
 

Viable curvaton models from the fNL parameter

L. F. Guimarães1,2,* and F. T. Falciano1,3,†
1CBPF—Centro Brasileiro de Pesquisas Físicas, Xavier Sigaud Street 150,

zip 22290-180, Rio de Janeiro, RJ, Brazil
2Dipartimento di Fisica, Università di Pisa and INFN, Sezione di Pisa,
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In this paper, we propose a method to reconstruct the curvaton potential from a scale-dependent non-
Gaussianity parameter fNL. We exemplify our method, devising a weakly self-interacting curvaton model
that produces a scale-dependent fNL that crosses zero twice and is bounded from below and above.
We identify the higher value of crossing with the cosmic microwave background (CMB) pivot scale,
making the lower value fall within important structure formation scales. In addition, our curvaton model
satisfies the observational constraints and leads to a k-dependent fNL that can explain the CMB dipolar
modulation. Our procedure can be straightforwardly extended to reconstruct the curvaton potential instead
from the gNL parameter.

DOI: 10.1103/PhysRevD.103.063530

I. INTRODUCTION

Modern cosmology is based on a six-parameter model of
the early Universe that has been tested with great precision
by measuring the cosmic microwave background radiation
(CMB) anisotropies. The latest Planck results [1–3] con-
firm the concordance model and provide accurate infor-
mation on the cosmological parameters. In particular, the
primordial density perturbations are consistent with
Gaussian curvature perturbations, and the data are well
suited to the inflationary scenario [4]. The power spectrum
has a scalar spectral index of ns ¼ 0.9649� 0.0042 and a
small tensor-to-scalar ratio r < 0.064. The primordial non-
Gaussianities have not yet been detected, but there are
constraints for all types of shapes. In particular, the local
shape is constrained to be flocalNL ¼ −0.9� 5.1 [5].
Inflation offers a mechanism to explain the existence of

the primordial cosmological perturbations. The most sim-
ple scenario is single-field inflation (SFI), where a scalar
field follows a slow-roll dynamics and is simultaneously
responsible for driving the almost exponential expansion of
the Universe, and its density perturbations work as seeds
for the CMB [6]. Thus, a slow-roll SFI model provides the
observed Gaussian and almost scale-independent temper-
ature fluctuations [7].
There are, however, at least two motivations to consider

alternatives to SFI. In recent years, theoretical arguments
indicate that the scenario might be not in the string theory

landscape but in its swampland [8–11]. In addition, SFI is
not suitable to address the CMB anomalies or observation
of primordial non-Gaussianities. The CMB anomalies
manifested on the Planck data [12] still have a low
statistical significance of 3σ. Nevertheless, the fact that
they were measured by two different surveys, namely
WMAP and then the Planck satellites, suggests that these
anomalies might not be just a systematic error or fore-
ground contamination, and if they exist, the statistical
anomalies go against the cosmological principle [13,14].
SFI is not the unique successful scenario of the early

Universe. There are two main alternative classes of models.
First are the bouncing models, which also give an almost
scale-invariant power spectrum with the correct redshift tilt
and negligible production of gravitational waves [15–24].
Many bouncing models avoid constraints coming from the
swampland conjectures, especially by the absence of a
de Sitter expansion phase [25–27]. Another route is to
preserve an inflationary phase, albeit not in a single-field
slow-roll setting. Multifield inflation (MFI) models [28],
in which there is more than one scalar field ruling the
inflationary regime, could be a requirement for inflation
to happen in the string theory landscape [29], while
warm inflation provides alternative routes around the issues
[30,31].
Among the MFI models, the curvaton models are simple

extensions of SFI with the addition of only one extra scalar
field [32,33]. In this scenario, the background dynamics is
still driven by the inflaton, but the cosmological perturba-
tions now come from the density fluctuations of the
curvaton field. A distinct feature of these models is that
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the curvaton produces isocurvature perturbations instead of
the common inflaton adiabatic perturbations. Only after the
decay into radiation do the curvaton isocurvature modes
turn into adiabatic ones, which then seed the CMB. This
scenario alleviates the constraints on the inflaton field [34]
while still producing the observed almost scale-invariant
spectrum and the negligible amplitude of the primordial
gravitational waves. Another advantage of this scenario is
that it allows for large non-Gaussianities—indeed, much
higher than in SFI.
A possible mechanism to account for the CMB anoma-

lies is to consider non-Gaussian super-Hubble perturba-
tions. A non-Gaussian mixing of long and short scale
modes [35] breaks the perturbations’ isotropy and can
explain the hemispherical asymmetry [36–39]. In particu-
lar, the curvaton scenario predicts non-Gaussian primordial
perturbations due to a quadratic dependence on the curva-
ton field in ζ [32].
The self-interacting models [40–42] are of particular

interest, inasmuch as they provide scale-dependent non-
Gaussianities that allow for the non-Gaussianity parameters
fNL and gNL to vary by orders of magnitude between
different scales. In this case, it is possible to have large non-
Gaussianity at large scales and still satisfy the observational
constraint on fNL. In addition, scale-dependence models
can also modulate the non-Gaussianities and get the right
amount of power asymmetry in the CMB [35,43,44].
In the present work, we show how to construct viable

curvaton models from the properties of the fNL parameter.
In particular, due to the change of sign, we manage to have
a fNL close to zero at the observable scales but still have
large non-Gaussianities away from the pivot scale. The
paper is organized as follows: In Sec. II, we review the self-
interacting curvaton scenario, and in Sec. III, we show how
to construct curvaton models that implement the desired
features of fNL. In Sec. IV, we analyze the parameter space
of one such model and show that our procedure alleviates
its fine-tuning. In Sec. V, we conclude with final remarks.
Throughout the paper, unless explicitly written, we use
Planck mass MPl ¼ 1.

