
 

Threshold for primordial black holes. II.
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Primordial black holes could have been formed in the early universe from nonlinear cosmological
perturbations reentering the cosmological horizon when the Universe was still radiation dominated.
Starting from the shape of the power spectrum on superhorizon scales, we provide a simple prescription,
based on the results of numerical simulations, to compute the threshold δc for primordial black hole
formation. Our procedure takes into account both the nonlinearities between the Gaussian curvature
perturbation and the density contrast and, for the first time in the literature, the nonlinear effects arising at
horizon crossing, which increase the value of the threshold by about a factor two with respect to the one
computed on superhorizon scales.
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I. INTRODUCTION AND SUMMARY

It has been suggested that primordial black holes (PBHs)
might form in the radiationdominatedera of the earlyUniverse
by gravitational collapse of sufficiently large-amplitude cos-
mological perturbations [1–3] (see Refs. [4,5] for recent
reviews), and that they can comprise a significant fraction
of the dark matter in the universe, see Ref. [6] for a review of
the current experimental constraints on the PBH abundance.
This idea has recently received renewed attention given the
possibility that PBHs might have given rise to gravitational
waves detected during the O1/O2 and O3 observational runs
[7–10] by the LIGO/Virgo Collaboration. This has motivated
several studies on the primordial origin of these events
[11–26]. In particular, the GWTC-2 catalog is found to be
compatible with the primordial scenario [27]. Furthermore, a
possible detection of a stochastic gravitational wave back-
ground by the NANOGrav collaboration [28] could be
ascribed to PBHs [29–34].
Despite some pioneering numerical studies [35–37], it

has only recently become possible to fully understand the
mechanism of PBH formation with detailed spherically
symmetric numerical simulations [38–41], showing that a
cosmological perturbation collapses to a PBH if it has an
amplitude δ greater than a certain threshold value δc. This
quantity has been estimated initially using a simplified

Jeans length argument in Newtonian gravity [42], obtaining
δc ∼ c2s , where c2s ¼ 1=3 is the sound speed of the cosmo-
logical radiation fluid measured in units of the speed of
light. More recently, this value has been refined general-
ising the Jeans length argument with the theory of general
relativity, obtaining a value of δc ≃ 0.4 for a radiation
dominated Universe [43]. This analytical computation
gives just a lower bound for the value of the threshold
because it is not able to account for the nonlinear effects of
pressure gradients, which require full numerical relativistic
simulations. A recent detailed study has shown that there is
a clear relation between the value of the threshold δc and
the initial curvature (or energy density) profile, with
0.4 ≤ δc ≤ 2=3, where the shape is identified by a single
parameter [44,45].
A consistent way to measure the amplitude of a

perturbation is by using the relative mass excess inside
the length scale of the perturbation, that for a consistent
comparison between different shapes, should be measured
at horizon crossing, when the length scale of the perturba-
tion is equal to the cosmological horizon [44].
Numerical simulations have also shown that the mecha-

nism of critical collapse discovered by Choptuik [46] is
arising during the formation of PBHs, characterising the
mass spectrum [47]. A crucial aspect to fully describe this
mechanism was the implementation of an adaptive mesh
refinement (AMR), which allows study of the critical
behavior down to very small values of ðδ − δcÞ [48,49].
Numerical simulations modelling PBH formation start

from initial conditions specified on superhorizon scales,
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when the curvature perturbations describing adiabatic
perturbations are time independent [50]. This allows
expression of the initial conditions of the numerical
simulations, such as the energy density and velocity field,
only in terms of a time independent curvature profile
[51,52], which can be derived, in the Gaussian approxi-
mation using peak theory [53], from the shape of the
inflationary power spectrum of cosmological perturbations
measured on superhorizon scales [54,55].
The relation between the shape of the peak of the

curvature power spectrum and the initial conditions used
in simulations for PBH formation has recently been
investigated in both the Gaussian approximation, with
the aim of obtaining a proper estimate of the cosmological
abundance of PBHs [54–57], and including also corrections
coming from nonlinearities [58–62] and non-Gaussianities
[63–67]. On the other hand, numerical simulations have
been used to reconstruct the shape of the peak of the
inflationary power spectrum, understanding to which extent
this is consistent with the observational constraint for PBH
formation on different scales [68].

A. Prescription scheme

The aim of the present paper is to enable the interested
reader to calculate the threshold for PBH formation, when
the Universe is still radiation dominated, without the need
for running numerical simulations. Although nonlinear
cosmological density perturbations are described by a
non-Gaussian random field, we provide a simple prescrip-
tion to compute the threshold δc from the shape of the
Gaussian inflationary power spectrum. The algorithm,
divided into a few simple steps, accounts for both the
nonlinearities associated with the relation between the
Gaussian curvature perturbation and the density contrast
as well as for those, so far neglected in the present
literature, arising at horizon crossing. While a more refined
description of the various steps will be found in the rest of
the paper, we here provide the reader with an overview:

(1) The power spectrum of the curvature perturbation:
take the primordial power spectrum Pζ of the
Gaussian curvature perturbation and compute, on
superhorizon scales, its convolution with the transfer
function Tðk; ηÞ

Pζðk; ηÞ ¼
2π2

k3
PζðkÞT2ðk; ηÞ:

(2) The comoving length scale r̂m of the perturbation is
related to the characteristic scale k� of the power
spectrum Pζ. Compute the value of k�r̂m by solving
the following integral equation
Z

dkk2
�
ðk2r̂2m−1Þ

sinðkr̂mÞ
kr̂m

þcosðkr̂mÞ
�
Pζðk;ηÞ¼0:

(3) The shape parameter: compute the corresponding
shape parameter α of the collapsing perturbation,
including the correction from the nonlinear effects,
by solving the following equation

FðαÞ½1þFðαÞ�α¼−
1

2

�
1þr̂m

R
dkk4cosðkr̂mÞPζðk;ηÞR
dkk3sinðkr̂mÞPζðk;ηÞ

�

FðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

5
e−1=α

α1−5=2α

Γð 5
2αÞ − Γð 5

2α ;
1
αÞ

s
:

(4) The threshold δc: compute the threshold as function
of α, fitting the numerical simulations.
(a) At superhorizon scales making a linear extrapo-

lation at horizon crossing (aHrm ¼ 1)

δc ≃

8>><
>>:

α0.047 − 0.50 0.1≲ α≲ 7

α0.035 − 0.475 7≲ α≲ 13

α0.026 − 0.45 13≲ α ≲ 30

.

