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Recently, the anomalous decay rate of quasinormal modes has been studied for some geometries under
scalar field perturbations, which occurs when the longest-lived modes are the ones with higher angular
number, as well as the existence of a critical scalar field mass, i.e., the value of scalar field mass such that the
decay rate does not depend appreciably on the angular number, and beyond which the behavior of the decay
rate is inverted.Here,we consider the propagation of fermionic fields in the background of Schwarzschild–de
Sitter black holes, and we show that the anomalous decay rate behavior and the fine structure, related to the
coupling between the chirality and the mass of the field, can be observed in the fermionic spectrum.
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I. INTRODUCTION

Quasinormal modes (QNMs) and the frequencies
of QNMs or quasinormal frequencies (QNFs) have
been a subject of study for a long time [1–5] and have
recently acquired great interest due to the detection of
gravitational waves [6,7]. The QNMs of different spin
fields on Schwarzschild, Schwarzschild–de Sitter and
Schwarzschild–anti–de Sitter spacetimes have been studied
extensively, with the scalar field the most studied case.
Considering the scenario when the black hole is immersed
in an expanding universe, the QNMs of black holes in de
Sitter (dS) space result of interest. However, due to the
observed value of the cosmological constant is very small,
it would be reasonable to ask why we should not neglect its
effects in local physics, or more precisely, how strong are
its perturbative effects. Also, from a modern point of view,
the study of the dynamical properties of dS black holes
provides important insight into de Sitter/conformal field
theory correspondence (dS=CFT) [8–10]. Thus, following
these interesting issues it is natural to study the propagation
of test field in dS spacetimes.
The gravitational QNMs of Schwarzschild–de Sitter black

hole were studied in Ref. [11] by following a procedure
analogous to that of Chandrasekhar [12], and based on the
Wentzel-Kramers-Brillouin (WKB) approximation in

Ref. [13]. Then, the existence of exponentially decaying
tails at late times was demonstrated in Ref. [14] and the
dynamics of radiative fields was analyzed in Ref. [15]. After
that, via an analytical expression for the QNMs and QNFs of
nearly extreme Schwarzschild–de Sitter black holes, it was
demonstrated that the Pöschl-Teller is the true potential [16],
in good agreement with those found by Moos et al. [17].
Other analytical approximation to the problem of scalar field
perturbation on Schwarzschild–de Sitter black holes was
studied, and it was shown the presence of two sets of modes
relevant at two different timescales, proportional to the
surface gravity of the black hole and to the cosmological
horizon, respectively [18]. As well, the QNMs were calcu-
lated by using the sixth order WKB formula and the
approximation by the Pöschl-Teller potential, and it was
shown that the QNFs all have a negative imaginary part,
which means that the propagation of scalar field is stable in
this background, and the presence of the cosmological
constant leads to decrease of the frequency of oscillation
and to a slower decay rate [19]. Further, high overtones of
gravitational and electromagnetic QNMs were studied in
Ref. [20]. Also, an exhaustive analysis was performed by
considering the WKB approach and two numerical schemes:
the characteristic and general initial value integrations [21].
Additionally, a simple derivation of the imaginary parts of the
QNFs was proposed by calculating the scattering amplitude
in the first Born approximation and determining its poles
[22]. Later, the QNMs of massless scalar field was studied for
a Reissner-Nordström de Sitter (RNdS) black hole with a
global monopole by the 6th order WKB approximation, and
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it was discussed in detail how the parameters of black hole
space-time influence the QNMs of massless scalar field [23].
Also, the phenomenon of slowly decaying resonances for
Schwarzschild–de Sitter spacetimes, in the large scalar mass
approximation was studied in Ref. [24]. Besides, it was found
a novel infinite set of purely imaginary modes, which
depending on the black hole mass may even be the dominant
mode [25], and the different families of modes were recently
study in detail in Ref. [26], and the different families of
massless scalar fields in the exterior of RNdS black holes
were analyzed in Ref. [27]. Finally, very recently it was
investigated the relaxation rate of the d-dimensional RNdS
black hole perturbed by neutral massless scalar field in the
eikonal limit [28], finding that fastest rate relaxation increases
with the cosmological constant for all dimensions, in addition
it was analyzed the relationship between the cosmological
constant and the critical charge and their influence on
relaxation rate of the composed system.
On the other hand, it was recently shown that the decay

rate of scalar QNMs in Schwarzschild, Schwarzschild–de
Sitter, and Schwarzschild–AdS black holes present an anoma-
lous behavior, i.e., the longest-lived modes are the ones with
higher angular number, while that for Schwarzschild and
Schwarzschild–de Sitter there is a critical scalar field mass,
such that beyond this value the anomalous decay rate behavior
is inverted [26,29]. Also, such anomalous behavior was
shown for black holes in fðRÞ gravity [30], Reissner-
Nordström black holes [31], and accelerating black holes [32].
Having in mind that the studies of anomalous decay rate

have been performed for scalar perturbations, in thiswork,we
study the propagation of massive fermionic fields in
Schwarzschild–de Sitter black hole backgrounds, in order
to see if the anomalous decay rate behavior and a critical
fermionic fieldmass are present in the spectrum, aswell as the
fine structure. We carry out this study by using the pseudo-
spectral Chebyshevmethod [33] which is an effectivemethod
to find high overtone modes [34–38]. It is worth mentioning
that the study of the QNMs of the Dirac field has been
performed for massless fermionic fields [19,39,40] and
massive fermionic fields [41]. The results show that the field
with higher masses and larger cosmological constant will
decaymore slowly in a Schwarzschild–de Sitter black hole by
using theWKBapproximation [41].Also, theDiracQNMsof
D-dimensional de Sitter spacetime was determined in
Ref. [42]. On the other hand, it was shown that the two
chiralities of massive fermions lead to an additional fine
structure in the spectrum, for Schwarzschild and Kerr back-
grounds by using the convergent Frobenius method [43].
Themanuscript is organized as follows: In Sec. II, we give

a brief review of the spacetime that we have considered, and
we study the Dirac equation. Then, in Sec. III, we calculate
the QNFs of massless and massive fermionic fields numeri-
cally by using the pseudospectral Chebyshev method, and
for massive fields we study the fine structure and the
anomalous decay rate. Finally, we conclude in Sec. IV.

