
 

Cusp properties of high harmonic loops

Despoina Pazouli,* Anastasios Avgoustidis ,† and Edmund J. Copeland‡

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 16 November 2020; accepted 25 February 2021; published 29 March 2021)

In determining the gravitational signal of cusps from a network of cosmic string loops, a number of key
parameters have to be assumed. These include the typical number of cusps per period of string oscillation
and the typical values of the sharpness parameters of left- and right-moving waves on the string, evaluated
at the cusp event. Both of these are important, as the power stored in the gravitational waves emitted from
the loops of string is proportional to the number of cusps per period and inversely proportional to the
product of the sharpness parameters associated with the left- and right-moving modes on the string. In
suitable units, both of these quantities are usually thought to be of order unity. To try and place these
parameters on a more robust footing, we analyze in detail a large number of randomly chosen loops of
string that can have high harmonics associated with them, such as one might expect to form by chopping off
an infinite string in the early Universe. This allows us to analyze tens of thousands of loops and obtain
detailed statistics on these crucial parameters. While we find in general the sharpness parameters are indeed
close to unity, as assumed in previous work [with occasional exceptions where they can become Oð10−2Þ],
the cusp number per period scales directly with the number of harmonics on the loop and can be
significantly larger than unity. This opens up the possibility of larger signals than would have otherwise
been expected, potentially leading to tighter bounds on the dimensionless cosmic string tension Gμ.
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I. INTRODUCTION

Cosmic strings are linelike topological defects produced
by symmetry breaking phase transitions in a wide range of
early Universe models [1–6]. They form tangles or net-
works that evolve dynamically and can produce a host of
potentially observable signals. In particular, they are active,
incoherent sources of cosmological perturbations, and so
their predicted effects on the cosmic microwave back-
ground (CMB) are very different from those of passive,
coherent perturbations generated by cosmic inflation
[7–11]. This has allowed cosmic strings to be strongly
constrained, having a maximum allowed contribution to the
CMB anisotropy at the level of approximately 1% [12,13].
While cosmic strings have been ruled out as the main

source of the observed CMB anisotropy, they remain an
important subject in modern cosmology. Indeed, the for-
mation of string networks is a generic prediction in a wide
range of models of the early Universe [14–21], and so they

are extremely interesting from a theoretical point of view.
At the same time, they have a rich phenomenology with
observational signals relevant to several areas of cosmology
and astrophysics [6]. Thus, cosmic strings open an exciting
observational window into the early Universe. Their
observation would be a major discovery in physics, and
as a bonus, it would also provide important quantitative
information about the physics of the early Universe (e.g.,
the energy scale of the symmetry breaking phase transition
that produced the string network). On the other hand, even
failure to observe strings is of significant scientific value; as
observational sensitivity improves and bounds on cosmic
strings become tighter, we are excluding more of the
parameter space of our models of the early Universe.
The discovery of gravitational waves has reinforced

interest in the physics of cosmic strings. The evolution of
string networks leads to the production of closed string loops,
which decay via gravitational wave emission. At this point,
we should acknowledge this is not a uniformly accepted
outcome for the string decay. Being modeled as Abelian-
Higgs strings, there are also claims in the literature that the
dominant form of decay is via the fields themselves and not
gravitationally [22]. This is an important issue; for recent
work considering the relative importance of both contribu-
tions, see Refs. [23,24]. We will be considering the case
where the primary decay channel is through gravitational
radiation, giving rise to a stochastic background of gravita-
tional waves. Most of the emission comes from specific
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events on the string, known as cusps, arising when the local
velocity of the stringmomentarily hits the speed of light, thus
producing a burst of beamed gravitational radiation. Kinks,
points on the string where the tangent to the string is
discontinuous, are also known to contribute significantly to
the gravitational wave signal. These signals are now being
targeted by gravitational wave detectors including LIGO
[25–27] and LISA [28,29]. Such targeting brings with it the
need for a better quantitative understanding of gravitational
radiation from string networks. Some of the most stringent
observational bounds on cosmic strings come from their
predicted stochastic gravitational wave background, which
can be constrained either indirectly through pulsar timing
observations [30–34] or directly by gravitational wave
detectors [26]. However, these constraints are also the most
sensitive to largely unknown parameters, like, for example,
the typical size of string loops in the network. Indeed, while
the evolution of the long string component of the network is
well understood, the quantitative modeling of the loop
component remains uncertain. In particular, the typical size
of loops depends on the loop production function [2] (the
number density of loops as a function of loop size and
time), which has been the subject of active debate in recent
years [22,35–43].
At present, there are three models used for deriving

constraints and forecasts on string networks based on their
stochastic gravitational wave background. These models,
referred to as models 1/I, 2/II, and 3/III in Refs. [27,29],
respectively, differ significantly in their assumed/derived
loop distribution functions. As we are entering this exciting
era of direct gravitational wave detection, it is imperative
that as the modeling be improved the associated loop
parameters become better quantified. In this paper, we
focus on two key parameters, the number of string cusps
per oscillation period and the sharpness of cusps, both of
which are important components of the overall gravita-
tional signal from cusps. While there has been a consid-
erable amount of work on the role of cusps on networks of
cosmic string loops (see, for example, Refs. [29,41,42,
44–53]), the distribution of cusps on higher harmonic loops
has not to date been studied in detail. An early attempt to
address the issue can be found in the work by Copi and
Vachaspati [54], who used numerical simulations to char-
acterize attractor non-self-intersecting loop shapes, study-
ing their length, velocity, kink, and cusp distributions. To
reach that stage, they began with initial loops containingM
higher harmonic modes and argued that such loops have on
average M2 cusps. They also discovered that on average
large loops will split into 3M stable loops within two
oscillation periods (independently of M), with the stable
loops being described by a degenerate kinky loop, coplanar
and rectangular. These final loops were found to have a
40% chance of containing a cusp.
In reality, we do not really know the harmonic distri-

bution at formation of cosmic string loops, but we do know
there could be loops formed off the long string network or