(b) At horizon crossing taking into account also the
non linear effects

δc ≃

8>><
>>:

α0.125 − 0.05 0.1≲ α≲ 3

α0.06 þ 0.025 3≲ α≲ 8

1.15 α ≳ 8

.

The difference between these two values of the threshold δc
is discussed later in Sect. V.
Following the present Introduction, Sec. II reviews the

mathematical formulation of the problem. In Sec. III we
discuss the relation between the threshold δc and the shape
of cosmological perturbation. In Sec. IV we show how to
compute the typical value of the threshold δc as a function
of the shape of the power spectrum, analyzing in detail
some explicit examples. In Sec. V we compute, using
numerical simulations, the amplitude of the threshold δc at
horizon crossing, as a function of the shape parameter,
discussing the difference when this is computed at horizon
crossing or on superhorizon scales. Finally in Sec. VI
conclusions are presented, making a summary of the
results. Throughout we use c ¼ G ¼ 1.

II. INITIAL CONDITIONS FOR PBH FORMATION

A. Gradient expansion

PBHs form from the collapse of nonlinear cosmological
perturbations after they reenter the cosmological horizon.
Following the standard result for extreme peaks we assume
spherical symmetry on superhorizon scales [53]. The local
region of the Universe characterized by such perturbations
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is described by an asymptotic form of the metric, usually
written as

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − KðrÞr2 þ r2dΩ2

�

¼ −dt2 þ a2ðtÞe2ζðr̂Þ½dr̂2 þ r̂2dΩ2�; ð1Þ
where aðtÞ is the scale factor, while KðrÞ and ζðr̂Þ are the
conserved comoving curvature perturbations defined on a
super-Hubble scale, converging to zero at infinity where the
Universe is taken to be unperturbed and spatially flat. The
equivalence between the radial and the angular parts gives8<

:
r ¼ r̂eζðr̂Þ;

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−KðrÞr2

p ¼ eζðr̂Þdr̂; ð2Þ

and the difference between the two Lagrangian coordinates
r and r̂ is related to the “spatial gauge” of the comoving
coordinate, which is fixed by the form chosen to specify the
curvature perturbation put into the metric, i.e.,KðrÞ or ζðr̂Þ.
From a geometrical point of view the coordinate r̂ considers
the perturbed region as a local FRW separated universe,
with the curvature perturbation ζðr̂Þ modifying the local
expansion, while the curvature profile KðrÞ is defined with
respect to the background FRW solution (K ¼ 0).
Combining the two expressions in (2) one gets

KðrÞr2 ¼ −r̂ζ0ðr̂Þ½2þ r̂ζ0ðr̂Þ�; ð3Þ

showing that KðrÞ is more directly related to the spatial
geometry of the spacetime, obtained as a quadratic cor-
rection in terms of r̂ζ0ðr̂Þ.
On the superhorizon scales, where the curvature profile

is time independent, we use the gradient expansion
approach [39,51,69,70], based on expanding the time
dependent variables such as energy density and velocity
profile, as power series of a small parameter ϵ ≪ 1 up to the
first nonzero order, where ϵ is conveniently identified with
the ratio between the Hubble radius and the length scale of
the perturbation. This approach reproduces the time evo-
lution of linear perturbation theory but also allows having
nonlinear curvature perturbations if the spacetime is suffi-
ciently smooth on the scale of the perturbation (see [50]).
This is equivalent to saying that pressure gradients are
small when ϵ ≪ 1 and are not then playing an important
role in the evolution of the perturbation.
In this approximation, the energy density profile can be

written as [44,52]

δρ

ρb
≡ ρðr; tÞ − ρbðtÞ

ρbðtÞ
¼ 1

a2H2

3ð1þ wÞ
5þ 3w

½KðrÞr3�0
3r2

¼ −
1

a2H2

4ð1þ wÞ
5þ 3w

e−5ζðr̂Þ=2∇2eζðr̂Þ=2;

ð4Þ

where HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble parameter, ρb is the
mean background energy density and K0ðrÞ denotes differ-
entiation with respect to r while ζ0ðr̂Þ and ∇2ζðr̂Þ denote
differentiation with respect to r̂. The parameter w is the
coefficient of the equation of state p ¼ wρ relating the total
(isotropic) pressure p to the total energy density ρ. From
now on we are going to consider just the standard scenario
for PBH formation assuming a radiation dominated
Universe with w ¼ 1=3.

B. The compaction function

The criterion to distinguish whether a cosmological
perturbation is able to form a PBH depends on the
amplitude measured at the peak of the compaction function
[39,44] defined as

C≡ 2
δMðr; tÞ
Rðr; tÞ ; ð5Þ

where Rðr; tÞ is the areal radius and δMðr; tÞ is
the difference between the Misner-Sharp mass within a
sphere of radius Rðr; tÞ, and the background mass
Mbðr; tÞ ¼ 4πρbðr; tÞR3ðr; tÞ=3 within the same areal
radius but calculated with respect to a spatially flat FRW
metric. In the superhorizon regime (i.e., ϵ ≪ 1) the com-
paction function is time independent, and is simply related
to the curvature profile by

C ¼ 2

3
KðrÞr2 ¼ −

2

3
r̂ζ0ðr̂Þ½2þ r̂ζ0ðr̂Þ�: ð6Þ

As shown in [44], the comoving length scale of
the perturbation is the distance from r ¼ rm, where the
compaction function reaches its maximum (i.e.,
C0ðrmÞ ¼ 0), which gives

KðrmÞ þ
rm
2
K0ðrmÞ ¼ 0; ð7Þ

or

ζ0ðr̂mÞ þ r̂mζ00ðr̂mÞ ¼ 0: ð8Þ

Given the curvature profile, the parameter ϵ of the gradient
expansion is defined as

ϵ≡ RHðtÞ
Rbðrm; tÞ

¼ 1

aHrm
¼ 1

aHr̂meζðr̂mÞ
; ð9Þ

where RH ¼ 1=H is the cosmological horizon and
Rbðr; tÞ ¼ aðtÞr is the background component of the areal
radius. With these definitions, the expression written in
Eq. (4) is valid for ϵ ≪ 1.