II. CURVATON SCENARIO

A. Self-interacting curvaton scenario

The curvaton scenario goes beyond SFI by the addition
of a second scalar field, dubbed the curvaton. Usually, this
extra scalar field is minimally coupled to gravity and does
not interact with the inflaton. The latter drives the back-
ground dynamics, while the curvaton produces the
observed cosmological perturbations. There are also inter-
active models [45,46] where the potential has a cross term
coupling the curvaton with the inflaton. These interactive
models satisfy the observational constraints, but at the cost
of increasing the number of free parameters of the model.
Here, we shall consider only self-interacting curvaton

models, which have scale-dependent non-Gaussianity
[36], such that the Lagrangian reads

Lðφ; σÞ ¼ KðφÞ þ KðσÞ þ VðφÞ þ VðσÞ; ð1Þ

where KðXÞ and VðXÞ denote the kinetic and potential
terms of the inflaton and curvaton fields, respectively. In
contrast to SFI models, in the curvaton scenario, the
inflaton has a negligible contribution to the cosmological
perturbations due to a lower inflaton mass mφ as compared
to the SFI models [47].1 As a consequence, the magnitude
of tensor perturbations is likewise negligible as compared
to the SFI. Notwithstanding, the energy density of the
curvaton is always subdominant and does not contribute to
the background dynamics. It is the inflaton slow-roll regime
that drives the almost exponential expansion of the
Universe, while the curvaton follows its own evolution,
which does not need to be frozen but can be a slow roll
different from the inflaton dynamics.
As usual, reheating takes place at the end of the inflaton

slow-roll regime, when it oscillates around the minimum of
the potential with an equation of state p ¼ ωρ with ω ≈ 0.
During this process, the inflaton decays into radiation.
After decay, we are left with a reheated Universe, with
energy density radiation-dominated.
In our scenario, the curvaton field follows a similar

decay regime, albeit delayed in time. Thus, we consider
potentials for the curvaton with a local minimum that can
be approximated by a quadratic potential, and where the
coherent oscillations makes the curvaton decay as pressur-
eless dust.2 In addition, we assume the sudden decay
approximation in which the curvaton instantaneously
decays into radiation when its decay rate equals the
Hubble parameter3—i.e., Γσ ¼ H.
During the inflationary phase, the curvaton produces

only isocurvature perturbations. Due to thermal and chemi-
cal equilibrium, after the curvaton decay they are then
converted into adiabatic perturbations. This conversion
process was first proposed by Mollerach [50] and later
applied to the curvaton scenario in Refs. [32,33]. The
transfer of isocurvature perturbation into curvature pertur-
bation can be described as [32]

ζ ∼ rdecδ; ð2Þ

where rdec and δ are the curvaton fractional energy density
and the isocurvature perturbation, respectively, and ζ is the

1The scenario actually allows for both fields to contribute to
cosmological perturbations [45,46].

2There are models in which the behavior of the potential at
small values of the field is not quadratic; see Ref. [48] and
references therein.

3It can be shown that the sudden decay is a good approxi-
mation for the exact gradual decay. Moreover, it does not have an
impact on the primordial observables [49].
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final adiabatic perturbation. The fractional energy density
gives the curvaton contribution to the total energy density
and reads

rdec ¼
3ρσ

3ρσ þ 4ργ

����
dec

∼
VðσdecÞ
3Γ2

; ð3Þ

where ρσ and ργ are the curvaton and the radiation density,
respectively, at the time of the curvaton decay. During its
reheating, the curvaton redshifts more slowly than radia-
tion, since it behaves as dust; hence, if the curvaton decays
long after the inflaton, the curvaton dominates the energy
density of the Universe, and rdec ∼ 1. On the other hand, if
the decay happens shortly after the inflaton’s decay, then
rdec ≪ 1, which means a large non-Gaussianity [see dis-
cussion after Eq. (11)]. Therefore, we assume that the
curvaton decays not long after the inflaton, and hence
rdec ∼ 10−2.
We can calculate the curvature perturbation by the δN

formalism [51]. The difference in the curvature perturbation
equals the number of e-folds between the two hyper-
surfaces ζ ≡ δN. Hence, for single-source curvaton mod-
els, we have

ζ ≈ N;σδσ þ 1

2
N;σσδσ

2 þ � � � ;

whereN;σ is the derivative ofN with respect to the curvaton
field σ at the initial hypersurface. The curvature perturba-
tion power spectrum is defined as

PζðkÞ ¼ N;σ
2Ps ≈

r2dec
9π2

�
σ0osc
σosc

�
2

H2
k ð4Þ

where PsðkÞ ¼ H2
k=ð4π2Þ is the scalar power spectrum for

the mode k. We have that σosc ¼ σoscðσkÞ is the amplitude of
the oscillations.4 One can show that N;σ ¼ 2

3
rdecðσ0osc=σoscÞ.

