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We study the quantum circuit complexity of cosmological perturbations in different models of the early
universe. A natural measure for the complexity of cosmological perturbations is based on the symplectic
group, allowing us to identify complexity with geodesics in the hyperbolic plane. We investigate the
complexity of both the mode functions and the physical perturbations, arguing that the latter often provides
a more insightful description of the physics involved. In all models the total complexity reached is rather
large. Inflationary perturbations may be represented by a comparatively simple quantum circuit, while the
perturbations during a matter-dominated contracting phase present the most rapid growth in complexity.
Ekpyrotic perturbations reside in the middle and are distinguished by the smallest growth of complexity
before horizon exit. Our analysis serves to highlight how different cosmological models achieve the same
end result for the perturbations via different routes and how all models show a pronounced sensitivity to
initial conditions.
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I. INTRODUCTION

The oldest optical record that we have of the universe is
the cosmic microwave background radiation (CMB), which
shows us the state of the universe about 380,000 years after
the start of the hot big bang expansion. The CMB contains
temperature fluctuations that, using known plasma physics,
can be extrapolated back in time to primordial density
fluctuations with an almost scale-invariant spectrum over
the range of wavelengths that can be observed. In these
calculations, it is an excellent approximation to treat the
primordial perturbations as classical density perturbations.
A striking idea is that the ultimate origin of the

primordial perturbations lies in quantum fluctuations that
were amplified and rendered effectively classical in the
early universe. The best known scenario of this type is
inflation [1–4], which can simultaneously amplify quantum
perturbations, render them classical, and explain their
seemingly acausal correlations by tracing them to earlier
causal processes. It came as a surprise to many that there
exist alternative scenarios, in particular ekpyrotic cosmol-
ogy [5,6] and a contracting matter phase [7], that can
achieve the same goal with entirely different physics. In all
cases, however, the underlying idea is that quantum
fluctuations are turned into effectively classical density

perturbations. Thus in all these models the universe acts as
a quantum computer, processing an initial quantum state
(usually taken to be the vacuum state) into a state that can
explain what we observe in the CMB. In this paper we want
to explore this alternative description in terms of quantum
computation, in particular by calculating the complexity of
the involved computation. As the name suggests, the
complexity of a quantum computation may be thought
of as the difficulty in building a quantum computer
performing the same task. More precisely, the complexity
is taken to be the minimum number of quantum gates (from
a specified set) that the task requires. In other words, we are
asking how complicated a quantum computer would have
to be in order to simulate the perturbations in various early
universe models.1

As we will see, for the states relevant to early universe
cosmology, we will quite naturally be led to depict their
evolution in hyperbolic geometry; see Fig. 1. The cosmo-
logical phases mentioned above turn quantum fluctuations
into effectively classical fluctuations by combining two
effects: they amplify the perturbations and also turn the
quantum state into a highly squeezed state where the
uncertainty in momentum is vastly smaller than that in
amplitude. In this manner the quantum states become
equivalent to a statistical mixture of classical perturbations
[9–17]. On the Poincaré disk in Fig. 1 we have indicated by
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1Describing what the actual quantum computer or circuit
would have to be to perform such a quantum simulation is not
the goal of this paper though. For a first attempt at developing a
quantum algorithm for inflation, see [8].
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arrows the directions of evolution corresponding to amplifi-
cation and squeezing, starting from the vacuum state in the
center. Even though all viable early universemodelsmust end
up with the same final state, they employ rather different
routes to get there. Figure 2 illustrates this by showing the
evolution in the different early universe models that we
investigate in this paper (the actual numerical calculations
performed to produce this figure will be explained in due
course). As is immediately apparent from the figure, in some
models amplification and squeezing occur separately (in
particular in inflation), while in other models they occur
simultaneously (e.g., for isocurvature perturbations during
ekpyrosis). Thus it may already be guessed that the complex-
ities of the corresponding computationswill also turn out to be
different, and this is indeed what we find.
In fact, we find that the complexity depends quite

strongly on the cosmological model. In all cases the final
complexity is very high, due to the vast range of scales that
need to be processed. We actually find that it is useful to
characterize the evolution of complexity in terms of the
number of e-folds, rather than in terms of physical time.
Broadly speaking, inflation turns out to be a simpler

squeezing

FIG. 1. We may usefully display the evolution of the quantum
state of cosmological perturbations on a Poincaré disk, which
forms a representation of hyperbolic geometry. Starting from the
Bunch-Davies vacuum state in the center of the disk, the arrows
indicate the directions of evolution in which the perturbations are
amplified or squeezed. A final state that is both amplified and
squeezed, as required to match the observations of the CMB,
corresponds to a state very close to the boundary directly right
from the center, as indicated by the star.

FIG. 2. The evolution of cosmological perturbations represented on the Poincaré disk (cf. Fig. 1). The color code depicts the time
evolution as a function of e-folding numberN for a given mode from its subhorizon, ultraviolet regime (in dark blue), through horizon
exit atN ¼ N exit (in chartreuse color), all the way to its superhorizon, infrared regime (in red). The differences between inflation (where
amplification and squeezing occur in succession) with, for instance, isocurvature perturbations during ekpyrosis (where amplification
and squeezing occur simultaneously) become manifest. Not all perturbations achieve a highly amplified and squeezed end state: in
particular, curvature perturbations during ekpyrosis do not, as the evolution does not get close to the boundary. Meanwhile, a contracting
matter phase reaches the boundary extremely fast, with much of the distance covered already subhorizon.
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quantum computer than contracting cosmologies, with
a contracting matter phase being the most complex.
Ekpyrotic perturbations behave in an intermediate regime,
though they have the feature that complexity grows the
slowest while perturbations are still on subhorizon scales.
An interesting aspect is that the complexity is sensitive to
the total duration, and thus also to the beginning, of the
cosmological phases in question. This offers the hope that
complexity may help in further elucidating the conditions
required at the beginning of the early universe models
considered, in order to see how they may eventually form a
part of a complete cosmology.
We will start the paper with two review sections, one on

circuit complexity (Sec. II) and one on the quantization of
cosmological perturbations (Sec. III). Readers may skip
them if they feel comfortable with the subjects, though we
review them with a particular application in mind, and
hence the approach may be interesting even for the expert
reader. We will then apply these methods to investigate
circuit complexity for different cosmological models.
Inflation is considered in Sec. IV, while we divide the
analysis for ekpyrosis up into single-field models (Sec. V)
and two-field models (Sec. VI), given that the involved
physics is significantly different. We then compare these
results with matter contraction and adiabatic ekpyrosis in
Sec. VII, where we will see that these models provide the
extremes on the spectrum of complexity. Our results are
discussed in Sec. VIII, and we include a brief comparison
with earlier proposals in the Appendix. We use natural units
with ℏ ¼ 1 and 8πGN ¼ 1 throughout.

II. BRIEF REVIEW OF QUANTUM
CIRCUIT COMPLEXITY

In quantum computation, complexity describes how
difficult it is to build a circuit that transforms a given
reference state jΨRi into a target state jΨTi. A conceptually
straightforward measure for the difficulty of performing a
computational task is simply to look at how many quantum
gates one needs in order to perform the required trans-
formation. Complexity thus provides a quantitative way of
evaluating how much a wave function has changed. The
fact that we will only be interested in Gaussian perturba-
tions greatly simplifies the analysis (a useful exposition,
which we will partly follow here, can be found in [18]). Let
us assume in the present section that we are working with a
one-dimensional harmonic oscillator in position space x.
We will further assume that the reference and target states
are given by the wave functions

jΨRi ¼
�
ω

π

�
1=4

e−
1
2
ωx2 ; jΨTi ¼

�
Ω
π

�
1=4

e−
1
2
Ωx2 ; ð2:1Þ

with frequencies ω and Ω, which at first we take to be
positive real numbers. The evolution between the reference
and target states will be unitary,

jΨTi ¼ UjΨRi: ð2:2Þ

The question is then how many gates one needs in order to
implement the unitary operator U or, rather, what the
minimum number of such gates might be. We can proceed
by first discretizing the evolution by considering small
steps of size ϵ. Our gates will be elementary unitary
operators. Useful examples are given by the following
operators, displayed here along with the effect that they
have on a wave function jΨðxÞi:

