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We discuss dynamics of massive Klein-Gordon fields in two-dimensional anti-de Sitter spacetimes
(AdS,), in particular conserved quantities and nonmodal instability on the future Poincaré horizon called,
respectively, the Aretakis constants and the Aretakis instability. We find out the geometrical meaning of the
Aretakis constants and instability in a parallel-transported frame along a null geodesic; i.e., some
components of the higher-order covariant derivatives of the field in the parallel-transported frame are
constant or unbounded at the late time. Because AdS, is maximally symmetric, any null hypersurfaces have
the same geometrical properties. Thus, if we prepare parallel-transported frames along any null hyper-
surfaces, we can show that the same instability emerges not only on the future Poincaré horizon but also on
any null hypersurfaces. This implies that the Aretakis instability in AdS, is the result of singular behaviors
of the higher-order covariant derivatives of the fields on the whole AdS infinity, rather than a blowup on a
specific null hypersurface. It is also discussed that the Aretakis constants and instability are related to the
conformal Killing tensors. We further explicitly demonstrate that the Aretakis constants can be derived

from ladder operators constructed from the spacetime conformal symmetry.
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I. INTRODUCTION

The anti-de Sitter spacetime is a maximally symmetric
spacetime with negative constant curvature and a unique
solution, which is strictly stationary, of Einstein’s equations
with a negative cosmological constant [1]. In theoretical
physics, the anti-de Sitter spacetime has a central role
because of the AdS/CFT correspondence [2]. The timelike
conformal infinity makes it fail to be globally hyperbolic,
and the negative cosmological constant realizes a confined
system. Because of that, nontrivial phenomena are induced,
e.g., turbulent instabilities, superradiant instabilities, and
holographic superconductors [3—7]. Those motivate us to
study dynamics of fields in the (asymptotically) anti-de
Sitter spacetime. The anti-de Sitter spacetime has also been
studied from the point of view of the near-horizon geometry
[8], i.e., two-dimensional anti-de Sitter spacetime (AdS,)
structures appear in the vicinity of extremal black hole
horizons. Thus, it is expected that the study of AdS, brings
us insight into fundamental properties near the horizon of
the extremal black holes.

Aretakis has shown that the (higher-order) derivatives of
test massive scalar fields blow up at the late time along the
event horizon in the four-dimensional extremal Reissner-
Nordstrom black holes [9,10], which is called the Aretakis
instability. In Refs. [11-15], it has also been shown that the
same phenomena occur in other extremal black hole
spacetimes and for other fields. Many aspects of the
Aretakis instability have been studied in Refs. [16-32].
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These suggest that the Aretakis instability is the robust
phenomena around the extremal black holes. Thus, it is
interesting to study the Aretakis instability from the point
of view of the near-horizon geometry [15,21-25,29].
The Aretakis instability of massive scalar fields in AdS,
has already been discussed [15,21-25,29]. It has been
argued that the higher-order radial derivatives of the scalar
field show the polynomial growth on the future Poincaré
horizon. In their study (in fact, also in the original study by
Aretakis), the divergent behavior of the higher-order
derivatives has been shown in specific coordinate systems.
Thus, it is not trivial whether this divergent behavior is just
a coordinate effect or not. In the case of the extremal
Reissner-Nordstrom black holes, there is a unique timelike
Killing vector V, which is the generator of the event
horizon. In the Eddington-Finkelstein coordinates (v, r)
where the timelike Killing vector V is a coordinate basis,
the radial derivative operator 0, satisfies £y0, = 0. Then,
the growth of some components of a tensor in the
Eddington-Finkelstein coordinates is not a coordinate
effect. Because the Aretakis instability, i.e., the growth
of 0"® with an integer n, implies that V,V,..-V,® =
0'® + lower derivatives is divergent, this is not a coor-
dinate effect. However, in the case of AdS,, there are many
possible timelike Killing vectors, and there is no unique
way to choose one of them. Actually, if we choose a
coordinate system where one of the coordinate bases is the
global timelike Killing vector, we can show that the higher-
order derivatives do not blow up. Thus, one may think that
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the Aretakis instability in AdS, is due to the choice of the
coordinate systems [15,23]." In this paper, to make this
point clear, we revisit to study the Aretakis constants and
instability in AdS,. We find out the geometrical meaning
of the Aretakis instability in the parallelly propagated
(parallel-transported) null geodesics frame on the horizon;
i.e., some components of the higher-order covariant deriv-
atives of the field in the parallelly propagated frame blow
up at the late time. In general relativity, parallelly propa-
gated frames are used for studying the singular behavior of
tensors in a coordinate independent way. For example, if
the components of the Riemann tensor in the parallelly
propagated frame are divergent at some point, we regard the
point as a curvature singularity even if all scalar quantities
constructed from the Riemann tensor, e.g., the Ricci scalar
or the Kretschmann invariant, are finite [33]. Thus, our
result implies the divergent behavior of the covariant
derivatives of the fields at the late time. In the study of
the Aretakis instability, the conserved quantities on the
horizon, called the Aretakis constants, make the analysis
easier [9-15]. In this paper, we also show that Aretakis
constants in AdS, become some components of the higher-
order covariant derivatives of the field in the parallelly
propagated frame.