Therefore, the spectral index reads

ns − 1 ≈ 2
_H2
k

H2
k

þ 2
V;σσ

3H2
k

≈ −2ϵH þ 2ησ: ð5Þ

Notwithstanding, the inflaton still gives important
contributions, since it dominates the background dynamics.
In the above equation, we define the slow-roll parameters as
usual—namely,

ϵH ≡ _H2
k

H2
k

; ησ ≡ V;σσðtkÞ
3H2

k

: ð6Þ

Even though the curvaton does not interact with the
inflaton, the scalar perturbations and spectral index have

contributions from both fields. The spectral index [Eq. (5)]
has a leading contribution ϵH, the inflaton slow-roll
parameter. The curvaton ησ, if positive, must be subleading
and of order 10−2 or lower so that the spectrum is red and
quasi-scale-invariant.5 The tensor-to-scalar ratio r is largely
suppressed in the curvaton scenario as compared to SFI,

r ¼ 16ϵH
Pφ

Pζ
≈ 0 ≪ rSFI; ð7Þ

where again we are dealing with the fact that the inflaton
does not contribute to the perturbations Pζ ≫ Pφ. One of
the advantages of the curvaton scenario is to evade the need
for ϵH ∝ 1=N2 (for N around 60 e-folds) in order to fit the
current observational sensibility, r < 10−2 [34]. Indeed,
SFI models that lead to ϵH ∝ 1=N, such as chaotic inflation
[6,52], can now be used as the inflaton component of the
curvaton scenario, since they satisfy both constraints on r
and ns − 1.
In order to quantify the amount of non-Gaussianity in the

model, we can Taylor-expand the curvature perturbation
ζðkÞ in terms of its Gaussian component ζG as [53]

ζ ¼ ζG þ 3

5
fNLζ2G þ 9

25
gNLζ3G þOðζ4GÞ: ð8Þ

By definition, the nonlinearity parameters fNL and gNL
encode the non-Gaussianity from the second- and third-
order terms, respectively. During the phase of coherent
oscillations around the minimum of the potential, the
energy density of the curvaton field for a mode k can be
approximated by ρσ ¼ m2

σσ
2
osc=2. Repeating the expansion

to third order in the δN formalism [53] gives

ζðkÞ¼2rdec
3

σ0osc
σosc

δσkðtkÞ

þ1

9

�
3rdec

�
1þσoscσ

00
osc

σ0osc2

�
−4r2dec−2r2dec

�

×
�
σ0osc
σosc

�
2

δσ2kðtkÞ

þ 4

81

�
10r4decþ3r5decþ

9rdec
4

�
σ2oscσ

000
osc

σ0osc3
þ3

σ00oscσosc
σ0osc2

�

−9r2dec

�
1þσoscσ

00
osc

σ0osc2

���
σ0osc
σosc

�
3

δσ3kðtkÞþOðδσ4kÞ: ð9Þ

Note that the nonlinearity parameters fNL and gNL are
scale dependent. In order to have a scale-independent
parameter, one needs σoscðσkÞ not to depend on σk.
Straightforward comparison of Eqs. (8) and (9) gives

4We prove that σosc depends on σk later in this same section.

5Models with negative spectral index would be preferred
because of the requirement of a red spectrum, and would alleviate
some conditions imposed on the inflaton, via ϵH .
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fNL ¼ 5

4

fosc
rdec

−
5

3
−
5

6
rdec;

gNL ¼ 25

24

gosc
r2dec

−
25

6

fosc
rdec

−
25

12

�
fosc −

10

9

�
þ 125

27
rdec

þ 25

18
r2dec; ð10Þ

where

fosc ≡ 1þ σoscσ
00
osc

σ02osc
; gosc ≡ σ2oscσ

000
osc

σ03osc
þ 3

σ00oscσosc
σ02osc

: ð11Þ

A prime in the above equations indicates derivatives with
respect to σk. The terms proportional to r−1dec show that the
faster the curvaton decays, the larger are the non-
Gaussianities. In addition, the lower the cross section Γ,
the longer it takes for the system to reach the sudden decay
condition H ∼ Γ. Note that to lower the value of the cross
section means to reduce the magnitude of the curvaton
interactions, and consequently also their fluctuations. Thus,
higher rdec values produce smaller magnitudes of fluc-
tuation and smaller non-Gaussianities.
The curvaton dynamics is characterized by two distinct

regimes. The first is the slow-roll regime of the curvaton,
given by

3H _σ þm2
σσ þ VSI

;σ ðσÞ ≈ 0; ð12Þ

where VSIðσÞ is the self-interacting part of the potential.6

The solution for the slow-roll regime σSR is a nonlinear
function of σk. We assume that it is valid until the time tq,
when the curvaton reaches its second regime. There, the
curvaton oscillates around its quadratic minimum, and the
self-interactions are no longer important. This is known as a
coherent oscillating phase, whose dynamics reads

σ̈ þ 3H _σ þm2
σσ ≈ 0: ð13Þ

The solution for this stage is of the form σðtÞ ¼ σoscfinfðtÞ,
where finf is a function dependent only on the background
dynamic given by the inflaton; see Refs. [36,54]. We
suppose an instantaneous transition between the slow-roll
and the coherent oscillation regimes and match the respec-
tive solutions, which allows us to write σosc ¼ βσSRðtqÞ,
where β is a constant parameter. Therefore, σosc is proved to
be dependent on σk as well.
We are interested in a particular set of self-interaction

curvaton models, where the σk dependence on σosc is input
by hand in order to better fit observational results. In the

next section, we show how recent observations suggest the
behavior needed for fNL, and, consequently, σoscðσkÞ.