H ≡ eiϵ; HjΨðxÞi ¼ eiϵjΨðxÞi; ð2:3aÞ

J ≡ eiϵpx ¼ eϵ∂x ; JjΨðxÞi ¼ jΨðxþ ϵÞi; ð2:3bÞ

Q≡e
ϵ
2eiϵxpx ¼ e

ϵ
2eϵx∂x ; QjΨðxÞi¼ e

ϵ
2jΨðeϵxÞi: ð2:3cÞ

Here px denotes the momentum operator conjugate to x,
that is to say px ¼ −i∂x. In the examples above,H effects a
phase change in the wave function, while J shifts the
position. Most useful to us is Q, which leads to a scaling in
the position (and also includes a normalization factor).
These are just a few examples—one could in principle
consider many more operators.
A general circuit is built from a number of such gates

performed in succession, i.e.,

U ¼ � � �Hαi JαjQαkHαlJαmQαn � � � ; ð2:4Þ

where the αs are natural numbers. General circuits would
contain operations that are later undone again by other
gates. We are interested in the minimal number of gates
required, however. For our specific example in Eq. (2.1) it
is clear that we will only need the scaling (Q) gate, so that
for us a useful circuit will be of the form

U ¼ Qα → Qαe−
1
2
ωx2 ¼ e

αϵ
2 e−

1
2
ωe2αϵx2 : ð2:5Þ

Thus we can obtain the required transformation from jΨRi
to jΨTi as long as 2αϵ ¼ lnðΩ=ωÞ. In general one should
now assign a measure to the “depth” of the circuit. A
popular method is to assign a metric to the space of unitary
operations, after taking the continuum limit ϵ → 0. This is
useful, as the shortest circuit will then correspond to a
geodesic in this space, and this geometric method allows
one to use the power of differential geometry (see [19]). We
will turn to such an example shortly. Our present example
is, however, so simple that it is sufficient to directly equate
the complexity C to the number of gates, where we have to
rescale the measure by ϵ in order to obtain a well-defined
limit as ϵ → 0:

C ¼ ϵα ¼ 1

2
ln

�
Ω
ω

�
: ð2:6Þ
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Note that the complexity evolves logarithmically; hence
even small numerical changes in the complexity correspond
to significant evolution of the wave function. As we will
see, the early universe provides a laboratory that is
surprisingly efficient at producing complex quantum
circuits.
In cosmology, the frequencies ω, Ω are in general

complex valued since we are dealing with generic
Gaussian states. We therefore have to find an appropriate
generalization of Eq. (2.6). Perhaps the most straightfor-
ward generalization is simply to let α become a complex
number, too, which one should then think of as encoding
the effect of two quantum gates, one for the real part and
one for the imaginary part of α. This has been formalized in
[20] (and used in the cosmological context; see, e.g.,
[21,22]), with the complexity now defined via

Cða:c:Þ ¼ ϵjαj ¼ 1

2

���� ln
�
Ω
ω

�����
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ln

����Ωω
����
�

2

þ
�
arctan

�
ImðΩ=ωÞ
ReðΩ=ωÞ

��
2

s
: ð2:7Þ

We will refer to this definition as the analytically continued
(a.c.) complexity.
There exists another generalization, however, which

leads to an appealing geometric interpretation, both of
the states and of their complexity. This generalization was
developed in [23,24] and takes as its starting point the
covariance matrices associated with Gaussian states. Let us
first rewrite the target state as

jΨTi ¼
�
a
π

�
1=4

e−
1
2
ðaþibÞx2 ; ð2:8Þ

with a, b being real valued. Moreover, we group the
position and momentum into a combined coordinate ξm ¼
ðx; pÞwithm ¼ 1, 2. Since we are working with a Gaussian
state, all information is contained in the quadratic combi-
nations

2hΨTjξmξnjΨTi ¼ Gmn
T þ iΩmn; ð2:9Þ

where the antisymmetric matrix

Ω¼
�

0 1

−1 0

�
ð2:10Þ

encodes the canonical commutation relations, while the
symmetric covariance matrix GT has entries given by the
expectation values

GT ¼
�

2hx2i hxpþpxi
hxpþpxi 2hp2i

�
¼
 

1
a −b

a

−b
a

a2þb2
a

!
: ð2:11Þ

The evolution equation (2.2) now becomes

GT ¼UGRUT: ð2:12Þ

The transformations ξ̃m ¼ M̃m
nξ

n that preserve the canoni-
cal commutation relations are elements of the symplectic
group, M̃ ∈ Spð2;RÞ. This suggests the use of gates that
belong to the algebra spð2Þ. In fact, it is precisely quadratic
combinations of x and p that form the corresponding
generators,

V≡ iffiffiffi
2

p x2; W≡ i
2
ðxpþpxÞ; Z≡ iffiffiffi

2
p p2; ð2:13aÞ

½V;W� ¼ −2V; ½V; Z� ¼ −2W; ½W;Z� ¼ −2Z:

ð2:13bÞ

As noticed in [23], it is sufficient to consider the subalgebra
formed by V andW—moreover, this restriction will lead to
a useful connection with hyperbolic geometry, as we will
now review.
A matrix representation of V, W, along with the

associated group elements/gates, is provided by

V2×2 ¼
�

0 0ffiffiffi
2

p
0

�
; W2×2 ¼

�−1 0

0 1

�
; ð2:14aÞ

QV ¼ eϵV2×2 ; QW ¼ eϵW2×2 : ð2:14bÞ

These gates are sufficient to take a reference matrix
GR ¼ diagð1=ω;ωÞ to the target (2.11). We may slightly
simplify the task by using a squeezing operation S ¼
diagð ffiffiffiffi

ω
p

; 1=
ffiffiffiffi
ω

p Þ on the reference and target states, with
the effect that

SGRST ¼ 1; G̃T ≡ SGTST ¼
 

ω
a − b

a

− b
a

a2þb2
ωa

!
: ð2:15Þ

Thus the reference has become the identity.
A general circuit will again consist of a sequence of

gates. It is here that we will make the transition from a
discrete to a continuous description, which will allow us to
make a connection with differential geometry. In the
continuous description a circuit is represented by a path-
ordered exponential

UðsÞ ¼ P⃖ exp

�Z
s

0

ds̃YIðs̃ÞMI

�
; ð2:16Þ

with MI ¼ ðV2×2;W2×2Þ and YIðsÞ describing switches
that turn the respective gates on or off. The full circuit then
runs from the identity at s ¼ 0 to the target G̃T at s ¼ 1.
It is straightforward to verify that a general element of

such a circuit can be parametrized by
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U ¼
� ffiffiffi

z
p

0
yffiffiffiffi
2z

p 1ffiffi
z

p

�
: ð2:17Þ

Note that the transformation law (2.12) involves the
transpose, thus also generating the required first row/
second column entry. The connection to geometry is found
by inverting (2.16) according to

dYI ¼ 1

2
TrðdUU−1MI

TÞ; ð2:18Þ

where the factor 1=2 comes from the normalization of the
gates MI . From this we can immediately obtain a circuit
geometry specified by the line element

ds2 ¼ gIJdYIdYJ ¼ dz2 þ 1
2
dy2

4z2
: ð2:19Þ

Here, following [23], we chose gIJ ¼ diagð1; 1=2Þ, but
other choices are equally simple to implement. The line
element above may be recognized as the metric on the
hyperbolic upper half plane H2. Optimal circuits then
correspond to geodesics, which on the hyperbolic plane
are given by arcs of circles that are perpendicular to the
boundary z ¼ 0. Our reference and target states correspond
to the coordinate locations

ðy0; z0Þ ¼ ð0; 1Þ; ðy1; z1Þ ¼
�
−

bffiffiffi
2

p
a
;
ω

a

�
: ð2:20Þ

Then the complexity may be defined as the hyperbolic
distance between these points,

C ¼ 1

2
argcoshðXÞ ¼ 1

2
ln
�
X þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − 1

p 	
; ð2:21aÞ

X ¼ z20 þ z21 þ 1
2
ðy1 − y0Þ2

2z0z1
¼ 1

2

�
a
ω
þ ω

a
þ b2

ωa

�

¼ 1

2
Tr G̃T: ð2:21bÞ

We will refer to this definition simply as the “complexity,”
though for the sake of comparison with the analytically
continued complexity (2.7) (such as in Appendix) we shall
sometimes specifically refer to it as the “hyperbolic
complexity.”
Finally, we mention that it can be useful to map the

hyperbolic plane to a finite representation, in particular to
the Poincaré disk. This mapping is most easily expressed in
terms of the complex coordinate Z≡ yþ iz. Then a point
Z on the hyperbolic half-plane is mapped to the point Z−iZþi on
the disk. In particular, our reference state (0, 1) corresponds
to Z ¼ i and gets mapped to the origin of the disk. Target
states that are far from the reference state, and thus obtain a
large hyperbolic complexity, can then be found very close

to the edge of the Poincaré disk. This is the representation
that is used in Figs. 1 and 2. It thus becomes clear how
amplification and squeezing of the perturbations (ω=a and
b=a growing, respectively) moves one around the Poincaré
disk, getting closer to the edge and the point (1,0) on the
disk as jZj grows.

