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The quintessence field coupled to the cosmic neutrino background (CNB) has been widely discussed as
an alternative mechanism to address the coincidence problem. As it is well known, it is possible to extend
such models to obtain quintessential inflation, that is, to incorporate inflationary stage as well. Taking an
alternative route, one can start from the well-established inflationary models and obtain successful
quintessence models at the expense of coupling with the CNB. To follow this route, we use a slightly
reformulated model addressed in [H. Mohseni Sadjadi and V. Anari, Phys Rev. D 95, 123521 (2017)]. This
particular model assumesZ2 symmetry for both scalar field potential and coupling term, which then breaks
down in course of the cosmological evolution. For our discussion, however, the Z2 symmetry of the
potential is not mandatory for the model to work. The conventional mechanism of particle production by
the oscillating inflaton field (and their subsequent thermalization) remains operative. It is plain to see that
the proposed construction can be easily applied for many successful models of inflation to incorporate dark
energy at the expense of coupling with the CNB. We address the issue of neutrino nuggets from the
quantum field theory point of view. Namely, these nuggets are considered as bound states caused basically
by the Yukawa force, which arises in the framework of linear perturbation theory due to exchange of virtual
quanta of quintessence field between the neutrinos.
DOI: 10.1103/PhysRevD.103.063540

I. PREFACE

One of the principle motivations for quintessence models
of dark energy, introduced in the late 1980s [1–4], is to
address the cosmic coincidence problem [5,6]. This prob-
lem has two aspects indeed. One of them is to explain the
smallness of the present dark energy density and the other
one is to figure out what caused the dark energy to activate
in the present epoch. A particular class of quintessence
models, referred to as trackers, avoid the problem of fine
tuning the initial conditions of the scalar field in order to
obtain the desired energy density and equation of state at
the present time. It is achieved at the expense of intro-
duction of a small scale in the potential—the origin of
which may indeed be explained [7,8]. Another class of
models, which we are going to discuss throughout of this
paper, explain the coincidence problem by considering a
coupling of the quintessence with the cosmic neutrino
background (CNB) [9–13]. Roughly speaking, in such
models, the idea is to use neutrino mass scale for explaining
the smallness of the present dark energy density and the
present time activation of quintessence is caused by the
backreaction of CNB after neutrinos become nonrelativ-
istic. The models of this kind may be used conveniently to

unify quintessence with inflation as we have more freedom
in choosing the potential. However, in contrast to the
quintessential inflation [14–16], which aims at the con-
struction of successful inflationary scenario with the
“existing” quintessence model, we favor the idea of infla-
tionary quintessence, that is, to construct a successful
quintessence model with the use of “good” inflationary
models. To be more precise, under the good inflationary
models we understand those having a plateau, which
provides a slow-roll regime, and a minimum at ϕ ¼ 0
around which the field starts to oscillate after it exits the
slow-roll regime [17,18]. Such models may be considered
as main targets for the near-future observational missions.
The point is that the upcoming CMB experiments may
measure the primordial gravitational wave power spectrum
and its amplitude in terms of the tensor to scalar ratio with
the precision 5 × 10−4ð5σÞ and also aim to improve
constraints on the primordial curvature perturbation power
spectrum and its tilt [19].
The basic idea for constructing such inflationary quintes-

sence models is to use the cosmological symmetry breaking
mechanism triggered by the coupling of scalar field with
the CNB [20]. The schematic picture looks as follows.
Because of this coupling, the equations of motion contain
the spur of CNB stress-energy tensor which kicks up the
scalar field trapped in the minimum ϕ ¼ 0 after the end of*maziashvili@iliauni.edu.ge
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preheating and enforces it to roll towards one of the
degenerate minima leading thereby to the spontaneous
breakdown of Z2 symmetry. As it is shown in Sec. V, it
happens shortly after the preheating—around the time of
thermalization. After the symmetry breaking, the scalar
field evolves adiabatically—tracking roughly the minimum
of the effective potential. As a result, the scalar field acquires
a nonzero energy density but it is set by the neutrino mass
scale and is therefore too small to have any effect at earlier
times [see Eq. (19)]. However, at later times, when CNB gets
nonrelativistic, the compound of scalar field and CNB starts
to act as a dark energy because of adiabatic nature of the
scalar field evolution. It does not last forever, since in a while
the CNB dilutes enough and its backreaction providing the
slow-roll regime for the scalar field becomesnegligible.After
exiting the slow-roll regime, the scalar field, which was
monotonically approaching the valueϕ ¼ 0, tends “quickly”
towards this point leading to the restoration ofZ2 symmetry.
One of the most subtle issues from the conceptual point of

view is the preheating. Indeed, it may look less natural in the
sense that the preheating is usually described by using the
quantum theory of a free field with a time-dependent
effective mass including the coupling of inflaton with the
matter field [21,22]. This type of preheating can work for
fermions as well [23] but if we are applying this formalism
immediately to the neutrinos, we have to distinguish between
the background-field time dependence and the real depend-
ence of mass on time. For instance, the coupling of inflaton
with the neutrinos responsible for mass variation will not
cause particle production at all. On the other hand, the very
fact that in some cases the coupling contributes to the real
masses while in other cases it just provides a time-dependent
background may sound quite unnatural. Emphasizing again,
the problem is of conceptual nature rather than technical. It is
obvious that the instant preheating mechanism [24] also
suffers from this conceptual problem.
In addition, in the framework of the present model, there

are scalar field fluctuations that couple to the CNB resulting
in the attractive force between the CNB neutrinos. It can be
viewed as a Yukawa force mediated by the scalar quanta as
long as we restrict ourselves to the linear perturbations.
Under certain circumstances, this approximation may work
quite well for describing the formation and subsequent
growth of the neutrino nuggets.
Throughout this paper we are using natural units: c ¼

