ 0: ð3:20Þ

4. Massive scalar cases with m2 =lðl+ 1Þ
For the cases m2 ¼ lðlþ 1Þ ðl ¼ 1; 2;…Þ, we can also

explicitly see the divergent behavior at the AdS boundary.
For the l ¼ 1 case, the general normalizable Klein-Gordon
fields, which are derived in Appendix A 3, take the form of

ΦðU;VÞ ¼ 2 cosU cosV
sinðU − VÞ ðFðUÞ − FðVÞÞ

− cos2U∂UFðUÞ − cos2 V∂VFðVÞ; ð3:21Þ

with an arbitrary function F.7 We obtain

eμ1ð1Þe
μ2
ð1Þ∇μ1∇μ2Φ ¼ A1; ð3:22Þ

where A1 ¼ 2ð−1 þ 2 cosð2UÞÞ∂UFðUÞ þ
cos Uð6 sin U∂2

UFðUÞ − cos U∂3
UFðUÞÞ is the general-

ized Aretakis constant (3.10) and

eμ1ð1Þe
μ2
ð1Þe

μ3
ð1Þ∇μ1∇μ2∇μ3Φ¼2A1

∂UHðU;VÞ
HðU;VÞ þ∂UA1: ð3:23Þ

Because ∂UH=H ¼ 2= tanðU − VÞ, Eq. (3.23) shows that
the third-order covariant derivative of the field on any null
hypersurfaces has the linear growth of ðU − VÞ−1 at the
AdS boundary if A1 ≠ 0. We comment that other compo-
nents are bounded.
For l ≥ 2, acting the mass ladder operators, which

are given by Eq. (A17), we can easily obtain the explicit
form of the general normalizable Klein-Gordon field,
which is Eq. (A18) with GðVÞ ¼ −FðVÞ. We can show
that (lþ 1)th- and (lþ 2)th-order covariant derivatives
are, respectively, constant along each null hypersurface and
divergent at the AdS boundary,

eμ1ð1Þe
μ2
ð1Þ � � � eμlþ1

ð1Þ ∇μ1∇μ2 � � �∇μlþ1
Φ ¼ Al; ð3:24Þ

whereAl is the generalized Aretakis constant in Eq. (3.10)
and

eμ1ð1Þe
μ2
ð1Þ � � � eμlþ2

ð1Þ ∇μ1∇μ2 � � �∇μlþ2
Φ

¼ ðlþ 1ÞAl
∂UHðU;VÞ
HðU;VÞ þ ∂UAl: ð3:25Þ

C. Relation between the conserved quantities on
the null hypersurface and divergent behavior

We have observed that, for a solution of the massive
Klein-Gordon equation (3.9) with the mass squared m2 ¼
lðlþ 1Þ ðl ¼ 0; 1; 2;…Þ in AdS2, in the parallelly propa-
gated null geodesic frame, the (lþ 1)th covariant deriva-
tive of the field gives a constant along each null
hypersurface and the (lþ 2)th covariant derivative has a
linear divergent behavior along the null hypersurface. We
can generalize this relation, i.e., the relation between a
conserved quantity on a null hypersurface and the divergent
behavior, as follows.
Proposition 1.—If the relation

eμnð1Þe
μn−1
ð1Þ � � � eμ1ð1Þ∇μn∇μn−1 � � �∇μ1Ψ ¼ AðUÞ ð3:26Þ

holds for some scalar field ΨðU;VÞ in AdS2, a positive
integer n, and a regular function AðUÞð≢ 0Þ, then
eμnþ1

ð1Þ eμnð1Þ � � � eμ1ð1Þ∇μnþ1
∇μn � � �∇μ1Ψ is divergent at the AdS

boundary.
Proof.—Acting an operator eμnþ1

ð1Þ ∇μnþ1
to Eq. (3.26), we

obtain

eμnþ1

ð1Þ eμnð1Þ � � � eμ1ð1Þ∇μnþ1
∇μn � � �∇μ1Ψ

¼ ∂UAðUÞ − eμnþ1

ð1Þ ∇μnþ1
ðeμnð1Þ � � � eμ1ð1ÞÞ∇μn � � �∇μ1Ψ

¼ ∂UAðUÞ þ nAðUÞ ∂UHðU;VÞ
HðU;VÞ ; ð3:27Þ

where we have used the relation

5If we consider the “normalizable” mode Φ ∼ ðU − VÞΔm with
Δm ¼ 1, where Δm is defined by Eq. (2.8), for the massless case
at the AdS boundary U ¼ V, then the function GðVÞ becomes
GðVÞ ¼ −FðVÞ. We note that the Aretakis instability occurs even
in that case.