as individual loops in the early Universe that have many
harmonics on them. The traditional picture of such loops is
that as they evolve the majority of them undergo a period
where they self-intersect. The initial loop then breaks into
two daughter loops, with the accompanying formation of a
pair of kinks on each daughter loop. These may well then
self-intersect, and a cascade process takes place, whereby
the initial high harmonic loop ends up in a class of much
smaller non-self-intersecting loops [55–57]. The effect of
the fragmentation process on the gravitational wave pro-
duction of the network is studied in Refs. [58,59]. The
cusps associated with such non-self-intersecting loops play
an important role through the strong beams of high-
frequency gravitational waves they produce, which leads
to a stringy non-Gaussian distribution in the stochastic
ensemble of gravitational waves generated by a cosmo-
logical network of oscillating loops, and also, crucially,
occasional sharp bursts of gravitational waves from the
cusp regions that stand out above the confusion of
gravitational wave noise made by smaller overlapping
bursts. The results of Damour and Vilenkin [52] suggest
that if only 10% of all string loops have cusps the
gravitational wave bursts would be detectable by
Advanced LIGO or LISA for string tensions μ down below
Gμ ∼ 10−13, where G is Newton’s constant.
In determining these constraints, there are two important

parameters whose values need to be assumed. Given the
spacetime position of a string Xμðσ; τÞ, where σ, τ are the
worldsheet coordinates of the string, as we will shortly see,
the general solution for the string is given in terms of right-
and left-moving modes traveling along it, a⃗ðuÞ and b⃗ðvÞ,
where u ¼ σ − τ and v ¼ σ þ τ. Now, two key parameters
involved in the gravitational wave calculation are the
second derivative of the string position evaluated at the
cusp ∂2

t X (a measure of “cusp sharpness”) and the average
number of cusps formed per loop period Tl ¼ l=2, where
l is the invariant length of the loop. In Eq. (3.21) of
Ref. [52], the authors argue that the generic order of
magnitude estimate for ja⃗00j∼2π=l∼ jb⃗00j, where a⃗00 ≡ d2a⃗

du2

and b⃗00 ≡ d2b⃗
dv2 evaluated at the cusp. In other words, they

expect the coefficient to be of order unity (2π=l is the
natural unit for a string loop). In terms of the number of
cusps per loop oscillation, quantified by parameter c in
Eq. (5.14) of Ref. [52], the authors consider typical values
of c ∼ 1. This parameter is meant to account for the
possibility that all of the loops have of order one cusp
per oscillation (c ∼ 1) or, for example, only 10% of the
loops have a cusp on them per oscillation (c ∼ 0.1). As
shown in Fig. 1 of Ref. [52], c can have a significant impact
on the strength of the gravitational wave amplitude of
bursts emitted by cosmic string cusps. Similarly, knowing
the true range of values of ja⃗00j and jb⃗00j is also important for
a proper estimate of the strength of the signal emerging
from cusp bursts. This is clear from Eqs. (3.11), (3.12), and
(3.23) of Ref. [52], in which the logarithmic Fourier
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transform of the gravitational wave burst asymptotic
waveform for the cusp emission, and hence the amplitude
of the wave arriving on Earth, depends on terms of the
form 1=ðja⃗00jjb⃗00jÞ1=3. In particular, if it turns out that a
significant fraction of the cusps had associated values
ja⃗00j ≪ 1 and jb⃗00j ≪ 1 (in units of 2π=l), then it could lead
to a significant enhancement of the strength of the signal
produced.
It is apparent from the above discussion that to

accurately quantify gravitational radiation from string
networks one must understand (a) how these two param-
eters (number of cusps per oscillation period and cusp
sharpness) behave as functions of the loop harmonic
number and (b) what is the expected loop distribution
in terms of their harmonic content or, at the very least,
what is the harmonic content of a typical loop in the
network. Here, we focus on a, considering the behavior of
individual loops in isolation, without examining the
typicality of the loop in the network (we will present
our results on b in a forthcoming publication [60]). A key
goal of this work is to analyze these two parameters for a
wide range of high harmonic loops to establish whether
there is a correlation between the number of cusps and the
harmonic order of the loop and what range/distribution of
values we have for the magnitude of ja⃗00j and jb⃗00j
evaluated at the cusps. For concreteness, we work with
the odd-harmonic string [61,62], a family of cosmic string
solutions which can be expressed in analytic form to
arbitrarily high harmonics. In the following, we will use
the convention that spacetime indices are in greek, taking
the values μ ¼ 0, 1, 2, 3, while space indices are in latin
taking the values i ¼ 1, 2, 3.
This paper is organized as follows. In Sec. II, we review

the basics of the Nambu-Goto approach to string modeling,
while in Sec. III, we review the odd-harmonic string
solutions, which are the focus of this work. In Sec. IV,
we generate large ensembles of odd-harmonic string
solutions and study their cusp number and sharpness
distributions. We conclude in Sec. V.

II. NAMBU-GOTO STRING

In this section, we will give a brief introduction to the
dynamics of Nambu-Goto strings in flat spacetime—more
details can be found, for example, in the classic textbooks
of Vilenkin and Shellard [2] and Zwiebach [63].
The background spacetime where the string moves

is assumed to be a smooth four-dimensional Lorentzian
manifold with a metric gμν, and each point on the mani-
fold is identified by the spacetime coordinates xμ ¼
ðx0; x1; x2; x3Þ. We model the closed string dynamics
using the Nambu-Goto action. In this approach, the string
is a one-dimensional object, and its world history can be
represented by a two-dimensional surface in spacetime,
the worldsheet. The mapping functions

Xμ ¼ Xμðτ; σÞ ð2:1Þ

map the worldsheet parameters ðτ; σÞ, used to parametrize
the two-dimensional surface, to the spacetime coordinates
xμ. The parameter σ describes different points on the string
on, and it is subject to periodic identification, since
we assume a closed string, while τ is the time parameter
on the worldsheet. The induced metric, i.e., the metric
induced on the worldsheet from the spacetime metric
gμν, is

γAB ¼ gμν
∂Xμ

∂ξA
∂Xν

∂ξB : ð2:2Þ

The indices A and B take values from 0 to 1, and
ξ0 ¼ τ; ξ1 ¼ σ. The Nambu-Goto action is proportional
to the surface area swept out by the string in spacetime

S ¼ −μ
Z

dτ
I

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γ

p
; ð2:3Þ

where μ is the string tension and det γ is the determinant of
the induced metric γAB.
Restricting our analysis to a cosmic string living in

a flat spacetime, the spacetime metric becomes gμν ¼
ημν ¼ diagð−1; 1; 1; 1Þ. By varying the action (2.3) with
respect to the mapping functions Xμ, we obtain the
equations of motion for the string in flat spacetime,