Because AdS, is maximally symmetric, any null hyper-
surfaces have the same geometrical properties. If we
prepare the parallelly propagated null geodesic frame along
any null hypersurfaces, the above discussion holds not only
on the future Poincaré horizon but also on any null
hypersurfaces. This implies that the Aretakis instability
is the result of singular behaviors of the higher-order
covariant derivatives of the fields on the whole AdS
infinity, rather than a blowup on a specific null hypersur-
face. Also, by focusing on the maximal symmetry of AdS,,
we can construct scalar quantities that are constant not only
on the future Poincaré horizon but also on any null
hypersurfaces and reduce to the Aretakis constants on
the future Poincaré horizon. In this paper, we call these
scalar quantities the generalized Aretakis constants.
Reference [34] shows that the ladder operators constructed
from the spacetime conformal symmetry of AdS, lead to
conserved quantities on any null hypersurfaces and
checked that they coincide with the generalized Aretakis
constants for special mass squared cases. In this paper, we
explicitly show the relation with the generalized Aretakis
constants for general cases. We also discuss that the
generalized Aretakis constants and instability in AdS,
are related to the conformal Killing tensors.

'In Ref. [23], there is an argument that the Aretakis instability
in AdS, x S is not a coordinate effect if we consider AdS, x S?
as a near-horizon geometry of extremal black holes. This is
because the AdS structure in the near horizon geometry appears
in the Poincaré chart and the generator of the Poincaré horizon
can be regarded as the horizon generator of the original black hole
spacetime.

This paper is organized as follows. In Sec. II, we
briefly review the Aretakis constants and instability in
AdS, based on Ref. [15]. In Sec. III, we introduce the
parallelly propagated null geodesics frame and discuss
the Aretakis constants and instability in that frame. We
also generalize to the case for any null hypersurfaces by
using parallelly propagated frames on them. In Sec. 1V,
we discuss a relation between the generalization of the
Aretakis constants and the spacetime conformal symmetry
in AdS,. In the final section, we summarize this paper. In
Appendix A, we review the mass ladder operators in AdS,
[34,35]. Appendix B gives the proof of proposition 3
introduced in Sec. IV B.

II. ARETAKIS CONSTANTS AND
INSTABILITY IN AdS,

We briefly review the Aretakis constants and instability
in AdS, [9-11,15,21-25,29]. In the ingoing Eddington-
Finkelstein coordinates (v, r), AdS, is described by

ds* = —r*dv* + 2dvdr, (2.1)

where the future Poincaré horizon is located at r = 0. We
consider massive scalar fields ®(v, r) in AdS,. The fields
obey the massive Klein-Gordon equation
20,0,® + 0,(r?0,®) — m*® = 0. (2.2)
For mass squared m> =£(¢£ +1) (¢ =0,1,2,...), act-

ing the #th-order derivative operator &% on Eq. (2.2) and
evaluating it at r = 0 show

9,011 ®|,_, = 0. (2.3)
This shows that H, defined by
Hp =07, (2.4)

are independent of ». Hence, H, are conserved quantities
along the future Poincaré horizon and then called the
Aretakis constants in AdS,. For other mass squared, such
conserved quantities on the future Poincaré horizon cannot
be found. Differentiating Eq. (2.2) (£ + 1) times with
respect to r, we obtain

8,00120|,_y = —(£ + 1)K, (2.5)

This implies
i2®|,_y = —(¢ + 1)H,v + const. (2.6)
We see that (£ + 2)th-order derivative of the field on the future

Poincaré horizon will blow up at the late time if 7{, # 0. This
divergent behavior is called the Aretakis instability in AdS,.
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We note that the (Z + 3)th- or higher-order derivatives are
polynomially divergent at the late time.

For general mass squared cases with m? > m3, = —1/4,
where m3, is the Breitenlohner-Freedman bound [36,37] in
AdS,, Ref. [15] shows that the late-time behavior of the nth
derivatives of the fields with respect to r at the future
Poincaré horizon r = 0 becomes’

D] ~ v, (2.7)
where 7 is a non-negative integer and
A, ==1+\/m2+1. (2.8)
2 4
Hence, using the notation,
Ny = Ay, + 1, (2.9)

where |A,, | denotes the integer part of A,,, the n,,th-order
derivative of the field at » = 0 will blow up at the late time.
This is also called the Aretakis instability in AdS,. We note
that the (n,, + 1)th- or higher-order derivatives are also
unbounded.

ITII. ARETAKIS CONSTANTS AND INSTABILITY
IN THE PARALLELLY PROPAGATED NULL
GEODESICS FRAME

In this section, we discuss the geometrical meaning of
the Aretakis constants and instability in the parallelly
propagated null geodesic frame. We shall show that some
components of the higher-order covariant derivatives of the
field in the parallelly propagated frame are constant or
unbounded, and they correspond to the Aretakis constants
and instability, respectively.

A. On the future Poincaré horizon

We first discuss the late-time divergent behavior in
Eq. (2.7). We introduce vector fields on the future
Poincaré horizon r = 0,

e’<’0>(9ﬂ =0,, ez‘])aﬂ =-0,, (3.1)
where these satisfy
€lo)Vueloy =0 €lo)Vuelyy =0.
el;o)e(o)ﬂ =0, el(l)e(l)u =Y e}(to)eﬂ)ﬂ =-1, (32

at r = 0. Hence, e’(’l) is parallelly transported along the

null geodesic e’('o) on the future Poincaré horizon. The frame

“Note that we focus on the normalizable modes.

formed by (e’(‘o), e’(l)) is called the parallelly propagated

null geodesic frame on the future Poincaré horizon.