6If A0 ¼ 0 and ∂2
UFðUÞ ≠ 0, the third-order derivative

eμ1ð1Þe
μ2
ð1Þe

μ3
ð1Þ∇μ1∇μ2∇μ3Φ is divergent (see Proposition 1 in

Sec. III C).
7Note that ΦðU;VÞ satisfies the normalizable boundary con-

dition, i.e., Φ ∼ ðU − VÞΔm with Δm ¼ lþ 1, at V ¼ U. If we
also impose this condition at V ¼ U þ π, F should satisfy
FðUÞ ¼ FðU þ πÞ.
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eμð1Þ∇μeνð1Þ ¼ −
∂UHðU;VÞ
HðU;VÞ eνð1Þ: ð3:28Þ

In the right-hand side of Eq. (3.27), the first term is finite,
but the second term is divergent at the AdS boundary V ¼
U (or V ¼ U þ π) because ∂UH=H ¼ 2= tanðU − VÞ. ▪
If ΨðU;VÞ is the massive Klein-Gordon field

with the mass squared m2 ¼ lðlþ 1Þ, the above
proposition leads to the relation between the generalized
Aretakis constant and the divergent behavior at the AdS
boundary.
As another application of the above proposition with

n ¼ 1, for the massive Klein-Gordon fields ΦðU;VÞ with
the mass squaredm2 ¼ lðlþ 1Þ in AdS2, if we choose the
function ΨðU;VÞ as

Ψ ¼ Di1;1Di2;2 � � �Dil;lΦ; ð3:29Þ

where Di;l are the mass ladder operators in Eq. (A17), then
ΨðU;VÞ satisfies themassless Klein-Gordon equation (3.9).
Then, eμð1Þ∇μΨ ∝ ∂UΨ is a constant along each null hyper-

surface, which corresponds to the generalized Aretakis
constant Al in Eq. (3.10) as will be shown in Sec. IV, and
eμð1Þe

ν
ð1Þ∇μ∇νΨ is linearly divergent along the null

hypersurface.
We can also show the following proposition.
Proposition 2.—If the relation

eμnð1Þe
μn−1
ð1Þ � � � eμ1ð1Þ∇μn∇μn−1 � � �∇μ1Ψ

¼ A0 þ A1ðVÞðU −U0Þ þOððU −U0Þ2Þ ð3:30Þ

holds for some scalar field ΨðU;VÞ in AdS2, a positive
integer n, a constant A0 (≠ 0), and a bounded function
A1ðVÞ, then eμnþ1

ð1Þ eμnð1Þ � � � eμ1ð1Þ∇μnþ1
∇μn � � �∇μ1Ψ is divergent

at the AdS boundary along U ¼ U0.
Proof.—If we set A ¼ A0 þ A1ðVÞðU − U0Þþ

OððU − U0Þ2Þ, Eq. (3.27) still holds. Because A1 is a
bounded function, eμnþ1

ð1Þ eμnð1Þ � � � eμ1ð1Þ∇μnþ1
∇μn � � �∇μ1Ψ is

divergent at the AdS boundary along U ¼ U0. ▪
We note that scalar fields ΨðU;VÞ in the above

propositions are not necessarily the massive Klein-
Gordon fields. Proposition 2 shows that the existence of
a constant along a null hypersurface leads to the divergent
behavior of the higher derivative. Finally, we comment that
Proposition 2 holds if A0 is a function of V and has a
nonvanishing limiting value limV→∞ A0 ≠ 0.