∂Að
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γ

p
γAB∂BxμÞ ¼ 0; ð2:4Þ

where ∂A ¼ ∂=∂ξA. Since the action is invariant under
arbitrary reparametrizations of the worldsheet, we are
free to impose two conditions on the worldsheet para-
meters, thereby fixing the gauge. It is convenient to
choose the conformal gauge γAB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

− det γ
p

ηAB, where
ηAB ¼ diagð−1; 1Þ, the two-dimensional Minkowski met-
ric. The conformal gauge imposes the Virasoro constraints

ημν
∂Xμ

∂τ
∂Xν

∂σ ¼ 0; ð2:5Þ

ημν
∂Xμ

∂τ
∂Xν

∂τ þ ημν
∂Xμ

∂σ
∂Xν

∂σ ¼ 0: ð2:6Þ

Equation (2.4) is then simplified to a two-dimensional
wave equation of motion for the string in flat spacetime,

� ∂2

∂σ2 −
∂2

∂τ2
�
Xμðτ; σÞ ¼ 0; ð2:7Þ

constrained by the Virasoro conditions. The general
solution of the Nambu-Goto equations of motion in the
conformal gauge is therefore a superposition of a left-
moving and a right-moving waveforms. Notice that a
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solution to (2.7) for μ ¼ 0 is X0 ¼ τ, which we can choose
to fix the remaining gauge invariance. Note that our
gauge choices have fixed the possible reparametrizations
of the worldsheet parameters, apart from a constant shift in
σ. We can now write the general solution of the string
motion as

X0 ¼ τ; Xiðτ; σÞ ¼ 1

2
ðaiðuÞ þ biðvÞÞ; ð2:8Þ

constrained by

ηij
dai

du
daj

du
¼ 1; ηij

dbi

dv
dbj

dv
¼ 1: ð2:9Þ

To reiterate, in the above, we have defined u ¼ σ − τ and
v ¼ σ þ τ, and a⃗ðuÞ and b⃗ðvÞ are the right- and left-
moving vector mode functions, respectively. Using
the notation r0ðuÞ ¼ dr=du, etc., and a⃗2 ¼ ηijaiaj, the
Virasoro conditions are then written simply as

a⃗02 ¼ b⃗02 ¼ 1; ð2:10Þ

that is, the functions a⃗0ðuÞ and b⃗0ðvÞ both have constant
unit magnitude. Therefore, they trace closed curves on a
unit 2-sphere, which is called the Kibble-Turok sphere.
Note that up to this point we assumed that γAB is non-
degenerate. However, there are singular points on the
worldsheet where det γ becomes zero. The velocity of the
string momentarily reaches the speed of light at these
points, which are called cusps. Another type of singular
points on the worldsheet are the kinks, which occur where
the derivatives of the right- and left-movers have dis-
continuities. These points, namely, the cusps and kinks,
play an important role in the evolution of the string since
the gravitational radiation they emit dominates the gravi-
tational wave signal from the string.
We will choose for convenience the period in σ to be 2π.

Since the loop is closed, the string trajectory should satisfy
that Xμðτ; σ þ 2πÞ ¼ Xμðτ; σÞ. It can then be shown that
aμðuÞ − aμðuþ 2πÞ ¼ −bμðvÞ þ bμðvþ 2πÞ and also that
the string trajectory Xμðτ; σÞ has effective period π, since
Xμðτ þ π; σ þ πÞ ¼ Xμðτ; σÞ. This is the cosmic string
fundamental oscillation period T1 ¼ π. For specific fam-
ilies of cosmic string solutions, it is possible for the period
to be less than T1, for example, when the string trajectory is
invariant under a translation of a fraction of π, such as the
case with a nonplanar single harmonic loop [64]. In the
center-of-mass frame, the functions a⃗0ðuÞ and b⃗0ðvÞ should
satisfy the conditions

Z
2π

0

a⃗0du ¼
Z

2π

0

b⃗0dv ¼ 0: ð2:11Þ

Therefore, in the center-of-mass frame, the functions a⃗ðuÞ
and b⃗ðvÞ have period 2π, and so do a⃗0ðuÞ and b⃗0ðvÞ.

III. ODD-HARMONIC STRING

The general solution of the cosmic string loop equations
of motion can be expanded as a Fourier series. In our study,
we will require solutions of equations that involve the
derivatives of the left- and right-movers, a⃗0ðuÞ and b⃗0ðvÞ.
For that reason, we will parametrize these quantities here-
after, instead of the loop trajectory. The Fourier series
expansions of a0ðuÞ and b0ðvÞ are written as

a⃗N0 ðuÞ ¼ V⃗ þ
XN
n¼1

A⃗n cosðnuÞ þ
XN
n¼1

B⃗n sinðnuÞ; ð3:1Þ

b⃗M
0 ðvÞ ¼ −V⃗ þ

XM
n¼1

C⃗n cosðnvÞ þ
XM
n¼1

D⃗n sinðnvÞ; ð3:2Þ

where N, M ∈ N correspond to the harmonic order of the
string movers [2]. The constant terms of a⃗N0 ðuÞ and of
b⃗M

0 ðvÞ are constrained to be opposite to each other due to
the periodicity of the loops. The solutions (3.1) and (3.2)
must satisfy the Virasoro conditions (2.9), which impose a
nonlinear set of conditions on the vector coefficients, A⃗n,
B⃗n, C⃗n, D⃗n, and V⃗. A method to solve these conditions was
introduced by Brown et al., who used a product represen-
tation method (and its corresponding spinorial representa-
tion) allowing them to describe the loop trajectory in terms
of a matrix product [61,62]. Introducing h⃗0NðuÞ to represent
either the derivatives of the left- [a⃗0ðuÞ] or right-moving
[b⃗0ðvÞ] modes of a string with N harmonic modes, they can
be written in the functional form

h⃗0NðuÞ ¼ ρNþ1RzðuÞ…ρ3RzðuÞρ2RzðuÞρ1k⃗; ð3:3Þ
where

ρi ¼ ρðθi;ϕiÞ ¼ Rzð−θiÞRxðϕiÞRzðθiÞ; ð3:4Þ

such that

0 ≤ ϕi ≤ 2π; 0 ≤ θi ≤ π i ¼ 1;…; N þ 1 ð3:5Þ

and

RzðωÞ ¼

0
B@

cosω − sinω 0

sinω cosω 0

0 0 1

1
CA; ð3:6Þ

RxðωÞ ¼

0
B@

1 0 0

0 cosω − sinω

0 sinω cosω

1
CA: ð3:7Þ

Note that we have assumed a three-dimensional Cartesian
coordinate system xyz, with unit vectors ð⃗i; j⃗; k⃗Þ. We have
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introduced a matrix notation, where RxðϕÞ denotes a
rotation of angle ϕ around the x axis. In expression
(3.3), we chose the k⃗ unit vector, without loss of generality;
any other unit vector can be chosen, and the same rule can
be applied, or equivalently we can change the coordinate
system alignment.
The product representation method provides a general