II. FERMIONIC PERTURBATIONS

The Schwarzschild–de Sitter black holes are solutions of
the equations of motion that arise from the Einstein-Hilbert
action with a positive cosmological constant

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð1Þ

whereG is the Newton constant, R is the Ricci scalar, andΛ
is the cosmological constant. The Schwarzschild–de Sitter
black hole is described by the metric

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2dΩ2; ð2Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2, fðrÞ ¼ 1 − 2M
r − Λr2

3
, M is

the black hole mass, and Λ > 0. This metric represents a
black hole when Λ < 1=ð9M2Þ, with two horizons: the
event horizon rH and the cosmological horizon rΛ, where
rH < rΛ, and for Λ ¼ 1=ð9M2Þ both horizons coincide.
In order to study the propagation of fermionic fields in

the background of Schwarzschild–de Sitter black holes we
consider the Dirac equation in curved space given by

ðγμ∇μ þmÞψ ¼ 0; ð3Þ
where the covariant derivative is defined as ∇μ ¼ ∂μþ
1
2
ωab

μJab, with ωab being the Levi-Civita spin connection
and Jab ¼ 1

4
½γa; γb� correspond to the generators of the

Lorentz group, which are defined through the gamma
matrices in a flat spacetime γa, that can be expressed
through the gamma matrices in curved space-time γμ by
γμ ¼ eμaγa. So, in order to solve the Dirac equation (3), we
use the diagonal vielbein

e0 ¼
ffiffiffi
f

p
dt; e1 ¼ 1ffiffiffi

f
p dr;

e2 ¼ rdθ; e3 ¼ r sin θdϕ; ð4Þ
and from the null torsion condition dea þ ωa

b ∧ eb ¼ 0,
we obtain the nonzero components of the spin connection

ω01 ¼ f0ðrÞ
2

dt; ω12 ¼ −
ffiffiffi
f

p
dθ;

ω13 ¼ −
ffiffiffi
f

p
sin θdϕ; ω23 ¼ − cos θdϕ: ð5Þ

Now, using the following representation of the gamma
matrices [44,45] γ0 ¼ iσ2 ⊗ 1; γ1 ¼ σ1 ⊗ 1; γm ¼ σ3 ⊗
γ̃m, where σi are the Pauli matrices, and γ̃m are the
Dirac matrices in the base manifold Ω, along with the
following ansatz for the fermionic field

ψ ¼ e−iωt

rf1=4

�
ψ1

ψ2

�
⊗ ς; ð6Þ

where ψ1 and ψ2 are functions of r and ςðθ;ϕÞ is a
2-components fermion, we obtain the following equations:
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−
iωffiffiffi
f

p ψ2 þ
ffiffiffi
f

p
ψ 0
2 þ

iκ
r
ψ1 þmψ1 ¼ 0;

iωffiffiffi
f

p ψ1 þ
ffiffiffi
f

p
ψ 0
1 −

iκ
r
ψ2 þmψ2 ¼ 0; ð7Þ

where iκ is the eigenvalue of the Dirac operator on the two-dimensional sphere, and κ can take positive and negative integer
values κ ¼ �ðlþ 1Þ, with l ¼ 0; 1; 2;…, and the prime denotes the derivative with respect to the radial coordinate r. These
equations can be decoupled as

ψ 00
1 þ

�
1

2

f0ðrÞ
fðrÞ þ

iκ
rðiκ −mrÞ

�
ψ 0
1 þ

r2ωðmr − iκÞð2ω − if0ðrÞÞ − 2fðrÞððiκ þmrÞðiκ −mrÞ2 − κrωÞ
2r2fðrÞ2ðmr − iκÞ ψ1 ¼ 0; ð8Þ

ψ 00
2 þ

�
1

2

f0ðrÞ
fðrÞ þ

iκ
rðiκ þmrÞ

�
ψ 0
2 þ

r2ωðmrþ iκÞð2ωþ if0ðrÞÞ − 2fðrÞðð−iκ þmrÞðiκ þmrÞ2 − κrωÞ
2r2fðrÞ2ðmrþ iκÞ ψ2 ¼ 0: ð9Þ

Notice that Eq. (9) can be obtained from Eq. (8) by means
of the substitutions ψ1 → ψ2, ω → −ω and κ → −κ. On the
other hand, the above equations (7), for a massless
fermionic field, can be reduced to

−iωZþ −
dZ−

dr�
¼ WZ−; ð10Þ

−iωZ− −
dZþ
dr�

¼ −WZþ; ð11Þ

where we have defined Z� ¼ ψ1 � iψ2 and W ¼ −
iκ

ffiffiffi
f

p
=r; see Ref. [12], and the tortoise coordinate r�

is defined as usual by dr� ¼ dr=f. Now, decoupling
Eqs. (10) and (11), we obtain the following Schrödinger-
like equations:

−
d2Z�
dr�2

þ V� ¼ ω2Z�; ð12Þ

where the effective potentials V� are given by

V� ¼ W2 � dW
dr�

¼∓κ
f

ffiffiffi
f

p
r2

� κ
f0

ffiffiffi
f

p
2r

þ κ2f
r2

: ð13Þ

We can observe that the potentials are not positive definite.
Also it is possible to demonstrate that the effective
potentials for massive fermionic field are

V� ¼ W2 � dW
dr�

; ð14Þ

where

W½r� ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ κ2

r2

q
1þ 1

2w fðrÞð mκ
m2r2þκ2

Þ : ð15Þ

The behavior of the effective potentials as a function of r
is shown in Fig. 1 for a low value of the parameter κ ¼ 1,
with M ¼ 1, Λ ¼ 0.04 (left panel) and Λ ¼ 0.11 (right
panel), and for a higher value of κ ¼ 30 in Fig. 2, with
M ¼ 1, and Λ ¼ 0.11. The effective potentials of Fig. 1
exhibit negative gaps, V− has a negative gap around the
neighborhood of the event horizon, while that Vþ has a
negative gap around the cosmological horizon. Usually
when the effective potential is negative in some region,
growing perturbations can appear in the spectrum indicat-
ing an instability of the system under such perturbations.
However in Ref. [39] the authors studied the stability of the
massless Dirac field on Schwarzschild–de Sitter black
holes via time-domain integration of the scalar wave
equation finding the complete stability for all κ modes.
On the other hand, it was also pointed out in Ref. [41] that
the tunnelling process can occur when the energy of the
Dirac field ω2, which is always larger than the mass m, is
smaller than the peak value of the effective potential
ðVmaxÞ, then the QNMs exist only when m2 < ω2 < Vmax.
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FIG. 1. The behavior of V�ðrÞ as a function of r, with M ¼ 1, and κ ¼ 1. Left panel for Λ ¼ 0.04, and right panel for Λ ¼ 0.11.
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III. QUASINORMAL MODES

Now, in order to obtain the QNFs, we shall solve
numerically the generalized eigenvalue equation (8). We
will only consider Eq. (8) because Eqs. (8) and (9) are
isospectral, i.e., they possess the same QNM spectrum.
Here, we use the pseudospectral Chebyshev method to find
the QNM spectrum, see, for instance, Ref. [33]. Also, we
will write only the QNFs with positive real part, because
similar QNFs differing only in the sign of the real part are
present in the spectrum. Now, we analyze the asymptotic
behaviours of the radial function at the event and cosmo-
logical horizons along with the boundary conditions in both
limits to accommodate the boundary conditions in the
pseudospectral Chebyshev method. So, considering
Eq. (8), in the vicinity of the horizon the function ψ1ðrÞ
behaves as

ψ1ðrÞ ¼ C1ðr − rHÞ−iω=f0ðrHÞ þ C2ðr − rHÞ1=2þiω=f0ðrHÞ;

ð16Þ
where, the first term represents an ingoing wave and the
second represents an outgoing wave near the black hole
horizon. So, imposing the requirement of only ingoing
waves at the horizon, we fix C2 ¼ 0. On the other hand, at
the cosmological horizon the function ψ1ðrÞ behaves as
RðyÞ ¼ D1ðr − rCÞ−iω=f0ðrCÞ þD2ðr − rCÞ1=2þiω=f0ðrCÞ;

ð17Þ
where, the first term represents an outgoing wave and the
second represents an ingoing wave near the cosmological
horizon. So, imposing the requirement of only ingoing
waves on the cosmological horizon requires D1 ¼ 0.
Therefore, taking into account the behavior of the scalar
field at the event and cosmological horizons we define the
following ansatz:

ψ1ðrÞ ¼ ðr − rHÞ−iω=f0ðrHÞðr − rCÞ1=2þiω=f0ðrCÞFðrÞ: ð18Þ
Then, by inserting the above expression for ψ1ðrÞ in
Eq. (8), it is possible to obtain an equation for the function
FðrÞ. Also, it is convenient to perform a change of variable
in order to limit the values of the radial coordinate to the
range [0, 1], thereby we define the change of variable
y ¼ ðr − rHÞ=ðrΛ − rHÞ. So, the event horizon is located at

y ¼ 0 and the cosmological horizon at y ¼ 1. Thus, we
have to solve an equation for a function of y, say FðyÞ
which is regular at both, the event and cosmological
horizons. To use the pseudospectral method, FðyÞ must
be expanded in a complete basis of functions φiðyÞ:
FðyÞ ¼ P∞

i¼0 ciφiðyÞ, where ci are the coefficients of
the expansion, and we choose the Chebyshev polynomials
for the complete basis of functions, which are defined by
TjðxÞ ¼ cosðj cos−1 xÞ, where j corresponds to the grade of
the polynomial. The sum must be truncated until a N value,
therefore the function FðyÞ can be approximated by

FðyÞ ≈
XN
i¼0

ciTiðxÞ: ð19Þ

Thus, the solution is assumed to be a finite linear combi-
nation of the Chebyshev polynomials, that are well defined
in the interval ½−1; 1�. Due to the variable y being defined in
the interval [0, 1], x and y are related by x ¼ 2y − 1.
Then, the interval [0, 1] is discretized at the Chebyshev

