
 

Asymptotic symmetries in spatially flat FRW spacetimes
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We perform an off-shell treatment of asymptotically decelerating spatially flat Friedmann-Robertson-
Walker (FRW) spacetimes at future null infinity. We obtain supertranslation and superrotationlike
asymptotic diffeomorphisms which are consistent with the global symmetries of FRW, and we compute
how the asymptotic data are transformed under them. Further, we study in detail the effect of these
diffeomorphisms on some simple backgrounds including unperturbed FRW and Sultana-Dyer black
hole. In particular, we investigate how these transformations act on several cosmologically perturbed
backgrounds.

DOI: 10.1103/PhysRevD.103.064009

I. INTRODUCTION

Since its discovery in 1915, general relativity [1] has
been extensively explored. Nevertheless, the asymptotic
structure of the theory was not investigated until the
seminal work of Bondi, van der Burg, Metzner, and
Sachs (BMS) [2,3]. Contrary to the intuitive idea that
one should only recover the Poincaré group at future null
infinity of asymptotically flat spacetimes, they unveiled a
much richer set of asymptotic transformations which also
included the so-called supertranslations. The literature
around this topic was surrounded by mathematical formal-
ity in those days (see e.g., [4–12]).
A couple of decades after BMS, Brown and Henneaux

[13] applied a similar approach to AdS3, noticing that the
algebra of asymptotic diffeomorphisms (and their charges)
corresponded to a two-dimensional (2D) conformal field
theory (CFT). Their paper was followed by successful
attempts to roughly estimate a microscopic description for
the BTZ black hole entropy [14–16], and it was intimately
related to the holographic current [17–19] falling into
Maldacena’s AdS=CFT correspondence [20].
The modern era of asymptotic symmetries started with

the Kerr/CFT correspondence [21] and the inclusion of
superrotations [22–24]. They were merged with memory
effects and soft theorems into infrared triangles [25,26]. It
diversified into a wide variety of topics, among which we
would like to highlight flat holography [27–35], black hole

entropy [36–45], algebraic oriented studies [46–50], as well
as extensions to timelike [51] and spatial flat infinity [52],
to dS4 and AdS4 [53], to string theory [54–57] and the
swampland [58], to higher dimensions [59–61] and Kaluza-
Klein [62], to the membrane paradigm [63–65], to alter-
native gravity theories [66–68], and also to cosmological
settings.
Surprisingly, the literature regarding the infrared structure

of cosmology is scarce [69–76]. Our work is framed in this
context with delving into the not yet well-understood
asymptotic symmetry corner of the cosmological infrared
triangle being ourmain objective.More concretely, we study
asymptotically decelerating spatially flat Friedmann-
Robertson-Walker (FRW) spacetimes at future null infinity
Iþ using an off-shell formalism. Our approach is therefore
not restricted to general relativity and can be applied
to alternative gravity theories which include FRW as a
solution. We define the class of metrics to be considered
asymptotically decelerating spatially flat FRW, without
explicitly fixing matter content or establishing relationships
among the metric coefficients in the large r-expansion. An
on-shell analysis is thenatural step to pursue in future studies.
Our universe is not asymptotically flat; therefore, we aim

to translate a BMS-like analysis into a more phenomeno-
logical framework. Even though experimental data suggest
that we live in a FRW with accelerating expansion [77], we
chose a decelerating FRW to have a boundary at null infinity.
As our universe went through a phase of decelerated
expansion, we can imagine ourselves as observers looking
at a decelerated universe from null infinity. This is only true
as an approximation, and we would have to extend our
analysis to accelerated FRW spacetimes to get exact realistic
results.
The price of going from asymptotically flat to asymp-

totically FRW is that now we have to consider a
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time-dependent boundary metric instead of the simpler
time-independent Minkowski. However, we manage to
obtain consistent supertranslation and superrotationlike
transformations and their action on the asymptotic data.
We consistently recover the asymptotically flat results in
the appropriate limit. Furthermore, we apply these diffeo-
morphisms to unperturbed FRW, Sultana-Dyer, and cos-
mologically perturbed FRW backgrounds. These examples
already permit us to appreciate the advantages, as well as to
discover the limitations of our approach.
Let us now shortly discuss the unique works to date

which tackle this class of spacetimes:
(i) The first work delving into the infrared structure of

decelerating spatially flat FRWat null infinity is [78].
Concretely, they focused on the cosmological gravi-
tational memory effect and analyzed BMS trans-
formations on FRW spacetimes. While recognizing
their pioneer labor, the authors made unfortunate
computational mistakes which question most of the
analysis at the quantitative level.More fundamentally,
they considered flat BMS transformations as asymp-
totic symmetries of FRW spacetimes, which they are
not because they do not respect their isometries.
Besides, they incorrectly denominated several coef-
ficients as cosmological modes when they do not
transform as such under rotations. Whereas super-
translations were considered, we extend the analysis
to superrotations with a more general ansatz.

(ii) On the course of the elaborationof this paper,Ref. [79]
was published. The authors followed a more formal
approach than ours, using the covariant formalismof a
conformal completion à la Penrose. It might be better
suited for some features, such as an on-shell descrip-
tion, while ours is more general and straightforward
for practical usage and application to examples. They
have also noted the inconsistencies in [78], and they
did not study superrotations. It would be interesting to
explore the compatibility between both works and
how they can be complemented.

This paper is organized as follows: in Sec. II we shortly
review asymptotically flat spacetimes. In Sec. III we
analyze asymptotic diffeomorphisms on perturbed spatially
flat FRW spacetimes. This comprises to define the asymp-
totic metrics we consider, to obtain the supertranslation and
superrotationlike transformations which preserve them, and
to analyze their effect on the metric coefficients. In Sec. IV
we discuss various background examples, and Sec. V
contains our conclusions. In two Appendixes, we have
collected the Einstein equations and the Lie derivatives for
the asymptotic metrics.

II. REVIEW OF ASYMPTOTICALLY FLAT
SPACETIMES

In this section we briefly review asymptotically flat
spacetimes at future null infinity Iþ, paving the way for the

analysis in Sec. III. The following discussion is mostly
based on [26,75,80,81].
Since the pioneer works of Bondi et al. [2] and Sachs [3],

many studies have been performed allowing for different
falloff conditions on the metric and on the diffeomorphisms
generating the asymptotic transformations. A common
feature most of these approaches share is the use of
Bondi coordinates

u ¼ t −
ffiffiffiffiffiffiffiffi
xixi

q
; r ¼

ffiffiffiffiffiffiffiffi
xixi

q
;

z ¼ x1 þ ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; z̄ ¼ x1 − ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; ð1Þ

adequate to describe the asymptotic metrics near Iþ,
together with the Bondi gauge

grr ¼ grA ¼ 0; ∂r det

�
gAB
r2

�
¼ 0; ð2Þ

which completely fixes the local diffeomorphism
invariance.
Nevertheless, we still need to specify what we consider by

asymptotic flatness. This is accomplished througha choice of
falloff conditions on the metric components at large r. The
asymptotic symmetries are generated by diffeomorphisms
that preserve the Bondi gauge (2), as well as the selected
boundary conditions. Therefore, a final ingredient is the
large-r falloff conditions on the diffeomorphisms.

A. Supertranslations

Supertranslations are derived from a rather restrictive
choice of boundary conditions, which still allows for
interesting physical solutions, given by

guu ¼−1þOðr−1Þ; gur ¼−1þOðr−2Þ; guz ¼Oð1Þ;
ð3Þ

gzz ¼ OðrÞ; gzz̄ ¼ r2γzz̄ þOð1Þ; grr ¼ grz ¼ 0;

ð4Þ

and

ξu; ξr ∼Oð1Þ; ξz; ξz̄ ∼Oðr−1Þ: ð5Þ

At large r, the structure of the metric is constrained to be
of the form1

1Assuming the falloff conditions (2.6) in [82] for the stress
energy tensor and using Einstein equations. Such assumptions are
motivated by the behavior of radiative scalar field solutions in
Minkowski spacetime.
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ds2 ¼ −
�
1−

2m
r

�
du2 − 2dudrþDzCzzdudz

þDz̄Cz̄ z̄dudz̄þ
4r2

ð1þ zz̄Þ2 dzdz̄þ rCzzdz2 þ rCz̄ z̄dz̄2

þ 1

r

�
4

3
ðNz þ u∂zmÞ − 1

4
∂zðCzzCzzÞ

�
dudz

þ c:c:þ � � � ; ð6Þ

and the asymptotic killing vectors are given by

ξðfðz; z̄ÞÞ ¼ f∂u þDADAf∂r −
1

r
DAf∂A þ � � � ;

A ¼ z; z̄: ð7Þ

Note from (7) that the asymptotic killing vectors are fully
determined by smooth functions on the sphere
fðz; z̄Þ ∈ C∞ðS2Þ. Expanding f in spherical harmonics,
one can prove that the modes l ¼ 0, 1 correspond (to
leading order), respectively, to time and space translation
generators [26], while the remaining modes can be roughly
interpreted as “angle-dependent translations associated
with the conservation of energy at every angle” [26,63].

B. Superrotations

The transformations can be enlarged by relaxing some of
the previous conditions, while taking care that the solutions
are still physically acceptable. We consider now diffeo-
morphisms with the following large r behavior:

ξu; ξr ∼Oð1Þ; ξz; ξz̄ ∼Oð1Þ: ð8Þ

The novel Oð1Þ modes in ξA allow for extra asymptotic
symmetries naturally associated with rotations and boosts:

ξðVAðz; z̄ÞÞ ¼ VA∂A þ u
2
DAVA∂u −

r
2
DAVA∂r

−
u
2r

DADBVB∂A þ u
4
DBDBDAVA∂r þ � � � :

ð9Þ

Therefore, the enhanced asymptotic symmetries are
given by

ξðf; VAÞ ¼ ξðfÞ þ ξðVAÞ: ð10Þ

Nevertheless, the previous falloff conditions for the
metric (4) are not generally preserved under (9). Con-
cretely, terms with δgAB ∼Oðr2Þ and δguu ∼Oð1Þ arise.
This leads us to the following possibilities analyzed in the
literature:

(i) SOð1; 3Þ ⋉ C∞ðS2Þ [2,3]
If the only allowed superrotations are

VA ¼ 1; z; z2; i; iz; iz2, that is, the six global con-

formal Killing vector (CKV) on S2, one can show to
leading order in r that (9) generates the Lorentz
transformations [26]. Therefore, together with the
l ¼ 0, 1 modes of f in (7), we recover the Poincaré
algebra from (10). Terms with δgAB ∼Oðr2Þ and
δguu ∼Oð1Þ do not show up.

(ii) confðS2Þ ⋉ C∞ðS2Þ [22–24,83]
Another natural possibility is to admit also the

locally defined CKV on S2. Terms with δgAB ∼
Oðr2Þ arise only at isolated points corresponding
to the singularities of the meromorphic CKV in a
similar fashion as found long ago in 2D CFT [84].