D. Relation among the conformal Killing tensors,
the Aretakis constants, and instability

For positive integers n, rank-n tensors

Kμ1μ2���μn ≔ eμ1ð1Þe
μ2
ð1Þ � � � eμnð1Þ ð3:31Þ

are conformal Killing tensors in AdS2, and the only
nontrivial components are KUU���U ¼ 1.8 For the scalar
fields ΦðU;VÞ with the mass squared m2 ¼ lðlþ 1Þ
ðl ¼ 0; 1; 2;…Þ, Eq. (3.24) shows that the generalized
Aretakis constants Al in Eq. (3.10) relate with the rank-
(lþ 1) conformal Killing tensor [34],

Kμ1μ2���μnlþ1∇μ1∇μ2 � � �∇μlþ1
Φ ¼ Al: ð3:32Þ

Equation (3.25) implies near the AdS boundary V ≃U,

Kμ1μ2���μnlþ2∇μ1∇μ2 � � �∇μlþ2
Φ

¼ 2ðlþ 1Þ Al

U − V
þOððU − VÞ0Þ: ð3:33Þ

Hence, the contraction with the rank-(lþ 2) conformal
Killing tensor and the (lþ 2)th-order covariant derivative
will blow up linearly in ðU − VÞ−1 at the AdS boundary
if Al ≠ 0.
For the general mass squared m2 ≥ m2

BF ¼ −1=4, where
the Aretakis constants do not necessarily exist, we have the
relation

Kμ1μ2���μnm∇μ1∇μ2 � � �∇μnm
Φ

¼ eμ1ð1Þe
μ2
ð1Þ � � � e

μnm
ð1Þ ∇μ1∇μ2 � � �∇μnm

Φ; ð3:34Þ

where the notation nm is defined in Eq. (2.9). As discussed
in Secs. III A and III B, the right-hand side is divergent at
the AdS boundary. Thus, the Aretakis instability can also be
regarded as that the contraction with the conformal Killing
tensor Kμ1μ2���μnm , and the nmth-order covariant derivative of
the Klein-Gordon field is divergent at the AdS boundary.

IV. ARETAKIS CONSTANTS FROM THE
SPACETIME CONFORMAL SYMMETRY

In this section, we discuss the relation between the
generalized Aretakis constants in AdS2 in Eq. (3.10) and
the ladder operators constructed from the spacetime con-
formal symmetry [34,35] for massive Klein-Gordon fields
with the mass squared m2 ¼ lðlþ 1Þ ðl ¼ 0; 1; 2;…Þ.
First, we construct conserved quantities at each null hyper-
surfaceU ¼ const: following Ref. [34]. Next, we show that
they coincide with the generalized Aretakis constants up to
constant factors. Note that cases for l ¼ 1, 2 have been
discussed [34].

8We note that Kμ1μ2���μn is parallelly propagated along eμð0Þ, i.e.,
eνð0Þ∇νKμ1μ2���μn ¼ 0, and satisfies LξKμ1μ2���μn ¼ 0 with the Kill-
ing vector ξ ¼ ∂V þ ∂U.
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A. Conserved quantities at each null hypersurface
from the mass ladder operators

We discuss the scalar fields ΦðU;VÞ obeying the
massive Klein-Gordon equation (3.9) with the mass
squared m2 ¼ lðlþ 1Þ. First, let us consider the massless
case l ¼ 0. The massless Klein-Gordon equation (3.9)
shows

∂V∂UΦ ¼ 0: ð4:1Þ

We can see that ∂UΦ is a conserved quantity at each null
hypersurface U ¼ const:, and this quantity is the general-
ized Aretakis constant A0 in Eq. (3.10).
Next, we consider l ≥ 1 cases. Using the mass ladder

operators [34,35] (see Appendix A for a brief review), the
massive Klein-Gordon fields can be mapped into the
massless Klein-Gordon fields. Following Ref. [34], we
can construct conserved quantities at each null hypersur-
face U ¼ const: similar to the massless case. The explicit
calculation is shown below. From the relation (A16) with
k ¼ s ¼ l on the scalar field Φ, we obtain