expression for the cosmic string solution up to any finite
order of harmonics as a product of matrices. However, if we
wish to describe the string in its center-of-mass frame, then
the cosmic string solution must also satisfy the condition
(2.11), which implies that both a⃗0ðuÞ and b⃗0ðvÞ have period
2π. Although a general solution for any order N that solves
(2.11) has not been found analytically, strings comprising
only odd harmonics are in fact a solution as originally
shown by Siemens and Kibble [65]. This loss of generality
is the small price we have to pay in order to move to the
center-of-mass frame of the cosmic string. By applying
Eq. (3.3) to the case where all harmonics on theN harmonic
string are odd, we obtain

h⃗0NðuÞ ¼ ρNþ2Rzð2uÞρNRzð2uÞ…Rzð2uÞρ3RzðuÞρ1k⃗;
ð3:8Þ

with θ1 ¼ −π=2 and ϕ1 ¼ π=2 for both a⃗0 and b⃗0. As we
have mentioned, a key goal of ours in this work is to
determine the number of cusps produced per period on an
odd-harmonic cosmic string, the relative positions of the
points where the cusps occur, and the magnitude of the
second derivatives of the left- and right-movers evaluated at
the cusps. Given that these quantities are invariant under
orientations of the string in the plane, we can further
simplify our solution, while making sure that the relative
orientation freedom of a⃗0ðuÞ and b⃗0ðvÞ is preserved.
Therefore, we are free to eliminate parameters from the
orientation freedom of the string by removing the θNþ2

parameter from a0ðuÞ and the θMþ2 and ϕMþ2 parameters
from b0ðvÞ. Leaving the parameter ϕNþ2 in aðuÞ ensures the
relative freedom of the string movers [62,65]. The solutions
for the derivatives of the right- and left-movers that we
obtain are

a⃗0NðuÞ ¼ RxðϕNþ2ÞRzð2uÞρNRzð2uÞ…Rzð2uÞρ3RzðuÞ⃗i
ð3:9Þ

and

b⃗0MðvÞ ¼ Rzð2vÞρMRzð2vÞ…Rzð2vÞρ3RzðvÞ⃗i; ð3:10Þ

respectively. We will call the string appearing in Eqs. (3.9)
and (3.10) the N=M odd harmonic string, referring to the
harmonic order we have chosen for a0ðuÞ and b0ðvÞ,
respectively. In our study, we will use this parametrization

of cosmic string loops to obtain our key results. The angles
that appear in the matrix ρi ¼ ρðθi;ϕiÞ will be denoted as
(θia;ϕiaÞ and ðθib;ϕibÞ for the ρi matrices appearing in
a⃗0ðuÞ and b⃗0ðvÞ, respectively. It is important to note that the
fact we can choose the angles at random means these are
huge classes of independent solutions that we are free to
analyze in order to obtain the statistics associated with the
distribution of the cusps we are aiming for. By moving to
the center-of-mass frame, we have induced an extra
symmetry to the cosmic string loop, which now satis-
fies X⃗ðτ; σ þ πÞ ¼ −X⃗ðτ; σÞ.

IV. CUSP OCCURRENCE

A generic property of cosmic strings is that points
on the string can momentarily reach the speed of light.
Differentiating Eq. (2.8) with respect to time, we find that

_X⃗ðτ; σÞ ¼ 1

2
ð−a⃗0ðuÞ þ b⃗0ðvÞÞ: ð4:1Þ

A point on the string reaches the speed of light when

j _X⃗j2 ¼ 1, or equivalently when

a⃗0ðuÞ ¼ −b⃗0ðvÞ ⇔ a⃗0ðuÞ · b⃗0ðvÞ ¼ −1: ð4:2Þ

The solutions of Eq. (4.2) are called cusps, and their
location on the string worldsheet will be denoted as
ðuc; vcÞ. Schematically, these solutions occur when a⃗0ðuÞ
and −b⃗0ðvÞ intersect on the Kibble-Turok sphere (Fig. 1).
Since the curves a⃗0ðuÞ and b⃗0ðvÞ are periodic, the cusp
solutions ðuc; vcÞ will also occur periodically. Smooth
strings, arising from the Nambu-Goto action, will generi-
cally have cusp points. However, other types of strings can
exist, with discontinuities in a⃗0ðuÞ and b⃗0ðvÞ, called kinks.
In this type of strings, cusps are more rare since the
discontinuities make intersections on the Kibble-Turok
sphere less likely to occur [2].
We wish to track down the occurrence of the cusps in

our class of odd-harmonic strings. Unfortunately, it is
clear that our key quantities (3.9) and (3.10) are nonlinear
in u, v and Eq. (4.2) cannot be solved analytically in
general. Hence, we will solve it numerically to obtain
both the number of cusps formed per period, and by
differentiating Eqs. (3.9) and (3.10) and evaluating them
at ðuc; vcÞ, we will also obtain all the corresponding
values for a⃗00ðucÞ and b⃗00ðvcÞ, respectively, another key
quantity. Fortunately, there are in fact specific choices of
parameters that do lead to analytic solutions for odd-
harmonic strings. This is very useful as it will allow us to
test our numerical algorithm, and so we now turn to these
specific cases.
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A. Analytic cases

An example of string solutions where the occurrence of
cusps can be found analytically is the Kibble-Turok family
of strings [44], which is a subset of the odd-harmonic string
for certain choices of parameters in a⃗30 ðuÞ and b⃗3