collocation points yj by using the so-called Gauss-Lobatto
grid where

yj ¼
1

2

�
1 − cos

�
jπ
N

��
; j ¼ 0; 1;…; N: ð20Þ

After that, the differential equation is evaluated at each
collocation point. So, a system of N þ 1 algebraic equa-
tions is obtained, which corresponds to a generalized
eigenvalue problem and it can be solved numerically to
obtain the QNMs spectrum, by employing the built-in
Eigensystem[ ] procedure in Wolframs Mathematica [46].
In this work, we use a value of N into the interval [80–120]
with an average running time in the range [75s-245s] which
depends on the convergence of ω to the desired accuracy.
We use an accuracy of eight decimal places with the
exception of Table II, where we use an accuracy of five
decimal places. In order to guarantee the accuracy of the
results the code was executed for several increasing values
of N until no difference was observed in the value of the
QNF. Also, the complete parameter space associated to the
models is mM ≥ 0, 0 < ΛM2 ≤ 1=9, and κ ¼ �ðlþ 1Þ,
with l ¼ 0; 1; 2;…. Here, the regions of the parameter
space explored is 0 ≤ mM ≤ 0.20 due to the anomalous
decay rate behavior observed for small values of mM,
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FIG. 2. The behavior of V�ðrÞ as a function of r for massless Dirac field, withM ¼ 1, Λ ¼ 0.11, and κ ¼ 30. Left panel for the region
near to rH , center panel for the global behavior, and right panel for the region near to rΛ.

ARAGÓN, BÉCAR, GONZÁLEZ, and VÁSQUEZ PHYS. REV. D 103, 064006 (2021)

064006-4



0 < ΛM2 ≤ 0.11, and a discrete set of values of κ in the
interval [1, 200].
Now, in order to identify the different families of modes

that are present in the fermionic spectrum, we plot in Fig. 3
the behavior of −ImðωÞM versus the product of the
fermionic field mass and black hole mass mM. The red
points correspond to purely imaginary QNFs while that
blue points correspond to complex QNFs. We can note the
existence of two family of modes. One of them, corre-
sponds to the de Sitter modes (ωdS), in that they contin-
uously approach those of empty de Sitter space in the limit

that the black hole mass vanishes. In this case, the QNFs for
massless fermionic field are purely imaginary and they
acquire a real part when the fermionic field is massive. The
other family corresponds to the photon sphere (PS) modes
(ωPS), that are complex frequencies, and continuously
approach those of Schwarszchild black hole when
Λ → 0. In the following we will study both families
separately. Also, note that in Fig. 3 the fine structure
related to the coupling between the chirality and the mass of
the field appears spontaneously in the spectrum.

A. Photon sphere modes

1. Massless fermionic fields

Now, we plot in Fig. 4 the behavior of −ImðωPSÞM (left
panel) and ReðωPSÞM (right panel) as a function of ΛM2,
for massless fermionic fields and for the overtone numbers
nPS ¼ 0, 1, and 2. We can observe that when the cosmo-
logical constant increases the decay rate and the frequency
of the oscillation decreases. However, when the overtone
number increases the decay rate increases and the fre-
quency of the oscillations decreases.
On the other hand, it is known that the photon sphere

modes are given by

ωPS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9M2Λ

p

3
ffiffiffi
3

p
M

�
l −

�
nPS þ

1

2

�
i

�
; ð21Þ

which was obtained using the 1st-order WKB method [19].
Thus, in order to check the correctness and accuracy of the
numerical technique with respect to previous results
Eq. (21), we show in Table I the values obtained via the
pseudospectral Chebyshev method and using Eq. (21) for
high values of κ. Also, we show the relative error, which is
defined by

ϵReðωÞ ¼
jReðω1Þ − Reðω0Þj

Reðω0Þ
· 100%; ð22Þ

ϵImðωÞ ¼
jImðω1Þ − Imðω0Þj

Imðω0Þ
· 100%; ð23Þ

where ω1 corresponds to the result from Eq. (21) [19], and
ω0 denotes our result with the pseudospectral Chebyshev
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M
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M

FIG. 3. The behavior of −ImðωÞM as a function of mM, for
ψ1ðrÞ with κ ¼ 1. Top panel for ΛM2 ¼ 0.04, and bottom panel
for ΛM2 ¼ 0.11. The red points correspond to purely imaginary
QNFs while the blue points correspond to complex QNFs.
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FIG. 4. The behavior of −ImðωPSÞM (left) and ReðωPSÞM (right) as a function of ΛM2 for massless fermionic fields with κ ¼ 1, and
different values of the overtone number nPS ¼ 0, 1, and 2.
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method. We can observe that the error does not exceed
0.006% in the imaginary part, and 0.023% in the real part.
Also, as it was observed, the frequencies all have a negative
imaginary part, which means that the propagation of
massless fermionic field is stable in this background.

2. Massive fermionic fields

In this section, we will consider the propagation of
massive fermionic fields, as we will see, the two chiralities
of massive fermions lead to an additional fine structure in
the spectrum, as the one reported for Schwarzschild and
Kerr backgrounds by using the convergent Frobenius
method [43], and contrary to massless case, where the
fine structure is not present, thereby the coupling between
the chirality and the mass of the field leads to a fine
structure in the spectrum of the QNMs. Also, we will show
that the anomalous behavior of the decay rate of the
fermionic QNMs is present in this family, depending on
the values ofΛM2, as well as a critical fermionic field mass.

Fine structure.—As we mentioned, it is possible to observe
a spontaneous split of the QNFs by using the pseudospec-
tral Chevyshev method when m ≠ 0, which leads to a fine

structure in the fermionic spectrum and it is associated to
the two chiralities of the field. In spite of the specific
representation used in the Dirac equation does not allow us
to appreciate the positive and negative chirality easily. We
consider the modes with positive chirality as those with
higher oscillation frequency, which was shown forΛ ¼ 0 in
Ref. [43], and it allows us to distinguish between both
chiralities. In Fig. 5 we plot the behavior of −ImðωPSÞM
(left panel) and ReðωPSÞM (right panel) as a function of
ΛM2 for nPS ¼ 0 and mM ¼ 0, 0.05, the numerical values
are given in Table II. So, by considering as fine structure the
splitting generated in the QNFs, which occurs for mM ≠ 0,
in Fig. 5 we show the effect ofΛM2 on the fine structure for
mM ¼ 0.05, where we can observe that the splitting in the
real part (right panel), decreases when ΛM2 increases, and
it go to zero when the black hole becomes extremal. For the
imaginary part (left panel), we observe that there is a value
of ΛM2 where the curves intersect, i.e., the fine structure
vanishes. Before this point, the fine structure decreases
when ΛM increases and after it the behavior is inverted.
Then, the fine structure decreases and vanishes again when
the black hole becomes extremal. For mM ¼ 0 we do not
observe a fine structure (black curve).