ℏ ¼ 1, in which G−1=2
N ¼ MP ≈ 1.2 × 1028 eV, H0 ¼

74 km=sec=Mpc ≈ 1.6 × 10−33 eV. Also note that all
quantities with subscript or superscript zero refer to the
present values.

II. DESCRIPTION OF THE MODEL

We assume a spatially flat FLRW universe with metric

ds2 ¼ dt2 − a2ðtÞdx2;

and consider a minimal model of ϕ-ν coupling given by the
action functional

Z
d4x

ffiffiffiffiffiffi
−g

p �
gαβ∂αϕ∂βϕ

2
−UðϕÞ −M2

PR
16π

þ i
2
½ψ̄νγ

αðxÞDαψν − ðDαψ̄νÞγαðxÞψν� −mðϕÞψ̄νψν

�
:

As a next step, for building up the model, the field ψν is
quantized and taken at a finite temperature. That is, ψν

describes a Fermi gas at a finite temperature and is
understood to stand for the CNB [9–12]. Then the
equations of motion for the ϕ-ν model look as follows:

_ρν þ 3Hðρν þ pνÞ ¼
d lnmν

dϕ
ðρν − 3pνÞ _ϕ; ð1Þ

ϕ̈þ 3H _ϕþ U0ðϕÞ ¼ −
d lnmν

dϕ
ðρν − 3pνÞ; ð2Þ

H2 ¼ 8π

3M2
P
ðρν þ ρϕ þ ρr þ ρmÞ: ð3Þ

For the sake of generality, in Eq. (3) we have included the
matter and radiation components as well. A remarkable
characteristic feature of this system is that at early times,
that is, at high temperatures (when neutrinos are relativistic)
pν ≈ ρν=3 and the right-hand sides in Eqs. (1) and (2)
almost vanish. That means that ϕ and ψ fields are nearly
decoupled and the dynamics of the scalar field is basically
driven by the potential UðϕÞ. However, in the nonrelativ-
istic regime pν ≪ ρν and the equations of motion take the
form

_ρν þ 3Hρν ≈
d lnmν

dϕ
ρν _ϕ;

ϕ̈þ 3H _ϕþU0ðϕÞ ≈ −
d lnmν

dϕ
ρν;

or, in terms of the CNB number density1 nν ≈ ρν=mνðϕÞ,

_nν þ 3Hnν ≈ 0;

ϕ̈þ 3H _ϕþ U0ðϕÞ ≈ −m0
νðϕÞnν: ð4Þ

Equation (4) describes the motion of scalar field in the
modified potential

Ueff ¼ UðϕÞ þmνðϕÞnνðtÞ: ð5Þ

Assume that the effective potential has a local minimum,
ϕþ, in which the scalar field is trapped. The presence of
nνðtÞ in the effective potential indicates that the minimum

1For CNB is in the nonrelativistic regime, ρν ≈ nνmν.
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itself is time dependent. For the model to work, the effective
potential should provide the slow roll,

jϕ̈þj ≪ Hj _ϕþj; _ϕ2
þ ≪ UeffðϕþÞ:

The first model we want to consider is obtained by the
reformulation of the one addressed in [20]. It consists of the
Z2 symmetric potential and ϕ-ν coupling of the form

UðϕÞ ¼ Vð1 − e−αϕ
2=M2

PÞ; mνðϕÞ ¼ μνe−βϕ
2=M2

P : ð6Þ

This model is clearly motivated by the paper [25]. In [20] it
is assumed that V is of the order of the present dark energy
density. We find this assumption undesirable because if we
take the existence of the present cosmological constant for
granted, then there is nothing to explain as its existence will
not spoil anything in the past [26] and therefore one may
not worry about the hiding of that small cosmological
constant in the past [20]. As to the scenario, it looks as
follows. It is assumed that ϕ ¼ 0 before neutrinos enter a
nonrelativistic regime and after that ϕ is driven by the
effective potential (5). The effective potential turns the
point ϕ ¼ 0 into the local maximum, as it is depicted in
Fig. 1, and field starts moving either left or right providing
the present dark energy V.
After a while, when nνðtÞ dilutes enough, the potential

approaches its initial form and the field, which is rolling
back, will reach the point ϕ ¼ 0 restoring thereby the initial
Z2 symmetry. In itself, the mechanism used in this scenario
for hiding the dark energy both in the past and in the future
looks quite attractive.
In order to unify dark energy and inflation, we refor-

mulate the above model by assuming large V in Eq. (6).
This way one obtains a typical example of the T-model
[27]. Thus, we consider the effective potential

UeffðϕÞ ¼ Vð1 − e−αϕ
2=M2

PÞ þ nνμνe−βϕ
2=M2

P ;

where, the parameter V (which is understood to be large)
together with the parameter α is “determined” from the
requirements of inflation, while the parameter β is set from
the requirements of present dark energy.