(iii) DiffðS2Þ ⋉ C∞ðS2Þ [80,85]
A broader possibility is to consider all the diffeo-

morphisms on S2 [80]. Terms with δgAB ∼Oðr2Þ
and δguu ∼Oð1Þ are present. Expanding VA ∈
VectðS2Þ in vector spherical harmonics, one can
prove that the modes l ¼ 1 correspond (to leading
order), respectively, to the six global CKV gener-
ators on S2 [26], while the remaining modes can be
roughly interpreted as “angle-dependent rotations
associated with the conservation of momentum at
every angle” [26,63].

III. ASYMPTOTICALLY SPATIALLY FLAT
FRW SPACETIMES

We now turn to analyze asymptotically spatially flat
FRW spacetimes at Iþ.

A. Asymptotic metric

Spatially flat FRW spacetimes are conformal to flat
spacetimes. In Bondi coordinates

u ¼ η −
ffiffiffiffiffiffiffiffi
xixi

q
; r ¼

ffiffiffiffiffiffiffiffi
xixi

q
;

z ¼ x1 þ ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; z̄ ¼ x1 − ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; ð11Þ

their metrics can be written as

ds2 ¼
�
rþ u
L

�
2k
�
−du2 − 2dudrþ 4r2

ð1þ zz̄Þ2 dzdz̄
�
;

ð12Þ
where η is the conformal time and k ¼ 2=ð3ωþ 1Þ, with
ω ¼ p=ρ being the equation of state parameter of the fluid.
These spacetimes can be divided into accelerated

(−1 < ω < −1=3, k < 0) and decelerated (−1=3 <
ω < 1, k > 0) expansion. It turns out that only the
decelerated have future null infinity Iþ, such that our
analysis restricts to them. Further discussion on the
conformal structure of spatially flat FRW in the context
of asymptotic symmetries can be found in [78,79].

ASYMPTOTIC SYMMETRIES IN SPATIALLY FLAT FRW … PHYS. REV. D 103, 064009 (2021)

064009-3



The next step is to define the class of metrics to be con-
sidered as asymptotically spatially flat FRW. The approach
we follow here is to include the most general possible
terms compatible with the Bondi gauge and frame (round
metric on S2), which allow for scalar, vector, and tensor
perturbations2 but do not change to leading order the
characteristic homogeneous, isotropic, and spatially flat
FRW profile, as well as its matter content (codified in

a constant k), when r → ∞. A consistency check is that
the transformed metrics, generated by general asymptotic
diffeomorphisms, close in the r-expansion. Moreover, one
can test by means of Einstein equations (Appendix A) that
the trace and components of the energy momentum tensor
generated by such terms remains finite when dimensionally
scaled.
This leads to the asymptotic metrics3:

ds2 ¼
�
rþ u
L

�
2k
�
−
�
1 −Φ −

2m
r

�
du2 − 2

�
1 − Ψ −

K
r

�
dudr

− 2

�
rΘz þ Uz þ

Nz

r

�
dudz − 2

�
rΘz̄ þUz̄ þ

Nz̄

r

�
dudz̄

þ 2

�
2r2ð1þΩÞ
ð1þ zz̄Þ2 þ hzz̄

�
dzdz̄þ ðrCzz þ hzzÞdz2 þ ðrCz̄ z̄ þ hz̄ z̄Þdz̄2

�

¼ a2
�
−
�
1 −Φ −

2m
r

�
du2 − 2

�
1 −Ψ −

K
r

�
dudr − 2

�
rΘA þ UA

þ 1

r
NA

�
dudxA þ ðð1þΩÞr2γAB þ rCAB þ hABÞdxAdxB

�
: ð13Þ

Ultimately, the metrics (13) should verify Einstein equa-
tions. In general, this would introduce extra constraints and
relations between the a priori independent parameters in the
r-expansion. Nevertheless, if there are no restrictions on the
allowed matter and the energy momentum tensor is uncon-
strained, Einstein equations do not lead to such relationships.
To actually perform an on-shell analysis, we would need to
constrain and classify the allowed matter with the corre-
sponding falloff conditions. Although it has been accom-
plished for asymptotically flat spacetimes (cf. footnote 1), it
is more subtle in our setting where we cannot restrict to
isolated matter distributions, but instead the whole space-
time is filled with hydrodynamical content.
Furthermore, one should explicitly check that the new

metrics obtained after application of the asymptotic diffeo-
morphisms also verify Einstein equations. Such a task is
cumbersome, mainly due to the fact that we are dealing
with metrics corresponding in general to infinite expan-
sions in r, which would require one to check Einstein
equations order by order. We are not aware of the existence
of the mathematical machinery to perform such an analysis
for a complex class of metrics such as ours.4

Our first goal is to find and understand the more general
class of asymptotic diffeomorphisms acting on and relating
to such a general class of cosmological metrics (13),
regardless of the matter content. Therefore, we consider
this final step beyond the purpose of this paper and leave it
for future research.
Before we continue, let us note that a different approach

was independently developed in [79], where the construc-
tion is more geometric and closer to the original BMS
analysis. It would be interesting to investigate to which
extent our results are compatible.

B. Supertranslations

Following the conventional analysis in flat space, we
begin by studying supertranslations alone

ξ¼ ξuðu;r;z; z̄Þ∂uþ
X∞
n¼0

ξrðnÞ

rn
∂rþ

X∞
n¼1

ξzðnÞ

rn
∂zþ

X∞
n¼1

ξz̄ðnÞ

rn
∂ z̄:

ð14Þ

1. General case

The starting point consists of imposing the Bondi gauge.
We observe from (B1) and 0 ¼ a−2Lξgrr that ∂rξ

u ¼ 0.
Consequently, the general ansatz for supertranslations (14)
becomes

ξ¼ ξuðu;z; z̄Þ∂uþ
X∞
n¼0

ξrðnÞ

rn
∂rþ

X∞
n¼1

ξzðnÞ

rn
∂zþ

X∞
n¼1

ξz̄ðnÞ

rn
∂ z̄:

ð15Þ

2More details concerning cosmological perturbations will
come in Sec. IV C.

3A similar asymptotic metric, but derived in a different manner,
can be found in [78].

4Technical tools were recently developed for simpler asymp-
totic metrics, such as AdS3 [39,86,87] due to its topological
nature. Nevertheless, even for asymptotically flat spacetimes in
four dimensions, such instruments, to our knowledge, are not
available.
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The next step is to require 0 ¼ a−2LξgrA, which together
with (B5) leads to

ξBð1Þ ¼ −
ð1 −ΨÞ
1þ Ω

DBξu; ð16Þ

ξBð2Þ ¼ 1

2

�
1 −Ψ

ð1þ ΩÞ2 C
ABDAξ

u þ K
1þΩ

DBξu
�
: ð17Þ

To fix the last gauge condition we have to demand that

∂r det

�
gAB þ LξgAB

a2r2

�
¼ 0: ð18Þ

We can now expand the determinant around the metric
(13) with an infinitesimal perturbationLξgAB (B6) and (B7),

det

�
gAB þ LξgAB

a2r2

�
¼ detðgÞ det

�
I þ 1

a2r2
gACLξgCB

�

¼ detðgÞ
�
1þ FA

A

1þ C
þ 1

r

�
SAA

1þΩ
−

CACFCA

ð1þ ΩÞ2
�

þ 1

r2
1

1þ Ω

�
KA

A −
CABSAB
1þ Ω

þ CA
CC

CBFAB

ð1þ ΩÞ2 −
hABFAB

1þΩ

��
;

ð19Þ
such that for (18) to be obeyed we need to require the terms
Oðr−1Þ and Oðr−2Þ to vanish. This leads to

ξrð0Þ ¼ 1

2ð1þ kÞð1þ ΩÞ ½−DAðð1þ ΩÞξAð1ÞÞ − 2kð1þ ΩÞξu − ΘADAξ
u�; ð20Þ

ξrð1Þ ¼ 1

2ð1þ kÞð1þΩÞ
�
2kuð1þ ΩÞðξu þ ξrð0ÞÞ þ CABΘADBξ

u

1þ Ω
−UADAξ

u −DAðð1þΩÞξAð2ÞÞ
�
: ð21Þ

The remaining Lie derivatives (B2)–(B4) close in the r-expansion (13). As a consequence, we do not get more conditions.
Summary of results
(1) Supertranslations have the form

ξ ¼ ξuðu; z; z̄Þ∂u þ
�
ξrð0Þ þ 1

r
ξrð1Þ

�
∂r þ

�
1

r
ξBð1Þ þ 1

r2
ξBð2Þ

�
∂B: ð22Þ

(2) The only free parameter is ξuðu; z; z̄Þ.
(3) The other coefficients in (22) are given by (20), (21), (16), and (17).
(4) From the Lie derivatives in Appendix B 1, we observe that the action of (22) satisfies the falloff conditions (13)

automatically, such that we do not get any additional restrictions on the supertranslations, and induces the following
transformations in the asymptotic data:

δΦ ¼ ξu∂uΦ − 2ð1 −ΨÞ∂uξ
rð0Þ − 2ð1 −ΦÞ∂uξ

u þ 2ΘB∂uξ
Bð1Þ; ð23Þ

δm ¼ ξu∂um − kð1 −ΦÞðξu þ ξrð0ÞÞ þ 1

2
ξAð1ÞDAΦþ K∂uξ

rð0Þ

− ð1 −ΨÞ∂uξ
rð1Þ þUA∂uξ

Að1Þ þ ΘB∂uξ
Bð2Þ þ 2m∂uξ

u; ð24Þ

δΨ ¼ ξu∂uΨ − ð1 −ΨÞ∂uξ
u; ð25Þ

δK ¼ ξu∂uK þ K∂uξ
u − 2kð1 − ΨÞðξu þ ξrð0ÞÞ þ ξBð1Þð∂BΨ − ΘBÞ; ð26Þ

δΩ ¼ ξu∂uΩ; ð27Þ

δCAB ¼ ξu∂uCAB þ 2ð1þ kÞγABð1þΩÞξrð0Þ þ 2kξuð1þΩÞγAB
þ ð1þ ΩÞðDAξ

ð1Þ
B þDBξ

ð1Þ
A Þ þ γABξ

Cð1ÞDCΩþ ΘADBξ
u þ ΘBDAξ

u; ð28Þ

δΘA ¼ ξu∂uΘA þ γABð1þ ΩÞ∂uξ
Bð1Þ þ ΘA∂uξ

u; ð29Þ
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δUA ¼ ξu∂uUA þ UA∂uξ
u þ ΘAξ

rð0Þ þ 2kΘAðξu þ ξrð0ÞÞ − ð1 −ΦÞDAξ
u

− ð1 − ΨÞDAξ
rð0Þ þ ξBð1ÞDBΘA þ ΘBDAξ

Bð1Þ þ CAB∂uξ
Bð1Þ

þ γABð1þ ΩÞ∂uξ
Bð2Þ; ð30Þ

δNA ¼ ξu∂uNA þ NA∂uξ
u þ VBDBNA þ NBDAVB − ð1 − 2kÞNAξ

rðVÞ

þ ξBð1ÞDBUA þ UBDAξ
Bð1Þ þ ξBð2ÞDBΘA þ ΘBDAξ

Bð2Þ

− ð1 − ΨÞDAξ
rð1Þ þ 2mDAξ

u þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ
þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ þ ΘAξ

rð1Þ þ CAB∂uξ
Bð2Þ

þ KDAξ
rð0Þ þ hAB∂uξ

Bð1Þ: ð31Þ

(5) Note that setting Φ ¼ Ψ ¼ K ¼ Ω ¼ ΘA ¼ 0 and
k ¼ 0 we consistently recover the same results as for
asymptotically flat spacetimes.