TABLE I. Quasinormal frequencies ωPSM for massless fermionic fields with κ ¼ 50, 100, 125, 150, 175, and 200 in the background
of Schwarzschild–dS black holes, with ΛM2 ¼ 0.04.

nPS ¼ 0

κ Pseudospectral method WKB ϵReðωÞ ϵImðωÞ

50 7.69790323 − 0.07697990i 7.69800359 − 0.07698004i 0.00130373 0.00018187
100 15.39595700 − 0.07698000i 15.39600718 − 0.07698004i 0.00032593 0.00005196
125 19.24496883 − 0.07698001i 19.24500897 − 0.07698004i 0.00020857 0.00003897
150 23.09397731 − 0.07698002i 23.09401077 − 0.07698004i 0.00014489 0.00002598
175 26.94298389 − 0.07698002i 26.94301256 − 0.07698004i 0.00010641 0.00002598
200 30.79198927 − 0.07698003i 30.79201436 − 0.07698004i 0.00008148 0.00001299

nPS ¼ 1

κ Pseudospectral method WKB ϵReðωÞ ϵImðωÞ

50 7.69735582 − 0.23094427i 7.69800359 − 0.23094011i 0.00841549 0.00180130
100 15.39568329 − 0.23094115i 15.39600718 − 0.23094011i 0.00210377 0.00045033
125 19.24474986 − 0.23094077i 19.24500897 − 0.23094011i 0.00134639 0.00028579
150 23.09379484 − 0.23094057i 23.09401077 − 0.23094011i 0.00093501 0.00019919
175 26.94282748 − 0.23094045i 26.94301256 − 0.23094011i 0.00068694 0.00014722
200 30.79185241 − 0.23094037i 30.79201436 − 0.23094011i 0.00052595 0.00011258

nPS ¼ 2

κ Pseudospectral method WKB ϵReðωÞ ϵImðωÞ

50 7.69626106 − 0.38492238i 7.69800359 − 0.38490011i 0.02264125 0.00578558
100 15.39513589 − 0.38490573i 15.39600718 − 0.38490011i 0.00565952 0.00146010
125 19.24431194 − 0.38490373i 19.24500897 − 0.38490011i 0.00362201 0.00094049
150 23.09342991 − 0.38490265i 23.09401077 − 0.38490011i 0.00251526 0.00065991
175 26.94251468 − 0.38490199i 26.94301256 − 0.38490011i 0.00184793 0.00048844
200 30.79157871 − 0.38490157i 30.79201436 − 0.38490011i 0.00141484 0.00037932
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Now, in order to study the effect of mM on the fine
structure, we plot in Fig. 6 the behavior of the QNFs versus
mM for ΛM2 ¼ 0.01 and κ ¼ 1 (top panels), and κ ¼ 10
(bottom panels), for small values of mM. So, we can
observe that the fine structure, in the imaginary part,
decreases when the parameter κ increases, or in other
words, the fine structure is finer for higher values of κ.
However, it increases with mM, and the same behavior
occurs for the real part of the fine structure.

Anomalous decay rate.—As we mentioned, the anomalous
decay rate behavior occurs when the longest-lived modes
are the ones with higher angular number, while that the
existence of a critical scalar field mass indicates that
beyond this value the anomalous decay rate behavior is
inverted [26,29]. In order to visualize this behavior, in
Fig. 7 we plot −ImðωPSÞM as a function of mM, for
different values of the cosmological constant ΛM2 ¼ 0.01,
0.04, and 0.11 and for different values of the parameter
κ ¼ 5, 30, and 100 by using the pseudospectral Chevyshev

method. We can observe for small values of ΛM2 ¼ 0.01
(top panels) that the anomalous decay rate in the QNFs is
present, as well as, the existence of a critical mass, where
the behavior is inverted; however, for ΛM2 ¼ 0.04 (center
panels) and for near extremal black hole ΛM2 ¼ 0.11
(bottom panels), the pseudospectral Chevyshev method
predicts that there is not such anomalous behavior, and also
there is not a critical mass for the fermionic field, except for
the case ΛM2 ¼ 0.11 and positive chirality (right-bottom
panel) where we can observe an anomalous behavior and a
small critical mass. So, the existence of the anomalous
decay rate depends on the value of ΛM2, and the existence
of the critical mass depends on ΛM2 and the chirality, for
the cases considered here.
Now, we shall employ the Wentzel-Kramers-Brillouin

(WKB) approach in order to get some analytical insight on
the behavior of the QNFs in the eikonal limit κ → ∞. The
WKB approximation was initiated by Mashhoon [47] and
by Schutz and Iyer [48]. Then, Iyer and Will computed the
third order correction [49], and it was extended to the sixth
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FIG. 5. The behavior of −ImðωPSÞM (left panel), and ReðωPSÞM (right panel) obtained through the pseudospectral Chevyshev
method, as a function of ΛM2, for κ ¼ 1. Black dashed line formM ¼ 0, blue line formM ¼ 0.05 and positive chirality, and red line for
mM ¼ 0.05 and negative chirality.