III. CONSTRUCTING VIABLE
MODELS FROM fNL

The Planck Collaboration [2] showed that the strength of
the non-Gaussian signal for fNL does not go beyond order
unity, indicating that primordial non-Gaussianities are
seemingly very small. A way out of this constraint is to
consider scale-dependent non-Gaussianity models, in order
to have large values of fNL away from the observed scales
(in particular, away from the pivot scale used for the CMB
maps). Models with a change of sign in fNL, so that it
remains close to zero over a limited range of wave numbers,
can be adjusted to satisfy the present observational con-
straints. Evidently, such a range of wave numbers must be
identified with the CMB scales which constrain the free
parameters of the models. This procedure allows us to study
how much fine-tuning is required to fit the observational
data. The scale-dependent models are particularly interest-
ing when one needs high values of non-Gaussianities—for
instance, to account for the CMB anomalies [36–38]. In the
following, we analyze how to construct models with a
change of sign in the fNL parameter and the effects this has
on the dynamics of the curvaton field.

A. Crossing fNL parameter

In the literature, the non-Gaussianity parameter fNL is
typically parametrized as a power law given by

fNLðkÞ ¼ f0NL

�
k
k0

�
nfNL

; ð14Þ

where f0NL is the amplitude at a given pivot scale k0, and the
index nfNL is a constant [55,56]. However, this paramet-
rization is no longer valid if fNL crosses zero—namely, if it
changes sign [36]. As we present in Sec. IV B, a better-
suited parametrization allows for multiple changes in sign.
We can find the value of σosc in terms of σk where the

change of sign happens. The rhs of Eq. (11) shows that

fosc ¼
ðσ2oscÞ00
2σ02osc

¼ 0 ⇒ ðσ2oscÞ00 ¼ 0: ð15Þ

The conditions for fosc and fNL to cross zero are different.
Nevertheless, for rdec ∼ 0.05, the values of the last two
terms on the rhs of Eq. (10) are of order unity. The crossing
is still guaranteed as long as the scale dependence of fNL is
strong enough. Thus, instead of the crossing of fNL, we
consider the condition for fosc ¼ 0. Equation (15) implies
that the crossing is an extremal point for

6The quadratic mass term emerges only in the small field value
limit, hence it is absent in Eq. (12). However, the Taylor
expansion of the total potential V around its minimum makes
the mass term reappear in Eq. (13).
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ðσ2oscÞ0 ¼ 2σoscσ
0
osc: ð16Þ

The function σosc is assumed to be a monotonic function
of σk, and the derivative σ0osc must not cross zero; otherwise
fosc diverges. Moreover, the value of k at the crossing of
fosc differs from the extreme of σ0osc due to the factor σosc.
As a fact, at the extremal of σ0osc we have σ00osc ¼ 0, which
means fosc ¼ 1 instead of 0. Notwithstanding, it suffices
that σ0osc has one extremal point for Eq. (15) to be satisfied
and, given the scale-dependence of the system, we expect
that the values of k for these two conditions should be close.
In summary, the function σosc is monotonic, and σ0osc has

an extremal point, but it is never zero; hence it is always
positive or negative. The function σ00osc does change sign at
least once and must vary enough to guarantee that fNL also
changes sign. There are different ways in which one can
implement these features. In the next section, we show one
way to construct the curvaton potential in order to have
exactly this kind of behavior. We study the parameter space
of the model by combining the observational data with the
conditions on σosc and its derivatives.

B. Constructing the curvaton potential

The non-Gaussianity parameters depend basically on the
relation σoscðσkÞ—i.e., on how σosc is written in terms of σk.
And to find σoscðσkÞ, we need to solve the two regimes in
Eqs. (12) and (13), hence different curvaton potentials
result in different relations. Our goal is to be able, given a
functional form σoscðσkÞ, to specify the potential that after
solving the dynamical equations will produce the desired
σoscðσkÞ.
We start by separating the slow-roll regime of the

curvaton into two steps. We assume that when the value
of the curvaton field is close to σosc, the potential is close to
quadratic and remains so until the minimum of the potential
at the origin σ ¼ 0. This guarantees the validity of the
results from the conventional self-interaction curvaton
scenario (Sec. II A).
Recall that σq ≡ σðtqÞ ∝ σosc, and away from σq, we

need to consider the full expression of the potential—in
particular, for the evolution around the observable scales
σk. Solving the slow-roll equation for these two regimes
gives

Z
σq

σk

dσ
V̄;σ

∼
Z

σ�

σk

dσq
V̄;σ

þ
Z

σq

σ�

dσ
σ

¼ −η̄σIðtq; tkÞ; ð17Þ

where V̄ ≡ V=m2
σ , and σ� is the field value where we apply

the matching condition to connect the slow-roll dynamics
to the quadratic local minimum regime. Note that σ�
cancels from the final expression, since it is evaluated
where both solutions are equal, and hence is irrelevant.
Following Ref. [36], in Eq. (17), we have defined

Iðtq; tkÞ≡H2
k

Z
tq

tk

dt
HðtÞ ; η̄σ ¼

m2
σ

3H2
k

: ð18Þ

Given an appropriate choice of tq, the integral during the
curvaton slow-roll regime gives Iðtq; tÞ ≈ 1=η̄σ. Thus, for
values of t ≪ tq, the rhs of Eq. (17) equals −η̄σI ≈ −1, and
we can consider this term independent of σk. Close to σq,
we have