For the massive scalar ®(v, r) satisfying Eq. (2.2) with
general mass squared and positive integer n, the following
relation holds:

(=1)"e(yeln ey Vi, Vi V,® _ =07®[. (33)

Using the notation n,, is defined in Eq. (2.9), the divergent
behavior of 9;"® at r =0 implies that the n,,th-order
covariant derivative is also divergent in the parallelly
propagated null geodesic frame. We note that for n < n,,
the components of V,, ---V, @ in the parallelly propa-
gated null geodesic frame are bounded except for the
elye(i - - e}y component with n = n,, from Eq. 2.7).

For the mass squared m> = (¢ + 1) (£ =0,1,2,...),
we obtain

(1) et Y,

= 8f+1q)|r:0-

Heta CI) | r=0

(3.5)

We find that the e’(‘1‘>e’(‘f) e e’(’f)* ' component of the (Z + 1)
th-order covariant derivative of the field on the future

Poincaré horizon is the Aretakis constant H, in Eq. (2.4).

B. On any null hypersurfaces

Because AdS, is maximally symmetric, the discussion in
the previous subsection should also hold for any other null
hypersurfaces. This implies that the Aretakis instability is
the result of singular behaviors of the higher-order covar-
iant derivatives of the fields on the whole AdS infinity,
rather than a blowup on a specific null hypersurface. In this
subsection, we explicitly show that for m? = #(£ + 1)
(=0,1,2,...) cases.

1. Massive scalar fields in the global chart (U,V)

For later convenience, we discuss the massive scalar
fields in the global chart [34]. In the double null global
chart (U, V) defined by

2
tanU = v+ —, tanV = v, (3.6)
r

3For positive integers n and ¢, the following relation holds:

(=1)"efg -~ €yeliy -

= 9D,

..e?;)vm Y,V ...vbnq)|r:0
(3.4)

Other components of the covariant derivatives in the parallelly
propagated frame can be written by Eq. (3.4) and the lower-order
derivatives using the commutation relation for the covariant
derivatives.
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FIG. 1. The Penrose diagram for AdS,. The left and right AdS
boundaries are located at U =V + 7 and U =V, respectively.
The future and past Poincaré horizons are located at U = z/2 and
V = —r/2, respectively.

the line element in Eq. (2.1), which describes AdS,, is
rewritten as

4
2 __
ds= = H(U,V) dudyv, (3.7)
where
H(U,V) = sinZ(U -V). (3.8)

The coordinate range is —co < U < 00,—00 <V < 0o with
0 < U -V < r, and the AdS boundary is located at V = U
or V=U+z where H(U,V) = 0. The future and past
Poincaré horizons are U = z/2 and V = —x/2, respec-
tively. The Penrose diagram of AdS, is shown in Fig. 1.
In the present coordinates, the massive Klein-Gordon
equation (2.2) is rewritten as
[-H(U,V)0y0y —m*)®(U,V) =0, (3.9)
where H(U, V) is given by Eq. (3.8). We notice that for the
massless scalar this equation shows 9y, 0, ® = 0, and hence
Oy is constant along any null hypersurfaces U = const.
At the future Poincaré horizon U = 7/2, it coincides with
the Aretakis constant H, in Eq. (2.4). Thus, 0,® is the
generalization of the Aretakis constant H,. According to
Ref. [34], for the mass squared m? = #(# + 1), there exists
the generalization of the Aretakis constants H, in Eq. (2.4)
for general !

cos’V \“*'TH(U,V) . ]¢+!
to= (o) Lasre] o oo

If we exchange U and V in Eq. (3.10), we can construct
conserved quantities on V = const. surfaces.

and they satisfy

0,A, =0. (3.11)
We call A, the generalized Aretakis constants. It is easy to
check that A, =H, at the future Poincaré horizon
U = /2. For other mass squared cases, conserved quan-
tities on a null hypersurface cannot be found.

2. Parallelly propagated null geodesic frame in AdS,

Now, we introduce null vector fields

fUH(U,V) 2

I _ % _
e(o)aﬂ— 7 Oy, emaﬂ—f(U)

9y, (3.12)

where f(U) is an arbitrary finite function. These satisfy the
relations

o) Vieloy =0 (o) Vet =0.

e’<’0>e(0)ﬂ:0, e’{ne(l)M:O, e?’o)e(l)”:—l. (313)

Therefore, (e’(‘o),e’(‘l)) form the parallelly propagated

null geodesic frame for each null hypersurface
U = const. We should note that e’(‘o) and e’(‘l) are vector

fields defined in the whole AdS, spacetime, while e’(‘o) and
e’(‘l) in Eq. (3.2) are defined only on the r = 0 surface.

Hereafter, we set f(U) =2. We note that this specific
choice of f(U) does not change the conclusion in the
following discussions.