TABLE II. Quasinormal frequencies ωPSM obtained through the pseudospectral Chevyshev method for fermionic fields with κ ¼ 1, in
the background of Schwarzschild–dS black holes.

nPS ¼ 0 mM ¼ 0.05

ΛM2 mM ¼ 0 Positive chirality Negative chirality

0.0025 0.18107 − 0.09580i 0.18992 − 0.09210i 0.17466 − 0.09712i
0.005 0.17916 − 0.09461i 0.18796 − 0.09103i 0.17280 − 0.09583i
0.01 0.17524 − 0.09219i 0.18395 − 0.08885i 0.16901 − 0.09326i
0.02 0.16706 − 0.08723i 0.17568 − 0.08452i 0.16078 − 0.08767i
0.03 0.15835 − 0.08206i 0.16661 − 0.08027i 0.15261 − 0.08145i
0.04 0.14898 − 0.07666i 0.15652 − 0.07573i 0.14431 − 0.07535i
0.05 0.13879 − 0.07096i 0.14538 − 0.07069i 0.13526 − 0.06940i
0.06 0.12756 − 0.06485i 0.13310 − 0.06501i 0.12504 − 0.06334i
0.07 0.11496 − 0.05816i 0.11942 − 0.05857i 0.11330 − 0.05686i
0.08 0.10048 − 0.05064i 0.10389 − 0.05111i 0.09952 − 0.04962i
0.09 0.08315 − 0.04177i 0.08554 − 0.04218i 0.08274 − 0.04108i
0.1 0.06058 − 0.03036i 0.06198 − 0.03062i 0.06059 − 0.03000i
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order [50], and up to the 13th order [51], see also Ref. [52].
This method has been used to determine the QNFs for
asymptotically flat and asymptotically de Sitter black holes.
This is due to that the WKB method can be used for
effective potentials which have the form of potential
barriers that approach to a constant value at the horizon
and spatial infinity [4]. The QNMs are determined by the
behavior of the effective potential near its maximum value
r�max. The Taylor series expansion of the potential around its
maximum is given by

Vðr�Þ ¼ Vðr�maxÞ þ
Xi¼∞

i¼2

VðiÞ

i!
ðr� − r�maxÞi; ð24Þ

where

VðiÞ ¼ di

dr�i
Vðr�Þjr�¼r�max

; ð25Þ

corresponds to the ith derivative of the potential with
respect to r� evaluated at the maximum of the potential
r�max. Using the WKB approximation up to 6th order the
QNFs are given by the following expression [53]:

ω2
PS ¼ Vðr�maxÞ − 2iU; ð26Þ

where

U ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vð2Þ=2

q
þ i
64

�
−
1

9

Vð3Þ2

Vð2Þ2 ð7þ 60N2Þ þ Vð4Þ

Vð2Þ ð1þ 4N2Þ
�

þ N

23=2288

�
5

24

Vð3Þ4

ð−Vð2ÞÞ9=2 ð77þ 188N2Þ þ 3

4

Vð3Þ2Vð4Þ

ð−Vð2ÞÞ7=2 ð51þ 100N2Þ

þ 1

8

Vð4Þ2

ð−Vð2ÞÞ5=2 ð67þ 68N2Þ þ Vð3ÞVð5Þ

ð−Vð2ÞÞ5=2 ð19þ 28N2Þ þ Vð6Þ

ð−Vð2ÞÞ3=2 ð5þ 4N2Þ
�
;

andN ¼ nPS þ 1=2, with nPS ¼ 0; 1; 2;…, is the overtone number. Wewill consider only the effective potential VþðrÞwith
the plus sign in Eq. (14) due to V− yields the same QNFs. Note that in this case the potential also depends on the
frequencies, so the evaluation of the QNFs is more difficult; however, our interest is to evaluate the QNFs for large values
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FIG. 6. The behavior of −ImðωPSÞM (left panels), and ReðωPSÞM (right panels) obtained through the pseudospectral Chevyshev
method, as a function of mM, for κ ¼ 1 (top panels), and κ ¼ 10 (bottom panels), with ΛM2 ¼ 0.01. Blue line for positive chirality and
red line for negative chirality.
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of κ, so we expand the frequencies as a power series in κ. In the previous section, we showed in Eq. (21) that in the eikonal
limit the leading order term is linear in l, so we consider the following expansion of the frequency in powers of κ

ωPS ¼ ω1κ þ ω0 þ ω−1κ
−1 þ ω−2κ

−2: ð27Þ

We find that for large values of κ, the maximum of the potential is approximately at

rmax ≈ 3M −
ffiffiffi
3

p

2
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p
κ−1 −

ð1 − 9ΛM2Þð1 − 9M2ðΛþ 3mω1ÞÞmM
3ω1

κ−2

þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p

48
ffiffiffi
3

p
ω2
1

ð3ð11 − 18ΛM2Þω2
1 − 108ðmMÞ2ω2

1ð1 − 36ΛM2Þ

þ 4mð1 − 9ΛM2Þð4
ffiffiffi
3

p
ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p
þ ω1ð1 − 36ΛM2ÞÞÞκ−3; ð28Þ

and
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FIG. 7. The behavior of −ImðωPSÞM obtained through the pseudospectral Chevyshev method as a function of mM with κ ¼ 5 (black
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Vðr�maxÞ ≈
ð1 − 9ΛM2Þ

27M2
κ2 −

ð1 − 9ΛM2Þð4mð1 − 9M2ðΛþ 3mω1ÞÞ − 3mω1Þ
324M2ω1

þ ð1 − 9ΛM2Þð6mð1 − 9ΛM2Þω0 þ
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p
ω2
1Þ