New physical insight
A closer look to Eqs. (23)–(30) reveals a much richer

picture than in the flat case. Let us point out some of the
more relevant features:

(i) Terms with guu ∼Oðr−1Þ and gur ∼Oðr−1Þ are
unavoidably generated for k ≠ 0, as can be seen
from (24) and (26).

(ii) For general setting and supertranslations, all the
modes transform nonlinearly except Ω.

(iii) While Ψ and Ω receive at most contributions from
themselves, Φ, K, ΘA, CAB, and NA feel the effect of
other modes, and m can be affected by all the modes
except CAB and NA.

(iv) Demanding the absence of terms gur ∼Oð1Þ leads to
∂uξ

u ¼ 0, recovering the well-known result in the
asymptotically flat case ξu ¼ fðz; z̄Þ ∈ C∞ðS2Þ. On
the other hand, imposing guA ∼Oð1Þ and/or guu ∼
Oðr−1Þ fixes the u-dependence of ξu. Otherwise, ξu
can depend arbitrarily on u for a generic setting.

2. Global Killing vectors

The goal of this section is to show how we recover
the global Killing vectors (GKV) associated to trans-
lations consistently from the supertranslation diffeomor-
phisms (22).
The GKV are the solutions of the equation

Lξgμν ¼ ξλ∂λgμν þ gνλ∂μξ
λ þ gμλ∂νξ

λ ¼! 0: ð32Þ

Maximally symmetric spaces have the maximum number
of GKV given by dðdþ 1Þ=2. In flat space, we obtain ten
GKV, four associated with translations and six associated
with rotations and boosts. Unperturbed FRW spaces are
homogeneous and isotropic in the spatial components, and,
therefore, we obtain six GKV associated with the three
spatial translations and three rotations. On the other hand,

∂t is no more a GKV but ∂η is a conformal Killing
vector (CKV).
The large r-limit of (22) when Φ;Ω;Ψ;ΘA → 0 is

given by

ξ¼ ξuðu; z; z̄Þ∂u þ
1

2ð1þ kÞ ½DADAξu − 2kξu þOðr−1Þ�∂r

ð33Þ

þ
�
−
1

r
DBξu þOðr−2Þ

�
∂B þOðΦ;Ω;Ψ;ΘÞ: ð34Þ

More concretely, if we only allow for Lξgur ¼ Oðr−1Þ,
ξu ¼ fðz; z̄Þ þOðΨÞ in the limit Ψ → 0, and we obtain

ξ ¼ fðz; z̄Þ∂u

þ 1

2ð1þ kÞ ½DADAfðz; z̄Þ − 2kfðz; z̄Þ þOðr−1Þ�∂r

ð35Þ

þ
�
−
1

r
DBfðz; z̄Þ þOðr−2Þ

�
∂B þOðΦ;Ω;Ψ;ΘÞ; ð36Þ

whose action is equivalent to the following coordinate
transformations:

u → uþ f; r → rþ 1

2ð1þ kÞ ðD
ADAf − 2kfÞ; ð37Þ

z → z −
1

r
Dzf; z̄ → z̄ −

1

r
Dz̄f: ð38Þ

Using the following convention [26] for the l ¼ 0, 1
spherical harmonics:

Y0
0 ¼ 1; Y1

1 ¼
z

1þ zz̄
; Y0

1 ¼
1− zz̄
1þ zz̄

; Y−1
1 ¼ z̄

1þ zz̄
;

ð39Þ
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we aim to recover the unperturbed FRW GKVs generating
the spatial translations as some linear combinations of
ξðY0

0Þ, ξðY1
1Þ, ξðY0

1Þ, and ξðY−1
1 Þ,

ξðY0
0Þ ¼ ∂u −

k
ð1þ kÞ ∂r ¼ ∂η −

ð1þ 2kÞ
ð1þ kÞ ∂r; ð40Þ

ξðY1
1Þ ¼

z
1þ zz̄

ð∂u − ∂rÞ þ
1

r

�
z2

2
∂z −

1

2
∂ z̄

�
; ð41Þ

ξðY0
1Þ ¼

1 − zz̄
1þ zz̄

ð∂u − ∂rÞ þ
1

r
ðz∂z þ z̄∂ z̄Þ; ð42Þ

ξðY−1
1 Þ ¼ z̄

1þ zz̄
ð∂u − ∂rÞ þ

1

r

�
−
1

2
∂z þ

z̄2

2
∂ z̄

�
: ð43Þ

We can write them in terms of the Cartesian generators
Xi ¼ ∂xi as

ξðY0
1Þ ¼ −X3; ξðY1

1Þ ¼ −
1

2
ðX1 þ iX2Þ;

ξðY−1
1 Þ ¼ −

1

2
ðX1 − iX2Þ; ð44Þ

obtaining exactly the same result as in flat space [26].
Consistently, we do not obtain the time translation

generator from ξðY0
0Þ, due to the fact that it is not a

GKV in spatially flat FRW but a CKV. Therefore, there is a
linearly independent (and so unavoidable) correction term
which corresponds to a spatial dilatationD pondered by the
inverse of the radius

ξðY0
0Þ ¼

1

ð1þ kÞ
�
∂η −

k
r
xi∂xi

�
¼ 1

ð1þ kÞ
�
TConf −

k
r
D

�
:

ð45Þ

Remarks
(i) In the case of considering flat BMS supertrans-

lations (as in [78]), instead of the asymptotically
spatially flat FRW supertranslations that we study,
the relations (44) would be analogously verified,
but (45) would be replaced by ξðY0

0Þ ¼ TConf
being in line with the fact that pure spatially
flat FRW is conformal to Minkowski after replac-
ing t by η. However, we observe from the above
discussion that we do not recover the correct
global isometry group of FRW from flat BMS
supertranslations. Therefore, flat BMS are not
consistent asymptotic symmetries in our cosmo-
logical setting.

(ii) If the coefficients Φ;Ω;Ψ;ΘA are nonzero, they
survive at infinity and we should recover the GKVof
the corresponding perturbed spatially flat FRW.
Nevertheless, such spaces generally do not have

GKV. Although, if Φ;Ω;Ψ;ΘA ≪ 1,5 then one can
expand them in series and we obtain the previous
results as a first approximation.

(iii) The same results follow for the general case (34)
from the u-independent and l ¼ 0, 1 spherical
harmonic modes of ξu.

C. Superrotations

Next, we allow also for superrotations. The ansatz for
infinitesimal diffeomorphisms generating superrotations is
similar to the supertranslations, but includes an OðrÞ
contribution in the r component and an Oðr0Þ contribution
in the angular components6

ξR ¼ ξuðu; xAÞ∂u þ
�
rξrðVÞ þ

X∞
n¼0

ξrðnÞ

rn

�
∂r

þ
�
VA þ

X∞
n¼1

ξAðnÞ

rn

�
∂A: ð46Þ

1. General case

The first step is to fix the Bondi gauge. 0 ¼ Lξgrr is
automatically verified by (46) and 0 ¼ LξgrA provides us
with the Lie derivative (B11) and the same conditions (16)
and (17) as before. The last gauge condition we need to
impose is (18). Following the same steps as in Sec. III B,
we obtain (19), which, together with CA

A ¼ 0 and (B13),
leads us to

ξrð0Þ ¼ 1

1þ k

�
−

1

2ð1þΩÞDAðð1þΩÞξAð1ÞÞ

−
1

2ð1þ ΩÞΘ
ADAξ

u þ kuξrðVÞ − kξu
�
; ð47Þ

ξrð1Þ ¼ 1

2ð1þ kÞð1þΩÞ
�
CA
BΘADBξu

1þ Ω

− 2kð1þ ΩÞðu2ξrðVÞ − uξrð0Þ − uξuÞ

−DAðð1þ ΩÞξAð2ÞÞ −UADAξ
u

�
: ð48Þ

Contrary to the supertranslations, the Lie derivatives
(Appendix B 2) do not close in the r-expansion (13). In
order to be consistent with (13), the remaining falloff
conditions we require are

Lξguu ¼ Oð1Þ; Lξgur ¼ Oð1Þ; LξguA ¼ OðrÞ;
ð49Þ

5As physically expected, otherwise the perturbations would
spoil the observed homogeneity and isotropy at large r scales in
our universe.

6The fact that ξu has to be r-independent follows from (B1).
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LξgAB ¼ ð1þ Ωþ δΩÞγAB þOðrÞ: ð50Þ

From the Lie derivatives (B8) and (B10) we get the
additional requirements

∂uVA ¼ ∂uξ
rðVÞ ¼ 0; ð51Þ

and, from FAB in (B13), we have to restrict VC to be
conformal Killing vectors on the sphere

DAVB þDBVA ¼ γABDCVC: ð52Þ

Summary of results
(i) General superrotations have the form

ξ ¼ ξuðu; z; z̄Þ∂u þ
�
rξrðVÞðz; z̄Þ þ ξrð0Þ þ 1

r
ξrð1Þ

�
∂r

þ
�
VBðz; z̄Þ þ 1

r
ξBð1Þ þ 1

r2
ξBð2Þ

�
∂B: ð53Þ

(ii) There are three free parameters, namely ξuðu; z; z̄Þ,
VBðz; z̄Þ, and ξrðVÞðz; z̄Þ.

(iii) The other coefficients in (53) are given by (47), (48),
(16), and (17).