III. QUANTIZATION OF COSMOLOGICAL
PERTURBATIONS AND COMPLEXITY THEREOF

The easiest way to model both inflation and ekpyrosis is
by considering the dynamics of scalar fields coupled to
gravity and evolving in an appropriate potential. We will
start our analysis with models involving only a single scalar
field σ with an exponential potential VðσÞ. The action is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
ð∂σÞ2 − V0e−

ffiffiffiffi
2ϵ

p
σ

�
: ð3:1Þ

Note that ϵ is always taken to be positive, but V0 can be
positive or negative. In a flat Robertson-Walker spacetime,
the equations of motion reduce to

3H2 ¼ 1

2
_σ2 þ V; ð3:2aÞ

_H ¼ −
1

2
_σ2; ð3:2bÞ

σ̈ þ 3H _σ þ ∂σV ¼ 0: ð3:2cÞ

When ϵ is constant [i.e., when the scalar field equation of
state (EoS) is constant], there exists an exact scaling
solution to the equations of motion, given by

a ¼ a0jtj1=ϵ; H ¼ 1

ϵt
;

σ ¼ 1ffiffiffiffiffi
2ϵ

p ln

�
V0ϵ

2

3 − ϵ
t2
�
; V ¼ 3 − ϵ

ϵ2t2
: ð3:3Þ

For inflation, one would take V0 > 0 and assume the
universe to be expanding (i.e., t > 0), with EoS ϵ < 1. This
then corresponds to an accelerated expansion of the scale
factor and slow evolution of the scalar field. For ekpyrosis,
one would take V0 < 0 and assume the universe to be
contracting (i.e., t < 0) with ϵ > 3. This would correspond
to slow contraction and fast evolution of the scalar field.
Note that the EoS (slow-roll/fast-roll) parameter ϵ can be
reexpressed in various ways,

ϵ ¼ −
_H
H2

¼ 1

2

_σ2

H2
¼ 1

2

ð∂σVÞ2
V2

: ð3:4Þ

Below, we will work in conformal time τ, defined by
dτ≡ dt=a, in terms of which the scaling solution becomes

QUANTUM CIRCUIT COMPLEXITY OF PRIMORDIAL … PHYS. REV. D 103, 063527 (2021)

063527-5



ðϵ − 1Þτ ¼ ϵt−ð1−ϵÞ=ϵ; aðτÞ ¼ ā0ð−τÞ 1
ϵ−1;

H≡ a0

a
¼ 1

ðϵ − 1Þτ ; ð3:5Þ

where a prime denotes a derivative with respect to con-
formal time. Conformal time naturally runs over negative
values for both inflation and ekpyrosis. We will also often
use the e-folding number to characterize the time depend-
ence later. We define the number of e-folds of evolution via
dN ≡ d lnðajHjÞ ¼ d ln jHj since it is the appropriate
definition with regard to the flatness problem. For inflation
H is roughly constant so that instead one often uses
dN ¼ d ln a, but this is not useful for ekpyrosis where
a is approximately constant. Thus, we will use dN ¼
−d lnð−τÞ ¼ ð1 − ϵÞd ln a, which is valid generally.
We will be primarily interested in perturbations of these

models. For this, we will work in comoving gauge, in
which the scalar field fluctuation vanishes, δσ ¼ 0, and the
scalar degree of freedom is represented by the comoving
curvature perturbation R. The metric on spatial hyper-
surfaces is then given by

hij ¼ a2ð1þ 2RÞδij: ð3:6Þ

We will only consider scalar perturbations—an analogous
calculation could be performed for gravitational waves. At
quadratic order, the action for the comoving curvature
perturbation is remarkably simple and given by

Sð2Þ ¼
Z

d3xdtϵða3 _R2 − að∂iRÞ2Þ: ð3:7Þ

The corresponding equation of motion is

R̈þ
�
3H þ _ϵ

ϵ

�
_R −

1

a2
∂i∂iR ¼ 0: ð3:8Þ

In order to quantize the perturbations, it is useful to
define the Mukhanov-Sasaki variable

v≡ zR; z2 ≡ 2a2ϵ ¼ a2
_ϕ2

H2
: ð3:9Þ

Switching to conformal time, the action (3.7) now becomes
canonically normalized:

Sð2Þ ¼ 1

2

Z
d3xdτ

�
ðv0Þ2 − ð∂ivÞ2 − 2

z0

z
vv0 þ

�
z0

z

�
2

v2
�
:

ð3:10Þ

The action is quadratic and will thus lead to a linear
equation of motion. This implies that it will be useful to
expand the perturbations into Fourier modes:

vðτ;xÞ ¼
Z

d3k
ð2πÞ3 vkðτÞe

ik·x: ð3:11Þ

The equation of motion for each Fourier mode of wave
number k is then

v00k þ
�
k2 −

z00

z

�
vk ¼ 0: ð3:12Þ

The linearity of the equation implies that each mode
evolves independently, and there is no mode mixing.
We can quantize the system in the Heisenberg picture by

promoting the mode functions to operators and writing
these new operators as a linear combination of annihilation
and creation operators,

v̂k ¼ fkðτÞâk þ f�kðτÞâ†−k: ð3:13Þ

Here the fkðτÞ are time-dependent (complex) solutions of
the equations of motion (3.12), which because of the spatial
isotropy of the background depend only on the modulus
k≡ jkj. Note that the definition above implies the relation
v̂−k ¼ v̂†k, which ensures that the comoving curvature
perturbation is real valued, as it should. We then require
the annihilation/creation operators to satisfy the canonical
quantization condition,

½âk; â†−p� ¼ ð2πÞ3δð3Þðkþ pÞ: ð3:14Þ

This condition implies that the field operator v̂ and its
conjugate momentum π̂ ≡ v̂0 − ðz0=zÞv̂ satisfy the canoni-
cal equal-time commutation relation,

½v̂ðτ;xÞ; π̂ðτ; yÞ� ¼ iδð3Þðx − yÞ; ð3:15Þ

as well as the trivial commutators,

½v̂ðτ;xÞ; v̂ðτ; yÞ� ¼ ½π̂ðτ;xÞ; π̂ðτ; yÞ� ¼ 0: ð3:16Þ

The Wronskian is a constant of motion,

fkf�0k − f�kf
0
k ¼ i; ð3:17Þ

where we have fixed the right-hand side in such a way as to
ensure the canonical normalization of the mode functions.
The above quantization procedure in the Heisenberg

picture is standard in early universe cosmology. But in
order to investigate the analogy with circuit complexity, it is
more useful to work directly with the wave function, i.e., in
the Schrödinger picture. The wave function will be of
Gaussian form since at our level of approximation the
perturbations are governed by a quadratic action. It will, in
fact, be a product of Gaussians for each wave number k, and
thus we may focus on a single wave number and write

JEAN-LUC LEHNERS and JEROME QUINTIN PHYS. REV. D 103, 063527 (2021)