486M2ω2
1

κ−1; ð29Þ

and the second derivative of the effective potential evaluated at r�max yields

Vð2Þ
r�max

≈ −
2ð1 − 9ΛM2Þ2

729M4
κ2 þ ð1 − 9ΛM2Þ2ð4mð1þ 9ΛM2ð4 − 45ΛM2ÞÞ − 15ω1 þ 54ω1M2ðm2ð4 − 90ΛM2Þ þ ΛÞÞ

13122ω1M4
:

ð30Þ

The higher derivatives are given by

Vð3Þ
r�max

≈
4ð1 − 9ΛM2Þ3

6561M5
κ2 −

ð1 − 9ΛM2Þ5=2
729

ffiffiffi
3

p
M5

κ; ð31Þ

Vð4Þ
r�max

≈
16ð1 − 9ΛM2Þ3

19683M6
κ2 þ 20ð1 − 9ΛM2Þ7=2

19683
ffiffiffi
3

p
M6

κ; ð32Þ

Vð5Þ
r�max

≈ −
40ð1 − 9ΛM2Þ4

59049M7
κ2; ð33Þ

Vð6Þ
r�max

≈ ¼ −
16ð1 − 9ΛM2Þ4ð4þ 15ΛM2Þ

177147M8
κ2; ð34Þ

where the leading and subleading terms are important for

Vð3Þ
r�max

and Vð4Þ
r�max

, and only the leading terms of the expansion

are important for Vð5Þ
r�max

and Vð6Þ
r�max

in the limit considered.
Thus, using these results and nPS ¼ 0 we obtain U
evaluated at r�max

U ¼ ð1 − 9ΛM2Þ
�

1

54M2
κ − i

65 − 99ΛM2

5832M2

−
�
216mð1 − 9ΛM2Þð1þ 45ΛM2Þ þ 5832m2M2ð2 − 45ΛM2Þω1

209952M2ω1

þ ð169þ 216
ffiffiffi
3

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p
− 9ΛM2ð14þ 1395ΛM2ÞÞω1

209952M2ω1

�
κ−1

�
; ð35Þ

and then replacing these expansions in Eq. (26) and solving order by order for ωi we obtain the following QNFs for nPS ¼ 0

ωPSM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p ��
1

3
ffiffiffi
3

p κ −
11

ffiffiffi
3

p ð1 − 9ΛM2Þ þ 324mM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p
− 972

ffiffiffi
3

p ðmMÞ2
1944

κ−1
�
− i

�
1

6
ffiffiffi
3

p

þ
ffiffiffi
3

p ð29 − 1395ΛM2Þð1 − 9ΛM2Þ þ 9720mMð1 − 9ΛM2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p
− 29160

ffiffiffi
3

p ðmMÞ2ð1 − 9ΛM2Þ
69984

κ−2
��

:

ð36Þ

Notice that for m ¼ 0 we recover the result (21) for l ≫ 1. Now, in Fig. 8, we show the behavior of −ImðωPSÞM given by
Eq. (36) as a function ofmM, for different values of the cosmological constantΛM2 ¼ 0.01, 0.04, and 0.11 and for different
values of the parameter κ ¼ 5, 10, 20, and 30. We can observe that for small values of ΛM2 ¼ 0.01 the anomalous decay
rate of the QNFs of massive fermionic fields in Schwarzschild–de Sitter black holes backgrounds is present, in which the
longest-lived modes are the ones with higher angular number, for a fermionic field mass smaller than a critical value, while
that beyond this value the behavior is inverted (top left panel). Then, when we increase the value of ΛM2 to 0.04, it is
possible to observe (top right panel), the existence of two zones where the longest-lived modes are the ones with smaller
angular number, for small and large mass of the fermionic field, and also a central zone where the anomalous behavior in the
decay rate of the QNFs is present. Also, it is possible to observe the existence of two values of critical mass, where the
behavior of the decay rate of the QNF is inverted. Finally, by increasing the value of ΛM2 to 0.11, we can observe (bottom
panel) that the anomalous behavior is not present and the longest-lived modes are the ones with smaller angular number for
all the range of fermionic field mass.
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The critical mass mc corresponds to the value of the mass for which the term proportional to κ−2 of ImðωPSÞM vanishes,
thereby

mcM ≈
90ð1 − 9ΛM2Þ � ffiffiffiffiffi

30
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð299 − 3825ΛM2Þð1 − 9ΛM2Þ
p

540
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9ΛM2

p : ð37Þ

The critical mass depends on the values of ΛM2. In some
cases there is no critical mass, one critical mass or two
critical masses, see Fig. 8. In the case of one critical mass,
for m > mc, ωPS increases with κ; whereas, for m < mc,
−ImðωPSÞ decreases when κ increases. Also, for Λ → 0, we
obtain the critical mass mcM ≈ 0.1975. On the other hand,
when ΛM2 increases the critical mass decreases and for
values of ΛM2 bigger than the critical value ΛcM2 ¼
299=3825 ≈ 0.0782 there is no critical mass.

It is worthmentioning that by using theWKBmethod it is
not possible to observe the fine structure in the spectrum,
contrary to the pseudospectral Chevyshev method, where
the fine structure appears spontaneously. Moreover, In
Fig. 9, we show the behavior of −ImðωÞM by using
Eq. (36) (black line), and by using the pseudospectral
Chevyshev method (purple points), as a function of mM,
forΛM2 ¼ 0.01, and κ ¼ 20, we can observe the difference
in the −ImðωÞM for both methods. We attribute the
discrepancy in the value of the critical mass in bothmethods,
WKB and numerical, to the assertion that the WKB
approach is not very accurate for the case of massive
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fermionic field, this is because the WKB method strictly
cannot be applied to the massive case, due to the effective
potential allows another local minimum, so that the problem
has now three turning points, as was proved in Ref. [43]. So,
the WKB approach fails to give the accurate value of the
critical mass.