3. Massless scalar cases
General solutions of the massless Klein-Gordon equa-
tion (3.9) are
®U,V)=FU)+G(V). (3.14)
Then, the generalized Aretakis constant in Eq. (3.10) is
Ag = 0y F(U). Now, we can see
e’(‘l)Vﬂd) = A, (3.15)
OyH(U,V)

(Y —
e(l)e(l)v#qu) - 'AO H(U, V)

+RF(U). (3.16)

Equation (3.15) shows that the geometrical meaning
of A, at each null hypersurface U = const. is the
same as the Aretakis constant H,, at » = 0; i.e., a compo-
nent of the covariant derivative in the parallelly propagated
frame is constant at each null hypersurface. Because
OyH/H =2/tan(U - V), e’(‘l)e’(“l)V”VyCI) in Eq. (3.16) is
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divergent linearly in (U —V)~! at the AdS boundary if
Ay # 0.” Near the AdS boundary, we further show

Hi L2

Cnea) el(lln)ﬂvmvuz

LV, B = AO((U - V),
(3.17)

where n > 1. Egs. (3.16) and (3.17) show that the second-
and higher-order covariant derivatives of the field on any
null hypersurfaces have singular behaviors at the AdS
boundary if A, # 0.° We comment that other components
are bounded,

u,v
el V,® = HUV) 5 6v), (3.18)
uU,v
o ety V,V,® = HUY) o (1w, vioyGv)),  (3.19)
YUV =e e V,V,0=0.  (3.20)

4. Massive scalar cases with m*=¢(€ +1)

For the cases m?> = £(£ + 1) (£ = 1,2, ...), we can also
explicitly see the divergent behavior at the AdS boundary.
For the # = 1 case, the general normalizable Klein-Gordon
fields, which are derived in Appendix A 3, take the form of

2cosUcosV

(U, V) =Ly (FU) = F(V))
—cos? UDyF(U) —cos? VOyF(V), (3.21)
with an arbitrary function F .7 We obtain
”‘ "’V V,®=A,, (3.22)
where A = 2(=1 + 2 cos(2U))dyF(U) +

cos U(6 sin U} F(U) — cos U3 F(U)) is the general-
ized Aretakis constant (3.10) and

yH(U.V)

o et Y, Y, Y, d=2
¢ A H(U.V)

e A +OpA;. (3.23)

’If we consider the “normalizable” mode ® ~ (U — V)2» with
A,, =1, where A, is defined by Eq. (2.8), for the massless case
at the AdS boundary U =V, then the function G(V) becomes
G(V) = —F(V). We note that the Aretakis instability occurs even
in that case.

orf .Ao =0 and 9?F(U)#0, the third-order derivative
e e Vi Vi, V,h(l) is divergent (see Proposition 1 in
Sec III C)

"Note that ®(U, V) satisfies the normalizable boundary con-
dition, i.e., @ ~ (U - V)2 with A, =+ 1,at V =U. If we
also impose this condition at V = U +z, F should satisfy
F(U) =F(U + n).

Because OyH/H = 2/ tan(U — V), Eq. (3.23) shows that
the third-order covariant derivative of the field on any null
hypersurfaces has the linear growth of (U — V)~! at the
AdS boundary if A; # 0. We comment that other compo-
nents are bounded.

For ¢ > 2, acting the mass ladder operators, which
are given by Eq. (A17), we can easily obtain the explicit
form of the general normalizable Klein-Gordon field,
which is Eq. (A18) with G(V) = —F(V). We can show
that (Z + 1)th- and (£ + 2)th-order covariant derivatives
are, respectively, constant along each null hypersurface and
divergent at the AdS boundary,

Hi L2

NUNOR "V, @ = A

. e’(‘f)“vyl vV, (3.24)
where A, is the generalized Aretakis constant in Eq. (3.10)
and

el(‘]l>el(412) e el(l{;z vﬂl vﬂ ’ vl‘ﬂrzq)
OyH(U,V
=(£+ 1)&% +dyA,. (3.25)

C. Relation between the conserved quantities on
the null hypersurface and divergent behavior

We have observed that, for a solution of the massive
Klein-Gordon equation (3.9) with the mass squared m? =
£(¢+1)(¢=0,1,2,...) in AdS,, in the parallelly propa-
gated null geodesic frame, the (£ + 1)th covariant deriva-
tive of the field gives a constant along each null
hypersurface and the (¢ + 2)th covariant derivative has a
linear divergent behavior along the null hypersurface. We
can generalize this relation, i.e., the relation between a
conserved quantity on a null hypersurface and the divergent
behavior, as follows.

Proposition 1.—If the relation

Hn yHn—1

eyt (3.26)

el(lll)vﬂnvﬂn—l -V, ¥ =A(U)
holds for some scalar field ¥(U, V) in AdS,, a positive
integer n, and a regular function A(U)(# 0), then

e’(‘l";‘e’;l">~ ¢1\Vi,. Vi, -V, W is divergent at the AdS
boundary.

Proof.—Acting an operator e” ”“V . to Eq. (3.26), we
obtain
el(‘il;] el;l”) ’ #1 vﬂn+l v/"n U v/"llIl

= aUA( ) - e‘(‘f;rlvMM»] (e;(lf) e el(ll))vﬂit U vﬂllP

OyH(U,V)
= 0yA(U A(U) —————, 3.27
VAW) + nAU) e (3.27)

where we have used the relation
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IyH(U,V
e Vel = - % e))- (3.28)
In the right-hand side of Eq. (3.27), the first term is finite,
but the second term is divergent at the AdS boundary V =
U (or V=U + r) because OyH/H =2/tan(U —V). =

If W(U,V) is the massive Klein-Gordon field
with the mass squared m? =¢#(£+1), the above
proposition leads to the relation between the generalized
Aretakis constant and the divergent behavior at the AdS
boundary.