Z
dσ
V̄;σ

¼ log½σ�: ð19Þ

Now, we assume that the potential is such that the
integral containing V̄−1

;σ admits a primitive function GðσÞ,
namely

Z
σq

σk

dσ
V̄;σ

∼GðσqÞ − GðσkÞ; ð20Þ

and Eq. (17) can be recast as

GðσÞ ¼ log ½σoscðσÞ� þ terms independent of σk: ð21Þ

To find the potential, we can invert Eq. (20) and write

VðσÞ ¼ m2
σ

Z
dσ

σosc
σ0osc

; ð22Þ

where σosc should be understood as the function σoscðσÞ
with the same functional form as σoscðσkÞ. Given a
physically motivated ansatz σoscðσkÞ, integration of
Eq. (22) gives the potential satisfying the slow-roll dynam-
ics that produces the desired non-Gaussianity encoded in
σoscðσkÞ. By construction, the slow-roll solution is approx-
imatelyGðσÞ. This allows us to compute the curvaton slow-
roll parameters and compare them with the observation of
the primordial power spectrum. Moreover, using Eq. (10),
we can also compute the non-Gaussianity parameters fNL
and gNL of the model.

C. Observables from the reconstruction

Similarly to what we have done for fNL, we can write the
derivatives of the potential, namely the slow-roll parame-
ters, in terms of σosc and its derivatives. Using Eq. (22), we
have

V;σ ¼ m2
σ
σosc
σ0osc

; ð23Þ

V;σσ ¼ m2
σ

�
1 −

σoscσ
00
osc

σ02osc

�
: ð24Þ

Comparing the above expression with the definition of fosc,
Eq. (11), one immediately sees that
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fosc þ
V;σσ

m2
σ
¼ 2: ð25Þ

It is worth remarking that the above expression is
independent of the solution σosc. Since fosc ¼ 1 for
σ00osc ¼ 0, Eq. (25) shows that V;σσ ¼ m2

σ at this point as
well. We also conclude that

ησ ¼
m2

σð2 − foscÞ
3H2

k

¼ 2η̄σ −
4rdecη̄σ

5

�
fNL þ

5

3
þ 5rdec

6

�
; ð26Þ

hence, for any model from our procedure, the parameter ησ
can be written in terms of η̄σ and fNL. Equation (26)
generalizes the relation presented in Ref. [57], since it is
still valid for large values of fNL and ησ. We see that in our
scenario, there is an additional expression relating fNL, ησ,
and Hk. Note also that we can recover the condition
ησ ¼ 2η̄σ from Ref. [36], if fNLðk0Þ ¼ −5=3 − 5rdec=6.
In Sec. III A, we associated the change of sign in fosc

with the second derivative of σ00osc being zero somewhere
along the curvaton trajectory. Now, using Eq. (25), we
conclude that the potential must also have an inflection
point—i.e., V;σσ ¼ 0. The inflection point, like for fosc, is
not located where σ00osc ¼ 0.

D. Reconstructing a polynomial potential

The quartic and higher-power polynomial models have
been studied in the literature [36,41,42,54]. Despite pro-
ducing scale-dependent non-Gaussianities, these models
predict high values of ησ over the region of low fNL. There-
fore, such models are not favored by the Planck satellite
results. Our goal here is to use them only as an example to
show how our procedure works. In the next section, we
shall deal with fitting the model to observations. For a
polynomial potential of the form VðσÞ ¼ 1

2
m2σ2 þ λσn

with n > 2, the curvaton slow-roll solution is given by

σoscðσkÞ ¼
σk

½en−2 þ ðnen−2 − nÞλσn−2k �1=ðn−2Þ : ð27Þ

Using Eq. (27) as the ansatz for the procedure of
Sec. III B, we obtain a potential given by

VðσÞ¼ 1

2
m2σ2þλeffσ

n with λeff ¼ λð1−e−nþ2Þ: ð28Þ

We see that the reconstruction gives a lower value for the
coupling constant. The worst case is for n ¼ 3, where λeff ≈
0.6321λ but already increases to λeff ≈ 0.865λ for n ¼ 4.
The higher the power of the self-interaction, more precise is
the reconstruction. This kind of shift in our reconstruction
procedure does not change the qualitative behavior of our
model, but it can change some observational scales such as

the pivot value at which the non-Gaussianity parameter fNL
changes sign. The important point is that any feature input
in the ansatz will also be present in the solutions derived by
using the reconstructed potential; hence, the consistency of
the procedure is guaranteed.

IV. LINEARLY ACCELERATED MODELS

In Sec. III A, we described the main features that a
solution σoscðσkÞ must have in order to produce a viable
curvaton model with a change of sign in fNL. A possible
realization of these conditions is for σ00oscðσkÞ to be a linear
function of σk. Therefore, we consider an ansatz of the form

σosc ¼ aσ þ 1

2
bσ2 þ 1

6
cσ3; ð29Þ

where a, b, and c are the free parameters of the solution.
Applying the construction procedure of the last section, we
arrive at the potential

VðσÞ
m2

¼ V0 þ
b
3c

σ þ σ2

6
− V lg log ð2aþ 2bσ þ cσ2Þ

þ Varc arctan

�
bþ cσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b2 þ 2ac

p
�
; ð30Þ

where the two coefficients V lg and Varc are given in terms of
the free parameters as