Dil;−1Dil−1;0 � � �Di1;l−2½−HðU;VÞ∂V∂U − lðlþ 1Þ�Φ
¼ −HðU;VÞ∂V∂UDil;1Dil−1;2 � � �Di1;lΦ; ð4:2Þ

where the mass ladder operators Di;k are given by
Eq. (A17) and HðU;VÞ is given by Eq. (3.8). Since the
left-hand side vanishes due to the Klein-Gordon equation
for Φ, Eq. (4.2) leads to

−HðU;VÞ∂V∂UDil;1Dil−1;2 � � �Di1;lΦ ¼ 0: ð4:3Þ

Thus, solutions of the massive Klein-Gordon equation with
the mass squared m2 ¼ lðlþ 1Þ in AdS2 can be mapped
into that of the massless Klein-Gordon equation. We note
that massive fields with other mass squared cannot be
mapped into massless fields. As in the case l ¼ 0, Eq. (4.3)
shows

∂VQl ¼ 0; ð4:4Þ

where

Ql ≔ WðUÞ∂UDil;1Dil−1;2 � � �Di1;lΦ: ð4:5Þ

For later convenience, using ∂VWðUÞ ¼ 0, we have added
an arbitrary function WðUÞ as a factor. Equation (4.4)
shows that Ql are conserved quantities at each null
hypersurface U ¼ const. As will be discussed below, the
quantity Ql relates to the generalized Aretakis
constant Al.

B. Relation with the Aretakis constants
on the future Poincaré horizon

We shall show that Ql coincide with the Aretakis
constants Hl in Eq. (2.4) on the future Poincaré horizon
U ¼ π=2 by choosingWðUÞ appropriately. It is convenient
to use the ingoing Eddington-Finkelstein coordinates
ðv; rÞ. Using ∂U ¼ −ð2 þ 2vr þ ð1=2 þ v2=2Þr2Þ∂r,
Eq. (4.5) is written as

Ql¼−WðUÞ
�
2þ2vrþ1þv2

2
r2
�
∂rDil;1Dil−1;2 ���Di1;lΦ:

ð4:6Þ

Because tanU ¼ vþ 2=r in Eq. (3.6), we can regard
W as a function of vþ 2=r. Hereafter, we consider
W ¼ −2−1CWðv=2þ 1=rÞq cases, where CW and q are
constants. Then, we can evaluate the leading term of Ql as

Ql ¼ CWr−q∂rDil;1Dil−1;2 � � �Di1;lΦð1þOðrÞÞ: ð4:7Þ

By choosing CW and q appropriately, we can show that Ql
coincide with the Aretakis constants on the future Poincaré
horizon,Hl in Eq. (2.4). For this purpose, we introduce the
following proposition.
Proposition 3.—For analytic solutions of the massive

Klein-Gordon equation with the mass squared lðlþ 1Þ;
ðl ¼ 0; 1; 2;…Þ in AdS2,

½2∂v∂r þ 2r∂r þ r2∂2
r − lðlþ 1Þ�Φðv; rÞ ¼ 0; ð4:8Þ

the relation

2−n1þn−1r−2n−1−n0∂rDil;1Dil−1;2 � � �Di1;lΦ¼ ∂lþ1
r ΦþOðrÞ

ð4:9Þ

holds, where n−1; n0; n1 are the numbers of the mass ladder
operators constructed from ζ−1; ζ0; ζ1, respectively,
included in the left-hand side of Eq. (4.9). The numbers
n−1; n0; n1 satisfy n−1 þ n0 þ n1 ¼ l.
The proof is given in Appendix B. Because Hl ¼
∂lþ1
r Φjr¼0, the above proposition and Eq. (4.7) show

Qljr¼0 ¼ Hl if CW ¼ 2−n1þn−1 and q ¼ 2n−1 þ n0. We
should note that, regardless of the choice of the closed
conformal Killing vectors, ζ−1; ζ0; ζ1, Qljr¼0 relate with
the same conserved quantities Hl.