063527-6



jΨðvÞi∝ exp

�
−
1

2
Aσσv2

�
¼ exp

�
−
1

2
ARRR2

�
; ð3:18Þ

where the proportionality constant is determined upon
normalization. We are interested in the vacuum state
âjΨi ¼ 0. If we rewrite the annihilation operator as
iâ ¼ ðf�0 − z0

z f
�Þv̂ − f�π̂, then with π̂ → −i∂v we can

deduce an expression for the correlator Aσσ in terms of
the mode functions as

Aσσ ¼ −i
f�0k
f�k

þ i
z0

z
; ARR ¼ z2Aσσ: ð3:19Þ

We also added the correlator of the comoving curvature
perturbation, whose expression follows immediately upon
using v ¼ zR. The equation of motion for the correlator
follows from the Schrödinger equation ijΨi0 ¼ ĤjΨi,
where Ĥ is the Hamiltonian operator, or equivalently from
the Heisenberg equation of motion,

iA0
σσ ¼

�
Aσσ − i

z0

z

�
2

− k2 þ z02

z2
: ð3:20Þ

We can now solve for the mode functions defined above.
On a scaling solution, the mode equation (3.12) becomes

f00k þ
�
k2 −

2 − ϵ

ð1 − ϵÞ2τ2
�
fk ¼ 0: ð3:21Þ

It can be solved exactly by rewriting it in the form

f00k þ
�
k2 −

α2σ − 1=4
τ2

�
fk ¼ 0; where ασ ≡ 1

2

���� 3 − ϵ

1 − ϵ

����:
ð3:22Þ

The solution approaching the Minkowski vacuum
e−ikτ=

ffiffiffiffiffi
2k

p
in the far past is given in terms of a Hankel

function of the first kind,

fkðτÞ ¼
ffiffiffiffiffi
π

4k

r
eið2ασþ1Þπ=4 ffiffiffiffiffiffiffiffi

−kτ
p

Hð1Þ
ασ ð−kτÞ: ð3:23Þ

The phase is immaterial in what follows, and hence we will
drop it.
The explicit solution to the mode functions allows us to

evaluate the correlator. Using the formula d
dxH

ð1Þ
α ðxÞ ¼

Hð1Þ
α−1ðxÞ − α

x H
ð1Þ
α ðxÞ we obtain the compact expression

Aσσ ¼ i

�
ασ − 1=2

τ
þ z0

z

�
þ ik

�
Hð1Þ

ασ−1ð−kτÞ
Hð1Þ

ασ ð−kτÞ

��

¼ ik

�
Hð1Þ

ασ−1ð−kτÞ
Hð1Þ

ασ ð−kτÞ

��
: ð3:24Þ

Note that the term involving z0=z has disappeared from Aσσ.
This cancellation follows directly from the definition
α2σ ¼ 1=4þ τ2z00=z, which implies that z behaves as a
power law z ∝ ð−τÞn for some real n, in turn implying that
α2σ ¼ ðτz0=z − 1=2Þ2. Thus for any single field model,
where the fluctuations are adiabatic, i.e., those of the field
that drives the background, the term inversely proportional
to the comoving horizon, z0=z ∝ ð−τÞ−1 ∝ jHj, disappears
from the correlator. This is important for models where the
comoving horizon shrinks, such as inflation and ekpyrosis,
since a potential source of amplification of perturbations is
removed. As we will see, the consequences of this fact for
inflation and ekpyrosis differ drastically.
At early times (τ → −∞), the correlator approximates its

Minkoswki vacuum value Aσσ ≃ k. In order to obtain the
late-time limit, τ → 0−, one has to use the asymptotic
expansion of the Hankel function,

Hð1Þ
α ðxÞ ¼

�
x
2

�
α
�

1

Γðαþ 1Þ −
x2

4Γðαþ 2Þ þ � � �
�

þ i

�
x
2

�
−α
�
−
ΓðαÞ
π

−
x2Γðα − 1Þ

4π
þ � � �

−
�
x
2

�
2α cosðπαÞΓð−αÞ

π
þ � � �

�
: ð3:25Þ

The leading real and imaginary parts of the correlator
depend on the value of ασ and are given (in the late-time
limit) by

Aσσ≃
k

22ασ−1ΓðασÞ
�

π

ΓðασÞ
−iΓð1−ασÞcosðπασÞ

�
ð−kτÞ2ασ−1

ðασ<1Þ; ð3:26aÞ

Aσσ ≃ k

�
π

22ασ−1ΓðασÞ2
ð−kτÞ2ασ−1 þ i

1

2ðασ − 1Þ ð−kτÞ
�

ðασ > 1Þ: ð3:26bÞ

Given that z2 ¼ 2ϵā20jτj1−2ασ when 0 ≤ ϵ < 1 or ϵ ≥ 3, we
can also find the corresponding expressions for the corre-
lator for the comoving curvature perturbation R,

ARR ≃
ϵā20k

2ασ

22ασΓðασÞ
�

π

ΓðασÞ
− iΓð1 − ασÞ cosðπασÞ

�
ðασ < 1Þ; ð3:27aÞ

ARR ≃ ϵā20k
2ασ

�
π

22ασΓðασÞ2
þ i

1

ðασ − 1Þ ð−kτÞ
2−2ασ

�
ðασ > 1Þ: ð3:27bÞ

We will analyze the implications of these expressions for
relevant single field models of the early universe in the next
sections.
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Given that during inflation and ekpyrosis the wave
function evolves a lot, we can expect the complexity to
grow significantly, too. In previous works, the complexity2

was analyzed with regard to the canonically normalized
variable v [21,22]. In that case it is natural to use the early
Minkowski correlator Aσσ ≃ k as the reference state. The
target state is taken to be the late-time superhorizon state in
which the perturbations find themselves at the end of
inflation or at the end of the ekpyrotic scenario, just before
reheating occurs in every case. Based on the definition
(2.21)—so using the hyperbolic measure rather than the
analytically continued one—we may thus define the com-
plexity of the canonical variable v as3

Cv ¼
1ffiffiffi
2

p ln
�
Xv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
v − 1

q 	
;

Xv ¼
1

2

�
ReAσσ

k
þ k
ReAσσ

þ ðImAσσÞ2
kReAσσ

�
: ð3:28Þ

As we will see below, it may make more sense, however, to
work in terms of the physical variable, which is the
comoving curvature perturbation. Then the complexity
must be defined with respect to the state at some early
time, which one may think of as the start of inflation or
ekpyrosis. We will take the initial time to be τi and the final
time at reheating τf . Implicit in this prescription is the
assumption that inflation and ekpyrosis had a start and did
not reach back arbitrarily far into the past. This assumption
seems well justified in light of recent works analyzing the
beginning stages of inflation [25–35], and it is well founded
for ekpyrosis, in particular in the context of its cyclic
realizations [36–42]. Starting again from the definition in
Eq. (2.21), we may thus write the complexity of the
curvature perturbation as

CR¼ 1ffiffiffi
2

p ln
�
XRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
R−1

q 	
;

XRðτÞ¼
1

2

�
ReARRðτÞ
ARRðτiÞ

þ ARRðτiÞ
ReARRðτÞ

þ ½ImARRðτÞ�2
ARRðτiÞReARRðτÞ

�
;

ð3:29Þ

in the time interval τi ≤ τ ≤ τf . This provides the basic
ingredients to analyze the evolution of complexity in
inflation and ekpyrosis in the following sections.
A few observations can immediately be made: as long as

one remains deeply subhorizon (−kτ ≫ 1), we notice that

Aσσ ≃ k implies Xv ≃ 1 and Cv ≃ 0, so complexity in terms
of the canonical variable does not grow. In terms of the
curvature perturbation, the corresponding early-time sub-
horizon limit is ARRðτÞ ≃ 2ϵkaðτÞ2, and so one has

XR ≃
1

2

��
a
ai

�
2

þ
�
ai
a

�
2
�

ð−kτ → ∞Þ; ð3:30Þ

where ai ≡ aðτiÞ. As the universe expands (a ≫ ai) or
contracts (a ≪ ai), either one of the two terms will
dominate. Thus, as XR ≫ 1, the complexity may be
approximated as CR ≃ 2−1=2 lnð2XRÞ, and so one finds

CR ≃�
ffiffiffi
2

p
ln

�
a
ai

�
¼

ffiffiffi
2

p

j1 − ϵjN ; ð3:31Þ

where the þ sign holds for expansion (when 0 ≤ ϵ < 1)
and the − sign for contraction (when ϵ > 1). Therefore on
subhorizon scales, as we will confirm in the next sections,
inflation with ϵ ≪ 1 has CR ≃

ffiffiffi
2

p
N and ekpyrosis with

ϵ ≫ 3 has CR ≃
ffiffiffi
2

p
N =ϵ.