0 ðvÞ. They
can be obtained from (3.9), (3.10) if we set θ3a ¼ 0, ϕ5a ¼
0 and θ3b ¼ 0 and ϕ3b ¼ π. The only free parameter is ϕ3a,
which we allow to range in the interval ½0; π�. If we set
α ¼ cos2 ðϕ3a=2Þ, then the right- and left-movers are

a⃗0ðuÞ ¼ ½ð1 − αÞ cosðuÞ þ α cos ð3uÞ�⃗i ð4:3Þ

þ½ð1 − αÞ sinðuÞ þ α sin ð3uÞ�j⃗ ð4:4Þ

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αÞ

p
sinðuÞk⃗ ð4:5Þ

and

b⃗0ðvÞ ¼ cosðvÞ⃗iþ sinðvÞj⃗: ð4:6Þ

The cusps positions can easily be obtained analytically for
this family of loops by solving the cusp condition (4.2) for
the above cosmic string solution, which provides a set of
three equations with two unknowns. Note that the left-
mover has no component in the z axis, which restricts the
possible values of the u coordinate. The remaining two
equations provide the possible v values and constrain the
choices of pairs ðu; vÞ that satisfy the system. We find that
this family of string solutions supports two simultaneous
cusps per period π at the points ðτ; σÞ ¼ ðπ=2; π=2Þ
and ðτ; σÞ ¼ ðπ=2; 3π=2Þ.
Another analytic solution that can be described by our

analysis is the first-order harmonic loop [64] obtained from
(3.9) and (3.10) for N ¼ 1,

a⃗0ðuÞ ¼ cosðuÞ⃗iþ cosϕ sinðuÞj⃗þ sinðϕÞ sinðuÞk⃗ ð4:7Þ

and

(a) (b)

(c)

FIG. 1. Plots of the a⃗0ðuÞ and b⃗0ðvÞ. In plots (a) and (b), we see the harmonic order N ¼ 3 case. The points depicted
in the plots correspond to A ¼ ðθa⃗0 ðu ¼ 0Þ;ϕa⃗0 ðu ¼ 0ÞÞ, B ¼ ðθa⃗0 ðu ¼ πÞ;ϕa⃗0 ðu ¼ πÞÞ, C ¼ ðθb⃗0 ðv ¼ 0Þ;ϕb⃗0 ðv ¼ 0ÞÞ, and
D ¼ ðθb⃗0 ðv ¼ πÞ;ϕb⃗0 ðv ¼ πÞÞ.
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b⃗0ðvÞ ¼ cosðvÞ⃗iþ sinðvÞj⃗; ð4:8Þ

which also supports two cusps per period at ðτ; σÞ ¼
ðπ=2; π=2Þ and ðτ; σÞ ¼ ðπ=2; 3π=2Þ. The cusp positions
are found by solving the set of equations from (4.2), as we
did for the Kibble-Turok string, by transforming from the
coordinates (τ0; σ0) used in Ref. [64] to our coordinate
system, via τ0 ¼ τ, σ0 ¼ σ þ π=2 and ϕ0 ¼ ϕþ π. We were
thus able to confirm the properties of both of these solutions
with our numerical code, which we now go on to describe.

B. Numerical method

Wewill now summarize the structure of the codewe used
to solve the nonlinear system of equations (4.2). It consists
of two parts, one to construct the loops and another to solve
the nonlinear system. For simplicity, in what follows, we
set the harmonic order of the left- and right-movers to be
the same value N:
(1) Part I:

(a) We choose the harmonic orderN and the number
of loops M (note that this is not the harmonic
order of the left-movers M) we will analyze.

(b) Adopting an iterative process, we produce the
N-order harmonic loop in ðN − 1Þ=2 steps,
using the definition of the odd-harmonic loop,
Eqs. (3.9) and (3.10). In each step of the iteration,
we randomly choose two angles for the a⃗0NðuÞ and
two angles for b⃗0NðvÞ, and in the last step, we
randomly choose one extra angle for each of
the left- and right-movers, which are needed
to eventually build the N-harmonic loop with
2N − 1 random angles in total. In this way, we
aim to sample the plane of angles, through a large
number of random choices of angle parameters.

(c) We append into lists the functions a⃗0NðuÞ and
b⃗0NðvÞ, their derivatives, a⃗00NðuÞ and b⃗00NðvÞ, and
the randomly chosen angles. The process of step
2 is repeated M times, to eventually obtain in
lists all the required information for the M loops
produced.

(2) Part II:
(a) We enter an iterative process where we choose

the ith element of the lists we have produced in
part I, where i takes integer values from 1 to M,
labeling the loop we are considering.

(b) We divide the ðu; vÞ plane into equally sized
grids and numerically solve Eq. (4.2) to obtain
the cusp solutions ðuc; vcÞ, which are then
appended in a list and tested to check that they
are indeed solutions, i.e., that they satisfy (4.2)
by using the analytic expressions we saved from
part I. We then increase the resolution of the
grid by subdividing it into finer grid sizes and
repeat the above process until no new ðuc; vcÞ

pairs are found. After we obtain the list of
cusp points for the chosen loop, we calcu-
late ja00ðuc; vcÞj; jb00ðuc; vcÞj.

(c) This process is repeated until we analyze all
loops from part I.

Since the general equation of motion for the string
comprises the periodic functions a⃗ðuÞ and b⃗ðvÞ, each with
a period 2π, the domain in u − v space ½0; 2πÞ × ½0; 2πÞ
contains all the information about the string motion.
In Fig. 2, we can see that the ½0; 2πÞ × ½0; 2πÞ ðu; vÞ
domain can be mapped to the ½0; 2πÞ × ½0; 2πÞ (τ, σ)
domain, as expected. Indeed, the domains labeled A in
Fig. 2 are equivalent to each other, due to the periodicity of
the string, X⃗ðτ; σÞ ¼ X⃗ðτ þ π; σ þ πÞ. The same holds for
the domains B.
The numerical analysis of the strings can be quite time

consuming. To reduce computational time, we take advan-
tage of the extra symmetry of our string loop solutions in
the center of mass frame, X⃗ðτ; σ þ πÞ ¼ −X⃗ðτ; σÞ, which is
equivalent to X⃗ðu; vÞ ¼ X⃗ðuþ π; vþ πÞ. This implies that
if a cusp occurs at ðuc; vcÞ, it also occurs at
ðuc þ π; vc þ πÞ, and we therefore only need to look for
cusp solutions in the domain ½0; πÞ × ½0; 2πÞ of the u − v
space and then map them to the full domain ½0; 2πÞ ×
½0; 2πÞ to obtain the full space of cusp solutions.