C. Relation with the generalized
Aretakis constants

Next, we shall discuss that Ql in Eq. (4.5) coincide with
the generalized Aretakis constants Al in Eq. (3.10) by
choosing WðUÞ appropriately. In the construction of Ql in
Eq. (4.5), if we replace the mass ladder operators Di;k with
the general mass ladder operators in Eq. (A14), Ql are still
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independent of V. In that case, if all general mass ladder
operators contain ζ1, Ql at the Poincaré horizon coincide
with Ql constructed only from ζ1 up to the constant factor
because of Proposition 3. Because AdS2 is maximally
symmetric, we can generalize this to other null hyper-
surfaces U ¼ const:; i.e., if all general closed conformal
Killing vectors to constructQl are not proportional to ∂V at
a null hypersurface U ¼ U0, then those Ql at U ¼ U0 are
proportional to eμ1ð1Þe

μ2
ð1Þ � � � eμlþ1

ð1Þ ∇μ1∇μ2 � � �∇μlþ1
Φ. Thus,

Ql in Eq. (4.5) coincide with the generalized Aretakis
constant Al up to the factor of a function of U because
ζ−1; ζ0; ζ1 are not proportional to ∂V except at the Poincaré
horizon.

V. CONCLUSIONS

In this paper, we have studied the geometrical meaning
of the Aretakis constants and instability for massive
scalar fields in AdS2. We have shown that the Aretakis
constants and instability in AdS2 can be understood as
some components of the higher-order covariant deriva-
tives of the scalar fields in the parallelly propagated null
geodesic frame being constant or unbounded at the future
Poincaré horizon. Because of the maximal symmetry of
AdS2, the same discussion holds not only on the future
Poincaré horizon but also on any null hypersurfaces. We
have clarified that the generalization of the Aretakis
constants [34] called the generalized Aretakis constants
have the same geometrical meaning as that in the future
Poincaré horizon; i.e., some components of the higher-
order covariant derivatives in the parallelly propagated
null geodesic frame are constant at each null hypersur-
face. Also, we have seen that the higher-order covariant
derivatives of the scalar fields have singular behaviors at
the whole AdS boundary, and that causes the Aretakis
instability in AdS2. If we consider cases for the mass
squared with m2

BF < m2 < 0, where m2
BF ¼ −1=4 is the

Breitenlohner-Freedman bound [36,37], the first-
order covariant derivatives of the scalar fields are diver-
gent at the AdS boundary. This implies that some
physical quantities such as the energy-momentum tensor
also have divergent behaviors at the AdS boundary
for m2

BF < m2 < 0.
We have also discussed the relation with the spacetime

conformal symmetry. For the fields with the mass squared
m2 ¼ lðlþ 1Þ ðl ¼ 0; 1; 2;…Þ, the contraction with the
rank-(lþ 2) conformal Killing tensor and the (lþ 2)th-
order covariant derivatives of the field is divergent at the
whole AdS boundary if the generalized Aretakis constant
exists. If we see this divergent behavior on a null
hypersurface, it corresponds to the Aretakis instability.
We note that the generalized Aretakis constants can be
expressed as the contraction with the rank-(lþ 1) con-
formal Killing tensor and the (lþ 1)th-order covariant
derivatives [34]. We have demonstrated that the

generalized Aretakis constants can be derived from the
mass ladder operators constructed from the closed con-
formal Killing vectors [34].
Since the AdS2 structures appear in the vicinity of

extremal black hole horizons [8,15,21–25,29], we expect
that the Aretakis instability in extremal black hole space-
times has a similar geometrical meaning as our result in
AdS2 cases. In fact, this expectation is correct; i.e., the
Aretakis instability for black hole cases [9–14] can be
understood as some components of the higher-order covar-
iant derivatives of the field in the parallelly propagated
frame being unbounded at the late time [38].
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APPENDIX A: THE MASS LADDER
OPERATORS IN AdS2

We briefly review the mass ladder operators [34,35] in
AdS2, which map solutions of the massive Klein-Gordon
equation into that with the different mass squared.