(iv) From the Lie derivatives in Appendix B 2, we
observe that the action of (53) satisfies the falloff
conditions (13) automatically, as long as VA are
CKV on the sphere, and induces the following
transformations in the asymptotic data:

δΦ ¼ VADAΦþ ξu∂uΦ − 2ð1 −ΨÞ∂uξ
rð0Þ − 2kð1 −ΦÞξrðVÞ

− 2ð1 −ΦÞ∂uξ
u þ 2ΘA∂uξ

Að1Þ; ð54Þ

δm ¼ ξu∂um − kð1 −ΦÞξu − ðð1 − 2kÞm − kuð1 −ΦÞÞξrðVÞ

− kð1 −ΦÞξrð0Þ þ VADAmþ 1

2
ξAð1ÞDAΦþ K∂uξ

rð0Þ

− ð1 − ΨÞ∂uξ
rð1Þ þm∂uξ

u þUA∂uξ
Að1Þ þ ΘA∂uξ

Að2Þ; ð55Þ

δΨ ¼ VA∂AΨþ ξu∂uΨ − ð1þ 2kÞð1 − ΨÞξrðVÞ − ð1 −ΨÞ∂uξ
u; ð56Þ

δK ¼ ξu∂uK þ VADAK þ K∂uξ
u þ ξAð1ÞDAΨ − ΘAξ

Að1Þ

þ 2kð1 −ΨÞðuξrðVÞ − ξu − ξrð0ÞÞ þ 2kKξrðVÞ; ð57Þ

δΩ ¼ VCDCΩþ ξu∂uΩþ 2ð1þ kÞξrðVÞ þ ð1þ ΩÞDAVA; ð58Þ

δCAB ¼ ξu∂uCAB þ VCDCCAB þ CACDBVC þ CBCDAVC

þ 2ð1þΩÞγABðð1þ kÞξrð0Þ − kuξrðVÞ þ kξuÞ þ γABξ
Cð1ÞDCΩ

þ ð1þ ΩÞðDAξ
ð1Þ
B þDBξ

ð1Þ
A Þ þ ΘADBξ

u þ ΘBDAξ
u

þ ð1þ 2kÞCABξ
rðVÞ; ð59Þ

δΘA ¼ VBDBΘA þ ξu∂uΘA þ ð1þ 2kÞΘAξ
rðVÞ þ ΘBDAVB

− ð1 −ΨÞ∂Aξ
rðVÞ þ ΘA∂uξ

u þ ð1þ ΩÞ∂uξ
ð1Þ
A ð60Þ

δUA ¼ ð2kΘA þ ∂uUAÞξu þ ð1þ 2kÞΘAξ
rð0Þ þ 2kξrðVÞðUA − uΘAÞ

þ VBDBUA þ ξBð1ÞDBΘA þ ΘBDAξ
Bð1Þ þUBDAVB

− ð1 − ΨÞDAξ
rð0Þ þ KDAξ

rðVÞ − ð1 −ΦÞDAξ
u þ UA∂uξ

u

þ CAB∂uξ
Bð1Þ þ ð1þ ΩÞ∂uξ

ð2Þ
A ; ð61Þ
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δNA ¼ ξu∂uNA þ NA∂uξ
u þ VBDBNA þ NBDAVB − ð1 − 2kÞNAξ

rðVÞ

þ ξBð1ÞDBUA þUBDAξ
Bð1Þ þ ξBð2ÞDBΘA þ ΘBDAξ

Bð2Þ þ KDAξ
rð0Þ

− ð1 −ΨÞDAξ
rð1Þ þ 2mDAξ

u þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ
þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ þ ΘAξ

rð1Þ þ CAB∂uξ
Bð2Þ þ hAB∂uξ

Bð1Þ: ð62Þ

(v) Note that setting Φ ¼ Ψ ¼ K ¼ Ω ¼ ΘA ¼ 0 and
k ¼ 0 we consistently recover the same results as
for asymptotically flat spacetimes. Furthermore, im-
posing ξrðVÞ ¼ VB ¼ 0 leads us to the analysis of
Sec. III B.

New physical insight
Equations (54)–(62) show a richer picture than allowing

only for supertranslations. Let us briefly mention some of
the more relevant features:

(i) For general setting and superrotations, all the modes
transform nonlinearly.

(ii) Demanding the absence of terms gur ∼Oð1Þ fixes
ξrðVÞ to be

ξrðVÞ ¼ −
1

ð1þ 2kÞ ∂uξ
u: ð63Þ

This means that ξu is at most linear in u as in the
asymptotically flat case. Besides, imposing guA ∼
Oð1Þ and/or guu ∼Oðr−1Þ fixes the u-dependence of
ξu. Apart from that, ξu can depend arbitrarily on u
for a generic setting.

(iii) For k ≠ 0, ξrðVÞ generates unavoidable contributions
for all the modes except CAB. Remarkably, m and K
become “dynamical” through the u-dependent term
kuξrðVÞ.

(iv) VA together with ξrðVÞ generate an inevitable term
in δΘA.

(v) For k ≠ 0, ξrðVÞ enters directly the subleading ξrð0Þ

and ξrð1Þ components of the asymptotic superrota-
tion diffeomorphisms.

Strong Bondi gauge
In the asymptotically flat case, the determinant (19) is

usually required to be exactly detðgÞ [75], which is a
stronger requirement than just the Bondi gauge (18) [88].
Following the same path would lead to demand that
FA
A ¼ 0, which gives the requirement

VCDCΩþ 2ð1þ kÞξrðVÞ þ ξu∂uΩþ ð1þ ΩÞDAVA ¼ 0:

ð64Þ

This condition fixes ξrðVÞ7 in relation to VA and ξu,

ξrðVÞ ¼ −
1

2ð1þ kÞ ½ξ
u∂uΩþDAðð1þΩÞVAÞ�; ð65Þ

which now remain independent as the unique parameters in
the asymptotic symmetry group.
Note that we could have required the strong Bondi gauge

already for the supertranslations ξrðVÞ ¼ VA ¼ 0. This
would force Ω to be independent of u, such that it would
not be a dynamical field in the asymptotic expansion but a
coordinate transformation.
Let us point out that replacing (65) in (B13) leads to

FAB ¼ ð1þ ΩÞðDAVB þDBVA − γABDCVCÞ; ð66Þ

meaning that VA must be a CKVon the sphere if we require
δγAB ¼ 0, identically to the situation encountered in the
asymptotically flat case (Sec. II B).8

To summarize, imposing the strong Bondi gauge leads to
LξgAB ∼OðrÞ causing δΩ ¼ δγAB ¼ 0. In the case of
supertranslations, it forces ∂uΩ ¼ 0 and for superrotations
Ω can still be a dynamical coefficient but severely restrict-
ing the u-dependence of ξu through ∂uξ

rðVÞ ¼ ∂uVA ¼ 0
and (65).

2. Particular cases

We notice that the inclusion of dynamical Ω is in tension
with the strong Bondi gauge, potentially causing incom-
patibilities with many interesting cosmological settings and
opening several possibilities:

(i) Allow for arbitrary Ωðu; z; z̄Þ.
The application of the strong Bondi gauge is not

appropriate because then δΩ ¼ 0, preventing us
from analyzing how it transforms under the asymp-
totic diffeomorphisms.

(ii) Restrict to metrics with ∂uΩ ¼ 0.
Ω is not a dynamical cosmological mode, ξu is

unconstrained, and the strong Bondi gauge is appli-
cable. The normal Bondi gauge allows for z, z̄-
dependent contributions to Ω, while the strong
Bondi gauge freezes any change in Ω.

7When the parameter ξrðVÞ is free, it represents, to leading
order in r (ξ ∝ ξrðVÞr∂r), angle dependent dilatations. They might
be related to the superdilations in [32].

8Alternatively, one could allow for general diffeomorphisms
on S2 but then the round metric γAB should be replaced by a
general qABðu; z; z̄Þ in (13) and the entire analysis repeated. Note
that, for a u-dependent Ω, it is clear from (66) that a u-dependent
qAB would be generated.
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(iii) Limit to ξrðVÞ ¼ 0.
Taking into account that boost generators are not

GKV for FRW (cf. Sec. III C 3), it is not necessary to
add the rξrðVÞ term in (46). In fact, it is possible to
restrict to this subclass of diffeomorphisms, being
still consistent with the obtainment of the GKVs
of FRW.

(iv) Perform again the analysis to allow for general
diffeomorphisms on S2.
It would permit us to describe a richer variety of

cosmological perturbations to FRWat leading order,
including anisotropies of the form r2½λðu; z; z̄Þdz2þ
βðu; z; z̄Þdz̄2� ⊂ ds2, obviously incompatible with
the strong Bondi gauge. We leave this for future
research due to its length and technical difficulty.

Remark:
It is important to clarify that allowing for a dynamical Ω

provides us with a third scalar mode, such that there is still
gauge freedom. From the perspective of analyzing cosmo-
logical perturbations, we could (and should) fix totally the
gauge and restrict to metrics with Ω ¼ 0, but it is still
fruitful to leave this coefficient free from the perspective of
exploring off-shell the most general asymptotic transfor-
mations between asymptotically spatially flat FRW space-
times. In Sec. IV C, we will come back to this point in more
detail.

3. Global Killing vectors

In this section, we consistently obtain the global Killing
vectors, associated with rotations, from the superrotation
diffeomorphisms (53). In contrast to the asymptotically flat
case, the boosts are no longer global Killing vectors.
The first step is to derive ξ for the global CKVon S2 in

the limit Φ;Ω;Ψ;ΘA → 0. For the sake of simplicity, we
adopt the strong Bondi gauge. We find from (65), (16), and
(B9) that

ξrðVÞ ¼ −
1

2ð1þ kÞDAVA; ð67Þ

ξAð1Þ ¼ −DAξu: ð68Þ

To fix ξu we have to make the leading contribution to either
(B9) or (B10) vanish. Note that for ξrðVÞ ≠ 0 there is noway
to make both terms vanish at the same time. That means
we will always generate a Ψ or ΘA term in the metric.
Comparing this to the situation in asymptotically flat space
[26], we see that the transformations with ξrðVÞ ≠ 0 include
the boosts. As a consequence, our observation that for those
transformations we cannot make all the leading terms in the
Lie derivative vanish reflects the fact that boosts are no
longer GKVs of FRW.
The two different choices for ξu that make δΨ or δΘA

vanish, respectively, are given by

δΨ ¼ 0∶ ⇒ ξuΨ ¼ u
2

ð1þ 2kÞ
ð1þ kÞ DAVA þ fðxAÞ; ð69Þ

δΘA ¼ 0∶ ⇒ ξuΘ ¼ u
2

1

1þ k
DAVA þ fðxAÞ: ð70Þ

Setting f → 0 and using these equations and the fact that
DADADBVB ¼ −2DBVB for CKV on the sphere, Eq. (53)
becomes

ξΨ ¼ u
2

ð1þ 2kÞ
ð1þ kÞ DAVA∂u

−
1

2ð1þ kÞ2 ½rð1þ kÞ þ uð1þ 4kþ 2k2Þ�DAVA∂r

þ
�
VA −

u
2r

ð1þ 2kÞ
ð1þ kÞ DADBVB

�
∂A; ð71Þ

ξΘ ¼ u
2

1

ð1þ kÞDAVA∂u

−
1

2ð1þ kÞ2 ½rð1þ kÞ þ uð1þ 2kÞ�DAVA∂r

þ
�
VA −

u
2r

1

ð1þ kÞD
ADBVB

�
∂A: ð72Þ

It is straightforward to check that the choices

Vz ¼ iz; Vz̄ ¼ −iz̄;

Vz ¼ i
2
ðz2 − 1Þ; Vz̄ ¼ i

2
ð1 − z̄2Þ;

Vz ¼ 1

2
ð1þ z2Þ; Vz̄ ¼ 1

2
ð1þ z̄2Þ ð73Þ

verify DAVA ¼ 0 which means ξrðVÞ ¼ 0 and correspond,
respectively, to the rotation generators J12, J23, and J31,
where Jij ¼ xi∂j − xj∂i in Cartesian coordinates.
Moving on to CKVs with DAVA ≠ 0, we can consider

the choices

Vz ¼ 1

2
ð1 − z2Þ; Vz̄ ¼ 1

2
ð1 − z̄2Þ; ð74Þ

Vz ¼ i
2
ð1þ z2Þ; Vz̄ ¼ −

i
2
ð1þ z̄2Þ; ð75Þ

Vz ¼ −z; Vz̄ ¼ −z̄: ð76Þ

In the asymptotically flat case these correspond to the
boosts in x, y, and z directions, respectively. To see how a
flat boost would look in our case we plug (74)–(76) into
(71) and (72). After transforming the result into Cartesian
coordinates we discover that these transformations can be
written in terms of a conformal boost term perturbed by a
superposition of deformed conformal transformations:
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ξðiÞΨ ¼ 1

ð1þ kÞ2
�
Bi þ

k
r

��
1þ k − ð3þ 2kÞ η

r

�
Ki ð77Þ

þ
�
ð6þ 5kÞ η

r
− ð5kþ 4Þ

�
xiDþ xiηTc

��
; ð78Þ

ξðiÞΘ ¼ 1

ð1þ kÞ2
�
Bi þ

k
r

�
−
�
1þ kþ η

r

�
Ki

þ
�
3
η

r
þ k

�
xiDþ xiηTc

��
; ð79Þ

where the boosts Bi, special conformal transformations Ki,
dilatationD, and conformal time translation Tc are given by

Bi ¼ η∂i þ xi∂η; Ki ¼ 2xixj∂j − r2∂i;

D ¼ xi∂i; Tc ¼ ∂η: ð80Þ

Analogous remarks to those at the end of Sec. III B 2
apply here.