C. The perturbation amplitude and the threshold

We are now able to define consistently the perturbation
amplitude as being the mass excess of the energy density
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within the scale rm, measured at the cosmological horizon
crossing time tH, defined when ϵ ¼ 1 (aHrm ¼ 1).
Although in this regime the gradient expansion approxi-
mation is not very accurate, and the horizon crossing
defined in this way is only a linear extrapolation, this
provides a well defined criterion to measure consistently
the amplitude of different perturbations, understanding how
the threshold is varying because of the different initial
curvature profiles (see [44] for more details). Later in
Sec. V we are going to extend the present discussion to
include the nonlinear effect on the threshold when the
cosmological horizon crossing is fully computed with
numerical simulations.
The amplitude of the perturbation measured at tH, which

we refer to as δm ≡ δðrm; tHÞ, is given by the excess of
mass averaged over a spherical volume of radius Rm,
defined as

δm ¼ 4π

VRm

Z
Rm

0

δρ

ρb
R2dR ¼ 3

r3m

Z
rm

0

δρ

ρb
r2dr; ð10Þ

where VRm
¼ 4πR3

m=3. The second equality is obtained by
neglecting the higher order terms in ϵ, approximating
Rm ≃ aðtÞrm, which allows to simply integrate over the
comoving volume of radius rm. Inserting the expression for
δρ=ρb given by (4) into (10), one obtains δm ¼ CðrmÞ and a
simple calculation seen in [44] gives the fundamental
relation

δm ¼ 3
δρ

ρb
ðrm; tHÞ: ð11Þ

PBHs form when the perturbation amplitude δm > δc,
where the value of the threshold δc depends on the shape of
the energy density profile, with 2=5 ≤ δc ≤ 2=3, as shown
in [44]. Defining the quantity Φ≡ −r̂ζ0ðr̂Þ we can write
δm as

δm ¼ 4

3
Φm

�
1 −

1

2
Φm

�
ð12Þ

whereΦm ¼ Φðr̂mÞ, and the corresponding threshold forΦ
is such that 0.37≲Φc ≤ 1.
This shows that there are two different values of Φm

corresponding to the same value of δm, with a maximum
value of δm ¼ 2=3 for Φm ¼ 1. This degeneracy in the
amplitude of the perturbation measured with δm is related to
the difference between cosmological perturbations of Type
I and Type II that have been carefully analyzed in [71].
Here we review this analysis in the context of PBHs
formation.
The quantity Φm measures the perturbation amplitude in

terms of the local curvature, uniquely defined, while the
quantity δm is related to the global geometry, related to the
compactness of the region or radius rm, which has a
degeneracy: there are two possible geometrical configura-
tions of the spacetime with the same compactness as shown

in Fig. 3 of [71]. When Φ > 1 the spatial geometry of the
spacetime starts to close on itself, up to Φ ¼ 2 correspond-
ing to the separate universe limit.
Computing the first and second derivatives of C in terms

of Φ gives

C0ðr̂Þ ¼ 4

3
Φ0ðr̂Þð1 −Φðr̂ÞÞ; ð13Þ

C00ðr̂Þ ¼ 4

3
½Φ00ðr̂Þð1 −Φðr̂ÞÞ − ðΦ0ðr̂ÞÞ2�: ð14Þ

For a positive peak of the density contrast δρ=ρb we have
C0ðr̂mÞ ¼ 0 and C00ðr̂mÞ < 0, and one can distinguish
between PBHs of Type I and Type II from the sign of Φ00

m.
(i) PBHs of Type I: δc < δm ≤ 2=3 and Φc < Φm ≤ 1.

In this case δm is increasing for larger values of
Φm and C0ðr̂mÞ ¼ 0 implies that Φ0

m ¼ 0, corre-
sponding to the condition for r̂m given in (8). When
Φm ≤ 1 we have C00ðr̂mÞ < 0 corresponding to
Φ00

m < 0. In the limiting case of Φm ¼ 1 we have
that both Φ00

m and C00ðr̂mÞ are converging toward −∞
(see after (23) for more explanations).

(ii) PBHs of Type II: 2=3 > δm ≥ 0 and 1 < Φm ≤ 2.
In this case δm is decreasing for larger values of

Φm, and as before C0ðr̂mÞ ¼ 0 implies that Φ0
m ¼ 0

(see Eq. (8)). For Φm > 1 we have C00ðr̂mÞ < 0
while Φ00

m > 0, changing sign with respect to Type I
solutions.

All of the possible values of the threshold are within the
regime of PBHs of Type I, where the mass spectrum of
PBHs has a behavior described by the scaling law of critical
collapse [44]

MPBH ¼ Kðδm − δcÞγMH; ð15Þ
with γ ≃ 0.36 for a radiation dominated fluid, where MH
indicates the mass of the cosmological horizon measured at
time tH and K is a coefficient depending on the particular
profile of δρ=ρb. Numerical simulations have shown that
1≲K≲ 10, and that (15) is valid with γ constant
when δm − δc ≲ 10−2.

III. THE SHAPE PARAMETER

As seen in [44,45], the threshold for PBHs depends on
the shape of the cosmological perturbation, characterized
by the width of the peak of the compaction function,
measured by a dimensionless parameter defined as

α ¼ −
C00ðrmÞr2m
4CðrmÞ

; ð16Þ

where the family of curvature profiles KðrÞ given by

KðrÞ ¼ A exp

�
−
1

α

�
r
rm

�
2α
�

ð17Þ
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identifies a basis of profiles which describes the main
features of all of the possible shapes. In Fig. 1-taken from
[44]-one can see the energy density profile δρ=ρb
plotted against r=rm, obtained by inserting (17) into (4)
for different values of α, normalized at horizon crossing
(aHrm ¼ 1). The shape of the energy density contrast
becomes peaked for α < 1 (red lines) corresponding to a
broad profile of the compaction function, where the dashed
line describes the typical Mexican-hat profile (α ¼ 1). On
the contrary the shape of the compaction function C is more
peaked for values of α > 1 (blue lines), corresponding to
broad profiles of the density contrast.
It is important to appreciate that when replacing (17) or

any other K-profile into (16), the value of α is independent
of the amplitude δm ¼ CðrmÞ of the perturbation, related to
the peak A of the curvature profile: this value is just an
overall factor which cancels out in the ratio between the
second derivatives and the value of the peak of the
compaction function. The parameter α is therefore distin-
guishing between different shapes of the perturbation,
independently of their amplitude.
As shown in [45], the average value of CðrÞ integrated

over a volume of comoving radius rm, defined as

C̄ðrmÞ ¼
3

r3m

Z
rm

0

CðrÞr2dr; ð18Þ

has a nearly constant value when computed at the threshold
for PBH formation, which is C̄c ≃ 2=5. This allows deri-
vation of an analytic expression to compute the threshold δc

as a function of the shape parameter α, up to a few percent
precision [45]