1. Spacetime conformal symmetries and
mass ladder operators

It is said that an n-dimensional spacetime ðM; gμνÞ
possesses a spacetime conformal symmetry if the metric gμν
admits a conformal isometry ϕ defined by ϕ∶M → M
such that ϕ�gμν ¼ exp ð2QÞgμν, where Q is a function on
M. The transformation of the conformal isometry group is
generated by an infinitesimal coordinate transformation
xμ → x̄μ ¼ xμ − ζμ along a vector field ζμ called a con-
formal Killing vector. The conformal Killing vector ζμ

obeys the conformal Killing equation

Lζgμν ¼ 2Qgμν; Q ¼ 1

n
∇μζ

μ: ðA1Þ

A conformal Killing vector is said to be closed if∇½μζν� ¼ 0

is satisfied. Then, the closed conformal Killing vector
satisfies the closed conformal Killing equation

∇μζν ¼ Qgμν: ðA2Þ

If the closed conformal Killing vector ζμ further satisfies

Rμ
νζν ¼ λζμ; ðA3Þ

where λ is a constant, we can define the mass ladder
operator [34,35],
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Dk ≔ Lζ − kQ; k ∈ R; ðA4Þ

which maps a solution of the massive Klein-Gordon
equation to that with a different mass squared; i.e., for a
solution of the massive Klein-Gordon equation,

½□ −m2�Φ ¼ 0; ðA5Þ

withm2 ¼ −λkðkþ n − 1Þ,DkΦ becomes another solution
of the massive Klein-Gordon equation

½□ − ðm2 þ δm2Þ�DkΦ ¼ 0; ðA6Þ

with m2 þ δm2 ¼ −λðk − 1Þðkþ n − 2Þ. Here, we have
used the commutation relations for Dk,

½□;Dk� ¼ λð2kþn−2ÞDkþ
2

n
ð∇μζ

μÞ½□þλkðkþn−1Þ�:
ðA7Þ

Note that the condition (A3) is automatically satisfied
for vacuum solutions of the Einstein equations with a
cosmological constant, e.g., the anti-de Sitter spacetime.
For a given mass squared with ðn − 1Þ2 − 4m2=λ ≥ 0
(λ ≠ 0), there are two possible k ¼ k� as solutions of
m2 ¼ −λkðkþ n − 1Þ,

k� ¼ 1 − n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þ2 − 4m2=λ

p
2

: ðA8Þ

The mass ladder operators Dk correspond to a mass raising
or lowering operator, depending on the sign of λ.
If there exist two or more closed conformal Killing

vectors, we can investigate the Lie bracket among them. It
is defined by

ξμi;j ≔ ½ζi; ζj�μ ¼ ζνi∇νζ
μ
j − ζνj∇νζ

μ
i; ðA9Þ

where the indices i and j label the different closed conformal
Killing vectors. Then, the vectors (A9) satisfy the Killing
equation Lξgμν ¼ 0, where we have used Eq. (A3).

2. Mass ladder operators in AdS2

In the AdS2 cases, i.e., n ¼ 2 and λ ¼ −1, the mass
ladder operators exist when m2 ≥ m2

BF ¼ −1=4. Note that
this condition corresponds to the non-negativity of the
inside of the square root in Eq. (A8). For the massive Klein-
Gordon equation (A5) in AdS2, k� in Eq. (A8) are

kþ ¼ ν; k− ¼ −ðνþ 1Þ; ðA10Þ

where we parametrized the mass squared asm2¼ νðνþ1Þ.9
Note that k− ¼ −Δm in Eq. (2.8).
Solving the closed conformal Killing equation (A2)

for AdS2, we obtain three closed conformal Killing
vectors,

ζ−1 ¼ ∂v þ r2∂r;

ζ0 ¼ v∂v þ ðrþ vr2Þ∂r;

ζ1 ¼ v2∂v þ ð2þ 2vrþ v2r2Þ∂r: ðA11Þ

We note here that ζμ−1 and ζμ0 become null on the Poincaré
horizon, while ζμ1 does not. We comment that the Lie
bracket (A9) among the closed conformal Killing vectors
ζμi (i ¼ −1, 0, 1) yields three Killing vectors,

ξ−1ð≔ ξ0;−1Þ ¼ ∂v;