As another application of the above proposition with
n = 1, for the massive Klein-Gordon fields ®(U, V) with
the mass squared m*> = #(£ + 1) in AdS,, if we choose the
function W(U, V) as

lP — Dil.lDi2.2 e Di;,ch’ (329)

where D, , are the mass ladder operators in Eq. (A17), then
W(U, V) satisfies the massless Klein-Gordon equation (3.9).
Then, e’(‘l)Vﬂ\I’ x Jy'¥P is a constant along each null hyper-

surface, which corresponds to the generalized Aretakis
constant A, in Eq. (3.10) as will be shown in Sec. IV, and
e’(‘l)e’(’l)vﬂvy‘{’ is linearly divergent along the null
hypersurface.
We can also show the following proposition.
Proposition 2.—If the relation

Hn yHn-1

e e Vi Vi, oV, Y

=Ap+A(V)(U=-Uy) +0O((U-Uy)? (3.30)
holds for some scalar field ¥(U, V) in AdS,, a positive
integer n, a constant A, (# 0), and a bounded function
A(V), then eﬁ';‘e’(‘f) e e’(l‘)VﬂnHVﬂn -V, W is divergent
at the AdS boundary along U = U,

Proof—If we set A = Ay + A|(V)(U — Uy)+
O((U - Uy)?), Eq. (3.27) still holds. Because A; is a
bounded function, e’;;’)“eﬁ') e e';;)vﬂmvﬂn -V, ¥ s
divergent at the AdS boundary along U = U,,. ]

We note that scalar fields W(U,V) in the above
propositions are not necessarily the massive Klein-
Gordon fields. Proposition 2 shows that the existence of
a constant along a null hypersurface leads to the divergent
behavior of the higher derivative. Finally, we comment that
Proposition 2 holds if Aj is a function of V and has a
nonvanishing limiting value limy_, A # 0.

D. Relation among the conformal Killing tensors,
the Aretakis constants, and instability

For positive integers n, rank-n tensors

Kﬂ]ﬂz"'ﬂn = e’l] e’lz .o Hn

WM e (3.31)

are conformal Killing tensors in AdS,, and the only
nontrivial components are KVU~U = 1.} For the scalar
fields ®(U,V) with the mass squared m?> = (¢ + 1)
(¢=0,1,2,...), Eq. (3.24) shows that the generalized
Aretakis constants A, in Eq. (3.10) relate with the rank-
(Z + 1) conformal Killing tensor [34],

Klll#z“'ﬂn”l vlllvllz . v b = Af' (332)

Hel

Equation (3.25) implies near the AdS boundary V ~ U,

Kﬂlf‘z"'ﬂtwf+2 vlhvﬂz ...V D

Heg2

A Lo -y,

=20+ )5y

(3.33)

Hence, the contraction with the rank-(Z + 2) conformal
Killing tensor and the (£ + 2)th-order covariant derivative
will blow up linearly in (U — V)~! at the AdS boundary
it A, #0.

For the general mass squared m*> > m} = —1/4, where
the Aretakis constants do not necessarily exist, we have the
relation

K/"l/"Z""ln,,, vlllvﬂz . v ¢

My,

= et eV, Y, -V, ©  (3.34)

where the notation n,, is defined in Eq. (2.9). As discussed
in Secs. III A and III B, the right-hand side is divergent at
the AdS boundary. Thus, the Aretakis instability can also be
regarded as that the contraction with the conformal Killing
tensor K#1#2#u and the n,,th-order covariant derivative of
the Klein-Gordon field is divergent at the AdS boundary.

IV. ARETAKIS CONSTANTS FROM THE
SPACETIME CONFORMAL SYMMETRY

In this section, we discuss the relation between the
generalized Aretakis constants in AdS, in Eq. (3.10) and
the ladder operators constructed from the spacetime con-
formal symmetry [34,35] for massive Klein-Gordon fields
with the mass squared m?> =#£(£+1) (£=0,1,2,...).
First, we construct conserved quantities at each null hyper-
surface U = const. following Ref. [34]. Next, we show that
they coincide with the generalized Aretakis constants up to
constant factors. Note that cases for £ = 1, 2 have been
discussed [34].

¥We note that K¥1#2#n is parallelly propagated along e”o ,i.e.,

e’(’O)VUK”I”Z“‘”" =0, and satisfies L K*#2# = 0 with the’ Kill-

ing vector £ = 9y + 0.
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A. Conserved quantities at each null hypersurface
from the mass ladder operators

We discuss the scalar fields ®(U,V) obeying the
massive Klein-Gordon equation (3.9) with the mass
squared m> = £(¢ + 1). First, let us consider the massless
case £ = (0. The massless Klein-Gordon equation (3.9)
shows

8,0, ® = 0. (4.1)

We can see that 0y ® is a conserved quantity at each null
hypersurface U = const., and this quantity is the general-
ized Aretakis constant A, in Eq. (3.10).