III. α, V PARAMETERS

The potential UðϕÞ has an infinitely long plateau for
large values of jϕj starting roughly at ϕ2 ≃M2

P=α. The
potentials with plateau provide perfect conditions for the
slow-roll inflation as the field rolling down will arrive at
the attractor trajectory from a very wide range of initial
conditions and are favorable by the present cosmological
data. In this section we estimate the inflationary observ-
ables for the model discussed above. The slow-roll param-
eters are defined as

ϵ ¼ M2
P

16π

�
U0

U

�
2

; η ¼ M2
P

8π

U00

U
; ξ ¼ M4

P

ð8πÞ2
U0U000

U2
:

The end of inflation occurs for ϕf at which ϵðϕfÞ ≃ 1. From
this condition one finds

α ¼ 1 ⇒ ϕf ≃ 0.27×MP; α ¼ 4 ⇒ ϕf ≃ 0.25×MP

α ¼ 9 ⇒ ϕf ≃ 0.22×MP; α ¼ 16⇒ ϕf ≃ 0.2×MP:

The number of e-foldings is

N ¼ −
8π

M2
P

Z
ϕf

ϕi

dϕ
U
U0 ¼ −4π

Z
ϕf

ϕi

dϕ

�
eαϕ

2=M2
P

αϕ
−

1

αϕ

�

¼ 4π

α

�
Eiðαϕ2

i =M
2
PÞ

2
−
Eiðαϕ2

f=M
2
PÞ

2
þ ln

�
ϕi

ϕf

��
;

which after demanding N ¼ 60 determines the initial
values of the field as

α¼ 1⇒ ϕi ≃ 1.35×MP; α¼ 4⇒ ϕi ≃ 1.1×MP

α¼ 9⇒ ϕi ≃ 0.81×MP; α¼ 16⇒ ϕi ≃ 0.65×MP:

The slow-roll parameters can be used to express the spectral
index, its derivative and tensor-to-scalar ratio as

ns ¼ 1 − 6ϵþ 2η;
dns
d ln k

¼ 16ϵη − 24ϵ2 − 2ξ; r ¼ 16ϵ:

To fit the present observational data [28]

ns ¼ 0.9649� 0.0042; r < 0.06;

dns
d ln k

¼ −0.0045� 0.0067;

the parameter α should satisfy α ≳ 6.4.
As to the energy scale of inflation, V, it is commonly

expected to lie approximately between the TeV and Planck
scales. It is related to the amplitude of tensor modes

V1=4 ≃ 3.3 × 1016r1=4 GeV;

indicating that the detectable gravitational waves require
V1=4 ≃ 1016 GeV. That is the energy scale considered in

FIG. 1. The potentials for the model discussed in [20].
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[27] but, in general, such a big value is not typical for the
existing models of inflation. In what follows we admit the
whole “possible” range of parameter V but for the dis-
cussion of nuggets it is favorable to take this parameter near
the lower bound (see Sec. VI).

IV. ONSET OF DARK ENERGY

In order to obtain dark energy, the effective potential (5)
should provide the slow-roll regime. When α > β, the
extremum ϕ ¼ 0 gives the only minimum. Putting α < β
and at the same time demanding

αV
βnνμν

< 1;

we will have two minimum points

ϕ�
MP

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðβ − αÞ ln
βnνμν
αV

s
; ð7Þ

and one maximum at ϕ ¼ 0 as it is shown in Fig. 2. In this
case the symmetry breaking takes place in accordance
with the scenarios described in [20,25], however, as it is
discussed in the following section, it occurs shortly after the
preheating. Around this time, the effective potential devel-
ops the minimums for which Uðϕ�Þ≲ Uð0Þ and field
moves to one of them and then follows the dynamics of this
minimum. For definiteness let us take this minimum to be
ϕþ. Returning to the nonrelativistic regime of CNB, it is
plain to see that the neutrino masses increase in such a way

mνðϕþÞ ¼ μνe−βϕ
2
þ=M

2
P ≈

αV
βnν

;

that the neutrino energy density

ρν ¼ nνmν ≈
αV
β

¼ const: ð8Þ

This kind of behavior of CNB in the nonrelativistic regime
lasts until the symmetry restoration takes place, which in
view of Eq. (7) occurs when nν drops down to

nν ¼
αV
βμν

: ð9Þ

After the symmetry restoration, the mass of neutrino μν
becomes time independent. As it is discussed below,
μν ≃ 8000 ×m0