ξ0ð≔ ξ−1;1Þ ¼ v∂v − r∂r;

ξ1ð≔ ξ1;0Þ ¼ v2∂v − 2ð1þ vrÞ∂r: ðA12Þ

Using the closed conformal Killing vectors (A11), we
obtain three mass ladder operators,

D−1;k ¼ ∂vþ r2∂r−kr;

D0;k ¼ v∂vþ rð1þvrÞ∂r−kð1þvrÞ;
D1;k ¼ v2∂vþð2þ2vrþv2r2Þ∂r−kvð2þvrÞ: ðA13Þ

For the closed conformal Killing vectors ζμi in Eq. (A11),
the mass ladder operators Di;k defined in Eq. (A13) map a
solution of the massive Klein-Gordon equation (A5) with
m2 ¼ kðkþ 1Þ to that with a different mass squared
m2 þ δm2 ¼ ðk − 1Þk. Note that if we consider the general
closed conformal Killing vectors ζ ¼ a−1ζ−1 þ a0ζ0þ
a1ζ1, where a−1; a0; a1 are constants, we can construct
the general mass ladder operators in AdS2 as

Dk ¼ a−1D−1;k þ a0D0;k þ a1D1;k: ðA14Þ

The commutation relation (A7) can be written as

Di;k−2½□ − kðkþ 1Þ� ¼ ½□ − kðk − 1Þ�Di;k: ðA15Þ

Using this, for a positive integer s, we can show

Dis;k−s−1 � � �Di2;k−3Di1;k−2½□ − kðkþ 1Þ�
¼ ½□ − ðk − sÞðkþ s − 1Þ�Dis;k−sþ1 � � �Di2;k−1Di1;k:

ðA16Þ

9In the derivation of Eq. (A10), we have assumed ν ≥ −1=2. If
ν<−1=2, kþ ¼ −ðνþ 1Þ and k−¼ν. We note that m2 ¼ νðνþ1Þ
with ν ≥ −1=2 corresponds to m2 ≥ m2

BF; thus, it is enough to
consider ν ≥ −1=2 cases.
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3. Mass ladder operators in the global chart

We introduce here the mass ladder operators in the
ðU;VÞ chart in Eq. (3.6),

D−1;k ¼ cos2 V∂V − cos2U∂U − k
2 cosV cosU
sin ðU − VÞ ;

D0;k ¼ sinV cosV∂V − sinU cosU∂U − k
sin ðU þ VÞ
sin ðU − VÞ ;

D1;k ¼ sin2 V∂V − sin2U∂U − k
2 sinU sinV
sin ðU − VÞ : ðA17Þ

We note that the above mass ladder operators are regular
differential operators except at the AdS boundary, and the
divergent behavior at the AdS boundary changes the
asymptotic behavior of the scalar fields near the AdS
boundary from ΦðU;VÞ ∼ c1ðU − VÞ−k þ c2ðU − VÞðkþ1Þ

to Di;kΦ ∼ c1ðU − VÞ−ðk−1Þ þ c2ðU − VÞk, where c1 ¼
c1ðUÞ and c2 ¼ c2ðUÞ, and we have assumed the mass
squared of the massive Klein-Gordon equation is m2 ¼
kðkþ 1Þð≥ −1=4Þ [34].
We can construct the general solutions of the massive

Klein-Gordon equation (3.9) with the mass squared
m2 ¼ lðlþ 1Þðl ¼ 1; 2;…Þ, from the general solution
of the massless Klein-Gordon equation, Φ0ðU;VÞ ¼
FðUÞ þ GðVÞ, as follows:

ΦlðU;VÞ ¼ Dil;−lDil−1;−ðl−1Þ � � �Di1;−1Φ0: ðA18Þ

Because the mass ladder operators are surjective (onto)
maps as shown in Ref. [34], ΦlðU;VÞ becomes the general
solution of the massive Klein-Gordon equation. For exam-
ple, Φ1ðU;VÞ with D−1;k becomes

Φ1ðU;VÞ ¼ 2 cosU cosV
sinðU − VÞ ðFðUÞ þ GðVÞÞ

− cos2U∂UFðUÞ þ cos2 V∂VGðVÞ: ðA19Þ

If we impose the normalizable boundary condition at
U ¼ V, we obtain Eq. (3.21).