IV. EXAMPLES

To get a feeling for the physical meaning of the trans-
formations we considered in the previous section, we will
now apply them to some example spacetimes. We start with
a pure FRW universe and realize that the asymptotic
transformations can be classified into orbits according to
the leading order terms they generate. We move on to
describe the transformations of a FRW universe with a
nonvanishing Bondi mass. Finally, we consider cosmo-
logical perturbations and their transformation behavior.

A. Pure FRW

The asymptotic data and diffeomorphisms are consid-
erably simplified starting from pure FRW:

δΦFRW ¼ −2∂uξ
rð0Þ − 2kξrðVÞ − 2∂uξ

u; ð81Þ

δmFRW ¼ −kξu þ kuξrðVÞ − kξrð0Þ − ∂uξ
rð1Þ; ð82Þ

δΨFRW ¼ −ð1þ 2kÞξrðVÞ − ∂uξ
u; ð83Þ

δKFRW ¼ 2kðuξrðVÞ − ξu − ξrð0Þ; Þ ð84Þ

δΩFRW ¼ 2ð1þ kÞξrðVÞ þDAVA; ð85Þ

δCABFRW ¼ 2γABðð1þ kÞξrð0Þ − kuξrðVÞ þ kξuÞ
þ ðDAξ

ð1Þ
B þDBξ

ð1Þ
A Þ; ð86Þ

δΘAFRW ¼ −DAξ
rðVÞ þ ∂uξ

ð1Þ
A ; ð87Þ

δUAFRW ¼ −DAξ
rð0Þ −DAξ

u; ð88Þ

δNAFRW ¼ −DAξ
rð1Þ; ð89Þ

ξAð1ÞFRW ¼ −DAξu;

ξrð0ÞFRW ¼ 1

1þ k

�
1

2
ðDADA − 2kÞξu þ kuξrðVÞ

�
; ð90Þ

ξAð2ÞFRW ¼ 0; ξrð1ÞFRW ¼ ku
ð1þ kÞ2

�
1

2
ðDADAþ 2Þξu −uξrðVÞ

�
:

ð91Þ

Note that, for general transformations, all the asymptotic
data can be generated. Particularly, this means the gen-
eration of cosmological modes out of the vacuum. This is,
however, to be expected as the asymptotic transformations
are in general no GKVs of FRW as we described in the
previous section. An observer at null infinity undergoing an
asymptotic transformation that is not a GKV will therefore
see a different spacetime that is slightly deformed com-
pared to the original FRW. In contrast to an asymptotically
flat spacetime, a FRW universe is filled with a homo-
geneous and isotropic hydrodynamic fluid everywhere. The
observer at null infinity will therefore experience the
deformations of the universe as perturbations in the dis-
tribution and flux of the fluid which is why all the
asymptotic data can be generated from the FRW vacuum
by a general transformation. This effect does not exist in the
asymptotically flat case.

1. Orbits of transformations

We classify the general transformations into orbits
according to which leading order terms vanish. This is
equivalent to enforcing a certain extra falloff behavior in
the metric:
(1) δΨ ¼ 0 ⇒ ξu ¼ −uð1þ 2kÞξrðVÞ þ fðz; z̄Þ þ const.

(2) δΦ ¼ 0 ⇒ kξrðVÞ ¼ − ðDADAþ2Þ
2ð1þkÞ ∂uξ

u.

(3) δΘA ¼ 0 ⇒ ξu ¼ −uξrðVÞ þ fðz; z̄Þ þ const.
(4) δΩ ¼ 0 ⇒ ξrðVÞ ¼ − 1

2ð1þkÞDAVA (strong Bondi
gauge).

In the upcoming analysis we take into account that
k ∈ Qn½ð−∞; 0Þ ∪ ð1;∞Þ�, that D2 ¼ DADA has as
unique eigenfunctions on S2 the trivial function and the
spherical harmonics Yl

m with eigenvalues −lðlþ 1Þ,
l ¼ 0; 1; 2;…, and that VA being a CKV implies that
D2DAVA ¼ −2DAVA, such that DAVA ¼ P

i a
V
i Y

1
m.

Compatibility by pairs:
(i) δΩ ¼ 0 is compatible with all the others, as it is the

only one involving the parameter VA.
(ii) δΨ ¼ 0 is only compatible with δΘA ¼ 0 if k ¼ 0

and/or ξrðVÞ ¼ 0.
(iii) δΨ ¼ 0 is compatible with δΦ ¼ 0 if ξrðVÞ ¼ 0 or if

ξrðVÞ ¼ P
i b

iY1
m ≠ 0 and k ¼ 0.
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(iv) δΦ ¼ 0 is compatible with δΘA ¼ 0 if ξrðVÞ ¼ 0, if
ξrðVÞ ¼ P

i c
iY1

m ≠ 0 and k ¼ 0, or if ξrðVÞ ∝ Y1
0 and

k ¼ 1
2
(free scalar field).9

We observe the following interesting facts:
(i) If ξrðVÞ ¼ 0, then the first three conditions are

verified together and can be extended to also include
δΩ ¼ 0 in the case that VA are rotations.

(ii) For k ¼ 0, we recover the expected results for flat
space. The four conditions are fulfilled simultane-
ously in the so-called strong Bondi gauge. If one
allows for δΩ ≠ 0, the other three conditions can be
verified only if ξrðVÞ ¼ 0 or it consists of any linear
combination of l ¼ 1 spherical harmonics. Other-
wise, at most δΨ ¼ 0 and δΘA ¼ 0 are compatible.

(iii) In the case that k ≠ 0, the unique possibility to
compatibilize more than two conditions is the
previously discussed ξrðVÞ ¼ 0.

(iv) Among the first three conditions, the only one which
allows for arbitrary u-dependence on ξu is δΦ ¼ 0 in
the case that kξrðVÞ ¼ 0 and at cost that its angular
part is restricted to combinations of Y1

m. For k ≠ 0,
δΩ ¼ 0 would be possible only for VA being
rotations, whereas for k ¼ 0 it would be uncon-
strained.

2. Particular transformations

Next, we show the nonvanishing contributions of some
simple subsets of transformations to the asymptotic data:

(i) ξrðVÞ ¼ VA ¼ 0 and ξuðu; z; z̄Þ ¼ f ¼ const

δm ¼ −
kðkþ 2Þ
ð1þ kÞ2 f; δK ¼ −

2k
1þ k

f: ð92Þ

(ii) ξrðVÞ ¼ VA ¼ 0 and ξuðu; z; z̄Þ ¼ fðz; z̄Þ

δm ¼ −
kðkþ 2Þ
2ð1þ kÞ2 ½DADA þ 2�fðz; z̄Þ;

δCzz ¼ −2DzDzfðz; z̄Þ; ð93Þ

δK ¼ −
k

1þ k
½DADA þ 2�fðz; z̄Þ;

δCz̄ z̄ ¼ −2Dz̄Dz̄fðz; z̄Þ; ð94Þ

δUA ¼ −
1

2ð1þ kÞDA½DCDC þ 2�fðz; z̄Þ; ð95Þ

δNA ¼ −
ku

2ð1þ kÞ2DA½DCDC þ 2�fðz; z̄Þ: ð96Þ

Notice that all variations vanish in the case
fðz; z̄Þ ∝ Y1

m, which consistently correspond to the
spatial translations analyzed in Sec. III B 2. Besides,
δm, δK, and δNA are generated for k ≠ 0.

(iii) ξrðVÞ ¼ VA ¼ 0 and ξuðu; z; z̄Þ ¼ fðuÞ

δΦ ¼ −
2

1þ k
∂uf; δΨ ¼ −∂uf; ð97Þ

δm ¼ −
k

ð1þ kÞ2 ½ðkþ 2Þ þ u∂u�f;

δK ¼ −
2k

ð1þ kÞ f: ð98Þ

(iv) ξrðVÞ ¼ 0, DAVA ¼ 0, and ξuðu; z; z̄Þ ¼ fðuÞY1
m

δΨ ¼ −∂uξ
u; δΘA ¼ −DA∂uξ

u: ð99Þ

(v) ξu ¼ VA ¼ 0 and ξrðVÞðz; z̄Þ ¼ g

δΦ ¼ −
2kð2þ kÞ
1þ k

g; δΨ ¼ −ð1þ 2kÞg; ð100Þ

δm ¼ kðkþ 3Þ
ð1þ kÞ2 ug; δK ¼ 2k

1þ k
ug; ð101Þ

δΩ ¼ 2ð1þ kÞg: ð102Þ

Observe that m and K become u-dependent:
(vi) ξu ¼ ξrðVÞ ¼ 0 and VAðz; z̄Þ ≠ 0

δΩ ¼ DAVA: ð103Þ

It is zero for rotations but nonzero for general CKV
on S2:

(vii) ξu ¼ 0, ξrðVÞ ¼ gðz; z̄Þ, and VA ≠ 0

δΦ¼−
2kð2þ kÞ
1þ k

gðz; z̄Þ; δΨ¼−ð1þ 2kÞgðz; z̄Þ;
ð104Þ

δm ¼ kðkþ 3Þ
ð1þ kÞ2 ugðz; z̄Þ; δK ¼ 2k

1þ k
ugðz; z̄Þ;

ð105Þ

δΩ¼ 2ð1þkÞgðz; z̄ÞþDAVA; δΘA¼−DAgðz; z̄Þ;
ð106Þ

δUA ¼ −
k

1þ k
uDAgðz; z̄Þ;

δNA ¼ −
k

ð1þ kÞ2 u
2DAgðz; z̄Þ: ð107Þ

9It is interesting to note that another solution exists outside our
regime, that is, ξrðVÞ ∝ Y1

0 and k ¼ −1 (scalar field with vanishing
kinetic energy).
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Apart from CAB, all the asymptotic data are
generated.

B. Inhomogeneities

In this section, we consider spacetimes with a central
inhomogeneity that manifests itself by nonvanishing sub-
leading terms of m and K.