Next, we consider £ > 1 cases. Using the mass ladder
operators [34,35] (see Appendix A for a brief review), the
massive Klein-Gordon fields can be mapped into the
massless Klein-Gordon fields. Following Ref. [34], we
can construct conserved quantities at each null hypersur-
face U = const. similar to the massless case. The explicit
calculation is shown below. From the relation (A16) with
k = s = £ on the scalar field ®, we obtain

D;, _iDj, .o Dj ¢[-H(U,V)0y0y —£(£ +1)|®
= _H(U, V>0V8UDi,>,1Dif,l.2 T Dil,f(b, (4-2)

where the mass ladder operators D;, are given by
Eq. (A17) and H(U,V) is given by Eq. (3.8). Since the
left-hand side vanishes due to the Klein-Gordon equation
for @, Eq. (4.2) leads to

-H(U,V)0yOyD;,1D;, .- D; ,®=0. (43)
Thus, solutions of the massive Klein-Gordon equation with
the mass squared m?> = #(¢ + 1) in AdS, can be mapped
into that of the massless Klein-Gordon equation. We note
that massive fields with other mass squared cannot be
mapped into massless fields. As in the case £ = 0, Eq. (4.3)
shows

8\/9/ - O, (44)

where

Qp = W(U)auDif.lDif_l,z e 'Dil,fq)' (45)

For later convenience, using dy W (U) = 0, we have added
an arbitrary function W(U) as a factor. Equation (4.4)
shows that Q, are conserved quantities at each null
hypersurface U = const. As will be discussed below, the

quantity Q, relates to the generalized Aretakis
constant A,.

B. Relation with the Aretakis constants
on the future Poincaré horizon

We shall show that Q, coincide with the Aretakis
constants H, in Eq. (2.4) on the future Poincaré horizon
U = r/2 by choosing W(U) appropriately. It is convenient
to use the ingoing Eddington-Finkelstein coordinates
(v,r). Using 9y = —(2 4 2vr + (1/2 + v*/2)r?)d,,
Eq. (4.5) is written as

1+2?

Qf:_W(U) (2—1—212}’—1— r2)G,DiﬁlDi{_l’zn-Dilfq).

(4.6)

Because tanU = v+ 2/r in Eq. (3.6), we can regard
W as a function of v+ 2/r. Hereafter, we consider
W = -=2""Cy(v/2 + 1/r)4 cases, where Cy and g are
constants. Then, we can evaluate the leading term of Q, as
Qs = Cwr™90,D;,\D;, 2+ Dy ,P(1+0(r). (4.7)
By choosing Cy, and g appropriately, we can show that Q,
coincide with the Aretakis constants on the future Poincaré
horizon, H, in Eq. (2.4). For this purpose, we introduce the
following proposition.

Proposition 3.—For analytic solutions of the massive
Klein-Gordon equation with the mass squared £(¢ + 1),
(¢=0,1,2,...) in AdS,,

20,0, + 2r0, + r?0> = £(¢ + 1)|®(v,7r) =0, (4.8)

the relation

2_”l+”—l r_zn’]_noarDl‘f’lDif_l’z . 'Di].f(b = af+1¢) + O(r)
(4.9)

holds, where n_;, ny, n; are the numbers of the mass ladder
operators constructed from {_;,{,,{;, respectively,
included in the left-hand side of Eq. (4.9). The numbers
n_p,ng,ny satisfy n_y =+ ngy + ny = f

The proof is given in Appendix B. Because H, =
9it®|,_,, the above proposition and Eq. (4.7) show
Qsl,—o = Hy if Cyp =271 and q =2n_; + ny. We
should note that, regardless of the choice of the closed
conformal Killing vectors, {_;, ¢, {1, 9y, relate with
the same conserved quantities H,.

C. Relation with the generalized
Aretakis constants

Next, we shall discuss that Q, in Eq. (4.5) coincide with
the generalized Aretakis constants A, in Eq. (3.10) by
choosing W(U) appropriately. In the construction of Q, in
Eq. (4.5), if we replace the mass ladder operators D; , with
the general mass ladder operators in Eq. (A14), Q, are still
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independent of V. In that case, if all general mass ladder
operators contain {;, O, at the Poincaré horizon coincide
with Q, constructed only from {; up to the constant factor
because of Proposition 3. Because AdS, is maximally
symmetric, we can generalize this to other null hyper-
surfaces U = const.; i.e., if all general closed conformal
Killing vectors to construct Q, are not proportional to Jy at
a null hypersurface U = U, then those Q, at U = U, are
proportional to e’(’l‘)e’(‘f) - e’(‘;;lv,,lvm -V, @. Thus,
Q, in Eq. (4.5) coincide with the generalized Aretakis
constant A, up to the factor of a function of U because
¢_1,¢p, ¢, are not proportional to Jy except at the Poincaré
horizon.

V. CONCLUSIONS

In this paper, we have studied the geometrical meaning
of the Aretakis constants and instability for massive
scalar fields in AdS,. We have shown that the Aretakis
constants and instability in AdS, can be understood as
some components of the higher-order covariant deriva-
tives of the scalar fields in the parallelly propagated null
geodesic frame being constant or unbounded at the future
Poincaré horizon. Because of the maximal symmetry of
AdS,, the same discussion holds not only on the future
Poincaré horizon but also on any null hypersurfaces. We
have clarified that the generalization of the Aretakis
constants [34] called the generalized Aretakis constants
have the same geometrical meaning as that in the future
Poincaré horizon; i.e., some components of the higher-
order covariant derivatives in the parallelly propagated
null geodesic frame are constant at each null hypersur-
face. Also, we have seen that the higher-order covariant
derivatives of the scalar fields have singular behaviors at
the whole AdS boundary, and that causes the Aretakis
instability in AdS,. If we consider cases for the mass
squared with m3, < m? <0, where mj = —1/4 is the
Breitenlohner-Freedman bound [36,37], the first-
order covariant derivatives of the scalar fields are diver-
gent at the AdS boundary. This implies that some
physical quantities such as the energy-momentum tensor
also have divergent behaviors at the AdS boundary
for mip < m? < 0.