V lg ¼
b2 − 2ac

3c2
; Varc ¼

4bðb2 − 3acÞ
6c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ac − b2

p : ð31Þ

The argument of the arctan has the same structure as the
ansatz acceleration—i.e., σ00osc ¼ ðbþ cσÞ. Therefore, the
inflection point for this term happens where the acceler-
ation is zero, σz ¼ −b=c. However, for the total potential
[Eq. (30)], the inflection point is shifted away from σz due
to the presence of the other (subleading) terms.
In order to reduce the number of free parameters and

simplify the analysis of the parameter space, we shall fix
a ¼ 1=e, which gives the quadratic curvaton solution in the
limit b ¼ c ¼ 0. Note also that we have implicitly assumed
σoscð0Þ ¼ 0. The ansatz is constructed to facilitate the study
of the curvaton slow-roll solution and its resulting fNL
parameter. Therefore, it is convenient to discuss the model
parameter space in terms of b and c and not in terms of the
coefficients of the potential, because the former are directly
connected to the non-Gaussianity parameters fNL and gNL.
The first constraint on b and c comes from the change of

sign of σ00qðσkÞ, which should happen during the curvaton
slow roll. Therefore, the point σ ¼ −b=c should be smaller
than the initial value of the field σini: ≡ σmax. That is
represented by the black dotted lines in Fig. 1. This also
implies that b and c must have opposite signs, inasmuch as
σ > 0 during the slow roll.
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The derivative σ0q should not vanish anywhere; other-
wise, both fNL and gNL diverge. Therefore, the models
have a positive minimum for σ0q—i.e., we must have

b > −
ffiffiffiffiffiffiffiffiffiffi
2c=e

p
—that gives the red dashed line a constraint

in Fig. 1. Note that this condition also avoid divergences in
the potential [Eq. (30)]. Also, σq is a monotonically
increasing function of σk, since its derivative is always
positive.
In addition, the log term of Eq. (30) has an argument

proportional to σ0osc; hence we must also avoid σ0q ¼ 0.
As a consequence, we must exclude negative values of
c—i.e., c > 0.
The curvaton field should always be positive during the

slow roll; therefore σq > 0, resulting in the blue dotted line
in Fig. 1. This condition is, however, less strict and does not
contribute, since it is always below the red line.
The last constraint comes from the condition on the

curvaton evolution. We want the field to move towards the
minimum of the potential at σ ¼ 0, hence σq should never
be greater than σk, which gives the purple dash-dotted
curve in Fig. 1. To sum up, the system of constraints reads

if 0<c<
2

σ2max
; −cσmax<b<0;

if
2

σ2max
<c<

6e−6

σ2max
; −

ffiffiffiffiffi
2c

p
<b<0;

if
6e−6

σ2max
<c<cmax; −

ffiffiffiffiffi
2c

p
<b<

2e−2

σmax
−
1

3
cσmax;

where cmax≡ 3

σ2max
ð1þ2eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12e−3

p
Þ: ð32Þ

As a result, we conclude that the higher the value of σmax,
the smaller the allowed parameter region for ðb; cÞ. In other

words, low values of σmax alleviate the possible fine-tuning
of models.

A. Example A: b= − 20=e, c= 216=e
In order to show the behavior of the non-Gaussianities

parameter, in this section we study a concrete example by
fixing b ¼ −20=e and c ¼ 216=e. These values are well
within the allowed parameter region (see Fig. 1), and they
make the difference between the value σ00q ¼ 0 for the ansatz
and that for the reconstructed solution small. Notice that
these values of b and c extrapolate the current observational
limits of fNL and gNL (see Ref. [5] and Fig. 6). However,
they are suitable for studying the main features of the
model. In Sec. V, we discuss the observational constraints
of b and c. Let us first compute the curvaton potential
[Eq. (30)]. To determine the value of V0, we require that
Vð0Þ ¼ 0—i.e.,

V0 ≡ 2bð3c − b2Þ
3c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c − b2

p tan−1
�

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c − b2

p
�

−
log 2
3c2

ð2c − b2Þ; ð33Þ

which gives V0 ∼ 0.016 for the chosen values of the
parameters. The Taylor expansion of the potential (30) at
σ ¼ 0 reads

VðσÞ ¼ m2σ2

2
− b

m2σ3

6
þOðσ4Þ; ð34Þ

confirming that indeed the potential can be approximated
by a quadratic potential close to the origin. In Fig. 2, we
show the results of our procedure. The top panel of Fig. 2
displays the potential constructed from the ansatz
[Eq. (29)], while in the bottom panel we compare three
solutions: the one coming from the reconstructed potential,
the original ansatz, and the solution for the quadratic
potential VðσÞ ¼ m2σ2=2.
Note that the field solution has no maximum or mini-

mum, which guarantees that its velocity is never zero as
constructed. The non-Gaussianity parameter fNL is com-
puted in the top panel of Fig. 3. The shape of the original
ansatz and the reconstructed solution agree, but with a
small difference in the amplitude. Therefore, we managed
to recreate the behavior for fNL as desired. The agreement
between the two results grows7 the closer the choice of
parameters is to b ¼ −

ffiffiffiffiffi
2c

p
; see Fig. 4. However, such a

choice also implies stronger non-Gaussianity and running
nfNL , beyond the most recent results.
Figure 3 also shows the behavior of the gNL parameter in

the bottom panel. It has an extreme at σ00osc ¼ 0, and since
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–25
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0

c [Mpl
–2]

b
[M
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1
]

FIG. 1. Final allowed region for b in green, when σmax ¼ 0.15,
c > 0, including all constraints. The red grid lines indicate the
point ðb; cÞ ¼ ð−20=e; 216=eÞ for the model in Sec. IVA.