δc ≃
4

15
e−1=α

α1−5=2α

Γð 5
2αÞ − Γð 5

2α ;
1
αÞ
; ð19Þ

where Γ identifies the special Gamma-functions. This is
consistent with the analysis made in [44] where it was
shown that the effects of additional parameters modifying
the simple basis given by (17) are negligible.
The corresponding peak amplitude δρ0=ρb, correspond-

ing to the overdensity amplitude evaluated at the centre of
symmetry, is related to the value of δm by δρ0=ρb ¼ e1=αδm,
which combined with (19) gives�

δρ0
ρb

�
c
≃

4

15

α1−5=2α

Γð 5
2αÞ − Γð 5

2α ;
1
αÞ
: ð20Þ

The shape parameter α describes the main features of the
profile in the region 0 < r≲ rm where PBHs form, while
any other additional parameters describe only secondary
modification of the tail, r≳ rm, giving only a few percent
deviation of the value of δc with respect to the one obtained
with (17).
The shape is not correlated with the amplitude of the

perturbation when the shape is measured in the r-gauge of
the comoving coordinate, while a correlation arises when
measured in the r̂-gauge. Using the coordinate transforma-
tion of (2) one obtains that

C00ðrmÞ ¼
1

e2ζðr̂mÞ½1þ r̂mζðr̂mÞ�2
C00ðr̂mÞ; ð21Þ

where the additional term proportional to C0ðr̂Þ is equal to
zero when calculated at r̂m because of (8). As stated in the
introduction, the prime denotes spatial derivative with
respect to the variable written explicitly in the argument
of the function. The shape parameter can therefore be
written as

α ¼ −
C00ðr̂mÞr̂2m

4Cðr̂mÞ½1 − 3
2
Cðr̂mÞ�

; ð22Þ

showing that the peak of the compaction function does not
cancel out with the peak of the second derivative, when
computed with respect to r̂ instead of r.
Using (12), this can be written as

α ¼ −
Φ00

mr̂2m
4Φmð1 − 1

2
ΦmÞð1 −ΦmÞ

; ð23Þ

showing that in general, when varying the amplitude of the
perturbation, the values of Φ00

m andΦm are not independent,
but correlated, changing according to the given value of α.
It is interesting to note that both Type I (Φ00

m ≤ 0;Φm ≤ 1)
and Type II (Φ00

m > 0;Φm > 1) perturbations have α > 0,
consistently with (16).

FIG. 1. This figure, taken from [44], shows the behavior of
δρ=ρb given by (4) plotted against r=rm when aHrm ¼ 1, for
α ¼ 0.5, 0.75, 1, 2, 3, 5, 10. The profiles with α ≤ 1 are plotted
with a red line (a dashed line for α ¼ 1) while blue lines are used
for profiles with α > 1.
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In general there is a correlation between the shape of Φ
and the amplitude of the peak Φm. In the upper limit of the
Type I solution, when Φm → 1, one finds α → ∞ which
implies from (14) that Φ00

m → −∞ because C00ðrmÞ < 0 for
any positive peak of the compaction function. From the
geometrical point of view the shape of the compaction
function is forced to be a Dirac delta (a top hat in the energy
contrast) when Φm ¼ 1, corresponding to the threshold for
PBH formation when α → ∞.
To give an explicit example of the correlation between

the amplitude and the shape of ζðr̂Þ we can consider the
profile used in [59]

ζðr̂Þ ¼ B exp

�
−
�

r̂
r̂m

�
2β
�
; ð24Þ

that inserted into the (23) gives

α ¼ β2

ð1 − βζðr̂mÞÞð1 − 2βζðr̂mÞÞ
: ð25Þ

In the linear approximation B ≪ 1 ⇒ βζðr̂mÞ ≪ 1, which
gives α ≃ β2, showing that for a given value of α, the
corresponding value of β is fixed and there is no correlation
between the shape and the amplitude, while when we are
considering a perturbation amplitude of the order of the
threshold δc, one has B ∼ 1 (corresponding to Ar2m ∼ 1)
and the correlation is not negligible. For example, when
α ¼ 1 one has a typical Mexican-hat shape and a value of
the threshold δc ≃ 0.5, while for a value of β ¼ 1 corre-
sponding to a Mexican-hat shape in the linear approxima-
tion, the value of the threshold is δc ≃ 0.55, as seen in [59].

A. The nonlinear component of the shape

If ζ is a Gaussian random variable, also Φm, and Φ00
mr̂2m

obey Gaussian statistics. In such case we can write the
shape parameter given by (22) as

α ¼ αG

ð1 − 1
2
ΦmÞð1 −ΦmÞ

; ð26Þ

where

αG ¼ −
Φ00

mr̂2m
4Φm

ð27Þ

is the Gaussian shape parameter obtained in the linear
approximation (Φm ≪ 1), independent of the amplitude of
Φm since Φ00

m ∝ Φm as, for instance, one can understand by
computing the average of Φ00

m given a realisation of Φm
using conditional probability.
The value of Φm introduces a correction, which is

negligible in the linear regime when Φm ≪ 1. On the
other hand, when the value of Φm is nonlinear, the term
ð1 −ΦmÞð1 −Φm=2Þ gives a non-negligible modification
of the value of α with respect αG. In general α depends on
the statistics of Φ00

m and the amplitude Φm.
Considering Type I solutions one can write Φm as a

function of δc using (12), which gives

Φm ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

2
δc

r
; ð28Þ

and then inserting this equation combined with (19) into
(26) one obtains

FðαÞ½1þ FðαÞ�α ¼ 2αG; ð29Þ

where

FðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

5
e−1=α

α1−5=2α

Γð 5
2αÞ − Γð 5

2α ;
1
αÞ

s
: ð30Þ

The numerical solution of Eq. (29) gives a value of α as a
function of αG. By inserting this into (19), one can compute