We have also discussed the relation with the spacetime
conformal symmetry. For the fields with the mass squared
m*=¢(¢+1) (¢£=0,1,2,...), the contraction with the
rank-(¢Z + 2) conformal Killing tensor and the (£ + 2)th-
order covariant derivatives of the field is divergent at the
whole AdS boundary if the generalized Aretakis constant
exists. If we see this divergent behavior on a null
hypersurface, it corresponds to the Aretakis instability.
We note that the generalized Aretakis constants can be
expressed as the contraction with the rank-(Z + 1) con-
formal Killing tensor and the (£ 4+ 1)th-order covariant
derivatives [34]. We have demonstrated that the

generalized Aretakis constants can be derived from the
mass ladder operators constructed from the closed con-
formal Killing vectors [34].

Since the AdS, structures appear in the vicinity of
extremal black hole horizons [8,15,21-25,29], we expect
that the Aretakis instability in extremal black hole space-
times has a similar geometrical meaning as our result in
AdS, cases. In fact, this expectation is correct; i.e., the
Aretakis instability for black hole cases [9-14] can be
understood as some components of the higher-order covar-
iant derivatives of the field in the parallelly propagated
frame being unbounded at the late time [38].
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APPENDIX A: THE MASS LADDER
OPERATORS IN AdS,

We briefly review the mass ladder operators [34,35] in
AdS,, which map solutions of the massive Klein-Gordon
equation into that with the different mass squared.

1. Spacetime conformal symmetries and
mass ladder operators

It is said that an n-dimensional spacetime (M. g,,)
possesses a spacetime conformal symmetry if the metric g,
admits a conformal isometry ¢ defined by ¢: M — M
such that ¢*g,, = exp (20)g,,, where Q is a function on
M. The transformation of the conformal isometry group is
generated by an infinitesimal coordinate transformation
x* — x# = x* — (" along a vector field {* called a con-
formal Killing vector. The conformal Killing vector ¢
obeys the conformal Killing equation

1
Lé’gﬂu = 2Qg/uw 0= Zvﬂgﬂ' (Al)

A conformal Killing vector is said to be closed if V|,{,; = 0

is satisfied. Then, the closed conformal Killing vector
satisfies the closed conformal Killing equation

Vily = QG- (A2)
If the closed conformal Killing vector {# further satisfies
RUCY = ALF, (A3)

where A is a constant, we can define the mass ladder
operator [34,35],
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Dk = ‘Cé' - kQ, k (S R, (A4)
which maps a solution of the massive Klein-Gordon
equation to that with a different mass squared; i.e., for a
solution of the massive Klein-Gordon equation,
O0-m?|® =0, (AS)
with m*> = —2k(k + n — 1), D;® becomes another solution
of the massive Klein-Gordon equation
O = (m? 4+ 6m?)|D® = 0, (A6)
with m? + ém? = —A(k — 1)(k + n — 2). Here, we have
used the commutation relations for Dy,

[0.D] :A(2k+n—2)Dk+%(V”§”)[D +ak(k+n—1)].
(A7)

Note that the condition (A3) is automatically satisfied
for vacuum solutions of the Einstein equations with a
cosmological constant, e.g., the anti-de Sitter spacetime.
For a given mass squared with (n—1)>—4m?/A>0
(4 #0), there are two possible k =k, as solutions of
m?> = —Jk(k+n-1),

:l—nj:\/(n—l)z—4m2/i

ki >

(A8)

The mass ladder operators D, correspond to a mass raising
or lowering operator, depending on the sign of A.

If there exist two or more closed conformal Killing
vectors, we can investigate the Lie bracket among them. It
is defined by

fyi,j = [Civ Cj]” = é’yivué’ﬂj - ijvyé’”,', (A9)
where the indices i and j label the different closed conformal

Killing vectors. Then, the vectors (A9) satisfy the Killing
equation L;g,, = 0, where we have used Eq. (A3).

2. Mass ladder operators in AdS,

In the AdS, cases, i.e., n =2 and 4 = —1, the mass
ladder operators exist when m? > m}. = —1/4. Note that
this condition corresponds to the non-negativity of the
inside of the square root in Eq. (A8). For the massive Klein-
Gordon equation (A5) in AdS,, k4 in Eq. (A8) are
ko=-v+1),

k. =, (A10)

where we parametrized the mass squared as m? = v(v + 1).9
Note that k_ = —A,, in Eq. (2.8).

Solving the closed conformal Killing equation (A2)
for AdS,, we obtain three closed conformal Killing
vectors,

C—l = ab + rzar’
Co =00, + (r+vr?)d,,

& =020, + 2+ 2vr +v°r?)0,. (A11)

We note here that | and {{j become null on the Poincaré
horizon, while ¢ does not. We comment that the Lie
bracket (A9) among the closed conformal Killing vectors
¢ (i=-1, 0, 1) yields three Killing vectors,

&= &o-1) = 0y,
50(:= é—l.l) = Uav - rarv

&1 (= &10) = 120, = 2(1 + vr)0,. (A12)

Using the closed conformal Killing vectors (All), we
obtain three mass ladder operators,
D—l,k = 81) + rzar - kr,
Dy =00, +r(1+vr)0,—k(1+vr),

Dy =020, 4+ 2+ 20r+ 0220, —kv(2+vr).  (Al13)