B. de Sitter modes

The de Sitter family consists of the modes that con-
tinuously approach to the QNMs of pure de Sitter space-
time when M → 0. The frequencies of QNMs in pure de
Sitter spacetime are given by [45]

ω ¼ −m − i

ffiffiffiffi
Λ
3

r �
2ndS þ κþ þ 3

2

�
;

or ω ¼ m − i

ffiffiffiffi
Λ
3

r �
2ndS þ κþ þ 1

2

�
; ð38Þ

and

ω ¼ −m − i

ffiffiffiffi
Λ
3

r �
2ndS − κ− þ 1

2

�
;

or ω ¼ m − i

ffiffiffiffi
Λ
3

r �
2ndS − κ− −

1

2

�
; ð39Þ

where κþ and κ− are positive and negative integers,
respectively, and ndS ¼ 0; 1; 2;….
Now, in order to visualize the behavior of the dS modes

obtained through the pseudospectral Chevyshev method we
plot −ImðωdSÞM as a function of ΛM2 in Fig. 10 for
massless fermionic fields with κ ¼ 1, and different values
of the overtone number ndS ¼ 0, 1, and 2. First, we can
observe that for small values of ΛM2, the dS modes tend to
the pure de Sitter modes with κ ¼ κþ ¼ −κ− ¼ 1. Also, the
decay rate increases when ΛM2 or the overtone number
increases. However, the dS modes are present in a range of
value of κ and ndS, see Table III.
Now, in order to observe the behavior of the dS modes we

plot in Fig. 11 the QNFs as a function ofmM for κ ¼ 1 (blue
points), and κ ¼ 10 (red points), with ΛM2 ¼ 0.01, and
ndS ¼ 0. The black points indicate a purely imaginary QNFs,
that occurs formM ¼ 0, then this family acquires a real part.
We can observe that the decay rate increaseswhen the angular
number increases, and exhibits a smooth behavior whenmM
increases (left panel). On the other hand, the frequency of the
oscillations increases when mM increases and when the
angular number decreases (right panel).

IV. FINAL REMARKS

We considered the propagation of fermionic fields in the
background of Schwarzschild–de Sitter black holes. Then,
we showed the existence of two families of QNMs, one of
them corresponds to the photon sphere modes and the other
one to the dS modes. Mainly, we showed that it is possible
to observe a fine structure in the spectrum, and also an
anomalous behavior for the photon sphere modes, and it is
not possible to observe the same for the dS modes. Also,
both families present frequencies with a negative imaginary
part, which means that the propagation of fermionic field is
stable in this background for the values of the parameters
that we considered; however, due to the existence of
negative gaps in the potentials the stability is not evident
and it could be studied via the time-domain integration of
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FIG. 11. The behavior of −ImðωdSÞM (left panel), and ReðωdSÞM (right panel) obtained through the pseudospectral Chevyshev
method as a function of mM, for κ ¼ 1 (blue points), and κ ¼ 10 (red points), with ΛM2 ¼ 0.01.

TABLE III. Quasinormal frequencies ωdSM for massless fer-
mionic fields obtained through the pseudospectral Chevyshev
method for different values of κ in the background of Schwarzs-
child–dS black holes with ΛM2 ¼ 0.04.

κ ndS ¼ 0 ndS ¼ 1 ndS ¼ 2

1 −0.175313983i −0.300886899i −0.429950083i
2 −0.289834484i −0.410535743i −0.534933226i
3 −0.404895443i −0.523977837i −0.645964460i
10 −1.212651098i −1.329255647i −1.44693078i
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the scalar wave equation as was performed for massless
Dirac field on Schwarzschild–de Sitter black holes [39].
Our analysis was performed by using the pseudospectral

Chebyshev method, and the WKB approach. However,
while the results for massless fermionic field are similar
with a small percentage of error, for massive fermionic field,
the result are different and show different behaviors. The
difference is due to the assertion that the WKB approach is
not very accurate for the case of massive fermionic field, this
is because the WKB method strictly cannot be applied to the
massive case, due to the effective potential allows another
local minimum, so that the problem has now three turning
points, as was proved in Ref. [43].
Our conclusions are based on pseudospectral Chebyshev

method, where the fine structure related to the coupling
between the chirality and the mass of the field appears
spontaneously in the spectrum, contrary to the WKB where
we cannot observe the fine structure. We showed that the
fine structure is proper of the photon sphere modes, and
the separation in the −ImðωPSÞM and ReðωPSÞM between
the modes with positive and negative chirality decreases
when the parameter κ increases, it increases for higher
overtone numbers, and it is more finer whenΛM2 increases.
Also, the decay rate of QNMs of fermionic perturbations

show an anomalous behavior and the presence of a critical

fermionic field mass for small values of ΛM2, for inter-
mediate values we showed that there is not anomalous
behavior either critical fermionic field mass. However, for
higher values, i.e., when the black hole becomes near
extremal, we found an anomalous decay rate for the modes
associated with a positive chirality and a small fermionic
field critical mass. While that for the modes associated with
a negative chirality there is not an anomalous behavior
either fermionic field critical mass. Also, we showed that
there is a value of ΛM2 where the imaginary parts of the
modes with positive and negative chirality coincide, before
this value the modes with positive chirality are longer lived
than the modes with negative chirality, and for higher
values of ΛM2 the behavior is inverted, the modes with
negative chirality become longer lived.
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