ν, where m0
ν stands for the present value

of the mass.
Now let us see if the model provides a slow-roll regime at

present. For this purpose, we shall verify the condition

_ϕ2
þ
2

≪ UðϕþÞ;

which is tantamount to

M2
P9H

2

ðβ − αÞ8 ln μν
mνðϕþÞ

≪ V

�
1 − exp

�
−

α

β − α
ln

μν
mνðϕþÞ

��
:

ð10Þ

In view of Eq. (8), we need to demand β ≫ α in order to
ensure ρ0ν < ρc, where ρc ≡ 3H2

0M
2
P=8π stands for the

critical energy density. Recalling that the parameters V
and α are set from having a successful inflationary model,

α ∼ 1; TeV≲ V1=4 ≲ 1013 TeV;

one can make the following order of magnitude estimate:

β ∼ α
V

H2
0M

2
P
∼ 10122

V
M4

P
⇒ β ≳ 1058:

In view of this, Eq. (10) simplifies to

M2
PH

2

V
≪ α ln2ðμν=mνðϕþÞÞ; ð11Þ

and is satisfied with an extremely high accuracy at present
if we take lnðμν=m0

νðϕþÞÞ ¼ 9, which follows from the
requirement that the equation-of-state-parameter ¼ −0.9.
Namely, under assumption of slow roll, the dark energy
density is given by [10,29]

ρdark ¼ UðϕþÞ þmνðϕþÞnν ≈
αV
β

�
ln

μν
mν

þ 1

�
;

and correspondingly

ω0 ¼ p0
dark

ρ0dark
≈ −

UðϕþÞ
UðϕþÞ þ ρν

¼ −
ln μν=m0

ν

ln μν=m0
ν þ 1

¼ −0.9

results in lnðμν=m0
νðϕþÞÞ ¼ 9.

Next, we have to tune the parameters α, β, V in order to
obtain ρ0dark ¼ 0.7ρc. That is, we must demandFIG. 2. The symmetry breaking effective potential.
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10αV
β

¼ 0.7 × 3M2
PH

2
0

8π
:

A crude estimate of the duration of present accelerated
expansion maybe made by assuming that the expansion has
an exponential character. Then, from Eqs. (8) and (9) one
obtains

e−3H0ðt−t0Þ ≃ e−9;⇒ t − t0 ∼ 3H−1
0 :

It is also important to clarify the question—when does
the accelerated expansion start? For this purpose, we have
to verify the condition

3pϕ < −ρϕ − 2ρr − ρm − ρν;

which follows from

ä
a
¼ _H þH2 ¼ −

4π

3M2
P
ðρϕ þ 3pϕ þ 2ρr þ ρm þ ρνÞ:

That is, we have to check

αV
β

�
1 − 2 ln

μνð1þ zÞ3
m0

ν

�
< −2ρ0rð1þ zÞ4 − ρ0mð1þ zÞ3:

Since we know that αV=β ¼ 0.07ρc, lnðμν=m0
νÞ ¼ 9,

Ωr¼5.38×10−5, Ωm¼0.31, this relation can be put in
the form

− 0.07½17þ 6 lnð1þ zÞ� < −2 × 5.38 × 10−5ð1þ zÞ4
− 0.31ð1þ zÞ3 ⇒ z≲ 0.65:

In the next section we go back to the early Universe to
describe the evolution of ϕ-ν mixture at early times.

V. EARLY TIMES

To elucidate the model further, it is expedient to proceed
the discussion in terms of the CNB temperature by using
the phase space distribution function for the free-streaming
neutrinos [10]

ρν ¼
g
a3

Z
d3k
ð2πÞ3

ενðkÞ
ek=aTν þ 1

;

pν ¼
g
3a5

Z
d3k
ð2πÞ3

k2

ενðkÞðek=aTν þ 1Þ ;

ενðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a2
þm2

ν

s
;

where g counts all effectively contributing neutrino degrees
of freedom. If we are restricting ourselves to the one species
of neutrino, then g ¼ 4. Evaluating the time derivative _ρν,
one obtains

_ρν ¼ −
3g _a
a4

Z
d3k
ð2πÞ3

ενðkÞ
ek=aTν þ 1

þ g
a3

Z
d3k
ð2πÞ3

_ενðkÞ
ek=aTν þ 1

−
g
a3

Z
d3k
ð2πÞ3

ενðkÞek=aTν

ðek=aTν þ 1Þ2
d
dt

k
aTν

;

where the equation

d
dt

1

aTν
¼ 0 ⇒ aTν ¼ const;

determines the temperature as a function of time and the
remaining terms, after substituting

_ενðkÞ ¼
−a−3 _ak2 þmνm0

ν
_ϕ

ενðkÞ
;

result in Eq. (1)

_ρν þ 3Hðρν þ pνÞ ¼
d lnmν

dϕ
_ϕðρν − 3pνÞ

¼ gmνm0
ν
_ϕ

a3

Z
d3k
ð2πÞ3

1

ενðkÞðek=aTν þ 1Þ :