FIG. 2. The left panel of this figure shows the behavior of δc and δcG ¼ δcðαGÞ plotted as a function of the Gaussian shape parameter
αG. The right panel shows the ratio of these two quantities: the difference is due to the nonlinear effects coming from the solution of (29).
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the value of δc as a function of αG, which is plotted in the
left panel of Fig. 2 using a solid line. This is compared with
the analytic behavior of δcG ¼ δcðαGÞ plotted with the
dashed line.
The right panel of Fig. 2 shows the ratio of these two

quantities as function of αG, and one can appreciate the
correction of δc due to the modification of the shape with
respect to the one obtained in the Gaussian approximation,
because of the nonlinear effects. Because at the boundaries
Fð0Þ → 1 ðFð∞Þ ¼ 1Þ, there is no modification with
respect to the Gaussian case and δc ¼ δcG in the limits
α → 0 ðα → ∞Þ.

IV. THE AVERAGE VALUE OF δc

The aim of this section is to describe how to calculate the
average value of the shape parameter α, identifying which is
the typical perturbation shape associated with a given
cosmological power spectrum, which gives the correspond-
ing averaged value of the threshold δc.
Assuming Gaussian statistics for the comoving curvature

perturbation ζ, the first step is to compute the value of αG

from the power spectrum Pζðk; ηÞ defined as

Pζðk; ηÞ ¼
2π2

k3
PζðkÞT2ðk; ηÞ; ð31Þ

computed at the proper time η when r̂m ≫ rH, where
rH ¼ 1=aH is the comoving Hubble radius. PζðkÞ is the
dimensionless form of the power spectrum, and the linear
transfer function Tðk; ηÞ, given by

Tðk; ηÞ ¼ 3
sinðkη= ffiffiffi

3
p Þ − ðkη= ffiffiffi

3
p Þ cosðkη= ffiffiffi

3
p Þ

ðkη= ffiffiffi
3

p Þ3 ; ð32Þ

has the effect of smoothing out the subhorizon modes,
playing the role of the pressure gradients during the collapse.
This smoothing should be done when r̂m ≃ 10rH or larger,
according to the gradient expansion approach used to specify
the initial condition of the numerical simulations. This
ensures that modes collapsing within the scale rH does
not affect the collapse on the larger scale r̂m. The details of
how to apply the smoothing have been extensively discussed
in [68], showing that using just the transfer function on
superhorizon scales avoids the need of introducing a window
function on the scale r̂m of the perturbation, which intro-
duces corrections in the calculation of the threshold that,
however, are reduced when computing the PBH abundance
if the same window function is adopted for evaluating the
variance [72].
The radius r̂m is obtained from condition (8), which can

be expressed in terms of the power spectrum using
Gaussian peak theory to write ζðr̂Þ

ζðr̂Þ ¼ ζ0

Z
dkk2

sinðkr̂Þ
kr̂

Pζðk; ηÞ; ð33Þ

and, applying Φ0ðr̂mÞ ¼ 0, one finally gets

Z
dkk2

�
ðk2r̂2m − 1Þ sinðkr̂mÞ

kr̂m
þ cos ðkr̂mÞ

�
Pζðk; ηÞ ¼ 0;

ð34Þ

where this integral equation, in general, has to be solved
numerically given the expression of Pζ.
The Gaussian shape parameter can be computed from the

average profile of ζðr̂Þ shown in (33), which allows αG to be
written as

αG ¼ 1

2
−
r̂2m
4

ζ000ðr̂mÞ
ζ0ðr̂mÞ

; ð35Þ

where we have used the constraint relation Φ0ðr̂mÞ ¼ 0,
which gives

r̂2mΦ00
m ¼ r̂m½2ζ0ðr̂mÞ − r̂2mζ000ðr̂mÞ�: ð36Þ

Inserting (33) into the expression for αG, combined with
(34) one obtains

αG ¼ −
1

4

�
1þ r̂m

R
dkk4 cos ðkr̂mÞPζðk; ηÞR
dkk3 sin ðkr̂mÞPζðk; ηÞ

�
; ð37Þ

showing that αG, and the corresponding value of α
computed using (29), are varying with the shape of the
cosmological power spectrum. The same holds for the
value of r̂m given by the solution of (34). The values of αG

and α can then be used in (19) so as to calculate the
corresponding values of δcG and δc, obtaining a direct
relation between the threshold and the particular shape of
the cosmological power spectrum Pζ.
In the following we are going to apply this prescription to

study the extent to which, given a particular form of the
power spectrum, the amplitude of the threshold δc is
varying.

A. Peaked power spectrum

The simplest cosmological power spectrum of the
comoving curvature perturbation that can be considered
is monochromatic, behaving like a Dirac-delta distribution,
typically written as

PζðkÞ ¼ P0k�δDðk − k�Þ: ð38Þ

Inserting this into (34) we get k�r̂m ≃ 2.74, which gives
δc;G ≃ 0.51, a value of the threshold in the Gaussian
approximation consistent with the one obtained in [54].
Solving equation (29), we can see the corresponding
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modification of δc due to the nonlinear effects, giving
α ≃ 6.33 corresponding to δc ≃ 0.59.
It is interesting to note that this value of the threshold is

consistent with the one found if the average profile of ζðrÞ
for a peaked power spectrum, characterized by the sync
function, is inserted into (4) to specify the initial conditions
for the numerical simulations [67]. This is consistent with
the fact that using peak theory in ζ or in the density contrast
δρ=ρb is equivalent when the power spectrum is very
peaked, behaving like a Dirac delta [60].

B. Broad power spectrum

A class of models with a broad and flat power spectrum
of the curvature perturbations of the form [73,74]

PζðkÞ ¼ P0Θðk − kminÞΘðkmax − kÞ; kmax ≫ kmin

ð39Þ

is another simple toy model, corresponding to the top hat
shape of the primordial power spectrum, which is consid-
ered in [54]. In this case, from (34) we have kmaxr̂m ≃ 4.49,
which gives αG ≃ 0.9 and δc;G ≃ 0.48.
The values of kmaxr̂m and δc;G obtained here are different

from the values kmaxr̂m ≃ 3.5 and δc;G ≃ 0.51 found in [54],
because in that analysis peak theory was applied directly to
the linearized density contrast δρ=ρb while here, instead,
we are using peak theory to compute the average curvature
perturbation ζ and account for the nonlinear relation with
the compaction function. For this reason the integrals in
peak theory for finding r̂m and the shape profile ζðr̂Þ are
characterized by a higher power in k.
Solving Eq. (29) to include the nonlinear effects gives

α ≃ 3.14 corresponding to δc ≃ 0.56.