APPENDIX B: PROOF OF PROPOSITION 3

In this proof, for scalar fields with the mass squared
m2 ¼ lðlþ 1Þ ðl ¼ 0; 1; 2;…Þ, we write Φ; n−1; n0; n1 as
Φl; nl−1; n

l
0 ; n

l
1 , respectively. We expand Φlðv; rÞ as a

Taylor series around r ¼ 0,

Φlðv; rÞ ¼
X∞
s¼0

Cl
s ðvÞrs: ðB1Þ

where Cl
s ðvÞ is given by Cl

s ðvÞ ¼ ðs!Þ−1∂s
rΦljr¼0. The

massive Klein-Gordon equation (4.8) becomes

X∞
s¼1

�
2s

dCl
s

dv
þ ðsþ lÞðs − l − 1ÞCl

s−1

�
rs ¼ 0; ðB2Þ

then, we obtain the relation10

dCl
s

dv
¼ −

ðsþ lÞðs − l − 1Þ
2s

Cl
s−1: ðB3Þ

We would like to show that if the relation (4.9) holds for l,
then it also holds for lþ 1,

2−n
lþ1
1

þnlþ1
0 r−2n

lþ1
−1 −nlþ1

0 ∂rDil;1Dil−1;2 � � �Di1;lDilþ1;lþ1Φlþ1

¼ ∂lþ2
r Φlþ1 þOðrÞ; ðB4Þ

where nlþ1
−1 þ nlþ1

0 þ nlþ1
1 ¼ lþ 1. We note that relation

(4.9) trivially holds for l ¼ 0. Substituting Eq. (B3) into
Eq. (B1), after some straightforward calculations, we can
show the relations

2r−2∂lþ1
r D−1;lþ1Φlþ1 ¼ ∂lþ2

r Φlþ1 þOðrÞ; ðB5Þ

r−1∂lþ1
r D0;lþ1Φlþ1 ¼ ∂lþ2

r Φlþ1 þOðrÞ; ðB6Þ

2−1∂lþ1
r D1;lþ1Φlþ1 ¼ ∂lþ2

r Φlþ1 þOðrÞ: ðB7Þ

These relations immediately lead to Eq. (B4). As an
example, we show the ilþ1 ¼ −1 case below. Since
Dilþ1;lþ1Φlþ1 is a solution of the Klein-Gordon equation
with the mass squared lðlþ 1Þ, we can set

Φl ¼ D−1;lþ1Φlþ1: ðB8Þ

The left-hand side of Eq. (B4) becomes

2−n
l
1
þnl−1þ1r−2ðn

l
−1þ1Þ−nl

0∂rDil;1Dil−1;2 � � �Di1;lD−1;lþ1Φlþ1

¼ 2−n
l
1
þnl−1þ1r−2ðn

l
−1þ1Þ−nl

0∂rDil;1Dil−1;2 � � �Di1;lΦl

¼ 2r−2∂lþ1
r Φl þOðrÞ

¼ 2r−2∂lþ1
r D−1;lþ1Φlþ1 þOðrÞ

¼ ∂lþ2
r Φlþ1 þOðrÞ: ðB9Þ

Note that the cases for ilþ1 ¼ 0, 1 can be shown in the
same way.

10Note that the relation Eq. (B3) implies dCk
lþ1=dv ¼ 0; then,

ðl þ 1Þ!Cl
lþ1 ¼ Hl ¼ const: and dCl

lþ2=dv ¼ −Cl
lþ1ðlþ 1Þ=

ðlþ 2Þ; then, ðlþ2Þ!Cl
lþ2¼∂lþ2

r Φjr¼0¼−ðlþ1ÞHlvþconst.
These correspond to the Aretakis constants and instability in
Eqs. (2.4) and (2.6). We note that the coefficients Cl

s with s ≤ l
are decaying functions of v if we choose the normalizable modes.
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