IV. INFLATION

Inflation is characterized by accelerated expansion;
hence 0 ≤ ϵ < 1, and consequently ασ > 3=2. In the
slow-roll limit, where ϵ ≪ 1, we may approximate
ασ ≈ 3=2þ ϵ; we will illustrate our results in this limit.
One can see from Eq. (3.26b) that the dispersion,

1

ReðAσσÞ
∼ jτj−2−2ϵ ðϵ ≪ 1Þ; ð4:1Þ

of the canonically normalized modes v is growing as
inflation proceeds, i.e., as τ → 0−. This means that these
modes are strongly amplified. Meanwhile, since the ratio

ImðAσσÞ
ReðAσσÞ

∼ jτj−1−2ϵ ðϵ ≪ 1Þ ð4:2Þ

is also growing fast, we can see that the wave function
evolves into a highly squeezed state.
Another perspective is offered by the correlator for the

physical perturbation, namely the comoving curvature
perturbation, in Eq. (3.27b)—see Fig. 3. From its late-time
asymptotic expression, we can see that the real part evolves
to a constant. This is a reflection of the fact that on large
(superhorizon) scales, the comoving curvature perturbation
becomes constant. The spectrum of the perturbations can be
read off from the k dependence, which implies a spectral
index ns ¼ 4 − 2ασ ≈ 1 − 2ϵ with a small red tilt. Since the
state is highly squeezed, jImðAσσÞ=ReðAσσÞj ≫ 1, the fact
that the curvature perturbation is approximately conserved
on large scales implies that on these scales the momentum
is known to be small with high precision and consequently
the bulk of the uncertainty resides in the amplitude.

2Previous works used the analytically continued formula (2.7)
for the definition of complexity [21,22]. As already mentioned,
we will rather use the hyperbolic measure.

3Here and below in Eq. (3.29) we are summing over modes
with wave numbers k and −k, because momentum conservation
implies that these are produced together. Doing so introduces an
additional overall factor of

ffiffiffi
2

p
in the complexities in comparison

with Eq. (2.21a).
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Using the full expression for the correlator [Eq. (3.24)],
one can compute the complexity given by either (3.28) or
(3.29). A numerical example of the evolution of the two
complexities, Cv for the mode functions and CR for the
curvature perturbations, is shown in Fig. 4. It is striking
how differently they evolve: the most obvious difference is
that Cv only grows on super-horizon scales, while CR grows
throughout. In fact, for Cv we have the following leading-
order approximate expressions for modes that have not yet
exited the horizon and for those that already have [using
Eq. (3.26b) and Taylor expanding Eq. (3.28) as τ → 0−],

CvðτÞ ≃ 0 ðsubhorizonÞ; ð4:3aÞ

CvðτÞ ≃
ffiffiffi
2

p
ð1þ ϵÞ ln

�
τ⋆
τ

�
ðsuperhorizonÞ; ð4:3bÞ

where τ⋆ indicates the conformal time at horizon exit,
while the complexity of the curvature perturbation is well
approximated by

CRðτÞ ≃
ffiffiffi
2

p
ln

�
aðτÞ
ai

�
ðsubhorizonÞ; ð4:4aÞ

CRðτÞ ≃ CRðτ⋆Þ þ
ffiffiffi
2

p
ð1þ 2ϵÞ ln

�
τ⋆
τ

�
ðsuperhorizonÞ:

ð4:4bÞ

The above expression on subhorizon scales was already
derived in Eq. (3.31), while for superhorizon scales we used
Eq. (3.27b) and expanded Eq. (3.29) as τ → 0−. These
expressions can be recast as the growth of complexity (ΔC)
in the different regimes as a function of the duration of that
regime (ΔN ) as

ΔCv ≃ 0 ðsubhorizonÞ; ð4:5aÞ

ΔCv ≃
ffiffiffi
2

p
ð1þ ϵÞΔN ðsuperhorizonÞ; ð4:5bÞ

ΔCR≃
ffiffiffi
2

p

1− ϵ
ΔN ≃

ffiffiffi
2

p
ð1þ ϵÞΔN ðsubhorizonÞ; ð4:5cÞ

ΔCR ≃
ffiffiffi
2

p
ð1þ 2ϵÞΔN ðsuperhorizonÞ: ð4:5dÞ

These approximate expressions are very accurate, as may
be seen by the closeness of the numerical curve to the
dashed lines in Fig. 4. The “canonical” complexity grows
roughly as

ffiffiffi
2

p
times the number of e-folds that a given

mode spends outside of the horizon. For modes that exit the
horizon say 50 e-folds before the end of inflation, the
complexity will thus end up being approximately 50

ffiffiffi
2

p
.

Meanwhile, modes that leave just before the end of
inflation would have essentially vanishing complexity by
the time of reheating. By contrast, the “curvature complex-
ity” already grows (again roughly as

ffiffiffi
2

p
ΔN ) while a mode

is still subhorizon. This is because the curvature perturba-
tion is significantly amplified as it is drawn out of the
vacuum. Once the perturbation exits the horizon, the
complexity keeps growing (roughly at the same rate)
due to the imaginary part of the correlator, which is still
growing. Thus, even though the real part of the correlator
becomes constant, signaling that the curvature perturbation
is conserved outside of the horizon, the wave function has a
rapidly growing imaginary part. In other words, the wave
function for the curvature perturbation is increasingly of

FIG. 4. Complexity during inflation in terms of the modes v
(left) and the curvature perturbations R (right) depicted by the
blue curves. The vertical, dotted line is the time of horizon exit as
in Fig. 3. The same numerical values as in Fig. 3 are also used.
The cyan and orange dashed lines are asymptotic expressions
before and after horizon exit, respectively [see Eq. (4.5)].

FIG. 3. Real (bottom) and imaginary (top) parts of the corre-
lator for curvature perturbations R during inflation as a function
of the e-folding number N . The vertical, dotted line is the time
of horizon exit. The following numerical values were used:
ϵ ¼ 1=11 (so ασ ¼ 8=5) and k ¼ 5.
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Wentzel-Kramers-Brillouin form, with a rapidly changing
phase and a slowly changing amplitude. The phase drives
the complexity to even higher values. Overall, the curvature
complexity is thus much higher than the canonical com-
plexity. If an inflationary phase lasts say 80 e-folds, then the
same mode considered above would undergo a growth of
complexity of about 30

ffiffiffi
2

p
≈ 42 before horizon exit,

followed by an additional 50
ffiffiffi
2

p
≈ 71 units of growth after

horizon exit. More generally, if the inflationary phase lasts
N tot e-folds in total, then the complexity of a mode exiting
N ⋆ e-folds before the end is given by

Cv ≃
ffiffiffi
2

p
ð1þ ϵÞN ⋆;

CR ≃
ffiffiffi
2

p

1 − ϵ
ðN tot −N ⋆Þ þ

ffiffiffi
2

p
ð1þ 2ϵÞN ⋆

≃
ffiffiffi
2

p
½N tot þ ϵðN ⋆ þN totÞ�: ð4:6Þ

The canonical complexity is thus ignorant about the
beginning and duration of inflation. By contrast, the
curvature complexity is sensitive to the total duration of
inflation and hence also to the pre-horizon-exit evolution.
The above result for the curvature complexity in

inflation admits an additional interesting interpretation.
Approximating inflation by de Sitter spacetime and think-
ing of de Sitter as a thermal system with temperature given
by the inverse of the horizon radius (i.e., T ∼H), one can
ask the question of how fast the system can “scramble”
[43,44] perturbations over the Hubble horizon. From the
point of view of a dynamical system, trajectories moving
apart exponentially fast as a function of time (∼eλLt) can be
diagnosed as chaotic, and the strength of the sensitivity to
the initial conditions is characterized by the Lyapunov
exponent λL. The time at which trajectories have moved
apart by an Oð1Þ factor is then representative of the
scrambling time (t�), hence t� ∼ 1=λL. For a thermal
quantum system, it has been conjectured that there exists
an upper bound on the growth of chaos given by the
temperature, namely λL ≲ T [45], and black holes as well as
de Sitter are potentially among the fastest scrambling
systems in the universe, given that they saturate the
conjectured bound [43,44]. For generic quantum systems,
there exist various approaches and techniques to quantify
the chaoticity and correspondingly compute the Lyapunov
exponent and scrambling time (for de Sitter we certainly
expect λL ∼ T ∼H; see, e.g., [46–48]). Complexity might
be a promising quantity in that respect. Indeed, as the
evolution of complexity depends on the logarithm of the
correlator, linear growth in complexity is actually indicative
of exponential separation of trajectories in “field space”
(the space of quantum states) and thus of chaos [49–54].
One could therefore attempt to identify λL ≡ dC=dt, which
would yield a scrambling time of order the Hubble
parameter, λL ≃

ffiffiffi
2

p
H (on superhorizon scales for Cv, but

on all scales for CR). There might, however, be different

roles for the canonical and curvature complexities: the
canonical complexity may be a good measure of chaos in
the sense that it is the effective mass squared of the mode
functions that transitions from positive to negative near
horizon exit, implying an enhanced sensitivity to initial
conditions as the horizon is crossed. On the other hand, the
physical complexity is sensitive to the entire inflationary
evolution, and thus to the vast separation of scales achieved
over the course of an entire inflationary phase. This may
also lead to connections with the trans-Planckian censor-
ship conjecture [31–33,55]. It will certainly be of interest to
explore the connections between complexity and chaos in
much more detail in the future.