1. mðu; z; z̄Þ ≠ 0

In a first step we consider a nonvanishing masslike term
mðu; z; z̄Þ ≠ 0. Such spacetimes are clearly inhomogene-
ous and may be anisotropic in the case that m is angle
dependent.
The asymptotic diffeomorphisms remain exactly as in

Sec. IVA and the asymptotic data change only in the
following terms:

δm ¼ δmFRW þ ξu∂um − ð1 − 2kÞmξrðVÞ þ VADAm

þm∂uξ
u; ð108Þ

δNA ¼ δNAFRW þ 2mDAξ
u: ð109Þ

Depending on whether m depends on u and/or z, z̄, some
terms are present or absent. Furthermore, the orbits of
transformations analyzed in Sec. IVA do not change
because no leading term is affected (by a single trans-
formation) with respect to a pure FRW background.
We list only the new terms generated under the appli-

cation of the same transformations as in Sec. IVA, and we
denote the expressions from that section with the sub-
script “FRW”:

(i) ξrðVÞ ¼ VA ¼ 0 and ξuðu; z; z̄Þ ¼ f

δm ¼ δmFRW þ f∂um: ð110Þ

(ii) ξrðVÞ ¼ VA ¼ 0 and ξuðu; z; z̄Þ ¼ fðz; z̄Þ

δm ¼ δmFRW þ ð∂umÞfðz; z̄Þ;
δNA ¼ δNAFRW þ 2mDAfðz; z̄Þ: ð111Þ

(iii) ξrðVÞ ¼ VA ¼ 0 and ξuðu; z; z̄Þ ¼ fðuÞ

δm ¼ δmFRW þ ð∂umÞfðuÞ þm∂ufðuÞ: ð112Þ

(iv) ξrðVÞ ¼ 0, DAVA ¼ 0, and ξuðu; z; z̄Þ ¼ fðuÞY1
m

δm ¼ ξu∂umþ VADAmþm∂uξ
u;

δNA ¼ 2mDAξ
u: ð113Þ

(v) ξu ¼ VA ¼ 0 and ξrðVÞðz; z̄Þ ¼ g

δm ¼ δmFRW − ð1 − 2kÞmg: ð114Þ

(vi) ξu ¼ ξrðVÞ ¼ 0 and VAðz; z̄Þ ≠ 0

δm ¼ δmFRW þ VADAm: ð115Þ

(vii) ξu ¼ 0, ξrðVÞ ¼ gðz; z̄Þ, and VA ≠ 0

δm¼ δmFRW − ð1− 2kÞmgðz; z̄Þ þVADAm: ð116Þ

Note that the unique different contributions with respect
to the same background in the flat case are in (114) and
(116). They vanish for k ¼ 1

2
(free scalar field) and flip sign

for k ¼ 1 (radiation).

2. Sultana-Dyer

Another seemingly simple example would be the
Sultana-Dyer black hole solution [89].10 However, upon
coordinate transformation into Bondi coordinates, we
discover that it is not covered by our ansatz, as the scale
factor acquires an additional logarithmic r-dependence. To
leading order in the 1

r-expansion the Sultana-Dyer solution
can be described in our ansatz as a spacetime with non-
vanishing constant m and K. The Sultana-Dyer metric in
the original form [89,91] is written as

ds2 ¼
�
η

L

�
2k
�
−
�
1 −

2m
r

�
dη2 þ 4m

r
dηdr

þ
�
1þ 2m

r

�
dr2 þ 2r2γzz̄dzdz̄

�
: ð117Þ

This can be brought into Bondi form. However, there are
two ways to write the metric corresponding to two different
choices for the radial coordinate:

ds2 ¼
�
uþ rþ 2m log ð r

2m − 1Þ
L

�
2k

×

�
−
�
1 −

2m
r

�
du2 − 2dudrþ 2r2γzz̄dzdz̄

�
; ð118Þ

ds2 ¼
�
uþ r̃
L

�
2k
�
−
�
1 −

2m
rðr̃Þ

�
du2

− 2

�
1 −

2m
rðr̃Þ

�
dudr̃þ 2rðr̃Þ2γzz̄dzdz̄

�
; ð119Þ

where r and r̃ are related by

r̃ ¼ rþ 2m log

�
r
2m

− 1

�
: ð120Þ

10Such a solution is formally equivalent to McVittie [90] with
constant mass (and therefore accretion). It is a conformal
Schwarzschild, which corresponds to a black hole embedded
in a dust-filled (k ¼ 2) spatially flat FRW metric [91].
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It is obvious that (118) is not covered by our ansatz, as the
scale factor picks up an additional r-dependence. To cover
spacetimes that include (118) we would have to generalize
our ansatz for asymptotically FRW spacetimes. This might
be necessary to include many interesting examples, but for
now we leave this for future investigations.
In (119) we have the problem that there is no easy way to

expand rðr̃Þ in orders of r̃ as the inverse of (120) is given by
the LambertW function. Assuming that the leading order is
proportional to r, the Sultana-Dyer solution would corre-
spond, to leading order, to an asymptotically FRW space-
time with constant m and K ¼ 2m.
The asymptotic diffeomorpisms in this case are given by

ξAð1Þ ¼ ξAð1ÞFRW; ξAð2Þ ¼ mDAξu; ξrð0Þ ¼ ξrð0ÞFRW;

ð121Þ

ξrð1Þ ¼ ξrð1ÞFRW −
m

2ð1þ kÞDADAξu: ð122Þ

The asymptotic data change in the following terms. Again
we only list the terms that transform differently to the pure
FRW case:

δm ¼ δmFRW þm∂uξ
u þ 2m∂uξ

rð0Þ − ð1 − 2kÞmξrðVÞ;

ð123Þ

δK ¼ δKFRW þ 2m∂uξ
u þ 4kmξrðVÞ; ð124Þ

δNA ¼ δNAFRW þ m
1þ k

DADBDBξu þ 2mDAξ
u

þ 2mDAξ
rð0Þ: ð125Þ

By comparing (123) and (124) we see that after a general
transformation, the new metric does not look like a Sultana-
Dyer spacetime, as K ¼ 2m is no longer true.

C. Cosmological perturbations

Cosmological perturbations are usually classified into
scalar, vector, and tensor modes according to their trans-
formation behavior under spatial rotations. It turns out that
Bondi coordinates and Bondi gauge are suited to easily
identify the cosmological modes.11 The perturbed spatially
flat FRW metrics we consider12 can be written in Bondi
coordinates as

ds2 ¼ a2f−ð1 −ΦÞdu2 − 2ð1 − ΨÞdudr − 2rΘAdudxA

þðð1þ ΩÞr2γAB þ rCABÞdxAdxBg; ð126Þ

where all the coefficients are small (perturbations), have
a priori arbitrary dependence onu, z, z̄, and their dependence
on r is only restricted to be at most Oð1Þ at large r.
Written in this form,Φ,Ψ,Ω, andCA

A transform as scalars,
ΘA as a vector and the traceless part ofCAB as a tensor under
spatial rotations. This can easily be checked by using the
definition of spatial rotations in Bondi coordinates that are
given in (73) and the general transformation laws (54)–(62).
Note that we can still create additional scalar, vector, and
tensor modes by adding or contracting with a covariant
derivative.13 This is due to the fact that we are still using an
off-shell formalism. Once we enforce the equations of
motion and make restrictions for the matter content we
allow in the energy-momentum tensor, the degrees of free-
dom should be completely fixed to two scalar modes, two
vector modes, and two tensor modes. But even if we assume
that there are no hidden additional modes in (126), there are
still four scalar modes instead of two. This is due to the fact
that we have not imposed the strong Bondi gauge yet which
fixes the gauge completely and restricts Ω ¼ 0 or Ω being
nondynamical and CA

A ¼ 0.
In summary we can say that the modes in our ansatz (126)

represent the maximal number of degrees of freedomwe can
have for each perturbation. Nevertheless, only an on-shell
treatment using the energy momentum tensor determined by
a theory (for example general relativity) can tell us whether
those modes are actually real. Such on-shell treatment was
performed in Cartesian coordinates long ago [92] but not in
Bondi coordinates in a compatiblewaywith the r-expansion.
It is extremely interesting because then one would be able to
determine how exactly on-shell asymptotic diffeormor-
phisms change the cosmological modes for different observ-
ers, but it is also challenging andwe leave it for future studies.
We will now work out three particularly simple cases off-
shell and leave their on-shell treatment, as well as more
complicated examples for future treatment.

1. Scalar mode background

Let us take a background with only one leading order
scalar mode Φ ≠ 0 and the rest of the asymptotic data to
vanish. In such a case, the asymptotic diffeomorphisms
remain exactly as in Sec. IVA and the asymptotic data read
as follows:

δΦ ¼ δΦFRW þ VADAΦþ ξu∂uΦþ 2kΦξrðVÞ þ 2Φ∂uξ
u;

ð127Þ

δm¼ δmFRW þ kΦξu − kuΦξrðVÞ þ kΦξrð0Þ þ 1

2
ξAð1ÞDAΦ;

ð128Þ11For a more detailed treatment of the cosmological perturba-
tions and their physical relevance we recommend [92].

12Note that the more general class of metrics would contain
r2ðγAB þ qABÞ. This would allow for leading order tensor degrees
of freedom, but it is incompatible with the restriction of VA to be a
CKV and the Bondi gauge.

13For example, for a scalar E the termDAE would transform as
a vector, while for a tensor JAB the divergence DAJAB transforms
as a vector as well.
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δUA ¼ δUAFRW þΦDAξ
u: ð129Þ

Note that unless ξu is angle dependent, the background
scalar mode does not generate any mixed modes by itself
apart from the pure FRW background. In such a case, still
the vectorlike contribution could be revealed to be “fake”
by the equations of motion in an on-shell treatment. Let us
note that, for a constant supertranslation ξu ¼ f, the only
nonvanishing components for pure FRW background are
δmFRW and δKFRW. Moreover, both were just constant and
therefore can be regarded just as a background shift.
Nevertheless, the Φ-background mode evolves at leading
order in r picking up a linear f∂uΦ contribution and
generates to subleading order a u-dependent contribution
mðuÞ − δmFRW ¼ kΦf þ kΦξrð0Þ in the supertranslated
frame.