Thus, one finds that

ρν − 3pν ¼
gT4

ν

2π2
m2

ν

T2
ν

Z
∞

0

dξ
ξ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þm2
ν=T2

ν

p
ðeξ þ 1Þ

: ð12Þ

In the limit mν=Tν ≫ 1, the expression (12) simplifies to

ρν − 3pν ≃
mνgT3

ν

2π2

Z
∞

0

dξ
ξ2

eξ þ 1
¼ 3ζð3ÞgmνT3

ν

4π2
;

while in the case mν=Tν ≪ 1 it can be approximated by

ρν − 3pν ≃
gT4

ν

2π2
m2

ν

T2
ν

Z
∞

0

dξ
ξ

eξ þ 1
¼ gm2

νT2
ν

24
: ð13Þ

It is worth paying attention that the phase-space distribution
function for neutrinos that we have used above is valid after
the neutrinos are decoupled from the rest of the Universe.
Roughly, the decoupling temperature is 1 MeV—much
bigger than mν ≤ μν ≃ 8 KeV. Above the decoupling tem-
perature one has to use the equilibrium distribution function
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ρν ¼
g
a3

Z
d3k
ð2πÞ3

ενðkÞ
eενðkÞ=Tν þ 1

;

pν ¼
g
3a5

Z
d3k
ð2πÞ3

k2

ενðkÞðeενðkÞ=Tν þ 1Þ ;

ενðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a2
þm2

ν

s
;

which results in

ρν − 3pν ¼
gT4

ν

2π2
m2

ν

T2
ν

Z
∞

mν=Tν

dξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −m2

ν=T2
ν

p
eξ þ 1

: ð14Þ

One sees from Eq. (14) that in the ultrarelativistic limit we
arrive again at Eq. (13). We shall first consider CNB below
the decoupling temperature—that is the free-streaming
regime. In this case the temperature dependent effective
potential can be written as UðϕÞ þ ρνðϕ; TνÞ,

Ueffðϕ; TνÞ ¼ UðϕÞ þ gT4
ν

2π2

Z
∞

0

dξ
ξ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þm2

ν=T2
ν

p
eξ þ 1

¼ Vð1 − e−αϕ
2=M2

PÞ þ gT4
ν

2π2

Z
∞

0

dξ
ξ2

eξ þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ e−2βϕ

2=M2
P

ðTν=μνÞ2

s
: ð15Þ

For our discussion we need the point ϕ ¼ 0 to be a
maximum for the present value of temperature Tν ≪ μν.
For this reason, let us evaluate the second derivative of (15)
at ϕ ¼ 0

U00
effðϕ ¼ 0; TνÞ ¼

2αV
M2

P
−
βgðμνTνÞ2
π2M2

P

×
Z

∞

0

dξ
ξ2

ðeξ þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ ðμνTν

Þ2
q ;

one finds that ϕ ¼ 0 corresponds to maximum if

2απ2V
βgðμνTνÞ2

<
Z

∞

0

dξ
ξ2

ðeξ þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ ðμνTν

Þ2
q : ð16Þ

Let us note that if ϕ ¼ 0 represents a maximum for the
present value of temperature, then it automatically implies
that this point is maximum for higher temperatures as well.
Namely, the integral in Eq. (16) increases monotonically to
the value π2=12ð≈0.82Þ as the temperature goes to infinity
while the left-hand side of this inequality becomes decreas-
ing as the temperature increases.
Let us look at the ultrarelativistic regime, which, in view

of Eqs. (13) and (15) enables one to put the effective
potential in a simple form

Ueff ≈ Vð1 − e−αϕ
2=M2

PÞ þ 7π2gT4
ν

240

þ gðμνTνÞ2e−2βϕ2=M2
P

48
: ð17Þ

The minimum points in the ultrarelativistic regime are
defined by

ϕ�
MP

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2β − α
ln
βgðμνTνÞ2
48αV

s
; ð18Þ

while they look as [see Eq. (7)]

ϕ�
MP

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β − α
ln
3ζð3ÞβgT3

ν

4π2αV

s
;

in the nonrelativistic regime. From Eq. (18) one obtains that
the neutrino mass in the early Universe is much smaller
than the present value

mνðϕþÞ ¼
ffiffiffiffiffiffiffiffiffiffi
48ρ0ν
g

s
1

T
:

Apart from this, the energy density of the scalar field

_ϕ2
þ
2

þ UðϕþÞ ≈
M2

PH
2

2ð2β − αÞ ln gðμνTνÞ2
48ρ0ν

þ ρ0ν
2
ln
gðμνTνÞ2
48ρ0ν

ð19Þ

is now negligibly small as compared to the neutrino energy
density

ρν ≈
7π2gT4

ν

240
:

This conclusion is almost obvious by noting that
M2

PH
2 ≃ g�ðTÞT4, where g�ðTÞ counts relativistic degrees

of freedom at a given temperature and is slightly bigger
than 100 above the temperature 300 GeV in the framework
of standard model of particle physics. One more point
worth paying attention is that the energy density (19) is
close to ρ0ν even if the temperature is taken as high as 1 TeV.
Recall that the kinetic term is suppressed by the huge
parameter β, which is at least of the order of 1058. One will
easily find that the kinetic term at earlier times is of the
order of the potential one. What happens at later times is
that the kinetic term decreases as H gets smaller and the
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compound of scalar field and the CNB start to act as a dark
energy after CNB becomes nonrelativistic.
Above the decoupling temperature one has to use the

equilibrium distribution, which for the effective potential
gives UðϕÞ − pνðϕ; TνÞ. One can easily derive it by noting
that in this case [see Eq. (14)]

m0
ν

mν
ðρν − 3pνÞ

¼ g
a3

d
dϕ

Z
d3k
ð2πÞ3 ðενðkÞ − Tν ln ½1þ eενðkÞ=Tν �Þ;

which after using an integration by parts gives

4π

Z
∞

0

dkk2

ð2πÞ3 ðενðkÞ − Tν ln ½1þ eενðkÞ=Tν �Þ

¼ −
4π

3

Z
∞

0

dkk3

ð2πÞ3
d
dk

ðενðkÞ − Tν ln ½1þ eενðkÞ=Tν �Þ

¼ −
1

3

Z
d3k
ð2πÞ3

k2

ενðkÞð1þ eενðkÞ=TνÞ :

Thus, one finds

m0
ν

mν
ðρν − 3pνÞ ¼ −

dpνðϕ; TνÞ
dϕ

:

Expanding pνðϕ; TνÞ in a power series in m2
ν=T2

ν,

pνðϕ; TνÞ ¼
gT4

ν

3

�
7π2

240
−

m2
ν

16T2
ν
þO

�
m4

ν

T4
ν

��
;

and comparing it with Eq. (17), one infers that the
minima of Ueff are again given by Eq. (18). Therefore,
the consequent conclusions hold above the decoupling
temperature as well.
The thermal equilibrium stage is preceded by the particle

production in the postinflation epoch. In the present model
the conventional preheating mechanism [21,22] can operate
successfully for creating the cosmic fluid out of thermal
equilibrium which then undergoes the thermalization.
Instant preheating, which is inevitable for the runaway
type potentials of quintessential inflation having no oscil-
lation regime [14–16], is not required in the present case.
There is, however, a subtle point concerning the natural-
ness. The preheating is usually achieved by introducing a
coupling of matter field with the inflaton that results in a
time-dependent mass term. Loosely speaking, in certain
regions of the parameter space, the solution of the matter
field in this time-dependent background grows rapidly
corresponding to what is called parametric resonance.
One will find that the particle production within a broad
resonance regime is big enough draining rapidly the energy
from oscillating inflaton field. However, the coupling of ϕ

with ψν in the present model does not result in the neutrino
production as it provides a real mass variation of neutrinos.
It maybe somewhat unnatural that neutrinos represent
exception to the general rule. This problem of naturalness
persists for the instant preheating as well.

VI. NEUTRINO LUMPS

Concerning the perturbations, most subtle and interest-
ing issue is the possibility of formation of the neutrino
clumps [30–33]. Instead of deriving instabilities via the
effective sound speed of the compound of scalar field and
neutrino fluid, we shall approach this problem from a
somewhat different point of view. As the perturbations are
of quantum origin, let us consider quantum fluctuations
both for scalar and fermion fields. For this purpose, the
scalar field is split as ϕþ χ and the fermion number
operator is shifted as ψ̄ νψν → nν þ ψ̄νψν. Forgetting about
the gravitation, the Lagrangian density for the perturbations
takes the form

∂αχ∂αχ

2
−
ðU00ðϕþÞ þm00

νðϕþÞnνÞχ2
2

þ iψ̄γα∂αψ −m0
νðϕþÞχψ̄ψ þ C:C:þ H:T:; ð20Þ

where C.C. denotes complex conjugate and H.T. stands for
the higher order terms. From Eq. (20) one sees that there is
an attractive force between the neutrinos mediated by the
exchange of χ quanta. It results in the Yukawa potential

−
ðm0

νðϕþÞÞ2 expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ðϕþÞ þm00

νðϕþÞnν
p

rÞ
4πr

; ð21Þ

where r stands for the physical distance, implying that the
corresponding attractive force is characterized with the
screening length

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ðϕþÞ þm00

νðϕþÞnν
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U00
effðϕþÞ

p ≡ 1

meffðϕþÞ
:

It is instructive to compare this force, within its screening
radius, with the gravitational one. The ratio is

ðm0
νðϕþÞÞ2

M2
P

m2
νðϕþÞ

¼ 36β:

One sees that the fifth force exceeds the Newtonian one by
many orders of magnitude. As to the effective mass, it reads

m2
eff ≃

36βρν
M2

P
≃ βH2

0: ð22Þ

Proceeding in the spirit of the above discussion, we treat
the neutrino gas as an ideal pressureless fluid subject to the
Newtonian self-gravity and also to the Yukawa force. In
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addition, we assume an expanding background, r ¼ aðtÞx,
to avoid the “Jeans swindle” [34]. That is the well known
formalism one can find in many textbooks on cosmology,
see for instance [35]. The linear perturbations of neutrino
velocity field and density contrast, δ≡ δρν=ρν, satisfy the
equations