V. SINGLE-FIELD EKPYROSIS

Ekpyrosis is a phase of slow contraction with ultrastiff
EoS ϵ > 3. This EoS is required in order to make the
ekpyrotic phase an attractor, such that anisotropies do not
grow despite the fact that the universe is contracting. During
this phase, the scale factor is almost constant, but theHubble
rate grows quickly in magnitude. Since the scale factor
evolves little, the wavelength of perturbations changes
equally little. However, the rapidly growing Hubble rate
implies that the comoving horizon 1=jaHj ∝ ð−τÞ shrinks
rapidly as the universe contracts, τ → 0−. Consequently
perturbation modes with ever shorter wavelengths succes-
sively exit the horizon, just as in inflation.
A crucial difference with inflation is that the adiabatic

modes associated with the ekpyrotic scalar field do not get
amplified much and do not develop a nearly scale-invariant
spectrum. One may see this by inspection of the correlator
for the curvature perturbation. Since the EoS is ultrastiff,
we have that ασ < 1=2 (for large ϵwe have ασ ≈ 1=2 − 1=ϵ)
and thus Eq. (3.27a) implies that at late times both real and
imaginary parts of the correlator ARR tend to constants.
A numerical example is shown in Fig. 5. Thus the ratio of
the imaginary part to the real part does not grow, implying
that no squeezing occurs and that these perturbations
cannot be given a stochastic classical interpretation.
Moreover, the spectral index ns ¼ 4 − 2ασ > 3 remains
very blue.
Given these observations, we may conclude that the

wave function of adiabatic modes does not evolve much
during an ekpyrotic phase, and thus we expect the complex-
ity to remain rather small. A numerical example is shown in
Fig. 6. The right panel of the figure shows the complexity
of the curvature perturbation, which indeed reaches a small
constant (depicted by the dashed orange line) soon after
horizon exit—before horizon exit it slowly grows asffiffiffi
2

p
N =ϵ (depicted by the dashed cyan line) as derived in

Eq. (3.31). By contrast, the canonical complexity (in the
left panel) keeps growing even after horizon exit, due to the
fact that the correlator for the Mukhanov-Sasaki variable
keeps growing. Equation (3.26a) shows that it grows in
magnitude even at late times, with real and imaginary parts
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growing at the same rate as a result of the absence of
squeezing [specifically Aσσ∼ð−τÞ−2=ϵ, and so Cv∼

ffiffiffi
2

p
N =ϵ,

which is depicted by the dashed orange line in the left panel
of the figure]. Our discussion in the previous paragraph
indicates that the curvature complexity represents a more
sensible reflection of the physical processes during the
ekpyrotic phase, and thus constitutes the preferred measure
of complexity (as was the case for inflation).

VI. TWO-FIELD EKPYROTIC MODELS

In the previous section we saw that the adiabatic modes
are not significantly amplified during an ekpyrotic phase,
and moreover they retain a blue spectrum. Thus, put simply,
they cannot explain the primordial temperature fluctuations
seen in the cosmic background radiation and are utterly
unimportant on large scales. However, the ekpyrotic back-
ground solution does possess a scaling symmetry, in close
analogy to inflationary spacetimes. The problem, most
clearly discussed in [56], is that during ekpyrosis the
scaling symmetry projects out of the curvature perturbation.
A resolution of this issue is to consider two-field models. If
there is a second ekpyrotic field, then the difference of the
two fields (which inherits the scaling symmetry from both
fields) is a gauge-invariant variable and may serve as the
seed for primordial (nearly) scale-invariant perturbations.
This has been discussed at length in several papers, e.g.,
[57–62]; hence we will only provide a brief review here.
In addition to the adiabatic scalar σ driving the back-

ground we will consider the transverse field s, whose
fluctuations represent entropy (or isocurvature) perturba-
tions. By definition we will assume that the ekpyrotic
background evolution remains unchanged, so that at the
background level s ¼ 0. (In the case where one starts with
two ekpyrotic fields, this corresponds to rotating the field
basis such that σ points along the background trajectory.)
The perturbations δs will, however, be important. They are
sensitive to the shape of the potential, which we take to be
given by

Vðσ; sÞ ¼ −V0e
ffiffiffiffi
2ϵ

p
σ

�
1þ κ2

2
ϵs2 þOðs3Þ

�
; ð6:1Þ

where κ2 is a positive parameter. In a theory of two
scalar fields with two exact exponential potentials, the
above potential arises after the above-mentioned field
rotation and leads to κ2 ¼ 1. Thus κ2 may be thought of
as parametrizing the deviation from exact exponential
potentials. Note that the potential is unstable in the s
direction—this crucial feature will be responsible for
the amplification of δs perturbations. It also leads to a
sharpening of the issue of initial conditions, with possible
implications investigated in [40,41,63]. Non-Gaussian
corrections are encoded in higher-order terms in the
potential—these lead to interesting observational conse-
quences (see, e.g., [64–70]), but will not be important for
our present work.
There exists a second class of models, again with two

scalar fields, but where instead of having a potential that is
unstable in the transverse direction one considers a non-
minimal coupling between the two scalar fields. A judi-
cious choice of coupling can allow the adiabatic field to
transfer its scaling symmetry to the second scalar field,
without introducing instabilities in the background dynam-
ics. These models, and their observational consequences,

FIG. 6. The evolution of complexity during ekpyrosis, shown in
terms of both the canonical complexity (left panel) and the
curvature complexity (right panel), for the perturbation modes
shown in Fig. 5. The canonical complexity keeps growing even
after horizon exit, while the curvature complexity reaches a
constant value. As discussed in the main text, the curvature
complexity seems to give a more faithful representation of the
salient physical effects.

FIG. 5. A numerical evaluation of the correlator for the
curvature perturbation R during ekpyrosis, with k ¼ 5,
ϵ ¼ 11, and consequently ασ ¼ 2=5. The vertical, dotted line
indicates horizon exit. At late times the correlator tends to a
constant.
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were explored in [71–73]. They have the advantage
that they lead to non-Gaussian signatures that are signifi-
cantly smaller, yet within reach of near-future observa-
tions [74,75].
In all of these models, the ekpyrotic phase flattens the

universe, suppresses anisotropies, and amplifies entropy
perturbations. In the adiabatic direction, the potential is
approximately a negative exponential. This cannot grow
indefinitely toward ever larger magnitudes, and one thus
expects the potential to turn off at some point. This will
mark the end of the ekpyrotic phase, and with the influence
of a potential having disappeared, the evolution afterwards
is that of a phase dominated by the kinetic energy of the
adiabatic field. We will sometimes refer to this kinetic
phase as “kination.” Kination is usually envisaged to be a
rather short phase, immediately followed by a bounce (and
reheating) into the standard hot big bang expanding phase
of the universe. The details of the bounce and reheating are
highly model dependent (see, e.g., [76–80]), just as for
reheating after inflation. Nevertheless, the long wavelength
modes we are interested in remain essentially unchanged
during a nonsingular bounce (see, e.g., [81–83]). Thus we
will end our analysis with the kinetic phase, the same way
we ended the analysis before inflationary reheating in the
previous section.
The analysis is greatly simplified by the realization that

the adiabatic/curvature and entropic/isocurvature perturba-
tions remain decoupled during ekpyrosis and most (or all)
of kination, even for models where the background scalar
fields are coupled nonminimally [73]. The Lagrangian is
thus a sum of terms involving solely the adiabatic mode
vσ ≡ zR and terms involving only the entropic mode vs ≡
aδs (where from here on we will consider a single Fourier
mode and drop the subscript indicating the wave number to
lighten the notation):