For the closed conformal Killing vectors ¢* in Eq. (A11),
the mass ladder operators D, ; defined in Eq. (A13) map a
solution of the massive Klein-Gordon equation (A5) with
m? =k(k+1) to that with a different mass squared
m? + ém? = (k — 1)k. Note that if we consider the general
closed conformal Killing vectors ¢ = a_;{_; + aglo+
a;{;, where a_;,ay,a; are constants, we can construct
the general mass ladder operators in AdS, as

Dy =a_D_j;+ apDoy + a)Dyy. (Al4)
The commutation relation (A7) can be written as

Using this, for a positive integer s, we can show

D; -1+ Diy gDy k[ = k(k + 1)]
=[O—(k=s)(k+s—=1)]D; g1 Di,x=1Dj -
(A16)

°In the derivation of Eq. (A10), we have assumed v > —1/2. If
v<—1/2,k, = —(v+ 1) and k_=v. We note that m> =v(v+1)
with v > —1/2 corresponds to m? > m}p; thus, it is enough to
consider v > —1/2 cases.
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3. Mass ladder operators in the global chart

We introduce here the mass ladder operators in the
(U, V) chart in Eq. (3.6),

2 \% U
D_; , = cos?> VOy — cos?> Udy — kM,
7 sin (U —V)
ULV
Dy = sinV cos VOy —sin U cos Uy, — kZIiEEU%V;’
i : 2sinUsin V
Dy = sin? VOy — sin> U9y, — km. (A17)

We note that the above mass ladder operators are regular
differential operators except at the AdS boundary, and the
divergent behavior at the AdS boundary changes the
asymptotic behavior of the scalar fields near the AdS
boundary from ®(U, V) ~ ¢, (U = V)™ + ¢, (U = V)*+D
to D@ ~ci(U—-V)" %D 4 c,(U-V), where ¢, =
c1(U) and ¢, = ¢,(U), and we have assumed the mass
squared of the massive Klein-Gordon equation is m? =
k(k+1)(>—1/4) [34].

We can construct the general solutions of the massive
Klein-Gordon equation (3.9) with the mass squared
m*=¢(¢+1)(¢=1,2,...), from the general solution
of the massless Klein-Gordon equation, ®y(U,V) =
F(U) + G(V), as follows:

q)f(U’ V) = Dif,—fD'

lp—1,—

(1) Djy 1 ®@.  (AlS)

Because the mass ladder operators are surjective (onto)
maps as shown in Ref. [34], ®,(U, V) becomes the general
solution of the massive Klein-Gordon equation. For exam-
ple, ®,(U, V) with D_;; becomes

2cosUcosV
sin(U — V)
—cos? UdyF(U) + cos> VOyG(V).

(U, V) = (F(U) +G(V))

(A19)

If we impose the normalizable boundary condition at
U =V, we obtain Eq. (3.21).

APPENDIX B: PROOF OF PROPOSITION 3

In this proof, for scalar fields with the mass squared
m*=¢(+1)(¢=0,1,2,...), we write ®, n_,, ny, n, as
®,,n’,,nf, n{, respectively. We expand @, (v,r) as a

Taylor series around r = 0,

(B1)

S
Y
—~
=

~
-

I

Mg

A
“ N
—~

<
~—

=~
L

s=0

where C%(v) is given by C%(v) = (s!)7'9®,|,_,. The
massive Klein-Gordon equation (4.8) becomes

X, dc? p
z 2s y +(s+)(s—¢-1)C_|rf=0; (B2)
v
s=1
then, we obtain the relation'”
dc? O)(s—7¢—1

dv 2s

We would like to show that if the relation (4.9) holds for 7,
then it also holds for Z + 1,

£+1 £+1 £+1 £+1
—ni" +n —2n" 7T —n,
27m T T 9,D Dy, 5Dy gD, o1 P

=D,y + O(r), (B4)

where n“T! + n{ ™ + n{t! = £ + 1. We note that relation
(4.9) trivially holds for # = 0. Substituting Eq. (B3) into
Eq. (B1), after some straightforward calculations, we can
show the relations

2r207 Dy 1 @pyy = 0P @py +O(r),  (BS)
r 07 Dy o @pyy = 0@ + O(r),  (B6)
27Dy g @pyy = 072 Dpyy 4+ O(r). (BT)

These relations immediately lead to Eq. (B4). As an
example, we show the i,,; = —1 case below. Since
D,  r+1®¢y 18 a solution of the Klein-Gordon equation
with the mass squared (£ + 1), we can set

Dy =D_yp11Ppy1. (B8)

The left-hand side of Eq. (B4) becomes

2_nf+ni]+1r_2(n{1+1)_ngarl)if.lDi/_l,2 Dy #D_y o1 Py
_ 2—n]”+nfl+lr—2(n'f1+1)—ngarDif.1Dif_l’2 . D[_1 D,
=2r200 @, + O(r)
=2r200" Dy o ®pyy + O(r)

= 920, + O(r). (B9)

Note that the cases for iy, =0, 1 can be shown in the
same way.

""Note that the relation Eq. (B3) implies dC% +1/dv = 0; then,
(¢ + 1)'CZ,, = H, = const. and dC5_,/dv = —C5 (£ +1)/
(¢ +2); then, (£42)!C%,,=0"®|,_o=—(¢+1)H,v-+const.
These correspond to the Aretakis constants and instability in
Egs. (2.4) and (2.6). We note that the coefficients C4 with s < 7
are decaying functions of v if we choose the normalizable modes.
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