C. Results and discussion

To check on the accuracy of our simulations, we have
compared our numerical results with the analytic cases
mentioned in Sec. IVA, namely, the one-harmonic

FIG. 2. The worldsheet domain in terms of the ðτ; σÞ and ðu; vÞ
coordinates.
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loop [64] and the Kibble-Turok loop [44], which can both
be obtained from our odd-harmonic loops. In both cases,
we find the same number and positions for the cusps, with
an accuracy of 10−5, and the same values for ja00cj, jb00c j
evaluated at the cusp. As a further check to our numerical
method, we find that the Turok solution [66], a generali-
zation of the Kibble-Turok string with two free parameters,
exhibits (generically) either two or six cusps per period,
with two of them always occurring at ðτ; σÞ ¼ ðπ=2; π; 2Þ
and ðτ; σÞ ¼ ðπ=2; 3π; 2Þ, as expected. Since the Turok
string is not a subfamily of the odd-harmonic string, we
input the equations of the left- and right-movers of the
Turok string (given in Ref. [2]) directly into part II of
our code (described in Sec. IV B). Note that the Turok
string can also exhibit four cusps per period for a specific
choice of its two free parameters. Since we choose these
parameters randomly, it is unlikely that we will come
across this fine-tuned case. The cusp structure of the
Turok string with respect to the two-parameter space is
provided in Ref. [64].
Having confirmed the consistency of our approach with

known analytic solutions, we can confidently go on to look
at cases of more general odd-harmonic strings, going up to
harmonic order 21. The first question we wish to address is
what is the average value of the second derivative of the
left- and right-movers. Recall that this is an important
contributor to the gravitational wave power emitted by
cusps, and the assumption being made when calculating the
associated gravitational wave power emerging from the
cusp region is that in units of 2π=l the average value is of
order 1 [27,50,52]. If it is substantially smaller, or if there
are a significant number of cusps on a loop producing such
small values, this will increase the associated power. Our
key results are presented in Figs. 3 and 6. In Fig. 3, we have
calculated the mean value for the second derivative of the
left- and right-movers on the cusps defined through g1,
which was introduced in Ref. [52],

g1 ¼ ðja⃗00ðuc; vcÞjjb⃗00ðuc; vcÞjÞ−
1
3; ð4:9Þ

for tens of thousands of loops as a function of the harmonic
order, ranging from N ¼ 1 to 21 [67]. This is so important
because the gravitational wave amplitude is proportional
to g1. Of particular note is the fact that hg1i decreases
rapidly initially as the harmonic order increases but
eventually plateaus for large N. We also note that it is
indeed consistent with the claims in Ref. [52], namely, that
it is a number of order unity, given that it ranges from 1, for
small N, down to 0.4, for large N.
What about the range of possible values of g1 for a given

harmonic? In particular, how large can it go, and how
frequent are these large values? We address this question in
Fig. 6, in which each of the four plots represents the
frequency distribution of the parameter g1 produced from a
representative sample of 1000 loops of a specific harmonic
order N. On the horizontal axis, we have the values of g1,
and on the vertical axis, we have the number of times the
parameter g1 obtains a value which lies in the correspond-
ing bin. Note that the first plot, depicting the frequency
distribution of g1 for N ¼ 3 harmonic loops, decreases
almost monotonically from its initial high value in the
[0.45, 0.5) bin, except for a secondary subsidiary peak in
the [0.95, 1) bin. As we increase the number of harmonics
N on the loop, the histograms become more peaked around
small values of g1 ∼ 0.4, a feature that is particularly
noticeable for the cases N ¼ 11 and N ¼ 19. We also
notice that the total number of counts increases as we
increase the harmonic order, N, of the loops. This occurs
because the average number of cusps per period increases
as we increase the harmonic order. We can understand the
typical smallest value g1 takes. For the case of the N ¼ 3
harmonic order loop, we can show analytically [from
Eqs. (3.9) and (3.10)] that it is 0.5, matching the numerical
result. Unfortunately, analytic approaches break down for
higher orders, as the function g1ðu; vÞ quickly becomes
complicated, and finding its maximum analytically
becomes progressively harder. It is clear from the four
cases depicted in Fig. 6 that the number of loops with large
values of g1 ≫ 1 become negligible, and hence increasing
the number of harmonics does not apparently have a
significant impact in the range of possible values of g1;
they remain stubbornly close to the assumed value of
order unity.
In Fig. 4, we plot the mean value of yet another quantity

that is related to the gravitational wave signal emitted from
cusps on cosmic strings. This is given by parameter g2,
defined in Ref. [52] as

g2 ¼ ðmin ðja⃗00j; jb⃗00jÞÞ−1; ð4:10Þ

which is inversely proportional to the beaming angle of the
cusp θdiv. In particular, we define the angle θdiv to be the
angle that divides the observation angles of a cusp into two

FIG. 3. Our numerical results for the mean value of g1, with
harmonic order from 1 to 21. Note that the harmonic order takes
only odd values.
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sets: one where the gravitational wave signal is roughly the
same as it is along the direction of the cusp emission
(θ < θdiv) and one where the signal is smoothed (θ > θdiv),
which corresponds to the gravitational wave signal away
from the cusp [51,52]. The observer receives the gravita-
tional wave which has emanated from the cusp on the
cosmic string if and only if the observation angle with
respect to the direction of the cusp satisfies θ < θdiv. As g2
decreases, the angle θdiv increases, which implies that the
cusp signal can be received from a broader range of
observation angles, and leads to an enhanced overall
gravitational wave signal from cosmic strings on Earth.
From Fig. 4, we notice that the average value of g2 for each
harmonic order follows a pattern similar to the one in
Fig. 3, starting from an average value of unity at the first-
order harmonic string and gradually decreasing in value
until it plateaus at just below 0.4. Once again, we note that
the values of g2 obtained using the odd-harmonic string do
not deviate significantly from the usual assumption that its
value is equal to unity [51,52]. Given both g1 and g2 have
basically the same dependence on ja⃗00j and jb⃗00j, which
typically have values of order unity, it is not surprising they
have the same basic shape.
We believe that this result on the behavior of g1 and g2

can also be seen in the earlier very nice paper of Blanco-
Pillado et al. [68], although it is not commented on directly
there. Considering the shapes of loops resulting from
including a smoothing process to model the effect of
gravitational backreaction, they argue that smoothing leads
to cusps of order 2 on each loop. In particular, in their
Figs. 10 and 11, they plot the distribution over time of
parameters which are closely related to g1 and g2, finding
late time values for the two cusps, which remain on their
loops that are very similar to the values we find here.
Turning our attention to the number of cusps appearing per
period on a harmonic order N string loop, c, we see from
Fig. 5 the interesting result that the average value hci shows