Lð2Þ ¼ 1

2
v02σ þ 1

2
v02s −

z0

z
v0σvσ −

a0

a
v0svs −

1

2

�
k2 −

z02

z2

�
v2σ

−
1

2

�
k2 −

a02

a2
þ a2∂2

sV

�
v2s : ð6:2Þ

The equations of motion are thus

v00σ þ
�
k2 −

z00

z

�
vσ ¼ 0;

v00s þ
�
k2 −

a00

a
þ a2∂2

sV

�
vs ¼ 0; ð6:3Þ

and the canonical momenta are given by

πσ ¼ v0σ −
z0

z
vσ; πs ¼ v0s −

a0

a
vs: ð6:4Þ

The fields can be quantized by following the usual
procedure of promoting fields to operators,

�
v̂σ
v̂s

�
¼
�
fσ gσ
fs gs

��
â

b̂

�
þ H:c:; ð6:5Þ

with fσ;sðτÞ; gσ;sðτÞ being complex, linearly independent
solutions of (6.3). The conserved Wronskian combinations
are now slightly more involved and read

fσf�0σ þ fsf�0s − c:c: ¼ i; ð6:6aÞ

gσg�0σ þ gsg�0s − c:c: ¼ i; ð6:6bÞ

fσ

�
g0σ −

z0

z
gσ

�
þ fs

�
g0s −

a0

a
gs

�
− ðf ↔ gÞ ¼ 0; ð6:6cÞ

fσ

�
g�0σ −

z0

z
g�σ

�
þfs

�
g�0s −

a0

a
g�s

�
− ðf↔ gÞ¼ 0: ð6:6dÞ

All of this is simply the two-field generalization of the
discussion in Sec. III. One can now use the Wronskians to
express the annihilation operators in terms of the field
operators and momenta,

iâ ¼
�
f�0σ −

z0

z
f�σ

�
v̂σ − f�σπ̂σ þ

�
f�0s −

a0

a
f�s

�
v̂s

− f�s π̂s; ð6:7aÞ

ib̂ ¼
�
g�0σ −

z0

z
g�σ

�
v̂σ − g�σπ̂σ þ

�
g�0s −

a0

a
g�s

�
v̂s

− g�s π̂s: ð6:7bÞ

This allows us to transition to the Schrödinger picture,
where the vacuum wave function is defined via âjΨi ¼
b̂jΨi ¼ 0. Thus, with the commutation relations realized
via π̂ → −i∂v, and up to an unimportant normalization
proportionality factor, the wave function is given by

jΨðvσ; vsÞi ∝ exp

�
−
1

2
Aσσv2σ −

1

2
Assv2s

�
; ð6:8Þ

with the correlators

Aσσ ¼ −i
g�sf�0σ − f�sg�0σ
g�sf�σ − f�sg�σ

þ i
z0

z
; ð6:9aÞ

Ass ¼ −i
f�σg�0s − g�σf�0s
f�σg�s − g�σf�s

þ i
a0

a
: ð6:9bÞ

During the ekpyrotic phase, the scale factor evolves as a
function of conformal time τ the same way as in Eq. (3.5),
and consequently
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a00

a
¼ z00

z
¼ −

ϵ − 2

ðϵ − 1Þ2
1

τ2
;

a00

a
− a2∂2

sV ≈
�
2κ2 −

2κ2
ϵ

−
1

ϵ

�
1

τ2
: ð6:10Þ

The Fourier mode functions for the adiabatic (vσ) and
entropic (vs) fields then have the solution

fσðτÞ ¼
ffiffiffiffiffi
π

4k

r ffiffiffiffiffiffiffiffi
−kτ

p
Hð1Þ

ασ ð−kτÞ; fsðτÞ ¼ 0; ð6:11aÞ

gsðτÞ ¼
ffiffiffiffiffi
π

4k

r ffiffiffiffiffiffiffiffi
−kτ

p
Hð1Þ

αs ð−kτÞ; gσðτÞ ¼ 0; ð6:11bÞ

where the integration constants have been fixed such that at
early times the mode functions approach their expressions
in the Minkowski vacuum (up to an unimportant phase).
The order of the Hankel functions is given by

ασ ¼
ϵ− 3

2ðϵ− 1Þ ; αs ≈
�
1

4
þ 2κ2 −

2κ2
ϵ

−
1

ϵ

�
1=2

: ð6:12Þ

There is no mixing between the modes. Hence for the
adiabatic modes we will recover exactly what we had
before in Sec. V. Note that for κ2 ≈ 1we have that αs ≈ 3=2,
and thus we can expect that by contrast the entropic modes
will behave much more like inflationary perturbations. The
correlators may be written as

Aσσ ¼ ik
Hð1Þ�

ασ−1ð−kτÞ
Hð1Þ�

ασ ð−kτÞ
; ð6:13aÞ

Ass ¼ −i
��

1

2
− αs

�
ðϵ − 1Þ − 1

�
Hþ ik

Hð1Þ�
αs−1ð−kτÞ

Hð1Þ�
αs ð−kτÞ

:

ð6:13bÞ

At early times, τ → −∞, the correlators approximate their
Minkowski vacuum values Aσσ ≃ k, Ass ≃ k. At late times,
we may again use the asymptotic form of the Hankel
functions in Eq. (3.25) to obtain the same Aσσ as in
Eq. (3.26a) and

Ass ≃ k

�
π

22αs−1ΓðαsÞ2
ð−kτÞ2αs−1

− i

�
1

2
− αs −

1

ϵ − 1

�
ð−kτÞ−1

�
; ð6:14Þ

where we have kept the leading real and imaginary parts.
Given that the physical perturbation is δs ¼ vs=a, it makes
more sense to consider its correlator Aδsδs ¼ a2Ass, which
during the ekpyrotic phase evolves to

Aδsδs ≃ ā20

�
πk2αs

22αs−1ΓðαsÞ2
ð−τÞ2αs−ϵ−3

ϵ−1

− i
�
1

2
− αs −

1

ϵ − 1

�
ð−τÞ−ϵ−3

ϵ−1

�
ð6:15aÞ

≈ ā20

�
ð−kτÞ3þi

ϵ

ϵ−1

�
ð−τÞ−ϵ−3

ϵ−1 ðαs≈3=2Þ: ð6:15bÞ

In the last line we made the approximation αs ≈ 3=2.
Several features can immediately be read off: since
ϵ > 3, the real part of the correlator shrinks, indicating
that these modes will be amplified. Meanwhile, the
imaginary part grows, the ratio between imaginary and
real parts growing ever more rapidly as jτj−3. Thus the state
becomes highly squeezed and the perturbations become
equivalent to a stochastic mixture of classical perturbations.
In contrast to inflation, the dispersion of the entropy
perturbations (∼1=Re½Aδsδs�) does not reach a constant
value, but rather keeps growing as the ekpyrotic phase
proceeds. This is because the ekpyrotic potential is steep
and keeps evolving to larger magnitudes. In order for the
entropy perturbations to be able to act as realistic seeds for
primordial density perturbations, they must reach a mag-
nitude of around 10−4, implying that the potential must
reach the grand unified scale [60].
As discussed in Sec. V, the potential turns off at this point

and a kinetic phase ensues. For the purposes of our present
study, it is a good approximation to assume that the
potential becomes zero abruptly. We just have to make
sure that we match the scale factor and the mode functions
at the ekpyrosis-kination transition (call it τe-k). This may
be done as follows: during the kinetic phase, we may write
the scale factor as akinðτÞ ¼ akin;0ðτc − τÞ1=2, allowing for
the fact that the would-be crunch is shifted by an amount τc
compared to the ekpyrotic phase. Moreover, a general
solution of the mode equation (6.3) during the kinetic phase
(with V ¼ 0) is given by a linear combination of Hankel
functions of the first and second kinds as

gkinðτÞ ¼
ffiffiffiffiffiffi
−τ

p ½c1Hð1Þ
0 ð−kτÞ þ c2H

ð2Þ
0 ð−kτÞ�: ð6:16Þ

Then we can match the field values and momenta at the
matching time τe-k by imposing

aðτe-kÞ ¼ akinðτe-kÞ; a0ðτe-kÞ ¼ a0kinðτe-kÞ;
gðτe-kÞ ¼ gkinðτe-kÞ; g0ðτe-kÞ ¼ g0kinðτe-kÞ; ð6:17Þ

and solving for the constants akin;0; τc; c1; c2.
The evolution of the correlator Aδsδs is shown in Fig. 7 as

a function of conformal time. At the ekpyrotic-kinetic
transition, the correlator is continuous, but its derivative is
not. This is because the derivative of the correlator involves
second derivatives of a and g, and these are sensitive to the
abrupt turning off of the potential. Figure 7 shows that
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during the kinetic phase, the entropy perturbations are
further amplified since the real part of Aδsδs keeps decreas-
ing. This is, however, just a logarithmic growth, which does
not alter the ekpyrotic amplification significantly. As for
the imaginary part, it is similarly reduced during the kinetic
phase, implying that the amount of squeezing remains
approximately constant. We can verify this using a simple
analytic approximation. In the large-scale limit, −kτ ≪ 1,
the mode function (6.16) during the kinetic phase can be
approximated as gkinðτÞ ≃

ffiffiffiffiffiffi
−τ

p ½C1 þ C2 lnð−kτÞ�, where
the complex constants C1;2 are related to c1;2. At fixed k
and in the limit τ → 0−, it is thus dominated by
gkinðτÞ ∼

ffiffiffiffiffiffi
−τ

p
lnð−kτÞ. Then, the correlator for the entropy

perturbation scales as (to leading order for the real and
imaginary parts)