C. Gaussian power spectrum

The gaussian shape of the curvature power spectrum
given by

PζðkÞ ¼ P0 exp ½−ðk − k�Þ2=2σ2�; ð40Þ
is characterized by the central reference scale k� and width
σ. Solving (34), the relation between the length scale r̂m of
the perturbation and the scale k� is shown in the left panel
of Fig. 3. As one can appreciate, in the limit of the narrow
case σ → 0 the result converges to the one obtained for a
monochromatic shape of the curvature power spectrum
(studied previously in the peaked case), while for broader
shapes the expected length scale of the overdensity multi-
plied by k� is decreasing. This is a result of the fact that, for
broader shapes, more modes are contributing to the
collapse, resulting in a narrower curvature profile.
The behavior of the shape parameter α, which decreases

as σ increases, reflects the fact that when multiple modes
are participating in the collapse, the compaction function
becomes flatter. As a consequence, the pressure gradients
are reduced, facilitating the collapse, and the corresponding
threshold for PBHs decreases for larger values of σ, as one
can appreciate in the right panel of the same figure. As
discussed in the previous section and shown in Fig. 2, as
nonlinearities are taken into account, the critical threshold
δc reaches larger values than tat for δcG computed in the
Gaussian approximation.

D. Lognormal power spectrum

The lognormal power spectrum is expressed as

PζðkÞ ¼ P0 exp ½− ln2 ðk=k�Þ=2σ2�; ð41Þ
characterized by a width σ and a central scale k�. The
relation between the length scale of the overdensity and the

FIG. 3. Left: peak position of the compaction function r̂m for both the case of a gaussian and lognormal shape of the power spectrum.
Right: average threshold for collapse for both the δcGðαGÞ and its corresponding nonlinearly corrected δc in both cases. In the limit of
σ → 0, both spectra converge to the monochromatic case and the result is compatible with the Dirac delta example.
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scale k� is plotted in the left panel of Fig. 3, while the right
panel is showing the average threshold for PBHs, showing
the same qualitative behaviors found for the Gaussian
power spectrum.
Because σ in this case identifies the width of the power

spectrum in logarithmic space, larger values of σ allow for
more modes to be part of the collapse. As a consequence, if
compared to the Gaussian case, the trends for the relative
change of k�r̂m and δc are amplified.

E. Cut-power-law power spectrum

The cut-power-law curvature power spectrum is given by

PζðkÞ ¼ P0

�
k
k�

�
n�s
exp ½−ðk=k�Þ2�; ð42Þ

expressed in terms of a tilt n�s and with an exponential
cutoff at the momentum scale k�. The relation between the
length scale of the overdensity and the scale k� is shown in
the left panel of Fig. 4, while the right panel of this figure is
showing the behavior of the average threshold for PBHs.
As n�s increases, the spectrum becomes narrower, with a

shift toward a higher value of the power spectrum peak
which is identified by the maximum of the combined
product of kn

�
s and the exponential cutoff. In agreement

with the behavior seen in the previous examples, as the
spectral tilt decreases, a larger number of modes participate
in the collapse, resulting in a lower value of the thresh-
old δc.

F. Summary

The analysis of this section of different power spectra
shows that, when the shape is broader, the value of the
threshold δc is lower because more modes are involved
in the collapse. The maximum value we have found is
δc ≃ 0.59 when the power spectrum behave like a Dirac
delta (corresponding to a single mode). The behavior for

the lognormal power spectrum that one can extrapolate
looking at the right panel of Fig. 3 indicates the possibility
of getting closer to the lower boundary of 0.4 for very large
values of σ. In conclusion the shapes of the power spectra
we have considered here allows 0.4≲ δc ≲ 0.6, when the
threshold is computed on superhorizon scales.

V. THE NONLINEAR HORIZON CROSSING

In this section we study the effects on the threshold when
the cosmological horizon crossing is computed during
the numerical evolution, measuring the amplitude δm of
the perturbation when the length scale Rm is equal to the
cosmological horizon radius RH defined with respect to the
perturbed medium. The numerical code used for the
simulations is the same as used in previous works (see
[44] and references therein for more details).
The threshold for PBHs has so far been computed at

cosmological horizon crossing by making a linear extrapo-
lation from the superhorizon regime, where the curvature is
time independent, imposing aHrm ¼ 1 in Eq. (4), where
the cosmological horizon RH ¼ 1=H is defined with
respect to the background. In this way one is extending
the validity of the gradient expansion approximation up to
ϵ ¼ 1, which is not very accurate. Although this represents
a well-defined criterion for measuring the perturbation
amplitude, and has been widely used in the literature to
compute the threshold δc for PBHs, it does not give the
correct amplitude of the perturbation at the “real” cosmo-
logical horizon crossing, because it is neglecting the
nonlinear effects of the higher orders in the gradient
expansion approach, which are taking into account that
the curvature profile ζ starts to vary with time when ϵ ∼ 1.
In general the cosmological horizon is a marginally

trapped surface within an expanding region, which in
spherical symmetry is simply defined by the condition
Rðr; tÞ ¼ 2Mðr; tÞ, where Rðr; tÞ is the areal radius and
Mðr; tÞ is the mass within a given sphere of radius Rðr; tÞ,