∂δ
∂t þ

∇x · δv
a

¼ 0; ð23Þ

∂δv
∂t þHδv þ c2s∇xδ

a

þ∇xΦN

a
þm0

νðϕþÞ
mνðϕþÞ

∇xΦY

a
¼ 0; ð24Þ

where ΦN;Y denote the Newton and Yukawa potentials,
respectively:

ΔxΦN

a2
¼ 4π

M2
P
ρνδ; ð25Þ

�
Δx

a2
−m2

effðϕþÞ
�
ΦY ¼ m0

νðϕþÞ
mνðϕþÞ

ρνδ: ð26Þ

First we take the divergence of Eq. (24) and substitute in it
∇x · δv from Eq. (23)

∂2δ

∂t2 þ 2H
∂δ
∂t

−
c2sΔxδ

a2
−
ΔxðΦN þΦYm0

νðϕþÞ=mνðϕþÞÞ
a2

¼ 0: ð27Þ

Applying now Fourier decomposition for the density
contrast and using Fourier transform of ΦN;Y from
Eqs. (25) and (26), Eq. (27) takes the form

δ̈ðkÞ þ 2H _δðkÞ þ
�
c2sk2

a2
−
4πρν
M2

P

−
�
m0

νðϕþÞ
mνðϕþÞ

�
2 ρνk2=a2

k2=a2 þm2
effðϕþÞ

�
δðkÞ ¼ 0: ð28Þ

Much of the essential physics concerning the instabilities of
neutrino perturbations can be extracted from this equation.
One immediately sees that the Yukawa force helps the

amplification of density perturbations and, exploiting the
idea similar to what was suggested in [31], one can
incorporate the scalar-mediated force with the gravitational
one by introducing an effective Planck mass

1

M2
eff

≡ 4π

M2
P
þ
�
m0

νðϕþÞ
mνðϕþÞ

�
2 k2=a2

k2=a2 þm2
effðϕþÞ

≃
1

M2
P

�
4π þ βk2=a2

k2=a2 þm2
effðϕþÞ

�
:

From this expression one sees that for k ≫ meff the Newton
constant is amplified at least by the factor of the order of
1058 leading to the growth of small neutrino perturbations.
Without the Yukawa amplification, there would be no
growing perturbations of reasonable size (see below).
Assuming for simplicity that ρν; a; cs are constants, one
finds the solution of Eq. (28)

δðt;kÞ ¼ C1ðkÞ exp
 
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρν
M2

eff

−
c2sk2

a2

s !

þ C2ðkÞ exp
 
−t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρν
M2

eff

−
c2sk2

a2

s !
;

manifesting the possibility that even for vanishing gravity
one may have the subhorizon modes growing at the
expense of Yukawa force [here we use Eq. (22)]

H2
0 <

k2

a2
<

ρν
c2s

�
m0

νðϕþÞ
mνðϕþÞ

�
2

−m2
eff

≃
�
1

c2s
− 1

�
m2

eff ¼
�
1

c2s
− 1

�
βH2

0:

Behind this expression, one easily recognizes similar
estimates from the previous works [32,33]. The only
difference is that now it is augmented by the factor
c−2s − 1. The speed of sound for the nonrelativistic matter
estimated as [3] cs ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tν=mν

p
makes it easy to see why the

formation of nuggets becomes favorable in the nonrelativ-
istic regime. In general, the growing modes, with respect to
Eq. (28), satisfy the condition

k2

a2
<

�
4πρν
M2

P
þ
�
m0

νðϕþÞ
mνðϕþÞ

�
2

ρν −
c2sm2

effðϕþÞ
a2

þ
ffiffiffiffiffi
D

p �
1

2c2s
;

where D ¼
�
c2sm2

effðϕþÞ
a2

−
4πρν
M2

P
−
�
m0

νðϕþÞ
mνðϕþÞ

�
2

ρν

�
2

þ 16πρνm2
effc

2
s

a2M2
P

:
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In absence of the fifth force, the Jeans length would be

a
k
≳ 11cs

H0

;

manifesting the need of the fifth force for creating neutrino
nuggets.
The above discussion is intended, on the one hand, to

elucidate the qualitative features in a simple and transparent
way and, on theother hand, our results formanew foundation
for future investigations of formation and subsequent impli-
cations of nuggets. Let us note that the lumpy CNB is one of
the direct observational consequences of themodel and there
are many papers devoted to the study of nugget formation
process involving the nonlinear dynamics [36–43]. The new
feature emphasized in the above discussion is the appearance
of effectivemass in Eq. (26) indicating the screened nature of
the fifth-force. For the sake of comparison, see Eqs. (13)–
(16) in [38] and Eqs. (21)–(25) in [39]. Further research can
be conducted in the light of recent investigations of the
Yukawa nuggets [44–47].