7The results become more alike as the point of their change of
sign tends toward −b=c.
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the first term of Eq. (11) dominates, it has σ000osc constant at
the extreme. Note that with our choice of parameters, the
magnitude of the gNL is close to the current observational
limit, which is gNL ≈ 5 × 105.
The authors of Ref. [57] analyze the relation between the

features in the curvaton potential and a large running of the
scalar spectral index. However, they make no explicit
connection between features and the change of sign of
fNL and ησ , as in Sec. III C. For our model, recalling
Eq. (26), we have

ησ ¼
2m2

σ

3H2
κ
−
4rdec
5

η̄σ

�
fNL þ

5

3
þ 5rdec

6

�
: ð35Þ

The CMB constrains ησ to be of order 10−2 where fNL
changes sign, but the former also depends on the infla-
tionary scale. In turn, to constrain the value of Hk, we need
to evaluate the spectral index and the amplitude of the
perturbations [Eq. (4)]. In fact, we should also include the
physics of the reheating [48]. Therefore, in the present
analysis we will not fix Hk. To circumvent this issue,
we plot fNL together to V;σσ. As argued in Sec. III C and

also in Ref. [57], for large values of fNL we have
fNL ∝ −ησ.
We show that a feature on VðσÞ induces a change of sign

in σ00—i.e., a feature on the solution σqðσkÞ. The converse is
also true: if we start with an ansatz in which σ00 ¼ 0
somewhere, there will be a change of sign in the recon-
structed V;σσ . The same goes for fNL. We conclude that
features are shared by these different observables.
We have also already demonstrated that the change of

sign for the ansatz fosc and V;σσ happens in different scales.
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FIG. 3. Top: reconstructed fNL (dash-dotted) parameter for
example A in comparison to the ansatz (solid) with b ¼ −20=e
and c ¼ 216=e. Bottom: the same for gNL.
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FIG. 2. Top: curvaton potential VðσÞ for example A, where
b ¼ −20=e, c ¼ 216=e. The inflection point is located at
Vσσ ¼ 0. Bottom: reconstructed (blue dash-dotted line), ansatz
(red solid line), and quadratic potential (black dashed line)
solutions for the curvaton slow-roll equation results in terms
of σk.

FIG. 4. Numerically computed zeros of fosc, as a function of b,
from ansatz (red, circle) and reconstructed (blue, square) sol-
utions. The ratio −b=c is the black dotted line, while the ratio
b ¼ −

ffiffiffiffiffiffiffiffiffiffi
2c=e

p
is the gray dashed line. c ¼ 216=e.
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In Fig. 5, we show that, even for the reconstructed fosc, the
zeroes of those functions are symmetric around the point
where fosc ¼ V;σσ . For fosc, the zero is located before
σ ¼ −b=c, while for the second derivative of the potential it
happens after this value. We can also see what is indicated
in Eq. (26): when we choose the pivot scale to be where
fNL ¼ 0, we have η > 0.

B. Scale-dependence effects and CMB anomalies

The scale dependence of fNL can be explicitly written by
expanding the integral Iðtq; tkÞ [see Eq. (18)] in terms of
logðk=k0Þ. The pivot scale k0 is defined as the value at
which fNL ¼ 0. Near the pivot scale, we have

I ¼ logðk=k0Þ½1þ ϵ0 logðk=k0Þ�; ð36Þ

where ϵ0 is the inflationary first slow-roll parameter at the
pivot scale. Note that this modification makes fNL depend
on η̄σ as well. The reconstructed solution for fNL and gNL
can then be written in terms of logðk=k0Þ; see Fig. 6 below.
Differently from Eq. (14), around the pivot scale for our
model, the fNL parameter is best described by a log
parametrization; see Ref. [36].
As we vary the parameters b and c, we see that the scale

dependence of both nonlinear parameters changes. Higher
values of jbj enhance the non-Gaussianities of the scalar
perturbations. On the other hand, higher values of c result
in lower values for fNL and gNL. We illustrate the behavior
for variations on b in Fig. 6.
As is known, models with scale-dependent non-

Gaussianities can account for the CMB anomalies as, for
instance, the dipolar modulation [35,36,38,43,58]. Indeed,
the model analyzed in Refs. [35,58] uses the non-
Gaussianities to couple short- and long-scale modes in
order to produce the hemispherical asymmetry. The pres-
ence of long (super-Hubble) modes of wave number kl can
modulate the Bardeen power spectrum on short scales
(inside the horizon). In such a model, the Universe remains
isotropic, since the dependence on k appears only due to the
mode coupling. These models have the advantage, com-
pared to Ref. [37], that there is no need for a large
amplitude of the super-Hubble perturbations [58].
The scale dependence of the dipolar modulation roughly

follows that of fNL [58]. Thus, we expect fNL to peak at
l < 64. This provides a new source of observational
constraint, which helps in constraining the parameters of
non-Gaussian models. In Fig. 6, we show the behavior of
fNL for different values of b and c. Varying the parameters
b and c changes the position of the peak of fNL. Most
recent observational results indicate the hemispherical
asymmetry to be A ≈ 0.072 for l < 64 [12,14]. For shorter
scales, it reduces to A < 0.0045, for l > 600 [59,60]. The
region of the parameter space which provides a peak
for larger scales is preferred; otherwise, the asymmetry
would be too high for smaller scales. That is particularly
relevant for the quadrupole asymmetry [61–63]. It is also
important to note that the spectral index is modulated in
scenarios in the case that the non-Gaussianity is scale
dependent [58], which presents another probe for fNL and
its effects.
Scale-dependent non-Gaussianity can also lead to bias in