FIG. 4. The same as in Fig. 3, but for the cut-power-law power spectrum.
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called the Misner-Sharp mass. This relation for a trapped
surface is very general, assuming only spherical symmetry,
and allows computation of the location of any apparent
horizon: if we have an expanding medium, this is a
cosmological horizon, while if the medium is collapsing
then it is a black hole apparent horizon [75,76].
In simulations of PBH formation, because we are in a

locally closed Universe, the rate of expansion of the
cosmological horizon is less than that of the spatially flat
background, and this gives rise to an additional growth of
the amplitude of the perturbation before reaching the
horizon crossing.
The left plot of Fig. 5 shows the critical energy density

profile obtained with the curvature perturbation given by
(17), with α ¼ 1 corresponding to a Mexican-hat shape,
computed at the horizon crossing linearly extrapolated
(blue line) and at the nonlinear horizon crossing obtained
from the numerical simulations (red line). The second
profile shows an additional growth of the amplitude, which
is not negligible when the value of the energy density
obtained with the linear extrapolation is nonlinear. Part of
this extra growth is due to the longer time necessary to
reach the nonlinear horizon crossing which can be seen
explicitly in the right plot where ϵðtHÞ is plotted against the
shape parameter α, with the dashed line fitting the numeri-
cal results given by the dots. We can appreciate that the
value of ϵðtHÞ at the nonlinear horizon crossing,
1.3≲ ϵðtHÞ≲ 1.5, is larger than one given by the linear
horizon crossing (aHrm ¼ 1). In particular, for α ¼ 1 the
nonlinear horizon crossing is obtained at ϵðtHÞ ≃ 1.46,

corresponding to an amplitude of the central peak calcu-
lated with (4) equal to δρ0=ρb ≃ 1.98, as compared with the
value of δρ0=ρb ≃ 1.35 computed at the linear horizon
crossing (blue line). The additional growth of the profile,
with a peak value of the density contrast δρ0=ρb ≃ 3.34
obtained numerically at the nonlinear horizon crossing
(red line), is explained by the higher orders in the gradient
expansion which need to be taken into account when ϵ ∼ 1.
This effect is genuinely nonlinear.
The delay of the horizon crossing due to the nonlinear

effects gives an increase of the final mass of PBHs because
of the corresponding increase of the cosmological horizon
mass MH: during the radiation dominated universe
MH ∼ ϵ2 and from Fig. 5 one can appreciate the change
of the horizon scale introducing a correction value about
equal to 2 (i.e., 1.7 ÷ 2.2) in the cosmological horizon mass.
In the left panel of Fig. 6 we are comparing the critical

energy density profiles obtained from (17) for α ¼ 0.15,
which gives a very sharp profile, almost like a Dirac-delta,
while in the right panel we plot the critical profiles
computed for α ¼ 30, which gives a very broad profile,
very similar to a top-hat. As with the Mexican-hat shape,
the profile in the right frame computed at the nonlinear
horizon crossing is characterized by an extra growth of the
peak: the numerical evolution gives δρ0=ρb ≃ 1.46 at
ϵðtHÞ ≃ 1.31 as compared with δρ0=ρb ≃ 0.66 obtained
at ϵ ¼ 1 with the linear extrapolation. As in Fig. 5 for
α ¼ 1, this difference is a result of the combination of the
extra linear growth due to the larger value of ϵ and the
nonlinear effects.

FIG. 5. The left panel shows the critical Mexican-hat profile of the energy density, obtained from (17) with α ¼ 1, computed at the
horizon crossing, linearly extrapolated (ϵ ¼ 1) with a blue line, and computed numerically at the nonlinear horizon crossing (red line),
corresponding in this case to ϵ ≃ 1.46. Both profiles are plotted against R=RH , where RH is the radius of the cosmological horizon
computed at the corresponding time. The right panel shows how the nonlinear horizon crossing, measured in terms of ϵ, varies when
plotted against the shape parameter α, compared to ϵ ¼ 1 at the linear horizon crossing. The dashed line is a polynomial fit of numerical
data given by the dots.
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For the very sharp profile plotted in the left panel
(α ¼ 0.15) we can observe instead that the value of the
peak amplitude is significantly reduced at the nonlinear
horizon crossing with respect the one computed with a
linear extrapolation at ϵ ¼ 1. This is because for α ¼ 0.15
the profile is not smooth in the center, and there is a
significant effect of the local pressure gradients, which are
smoothing the profile during the evolution, giving at the
nonlinear horizon crossing time a smooth profile with a
much lower amplitude of the peak: δρ0=ρb ≃ 7 as compared
with δρ0=ρb ≃ 338 linearly extrapolated at ϵ ¼ 1. A similar
effect happens in the under dense region for the top-hat like
profile (α ¼ 30).
In Figs. 5 and 6 we have analyzed three sample cases of

the energy density profiles, seeing how the shape is
modified at the nonlinear horizon crossing with respect
to the one imposed at initial conditions on super horizon
scales, discovering the following general behavior: if the
profile is initially smooth, the peak amplitude computed at
the nonlinear horizon crossing is higher than the one
extrapolated linearly due to nonlinear effects which give
an extra growth factor, while when the profile is sharp the
behavior is the opposite, due to the nonlinear effects of the
pressure gradients smoothing the profile. In general very
large values of the peak amplitude at horizon crossing are
strongly suppressed because of the smoothing induced by
the pressure gradients.
In general the critical amplitude of the peak δρc=ρb

depends on the shape, and in the left panel of Fig. 7 we can
see how this quantity is varying with respect to α, for all of
the range of shape described by 0.15 ≤ α ≤ 30. The linearly
extrapolated values of the critical amplitude of the peak,
given by (20), are plotted with a blue line, while the values

computed at the nonlinear horizon crossing are plotted with
a red line.
The linearly extrapolated critical peak values can be

computed analytically from (20) while, as shown in the
plot, the critical values computed at the nonlinear horizon
crossing are given with a good approximation by a simple
fit, divided in two regimes.

δρc
ρb

≃
�
100.53−0.17 ln α α ≲ 8

1.52 α ≳ 8
ð43Þ

In the right panel of Fig. 7 we show the ratio between the
critical amplitude computed at the nonlinear horizon cross-
ing and the one linearly extrapolated. This shows clearly
the two different regimes: the first one, for α ≲ 8, with the
critical amplitude varying with α, and the second one for
α≳ 8 which is almost independent of α, with the peak
amplitude converging toward an almost constant value.
The linearly extrapolated value is equal to the one

computed numerically for α ≃ 0.45, because the energy
density profiles obtained from (17) are not smooth if
α ≤ 0.5, with a nonvanishing first derivative in the center.
On the contrary, for α > 0.5 the energy density profiles are
smooth in the center and the perturbation is free to grow
without any relevant smoothing of the shape produced by
the pressure gradients, reaching a larger value of the critical
peak amplitude at the nonlinear horizon crossing with
respect to the one linearly extrapolated.
In Fig. 8 the same analysis is made for the threshold

δc, with the left plot showing the threshold δcðtiÞ
linearly extrapolated (blue line) and the threshold δcðtHÞ
computed at the nonlinear horizon crossing (red line). The
linearly extrapolated threshold, described with a very good

FIG. 6. The two plots of this figure show the critical energy density profiles obtained from (17) with α ¼ 0.15 (left panel) and α ¼ 30
(right panel), plotted against R=RH , computed at the horizon crossing linearly extrapolated (blue line) and at the nonlinear one (red line).
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approximation by the analytic expression of Eq. (19), can
be divided into three different regimes, each one described
by a simple fit.