a linear behavior (at least for N ranging from 1 to 21),
satisfying hci ≃ 2N. We note that this result differs from
that predicted in Ref. [54], in which it was suggested that
c ∝ N2. The argument for N2 is based on the fact that each
mode roughly corresponds to a great circle on the Kibble-
Turok sphere, so the number of intersections (i.e., the
number of occasions a cusp forms) is proportional to N2. It
is not obvious to us at present why we are differing on this
point; it is a very interesting question requiring further
investigation. Figure 7 depicts the frequency distribution of
the cusps per period produced from the class of 1000 loops
represented in Fig. 6. It allows us to observe a general
pattern of how the histogram changes with harmonic order.
From the symmetries of the odd-harmonic string, we
conclude that the number of cusps per period, c, has to
be an even number. Also, note that in low harmonics it is far
more likely to have values of c that are not multiplies of 4,
as is clear from Fig. 7(a). This can be compared with the
Turok solution [66], where c takes the value 4 only for very
specific choices of the string parameters, and otherwise it
takes the values 2 or 6 (see Ref. [64]). As the harmonic
order increases, we notice that it becomes more likely to
have values of c that are multiples of 4. It is worth noting a
few interesting points from Figs. 5 and 7. First of all, note
that, even for low harmonic loops with N ¼ 3, there are on
average six cusps per period, going up to approximately 40
for the case N ¼ 19. For the 1000 N ¼ 3 loops shown in
Fig. 7, 650 of them have more than six cusps per period;
for the N ¼ 5 case, that number rises to 850; and for the
N ¼ 19 case, almost all the loops satisfy that condition.
This raises the obvious question of what is the influence of
these very cuspy loops when it comes to estimating the
gravitational wave beaming from them. At the very least, it
suggests that the effective number of cusps per period could
well be significantly more than what has been assumed
to date.
In Figs. 3–5, the error bars indicate the usual standard

error associated with the mean. For Figs. 3 and 4, they turn

FIG. 4. Our numerical results for the mean value of g2, with
harmonic order from 1 to 21. Note that the harmonic order takes
only odd values.

FIG. 5. Our numerical results for the mean value of the cusps
per period c, with harmonic order from 1 to 21.
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out to be of order 10−4, vanishingly small for all harmonic
orders. However, in Fig. 5, the error bars increase for the
highest harmonic loops we evolve because we are unable to
analyze as many large harmonic loops due to the fact that
such loops produce so many cusps per period, each of
which need to be confirmed numerically. Note, however,
that, although the number of high harmonic loops analyzed
is smaller than for the low harmonic loops, the number of
cusp events remains very large in all cases as cusps occur
more often in every period for the high harmonic case. This
explains that, while the error bars of the mean value of
cusps per period with harmonic order, c, which appear in
Fig. 5, become significant for harmonic orders 15 to 21, for
the plots of g1 and g2 in Figs. 3 and 4, they remain small,
even for the large harmonics.
Table I provides an elegant summary of our main results.

In it, we show the values of the mean number of cusps per
period for different harmonic order, as seen in Fig. 5. We
also show the average values of g1 and g2 (including the
maximum value we obtain for g1) for each harmonic order.
Finally, in Table I, we also show the size of the error bars in

the value of c that appear in Fig. 5 for harmonic orders
15 to 21. The take home message is pretty clear; the “cusp
sharpness” parameters g1 and g2 are fairly closely distrib-
uted around unity, as has been assumed in the literature, and
we have now demonstrated this assumption is justified. In
fact, if anything, they are slightly lower than unity,
indicating the gravitational signals will be somewhat
reduced from these effects (as far as g1 is concerned),
but mildly enhanced as far as g2 is concerned, than has
previously been assumed. On the other hand, as we
discussed above, the average number of cusps per period,
c, could be significantly enhanced for high-harmonic
strings compared to the usual assumption c ∼ 1. We will
return to this point in Sec. V.
There is a nice formal mathematical aspect to the

distribution of the ðuc; vcÞ pairs on the plane. In Fig. 8,
we can see that the pairs of harmonic order N ¼ 3 follow a
pattern, which does not persist for the higher harmonic
orders, as we can see for the N ¼ 19 case. We can quantify
this using the two-dimensional Kolmogorov-Smirnov test,
which shows that for large harmonic orders (we have tested

(a) (b)

(c) (d)

FIG. 6. The frequency distribution of the parameter g1 calculated for different harmonic orders. Note that the data originate from a
representative sample of M ¼ 1000 cosmic string loops for each plot. We can see that the total number of cusps increases with the
harmonic order, which is expected since the average number of cusps per period for each loop also increases with the harmonic order.
Note that we have cut some rare higher values of g1 from the histograms. The maximum value of g1 in the data is given in Table.
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this up toN ¼ 19) the hypothesis that the distribution of the
ðuc; vcÞ pairs follows the two-dimensional uniform distri-
bution is not rejected at the 5% level (and so the distribution
is consistent with being uniform). However, for harmonic
order N ¼ 13 and smaller, we find that the uniform
distribution hypothesis is rejected at the 5% level, indicat-
ing there is some underlying structure present. Another way
to test the behavior of the ðuc; vcÞ pairs is to convert the
two-dimensional distribution to a one-dimensional one.
One way to achieve this is to split the domain ½0; 2πÞ ×
½0; 2πÞ in u − v space into equal sized squares. The number
of the squares is taken to be of the order of the number of
ðuc; vcÞ pairs. We can then make a distribution of the
number of ðuc; vcÞ pair counts in each square and compare
it with the Poisson distribution of the same mean value.
Using the Kolmogorov-Smirnov test to compare these two
distributions, we find again that the null hypothesis is
rejected for N ¼ 13 or smaller at the 5% level, while it is
not rejected for N ¼ 15 to N ¼ 19, which is the maximum
harmonic order we have tested.

(a) (b)

(c) (d)

FIG. 7. The frequency distribution of the cusps per period. Each plot is produced from a representative sample of 1000 odd-harmonic
string loops of the same harmonic order, N ¼ 3, N ¼ 5, N ¼ 11, N ¼ 19. The bins are ½0.5; 1.5Þ; ½1.5; 2.5Þ; ½2.5; 3.5Þ;….