2. Vector mode background

Next, we analyze a background with two leading order
vector modes ΘA ≠ 0 and the rest of the asymptotic data to
vanish. In such a case, the asymptotic diffeomorphisms are
modified

ξAð1Þ ¼ ξAð1ÞFRW; ξAð2Þ ¼ ξAð2ÞFRW ¼ 0; ð130Þ

ξrð0Þ ¼ ξrð0ÞFRW −
1

2ð1þ kÞΘ
ADAξ

u ¼ ξrð0ÞFRW þ ξ̃rð0Þ; ð131Þ

ξrð1Þ ¼ ξrð1ÞFRW −
ku

2ð1þ kÞ2Θ
ADAξ

u ¼ ξrð1ÞFRW þ ξ̃rð1Þ; ð132Þ

and the asymptotic data transform as follows:

δΦ ¼ δΦFRW − 2∂uξ̃
rð0Þ þ 2ΘA∂uξ

Að1Þ; ð133Þ

δm ¼ δmFRW − kξ̃rð0Þ − ∂uξ̃
rð1Þ; ð134Þ

δK ¼ δKFRW − ΘAξ
Að1Þ − 2kξ̃rð0Þ; ð135Þ

δCAB¼δCABFRWþ2γABð1þkÞξ̃rð0Þ þΘADBξ
uþΘBDAξ

u;

ð136Þ

δΘA ¼ δΘA FRW þ VBDBΘA þ ξu∂uΘA þ ð1þ 2kÞΘAξ
rðVÞ

þ ΘBDAVB þ ΘA∂uξ
u; ð137Þ

δUA ¼ δUAFRWþ 2kΘAξ
uþð1þ 2kÞΘAξ

rð0Þ− 2kξrðVÞuΘA

þ ξBð1ÞDBΘAþΘBDAξ
Bð1Þ−DAξ̃

rð0Þ; ð138Þ

δNA ¼ δNAFRW −DAξ̃
rð1Þ þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ

þ ξrð1ÞÞ þ ΘAξ
rð1Þ: ð139Þ

It it easy to realize that, unless we apply an angle dependent
supertranslation, i.e., ξu ¼ fðz; z̄Þ, there is no mode mixing

apart from the FRW background shift and the effect of the
background vector modes ΘA is restricted to the vector
components. That is because in such a caseDAξ

u ¼ 0 leads
also to ξAð1Þ ¼ ξ̃rð0Þ ¼ ξ̃rð1Þ ¼ 0.

3. Tensor mode background

Finally, we choose a background with two subleading
order gravitational modes CAB ≠ 0 (CA

A ¼ 0, Czz; Cz̄ z̄ ≠ 0)
and the rest of the asymptotic coefficients to vanish. In such
a case, the asymptotic diffeomorphisms are modified

ξAð1Þ ¼ ξAð1ÞFRW; ξAð2Þ ¼ 1

2
CBADBξ

u; ξrð0Þ ¼ ξrð0ÞFRW;

ð140Þ

ξrð1Þ ¼ ξrð1ÞFRW −
1

4ð1þ kÞDA½CBADBξ
u� ¼ ξrð1ÞFRW þ ξ̃rð1Þ;

ð141Þ

and the asymptotic data read as follows:

δm ¼ δmFRW − ∂uξ̃
rð1Þ; ð142Þ

δCAB ¼ δCABFRW þ ξu∂uCAB þ VCDCCAB þ CACDBVC

þ CBCDAVC þ ð1þ 2kÞCABξ
rðVÞ; ð143Þ

δUA ¼ δUA FRW þ CAB∂uξ
Bð1Þ þ ∂uξ

Bð2Þ; ð144Þ

δNA ¼ δNA FRW −DAξ̃
rð1Þ þ CAB∂uξ

Bð2Þ: ð145Þ

The same comments as in the end of the previous
subsection apply here, meaning that unless we apply an
angle dependent supertranslation, there is no mode mixing
apart from the FRW background shift and the effect of the
background gravitational modes Czz and Cz̄ z̄ is restricted to
themselves. That is because in such a case DAξ

u ¼ 0 leads
also to ξAð1Þ ¼ ξAð2Þ ¼ ξ̃rð1Þ ¼ 0.

V. SUMMARY, CONCLUSIONS, AND
FUTURE RESEARCH

In this paper we have studied asymptotically decelerating
spatially flat FRW spacetimes at future null infinity Iþ in a
gauge similar to Bondi.More concretely, we have performed
an off-shell analysis where the Einstein equations have been
used only indirectly, in order to further motivate the ansatz
(13). Following the standard procedure in asymptotically flat
spacetimes, we have obtained asymptotic diffeomorphisms
consistent with the global symmetries of FRW, and we have
investigated their effect on diverse backgrounds. Our main
goals were to obtain the more general transformations
mapping asymptotically spatially flat FRW spacetimes
among themselves and to investigate how such diffeomor-
phisms transform the physically relevant asymptotic metric
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coefficients. Both fit within the aim of addressing the still
missing asymptotic symmetry corner of the cosmological
infrared triangle [26].
Summary of results
Let us summarize our main findings:
(i) We have motivated and defined the class of metrics

to be considered asymptotically decelerating spa-
tially flat FRW at future null infinity Iþ (13). Next,
we have obtained the supertranslationlike diffeo-
morphisms that act consistently on them (22), and
then further extend to include superrotationlike
transformations (53) together with their effect on
the asymptotic data (54)–(62). Particularly, we have
checked that these transformations are consistent
with the GKV of FRW and recovered the asymp-
totically flat case in the limit k ¼ 0. Along the way,
we have adopted the normal Bondi gauge, such that
the gauge was not totally fixed, in order to allow for
more general metrics. Nevertheless, we have ex-
plained in detail how to fix the remaining degree of
freedom by means of the so-called strong Bondi
gauge and why it is important for a future on-shell
treatment of cosmological perturbations.

(ii) We have investigated how these transformations act
on a pure FRW background and noticed that,
contrary to the flat case, not only Czz and Cz̄ z̄ but
all the asymptotic data can be generated out of the
vacuum. This partially reflects the still off-shell
treatment we developed but also the fact that vector
and scalar modes are allowed to be present in a
cosmological background. Besides, we have also
studied the compatibility between subclasses of
transformations which do not create leading order
asymptotic coefficients.

(iii) We have computed the extra contributions due to the
presence of nonvanishing m in the background.
Furthermore, we have realized that central inhomo-
geneities are more involved to describe than
Schwarzschild in the flat case. Its conformal
counterpart, the Sultana-Dyer black hole back-
ground, has been explored, and we have realized
that it is not covered by our ansatz (13), although for
large r it could be simulated by 2m ¼ K ¼ const.

(iv) Finally, we have considered some particularly sim-
ple cosmologically perturbed backgrounds and an-
alyzed how the perturbations affect the remaining
asymptotic data under the action of the asymptotic
diffeomorphisms. We have admitted that a full
analysis would require an on-shell treatment but
we have given hints on how it could be performed,
and we have noticed subtleties and necessary details
to be considered.

Open questions and future directions
We would like to conclude by listing some especially

relevant future research guidelines:

(i) In order to make our analysis useful for the precise
description of physical data, we have to dive into an
on-shell description. Although we used Bondi gauge
and Einstein equations to motivate the asymptotic
metrics (13), there are more coefficients in the off-
shell r-expansion (13) than the actual on-shell
degrees of freedom corresponding to two scalar
modes, two vector modes, and two gravitational
modes (126). The implementation of the equations
of motion should relate several of these coefficients,
providing with the right number of degrees of
freedom. Establishing a classification of asymptotic
metrics based on more strict falloffs for the allowed
matter content (energy momentum tensor) seems to
be the first reasonable step. Furthermore, exploring
the compatibility of our formalism with the more
geometric one of [79] might clarify the path to
follow in order to find the on-shell description.

(ii) Even though exact Sultana-Dyer is not a physical
solution [91,93], its inclusion would require one to
modify our ansatz (13) because it is not described by
a 1

r-expansion. It might be possible to obtain inspi-
ration from polyhomogeneous expansions in flat
spacetime [94]. In general, it would be interesting to
broaden the analysis of Sec. IV B to more involved
cosmological black hole solutions [93], as well as
to the asymptotically spatially flat FRW LTB
(Lemaitre-Tolman-Bondi) metrics formulated in
[95]. The latter are better suited to describe the
collapse of a spherical mass distribution with over
density within a cosmological setting than Sultana-
Dyer and McVittie’s black hole. Furthermore, one
could also try to apply our analysis to flat Kerr-
Newmann black holes (k ¼ 0) [96,97] and Kerr-
Newmann embedded in cosmology [98].

(iii) A beneficial feature of our off-shell analysis is that
it is not restricted to Einstein gravity. It allows for
an on-shell implementation in general gravity the-
ories which have decelerated spatially flat FRW as
solutions.

(iv) In order to explore our formalism in spacetimes with
leading order anisotropies14 (e.g., Bianchi Type I)
and leading order diagonal perturbations to the
round sphere metric, we have to allow for VA ∈
VectðS2Þ instead of restricting VA to be a CKV on
S2. The gauge we adopted is not suited for this task,
requiring a complete reformulation of the analysis
presented here.

(v) The asymptotic diffeomorphisms we obtained (53)
are considerably more complicated than in the
flat case and depend explicitly on several metric

14Note that, due to δgrA ¼ 0, the only manner to introduce
anisotropies is through generation of diagonal terms r2qAB
deforming the off-diagonal round metric.
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coefficients. We did not identify their algebra for
concrete special orbits or in full generality. However,
it is essential to understand the structure they describe
in order to make the connection with black hole
entropy, fluid-gravity duality, and membrane models
embedded in a cosmological setting. Three main
features make it more complicated than in asymp-
totically flat spacetimes: the asymptotic diffeomor-
phisms depend on several asymptotic data, ξu is
u-dependent, and ξrðVÞ is another parameter to deal
with in casewe do not implement strongBondi gauge.

(vi) Our analysis and diffeomorphisms are infinitesimal.
Ultimately, it would be desirable to extend them to
be finite.
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APPENDIX A: EINSTEIN TENSOR

In this part of the Appendix we write down the Einstein
tensor in the 1

r-expansion. The Einstein tensor can be
separated in the following way:

Gμν ¼ Ḡμν þ δGμν; ðA1Þ

where Ḡμν is the Einstein tensor of the pure FRW back-
ground whose nonvanishing components are given by

Ḡuu ¼
3k2

r2
þOðr−3Þ; ðA2Þ

Ḡur ¼
3k2

r2
þOðr−3Þ; ðA3Þ

Ḡrr ¼
2kðkþ 1Þ

r2
þOðr−3Þ; ðA4Þ

Ḡzz̄ ¼ −γzz̄kðk − 2Þ þOðr−1Þ: ðA5Þ

δGμν are the terms that are generated by the perturbations
in (13). We expand this in 1

r in the following way:

δGμν ¼ rδGð−1Þ
μν þ δGð0Þ

μν þ 1

r
δGð1Þ

μν þ 1

r2
δGð2Þ

μν þOðr−3Þ: ðA6Þ

As the δGðiÞ
μν s are in general very lengthy and complicated, we write down only the terms that are of first order in the

perturbations. Therefore, they are only valid in the case where these perturbations are very small. To analyze the 1
r behavior

of the Einstein tensor, however, this is sufficient:

δGð0Þ
uu ¼ −∂2

uΩ; ðA7Þ

δGð1Þ
uu ¼ −ð1þ kÞ∂uΦþ 2∂uΨþ ð3þ 2kÞ∂uΩþ ∂uDAΘA; ðA8Þ

δGð2Þ
uu ¼ ð1þ 4kÞΦ − 2ð1þ 2kÞΨ − Ω − 2ð1þ kÞDAΘA −DADAΦ

þ 2DADAΨ −DADAΩþ 2∂uK − 2ð1þ kÞ∂umþ ku∂uΦ

− 2ku∂uΩþ ∂uDAUA − ∂uhAA; ðA9Þ

δGð1Þ
ur ¼ 2ð1þ kÞ∂uΩ; ðA10Þ

δGð2Þ
ur ¼ ð1þ kÞ2Φ − ð2þ 2kþ k2ÞΨ − Ω −

3

2
DAΘA − 2kDAΘA

þDADAΨ −DADAΩ − 2ku∂uΩ; ðA11Þ

δGð1Þ
rA ¼ð1þ kÞðΘA −DAΨÞ; ðA12Þ

δGð2Þ
rA ¼ð1þ 2kÞUA þ kuðDAΨ − ΘAÞ −

1

2
DBCAB −

1

2
ð3þ 2kÞDAK; ðA13Þ

δGð0Þ
uA ¼ 1

2
ð∂uDAΨ − ∂uDAΩ − ∂uΘAÞ; ðA14Þ
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δGð1Þ
uA ¼ ð2 − kÞkΘA − kDAΦþ 1

2
DADBΘB −

1

2
DBDBΘA − ∂uUA

þ 1

2
∂uDBCAB þ 1

2
∂uDAK; ðA15Þ

δGð0Þ
zz ¼ −ð1þ 2kÞDzΘz þDzDzΨþ k∂uCzz; ðA16Þ

δGð1Þ
zz ¼ ð2 − kÞkCzz − 2kDzUz þ 2kuDzΘz þDzDzK − ku∂uCzz − ð1 − kÞ∂uhzz; ðA17Þ

δGð−1Þ
zz̄ ¼ −ð1þ kÞγzz̄∂uΩ; ðA18Þ

δGð0Þ
zz̄ ¼ γzz̄ðð2 − kÞkΩþ 2kΨ − k2Φ − ∂uK þ ku∂uΩÞ − 2DzDz̄Ψ

þ ð1þ 2kÞðDz̄Θz þDzΘz̄Þ; ðA19Þ

δGð1Þ
zz̄ ¼ γzz̄ð2kð2 − kÞm − K − 2kuðð1 − kÞΦþΨþ 2ð2 − kÞΩþ u∂uΩÞÞ

þ kðDz̄Uz þDzUz̄Þ − kuðDz̄Θz þDzΘz̄Þ −DzDz̄K þ ð1 − kÞ∂uhzz̄: ðA20Þ

APPENDIX B: LIE DERIVATIVES

In this Appendix we collect the Lie derivatives resulting from the action of supertranslations (14) and superrotations (46)
in the asymptotically spatially flat FRW metric (13). Both cases share the Lie derivative

a−2Lξgrr ¼ −2
�
1 − Ψ −

K
r
þOðr−2Þ

�
∂rξ

u; ðB1Þ

which translates into ∂rξ
u ¼ 0 to verify the Bondi gauge. Therefore, we consider only ξuðu; z; z̄Þ.

1. Supertranslations

a−2Lξguu ¼ þ½ξu∂uΦ − 2ð1 −ΨÞ∂uξ
rð0Þ − 2ð1 −ΦÞ∂uξ

u þ 2ΘA∂uξ
Að1Þ�

þ 2

r

�
ξu∂um − kð1 −ΦÞξu − kð1 −ΦÞξrð0Þ þ 1

2
ξAð1ÞDAΦ

þ K∂uξ
rð0Þ − ð1 −ΨÞ∂uξ

rð1Þ þm∂uξ
u þ UA∂uξ

Að1ÞþΘA∂uξ
Að2Þ

�
þOðr−2Þ; ðB2Þ

a−2Lξgur ¼ ½ξu∂uΨþ ðΨ − 1Þ∂uξ
u� þ 1

r
½ξu∂uK þ K∂uξ

u þ ξAð1ÞDAΨ

−ΘAξ
Að1Þ − 2kð1 −ΨÞðξu þ ξrð0ÞÞ� þOðr−2Þ; ðB3Þ

a−2LξguA ¼ r½ξu∂uΘA þ ΘA∂uξ
u þ ð1þΩÞ∂uξ

ð1Þ
A � þ ½ð2kΘA þ ∂uUAÞξu

þ ð1þ 2kÞΘAξ
rð0Þ þ ξBð1ÞDBΘA þ ΘBDAξ

Bð1Þ − ð1 −ΨÞDAξ
rð0Þ

− ð1 −ΦÞDAξ
u þUA∂uξ

u þ CAB∂uξ
Bð1Þ þ ð1þΩÞ∂uξ

ð2Þ
A �

þ 1

r
½ξu∂uNA þ NA∂uξ

u þ ξBð1ÞDBUA þ UBDAξ
Bð1Þ þ ξBð2ÞDBΘA

þ ΘBDAξ
Bð2Þ þ KDAξ

rð0Þ − ð1 − ΨÞDAξ
rð1Þ þ 2mDAξ

u

þ 2kUAðξrð0Þ þ ξuÞ þ 2kΘAð−uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ
þ ΘAξ

rð1Þ þ CAB∂uξ
Bð2Þ þ hAB∂uξ

Bð1Þ� þOðr−2Þ; ðB4Þ
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a−2LξgrA ¼ −γABðð1þ ΩÞξBð1Þ þ ð1 −ΨÞDBξuÞ þ 1

r
ðKDAξ

u − 2ð1þΩÞξð2ÞA − CABξ
Bð1ÞÞ þOðr−2Þ; ðB5Þ

a−2LξgAB ¼ r2FAB þ rSAB þ KAB; ðB6Þ

with

FAB ¼ γABξ
u∂uΩ;

SAB ¼ 2ð1þ ΩÞγABðð1þ kÞξrð0Þ þ kξuÞ þ γABξ
Cð1ÞDCΩþ ΘADBξ

u

þ ΘBDAξ
u þ ð1þΩÞðDAξ

ð1Þ
B þDBξ

ð1Þ
A Þ þ ξu∂uCAB;

KAB ¼ −2kð1þΩÞγABðuξrð0Þ þ uξuÞ þ 2ð1þ kÞð1þΩÞγABξrð1Þ
þ γABξ

Cð2ÞDCΩþ ξu∂uhAB þ UADBξ
u þ UBDAξ

u þ CACDBξ
Cð1Þ

þ CBCDAξ
Cð1Þ þ ξCð1ÞDCCAB þ ð1þ ΩÞðDAξ

ð2Þ
B þDBξ

ð2Þ
A Þ: ðB7Þ

2. Superrotations

a−2Lξguu ¼ 2r½ΘA∂uVA − ð1 −ΨÞ∂uξ
rðVÞ� þ ½VADAΦþ ξu∂uΦþ 2UA∂uVA − 2ð1 −ΨÞ∂uξ

rð0Þ − 2kð1 −ΦÞξrðVÞ

þ 2K∂uξ
rðVÞ − 2ð1 −ΦÞ∂uξ

u þ 2ΘA∂uξ
Að1Þ� þ 2

r
½ξu∂um − kð1 −ΦÞξu − ðð1 − 2kÞm − kuð1 −ΦÞÞξrðVÞ

− kð1 −ΦÞξrð0Þ þ VADAmþ 1

2
ξAð1ÞDAΦþ K∂uξ

rð0Þ − ð1 − ΨÞ∂uξ
rð1Þ

þm∂uξ
u þ UA∂uξ

Að1Þ þ ΘA∂uξ
Að2Þ þ NA∂uVA� þOðr−2Þ; ðB8Þ

a−2Lξgur ¼ ½ð1þ 2kÞðΨ − 1ÞξrðVÞ þ VA∂AΨþ ξu∂uΨþ ðΨ − 1Þ∂uξ
u�

þ 1

r
½ξu∂uK þ VADAK þ K∂uξ

u þ ξAð1ÞDAΨ − ΘAξ
Að1Þ

þ 2kð1 −ΨÞðuξrðVÞ − ξu − ξrð0ÞÞ þ 2kKξrðVÞ� þOðr−2Þ; ðB9Þ

a−2LξguA ¼ð1þΩÞ∂uVAr2 þ r½ð1þ 2kÞΘAξ
rðVÞ þ VB∂BΘA þ ΘB∂AVB

− ð1 − ΨÞ∂Aξ
rðVÞ þ CAB∂uVB þ ξu∂uΘA þ ΘA∂uξ

u þ ð1þ ΩÞ∂uξ
ð1Þ
A �

þ ½ð2kΘA þ ∂uUAÞξu þ ð1þ 2kÞΘAξ
rð0Þ þ 2kξrðVÞðUA − uΘAÞ

þ VBDBUA þ ξBð1ÞDBΘA þ ΘBDAξ
Bð1Þ þUBDAVB

− ð1 − ΨÞDAξ
rð0Þ þ KDAξ

rðVÞ − ð1 −ΦÞDAξ
u þ hAB∂uVB

þ UA∂uξ
u þ CAB∂uξ

Bð1Þ þ ð1þΩÞ∂uξ
ð2Þ
A �

þ 1

r
½ξu∂uNA þ NA∂uξ

u þ VBDBNA þ NBDAVB − ð1 − 2kÞNAξ
rðVÞ

þ ξBð1ÞDBUA þUBDAξ
Bð1Þ þ ξBð2ÞDBΘA þ ΘBDAξ

Bð2Þ þ KDAξ
rð0Þ

− ð1 − ΨÞDAξ
rð1Þ þ 2mDAξ

u þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ
þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ þ ΘAξ

rð1Þ þ CAB∂uξ
Bð2Þ

þ hAB∂uξ
Bð1Þ� þOðr−2Þ; ðB10Þ
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a−2LξgrA ¼ −γABðð1þΩÞξBð1Þ þ ð1 −ΨÞDBξuÞ

þ 1

r
ðKDAξ

u − 2ð1þ ΩÞξð2ÞA − CABξ
Bð1ÞÞ þOðr−2Þ; ðB11Þ

a−2LξgAB ¼ r2FAB þ rSAB þ KAB; ðB12Þ

with

FAB ¼ γABðVCDCΩþ 2ð1þ kÞξrðVÞ þ ξu∂uΩÞ þ ð1þ ΩÞðDAVB þDBVAÞ;
SAB ¼ 2ð1þ ΩÞγABðð1þ kÞξrð0Þ − kuξrðVÞ þ kξuÞ þ γABξ

Cð1ÞDCΩ

þ ð1þ ΩÞðDAξ
ð1Þ
B þDBξ

ð1Þ
A Þ þ ΘADBξ

u þ ΘBDAξ
u þ ð1þ 2kÞCABξ

rðVÞ

þ CACDBVC þ CBCDAVC þ VCDCCAB þ ξu∂uCAB;

KAB ¼ 2kð1þΩÞγABðu2ξrðVÞ − uξrð0Þ − uξuÞ þ 2ð1þ kÞð1þ ΩÞγABξrð1Þ
þ γABξ

Cð2ÞDCΩþ ξu∂uhAB þ hACDBVC þ hBCDAVC þ VCDChAB

þ 2khABξrðVÞ þUADBξ
u þUBDAξ

u þ CACDBξ
Cð1Þ þ CBCDAξ

Cð1Þ

þ ξCð1ÞDCCAB þ ð1þ ΩÞðDAξ
ð2Þ
B þDBξ

ð2Þ
A Þ: ðB13Þ
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