δcðtiÞ ≃

8>><
>>:

α0.047 − 0.50 0.1≲ α≲ 7

α0.035 − 0.475 7≲ α≲ 13

α0.026 − 0.45 13≲ α≲ 30

ð44Þ

where the first range 0.1≲ α ≲ 7 is correspondingwith good
approximation to all of the shapes of the power spectrum
analyzed in Sec. IV, suggesting that the other two ranges are
suppressed by the smoothing. They describes energy density
profiles which are very sharp around r̂m where the threshold
is computed, and therefore such profiles are smoothed by the
pressure gradients, as we have seen in the right panel of
Fig. 6, suppressing the values δc ≳ 0.6.

FIG. 7. The left panel of this figure shows the two behaviors of the critical amplitude of the peak δρc=ρb, in one case extrapolated
linearly at horizon crossing (blue line) and in the other one computed at the nonlinear horizon crossing (red line), plotted as function of
the shape parameter α. The right panel of this figure shows the corresponding ratio of these two quantities.

FIG. 8. The left panel of this figure shows the two behaviors of the threshold δc in one case extrapolated linearly at horizon crossing
(blue line) and in the other one computed at the nonlinear horizon crossing (red line), plotted as a function of the shape parameter α. The
right panel of this figure shows the corresponding ratio of these two quantities.
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This interpretation is enforced when the threshold is
computed at the nonlinear horizon crossing, which is well
described by another fit, again divided into three different
regimes.

δcðtHÞ ≃

8>><
>>:

α0.125 − 0.05 0.1≲ α≲ 3

α0.06 þ 0.025 3≲ α≲ 8

1.15 α≳ 8.

ð45Þ

Here the first regime of (44) is basically splitting into two
different behaviors of the threshold computed at the non-
linear horizon crossing time, while the second and the third
regimes of (44), corresponding to δc ≳ 0.6 computed at
superhorizon scales, saturate to an almost constant value of
the threshold when is computed at tH.
The right panel of Fig. 8 shows that the ratio between

δcðtHÞ and δcðtiÞ, where one can distinguish two different
regimes: the first one, when α≲ 3, is corresponding to the
increasing behavior of this ratio, and explains the first
regime of (45). The second regime, when α≳ 3, has a
decreasing behavior of the ratio between the two thresh-
olds, corresponding to the second and third regime of (45),
which can be distinguished in the right panel of Fig. 7.
The lower (α≳ 0.1) and the upper (α ≲ 30) boundaries

of validity of the fit are given by the numerical simulations
that are not able to handle very extreme shapes beyond
these values. We are however neglecting only a range of α
which is not significant as we are already close enough to
the limits of δc.
Finally we can observe that the difference between the

threshold computed at the nonlinear horizon crossing and
the linearly extrapolated one is an almost constant numeri-
cal coefficient, varying between 1.7 and 2. This underlines
the fact that the threshold δc is a much more stable quantity
than the local critical amplitude of the peak, and has to be
preferred for distinguishing between cosmological pertur-
bations forming PBHs and the ones that are bouncing back
into the expanding medium.

VI. CONCLUSIONS

PBHs could have formed in the early universe from the
collapse of cosmological perturbations at the horizon re-
entry, provided that their amplitude is larger than a certain
critical threshold. In this paper we have provided a simple
analytical prescription, summarized in Fig. 9, to compute
the threshold of collapse for PBHs, embedding results
coming from numerical simulations.
From Gaussian curvature perturbations, one can com-

pute the mean profile on superhorizon scales using peak
theory and find the characteristic comoving scale of the
perturbations from the given shape of the curvature power
spectrum. From the computation of the profile shape
parameter on superhorizon scales, one can determine the
value of the threshold, also taking into account the effects

of nonlinearities arising at the cosmological horizon cross-
ing fitted from numerical simulations. In particular we
stress that the thresholds calculated at horizon crossing
differs by a factor of order two from the values traditionally
adopted in the literature.
By analysing different explicit examples of the curvature

power spectrum, we have seen that in general the value of
the threshold δc is larger for a monochromatic power
spectrum, modeled by a Dirac delta, than for a broader
shape which allows more modes to contribute to the
collapse. The latter gives a broader and flatter profile of
the compaction function describing a cosmological pertur-
bation collapsing to form a PBH, corresponding to a lower
value of δc. This allows us, using (44), to compute the
threshold of PBHs measured on super-horizon scales by
correctly identifying the shape parameter for a given
curvature power spectrum, obtaining 0.4≲ δc ≲ 0.6.
However, if the threshold is computed at the nonlinear

horizon crossing time (i.e., around the time when they are
really formed), the physical range of the threshold δc
obtained from (45) for all of the possible shapes of the
power spectrum is 0.7≲ δcðtHÞ≲ 1.15. This might intro-
duce a sizeable contribution in the calculation of the
corresponding abundance of PBHs which is exponentially
sensitive to the squared value of the threshold νc ≡ δc=σ,
where σ is the variance of the density field of cosmological
perturbations. So far in the literature those have been
computed on super horizon scales, which gives only the
leading order computation of the abundance. Nonlinear
effects, becoming important close to the horizon crossing,
can give rise to corrections to the probability of collapse
estimated on super horizon scale. The full computation of
the abundance, however, would require knowing both δc
and σ at the nonlinear horizon crossing. In this work we
have provided the first step in this direction by computing
the threshold also at the exact horizon crossing time. The
corresponding computation of the variance would however

FIG. 9. This diagram summarizes our prescription for comput-
ing the threshold δc starting from the power spectrum of
cosmological curvature perturbations Pζ .
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require a dedicated analysis of the nonlinear transfer
function, which is beyond the aim of this work.
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