VII. DISCUSSION AND CONCLUSIONS

The idea behind the introduction of a nonstandard
coupling between the quintessence field and the CNB is
to tie the dark energy density to the neutrino mass scale [9],
see for instance Eq. (19). There are, however, two catego-
ries of such models. The first category of models known as
“growing neutrino quintessence” [11,12] assumes that the
scalar field is steadily rolling down the potential UðϕÞ
before the neutrinos become nonrelativistic and stop its
motion resulting in the potential-dominated dynamics
for the quintessence field. We are interested in other
category of models [20,25] assuming that the scalar field
is initially trapped into the vacuum and acquires a nonzero
vacuum expectation value, which then varies in time
adiabatically, as a result of backreaction due to neutrinos.
The latter scenario allows one to naturally incorporate well-
established inflationary models into it. Most successful
inflationary models are believed to be those with a plateau
[18,27]. Such models are characterized by two independent
parameters—the width and the height of the potential. The
example considered by us is a typical representative of such
a model. It is characterized by the parameters α and V (see
Sec. III), where the dimensionless parameter α is of the
order of unity. Besides, we have one more dimensionless
parameter, β ≳ 1058, which comes from the coupling term.
We see a large discrepancy between these dimensionless
parameters that should be “explained” somehow. Interes-
tingly enough, the broad class of inflationary potentials
derived in [48] as a result of spontaneously broken
conformal symmetry can be straightforwardly used in
the above discussion with the same ϕ-ν coupling term
(which is certainly taken by hand). Namely, the T-model
potentials [27]

U

�
tanh2

ϕffiffiffiffiffiffiffiffiffiffiffiffi
6αM2

P

p �

are closely analogous to what we have considered and,
therefore, it is straightforward to generalize our discussion
to these kinds of models. Also, it is almost obvious that the
construction similar to what we have discussed may work
without demanding Z2 symmetry for the inflaton potential.
For instance, one may consider a Starobinsky-like model
[49,50], which would give

Ueff ¼ Vð1 − e−αϕ=MPÞ2 þ nνμνe−βϕ
2=M2

P :

From the very outset one can make a simplifying approxi-
mation αϕþ=MP ≪ 1, which is well justified as long as
β ≫ α. So that, for finding the minimums one can use an
approximate expression

Ueff ≈
Vα2ϕ2

M2
P

þ nνμνe−βϕ
2=M2

P ⇒
ϕ�
MP

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β
ln
βnνμν
α2V

s
:

Hence, one finds

mν ¼
α2V
βnν

⇒ ρ0ν ¼
α2V
β

: ð29Þ

The slow-roll condition now takes the form

9M2
PH

2

8
≪ α2V ln2

μν
mνðϕþÞ

;

and is satisfied with a high accuracy at present since in the
Starobinsky model: V ≃ 1.5 × 10−13M4

P, α ¼ ffiffiffiffiffiffiffiffi
2=3

p
≈ 0.8

and, as we have already estimated: ln μν=mνðϕþÞ ¼ 9. The
value of β can be estimated crudely from Eq. (29) by noting
that ρ0ν ≲ ρc ≃M2

PH
2
0 and correspondingly

β ≳ V
M2

PH
2
0

:

We shall not continue this discussion as it precisely
parallels what is already done in the text. Along the same
lines of reasoning, one can construct E-type inflationary
quintessence models given by the potential [27]

UðϕÞ ¼ V
�
1 − exp

�
−
αϕ

MP

��
2n
:

FIG. 3. One-loop Feynman graph.
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It is worth noting that the Starobinsky model is one of the
most naturally motivated inflationary models, providing a
good fit to the current observational data [28,51], that
maybe considered as one of the target models for future
observations [18].
In the framework of the present approach, we have

derived the fifth-force as a Yukawa one arising due to
exchange of a single χ boson between the neutrinos. This
force gets corrected by the exchange of a pair of χ bosons
as long as quadratic perturbations are taken into account.
The corresponding Feynman graph is shown in Fig. 3. It
corresponds to the coupling

−
m00

νðϕþÞχ2ψ̄ψ
2

;

and results in the potential [52]

−
ðm00

νðϕþÞÞ2meffðϕþÞK1ð2meffðϕþÞrÞ
32π3r2

;

where K1 is the modified Bessel function. We have again a
potential providing an attractive screened force, which for
r≲m−1

eff behaves roughly as

−
ðm00

νðϕþÞÞ2
64π3r3

:

This force starts to dominate over the Yukawa one (21) at
relatively short distances

r≲
ffiffiffi
β

p
MP

≃ 10−5 cm:

Let us note that the length scale
ffiffiffi
β

p
=MP is smaller by a

factor of 10−5 than the range of Yukawa force: 1=meff .
Namely, for β ≃ 10−58, one finds that [see Eq. (22)]

1

meff
≃ 1 cm:

This is a clear indication that for describing of nuggets
one can safely use the Yukawa force without correc-
tions unless the interneutrino distance is smaller than
10−5 cm. However, by increasing the inflation energy
scale, the β parameter grows and this distance scale gets
larger.
One more aspect worth paying attention is that the force

between the neutrinos mediated by the scalar field gets
corrections if one assumes a finite temperature theory for
the scalar field fluctuations [52]. That is to assume a
thermal equilibrium between the χ field and neutrinos
maintained by the χ-ν coupling. So far there are very few
papers addressing this issue. At least what we are familiar
with are the papers [53,54] where the approach to the dark
energy is somewhat different from the conceptual point of
view but the techniques developed there can be readily used
for the problem posed above.
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