TABLE I. Mean values of the cusp number per period and the
average values of g1 and g2 evaluated at the cusp events for each
harmonic order. We also provide the maximum value in the list of
the values of g1 we have obtained, fg1g, for each harmonic order.

Harmonic order c hg1i Maxðfg1gÞ hg2i
1 2.00 1.00 1.00 1.00
3 5.96 0.668 5.18 0.666
5 10.1 0.577 3.15 0.615
7 14.3 0.513 3.17 0.513
9 18.9 0.474 3.27 0.456
11 22.6 0.446 3.01 0.432
13 27.4 0.428 2.04 0.402
15 30.4� 0.6 0.400 3.35 0.374
17 35.2� 0.7 0.392 2.14 0.361
19 39.0� 0.7 0.375 1.91 0.341
21 44.6� 2.0 0.366 1.61 0.333
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V. CONCLUSIONS

Cosmic strings have long been a favorite member of the
particle cosmology family. Their formation out of sym-
metry breaking transitions in the early Universe placed
them as excellent candidates to play a role in the physics of
structure formation. However, as the data began to roll in,
the evidence for such strings forming in a grand unified
theory type transition failed to turn up; strings were not
putting in an appearance in the cosmic microwave back-
ground anisotropies. It meant that interest in them waned,
but that is not quite the same as the strings not being present
or relevant. The breakthrough discovery of gravitational
waves from the merger of a pair of black holes [69] has
transformed the field and given hope to the possibility that
cosmic strings may yet be detected by their emission of
gravitational waves, either through the stochastic gravita-
tional wave background or through bursts of gravitational
waves emitted from cusps and kinks on a network
[27,51,52]. Concentrating on three models for the loop

production function, the lack of evidence of any signal of
gravitational wave bursts from cusps and kinks associated
with string loops allowed the authors of Ref. [27] to set
upper limits on some of the key cosmic string parameters
such as bounds on Gμ. However, in reaching those
conclusions, they had to assume values for a number of
key parameters, such as the average number of cusps
formed per period on stable loop configurations, c (called
Nq in Ref. [27]), and the average value of the product of the
second derivatives of the left- and right-moving vectors on
the loop evaluated at the cusp, to be precise g1 and g2
defined in Eqs. (4.9) and (4.10). These parameters which
depend on the individual loops were both taken to be of
order unity in Ref. [27] and associated papers, and yet the
final result for the amplitude of the gravitational wave
signal from the bursts depends on them. For example, if g1
increases by a factor of 2, then the signal doubles.
It was this uncertainty in these key parameters that has

motivated us to consider in this work the dynamics of
cosmic string loops with higher harmonics. By going to
higher harmonics, we can first of all compare the cusp
distribution to those of lower harmonic loops, but crucially,
we can gain excellent statistics on the range of values of a⃗N00

and b⃗N
00, hence on the range of values of g1 and g2 associated

with loops. Moreover, we have no way of a priori
estimating the distribution of loops formed in the early
Universe nor the distribution of the initial large parent loops
chopped off a long string. In fact, it is quite likely they will
be formed with many harmonics and begin oscillating with
all of them in action. Given that, we have analyzed a class
of such loops, albeit with odd harmonics, first demonstrated
in the elegant work of Siemens and Kibble [65]. For
simplicity, we concentrated on the case where the left- and
right-moving waves on the loop had the same number of
harmonics, and for each harmonic, we analyzed thousands
of loops generated at random. This was done for all the odd
harmonics up to N ¼ 21. Two key results emerged. The
first was that the average value for g1 (and g2) remained
close to unity for all the harmonic cases studied, ranging
from 1 (low harmonics) to 0.4 (high harmonics). In
particular, there were very few cases where it went above
unity, indicating that the assumptions made about its
behavior (i.e., g1 ∼ 1, g2 ∼ 1) in Refs. [27,52] are correct.
The second concerned the parameter c (Nq in Ref. [27]),
the average number of cusps formed per period. Not
surprisingly, we found that it grew with harmonic number
N, but rather than growing as N2 as argued for in Ref. [54],
we found that it grew linearly obeying roughly c ¼ 2N as
seen in Fig. 5 and Table I. One might expect that, because
the amplitude of the gravitational wave burst signal from
cusps appears to be proportional to c, such an increase in
the average number of cusps per period would be an
important feature, potentially leading to a significant
enhancement of the gravitational wave signal from string
loops due to cusps. However, it has recently been argued in

(b)

(a)

FIG. 8. The values of the ðuc; vcÞ pairs on the u-v plane. Note
that for N ¼ 3 the pairs are more orderly placed, which is not
observed for N ¼ 19.
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Ref. [70] that in at least one class of cosmic string loop
models there is a cancellation of effects in that the larger
number of cusps implies more radiation, but over a shorter
period of time, and hence there is no net increase in the
overall signal. Whether this cancellation happens in general
for all models of cosmic string evolution remains to be
seen, but it is certainly an important point showing that a
careful comparison of these competing effects is necessary
in any specific model of the loop network. There is also
another caveat, and that is the bounds of Refs. [27,52] are
based on the assumption that the loops being considered are
non-self-intersecting. The loops we are studying here can
be considered as the initial loops formed from the long
string network that will no doubt self-intersect within the
first oscillation. Such loops are constantly chopping off the
network, and if there are a large number of cusps on these
initial large loops, they may well modify the burst output in
those opening oscillations compared to the loops which are
assumed to have just one cusp per cycle. We have used the
specific algorithm proposed by Kibble and Siemens [65] to
obtain the shape of the class of loops we are analyzing.
Although there is no question that these loops are valid
solutions to the equations of motion, an argument against
using them could be made based on the fact that they
impose random phases, whereas loops that are found
chopping off a network of strings and where cusps are
introduced by gravitational backreaction [71] will have

correlated phases. This is a fair criticism, but we believe our
approach is a valid one. We have primarily been interested
in the statistics of such cusps and their distributions, and
this approach has allowed us to investigate tens of thou-
sands of such cusps. Moreover, we find, where a compari-
son can be made, as mentioned earlier that the key
parameters g1 and g2 appear to be consistent with those
inferred in models of networks such as Ref. [68]. Wewill be
addressing the impact of our loops on the gravitational
wave signatures constrained by LIGO in a future publica-
tion [60] as well as modeling the process of self-inter-
section of these high harmonic initial loops.
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