the cosmological parameter estimation based on the CMB,
especially in the presence of a scale-dependent trispectrum
[43]. Depending on the magnitude and scale dependence of
the trispectrum, the bias on the spectral index ns can reach
the order of 10−2, which is of the same order as the
expected value of ησ. Therefore, in different scenarios for
non-Gaussian modulation, it is necessary to take into
account all effects arising from the scale dependence from
both the bispectrum and trispectrum, in order to rightly
access the constraints on the system’s parameter space.
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FIG. 5. Reconstructed fosc (solid lines) and Vσσ (dotted lines)
for varying b, a ¼ 1=e, and c ¼ 216=e. Their magnitudes grow
with jbj. The distance between the crossing position decreases
with growing jbj for the chosen parameter range. In the highlight,
we show the point where both are equal, which happens for a
value a bit above Vσσ ¼ 1.

FIG. 6. Non-Gaussianity parameters fNL (solid lines) and gNL
(dotted lines) for the model example A. We vary b by�10%. The
slow-roll parameters were chosen as ϵ0 ¼ 1=128 and η̄σ ¼ 0.01.
k0 is the pivot scale 0.05 Mpc−1, defined as the scale at which
fNL ¼ 0.
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So far, we have focused on building models in which the
reconstruction procedure detailed in Sec. III B is well
behaved, meaning that the point where fNL changes sign
is the closest possible between the ansatz and reconstructed
solution. However, a discordance between the two solu-
tions does not mean the choice of parameters is wrong.
Such models may not agree with Eq. (29), but they still
provide a scale dependence and magnitude for fNL that fit
observational constraints. Therefore, the theoretical pre-
dictions from the whole parameter space in Fig. 1 should be
tested in comparison to observations.

V. CONCLUSIONS

In the present work, we presented a procedure to
reconstruct the curvaton potential from the non-
Gaussianity parameter fNL. Assuming a slow-roll dynamic
for the curvaton field, our procedure gives the curvaton
potential that produces the desired fNL [more precisely the
σosc, hence fNL; see Eq. (10)].
Planck’s latest results indicate that cosmological pertur-

bations at the pivot scale are highly Gaussian, flocalNL ¼
−0.9� 5.1 [5]. That can be true for truly Gaussian
fluctuations or for scale-dependent fNL. The latter satisfies
the observational constraints if fNL crosses zero close to the
pivot scale but allows for higher values of non-Gaussianity
for other scales.
We exemplified our method devising a curvaton model

that results in a scale-dependent fNL that changes sign
twice and is bounded from above and below. In this
manner, the non-Gaussianities have the desired features
at the CMB pivot scale and avoid issues with the large
scales probed by LSS surveys.
Scale-dependent non-Gaussianities are also known to be

able to produce the hemispherical asymmetry observed in
the CMB, in particular via non-Gaussian coupling between
scalar modes [35]. Using the fact that our model predicts a
peak in the fNL parameter for scales larger than the pivot
scale, we showed that it is possible to constrain the model
using the asymmetry. If the peak is located towards higher
values of l, constraints on the asymmetry are violated,
which shows that the model should not predict a peak for
fNL located at l > 64. Note that our reconstructed model
has the correct scale dependence for fNL—i.e., it grows
towards larger scales/lower l. That is an advantage with
respect to other curvaton models in the literature that
commonly have the opposite scale dependence.
In Sec. IVA, we used b ¼ −20=e and c ¼ 216=e for the

two parameters of the model in Eq. (29). As already men-
tioned, these values produce fNL and gNL larger than the
latest Planck observational constraint, fNL ¼ −0.9� 5.1,
gNL ¼ ð−5.8� 6.5Þ × 104. However, as Fig. 7 shows, a
small increase in c already drops fNL and gNL below
the observational constraints (and this applies similarly to
the parameter b). Therefore, the model on Fig. 7, with
parameters b ¼ −20=e and c ¼ 248=e, satisfies the Planck

constraints [5]. It is worth noting that the Planck bounds for
the nonlinearity parameters fNL and gNL are constructed
considering a fNL parameter that satisfies a power law
[Eq. (14)] and a scale-independent gNL. That is not true for
our model, so the available constraints for both parameters
may not be directly applied.
In order to adequately fit the parameters of the model

with the observations, we need to consider additional
effects present beyond first- and second-order scalar
perturbations. In addition to the amplitude of perturbations
and its spectral index (and subsequent running), in our
scale-dependent curvaton scenario, the observational con-
straints also apply to the reheating scale (which is present in
rdec, since it depends on Γ, which for the sudden decay
approximation will have the same value as Hreh). Thus, we
have five free parameters: two from inflation, Hk and Hreh,
and three from the parametrization, a, b, and c. The
value of Hk is especially important, since it enters in the
computation of η̄σ. A numerical analysis is needed in order
to precisely constrain the parameter space of the model.
Our analytical computations do not consider the reheating
process, which can slightly change scales for the crossings,
as well as the amplitude of the nonlinearity parameters. We
leave for a future work a detailed computation of all these
effects and byproducts such as a modulation on the spectral
index and a bias on cosmological parameter estimation.
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FIG. 7. Non-Gaussianity parameters fNL (dashed lines) and gNL
(solid lines) for b ¼ −20=e and different values of c. Note that
a change in c causes gNL to drop below the observational
constraints—i.e., gNL ¼ ð−5.8� 6.5Þ × 104.
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