Ass ≃
C̃

2ð−τÞ½lnð−kτÞ�2 þ
i

ð−τÞ lnð−kτÞ ; ð6:18Þ

where C̃ is a real constant related to C1;2 (and c1;2 for that
matter), and so for the physical perturbations, we have

ReðAδsδsÞ ∼
1

½lnð−kτÞ�2 ; ImðAδsδsÞ ∼
1

lnð−kτÞ : ð6:19Þ

The overall logarithmic correction is easily visible in Fig. 7.
We are finally in a position to investigate the circuit

complexity of the entropy perturbations. Here we also have
the choice of looking at the complexity of the mode
functions vs or that of the physical perturbation δs.
Their respective expressions are given by

Cs;δsðτÞ ¼
1ffiffiffi
2

p ln
�
Xs;δsðτÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xs;δsðτÞ2 − 1

q 	
; ð6:20aÞ

XsðτÞ¼
1

2

�
ReAssðτÞ

k
þ k
ReAssðτÞ

þ ½ImAssðτÞ�2
kReAssðτÞ

�
; ð6:20bÞ

XδsðτÞ ¼
1

2

�
ReAδsδsðτÞ
AδsδsðτiÞ

þ AδsδsðτiÞ
ReAδsδsðτÞ

þ ½ImAδsδsðτÞ�2
AδsδsðτiÞReAδsδsðτÞ

�
; ð6:20cÞ

where τi marks the start of the ekpyrotic phase. A numerical
example showing the evolution of complexity is shown in
Fig. 8 for ϵ ¼ 12 and k ¼ 0.01. The figure shows both

FIG. 7. The entropy correlator Aδsδs ¼ a2Ass during both
ekpyrosis and kination as a function of conformal time for the
following numerical values: κ2 ¼ 1, ϵ ¼ 12, k ¼ 0.01. Time runs
from right to left, and the vertical, dotted line depicts the time of
horizon exit. The figure shows that the real part of the correlator is
significantly reduced, implying that entropy perturbations are
amplified. Meanwhile the imaginary part grows substantially (in
absolute value), rendering the wave function highly squeezed.
The kinetic phase reduces the real and imaginary parts of the
correlator in tandem by a comparatively small amount, reflecting
an additional modest growth of perturbations during kination.

FIG. 8. The complexity of adiabatic (blue lines) and entropy
(red lines) perturbations during ekpyrosis and kinetic domination
as a function of the total e-folding number N ∝ lnðajHjÞ. In this
example k ¼ 0.01 and ϵ ¼ 12 during the ekpyrotic phase, while
ϵ ¼ 3 during kination. The vertical, dotted lines depict the time of
horizon exit for the different modes, taken to be the time at which
the effective mass squared of the mode functions turns negative.
The left panel shows the complexity defined in terms of the mode
functions (i.e., with respect to fσ and gs for adiabatic and entropy
modes, respectively), which we argue in the text to be somewhat
misleading. A better measure of complexity is that of the physical
perturbations, shown in the right panel (so here CR denotes
both CR and Cδs, i.e., the complexity when taking the correlator to
be ARR ¼ z2Aσσ and Aδsδs ¼ a2Ass for adiabatic and entropy
modes, respectively). The complexity of the adiabatic curvature
perturbation remains very small, but that of the entropy pertur-
bation is strongly enhanced. At a later stage, the entropy
perturbation is envisaged to act as a source for the curvature
perturbation, so that in the end the curvature perturbations will
inherit the complexity of the entropy perturbations.
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adiabatic and entropy perturbations, during ekpyrosis and
kination, for both definitions of complexity. The adiabatic
perturbations were discussed in Sec. V, and here the only
novelty is that the evolution is followed into the kinetic
phase. From the figure we can see that the canonical
complexity grows significantly during the kinetic phase,
even though the adiabatic modes evolve little, are not
amplified, and remain unsqueezed. This is again a reason to
prefer the definition of complexity in terms of the physical
variable, which remains essentially constant for the adia-
batic modes throughout ekpyrosis and kination. Our real
interest lies with the entropy perturbations. For these, the
physical complexity grows significantly during the ekpyr-
otic phase, while being constant during the kinetic phase.
With the aforementioned analytic series expansion for the
correlators, we may find the following approximations for
the complexity:

CδsðτÞ ≃
ffiffiffi
2

p
ln

�
ai
aðτÞ

�
ðsubhorizonÞ; ð6:21aÞ

CδsðτÞ ≃ Cδsðτ⋆Þ þ
ffiffiffi
2

p �
2ϵ − 3

ϵ − 1

�
ln

�
τ⋆
τ

�
ðsuperhorizon; ekpyroticÞ; ð6:21bÞ

CδsðτÞ ≃ Cδsðτe-kÞ ¼ const ðsuperhorizon; kinationÞ;
ð6:21cÞ

and hence the complexity growth can be written as

ΔCδsðτÞ ≃
ffiffiffi
2

p

ϵ − 1
ΔN ≃

ffiffiffi
2

p

ϵ
ΔN ðsubhorizonÞ; ð6:22aÞ

ΔCδsðτÞ ≃
ffiffiffi
2

p �
2ϵ − 3

ϵ − 1

�
ΔN

≃ 2
ffiffiffi
2

p
ΔN ðsuperhorizon; ekpyroticÞ; ð6:22bÞ

ΔCδsðτÞ ≃ 0 ðsuperhorizon; kinationÞ; ð6:22cÞ

where the second approximations assume a large EoS ϵ.
Note that, subhorizon, the physical complexity first
increases a little simply due to the overall rescaling caused
by the background, but as the numerical example in Fig. 8
shows, this increase is eventually overwhelmed by the
growth of the imaginary part of Aδsδs on large scales
[cf. Eq. (6.15)]. We may thus approximate the total growth
of complexity during the ekpyrotic phase by 2

ffiffiffi
2

p
N ⋆ in the

large ϵ limit. We immediately notice that this is twice as
large as the superhorizon growth of complexity in inflation
[recall Eq. (4.5d)]. Of course, the total growth depends on
the time spent by a mode on sub- and superhorizon scales.
In particular, an entropy fluctuation that exits the horizon
very late during ekpyrosis (so that its superhorizon

evolution is very short) acquires very little complexity,
especially compared to a similar inflationary curvature
fluctuation. This is perhaps the most important difference
between ekpyrosis and inflation: the subhorizon growth of
physical complexity is mitigated in ekpyrosis in the large ϵ
limit, while it is significant for inflation; recall Eq. (4.5c).
Another difference is that the physical complexity is further
restrained due to the kinetic phase in the ekpyrotic scenario.
Indeed, instead of continuing its growth on superhorizon
scales, the complexity saturates to a constant value.4 It is
important to point out, though, that in realistic models the
kinetic phase should last only a few e-folds before a bounce
and reheating occur.
The authors of [22] conjectured the existence of an upper

bound on the growth of complexity in contracting uni-
verses. This bound is clearly violated by the entropy
perturbation studied here, because their growth depends
just as much on the transverse potential as on the back-
ground evolution. Moreover, wewould like to point out that
analyzing the growth of complexity as a function of
physical time may be misleading. We saw that for
de Sitter dC=dt ≃

ffiffiffi
2

p
H, but a similar derivative for super-

horizon entropy modes in ekpyrosis yields dC=dt≃
2
ffiffiffi
2

p
ϵjHj, assuming ϵ is so large that the scale factor is

approximately a constant and hence t ≈ τ. Thus, one could
claim that the growth rate of the complexity of entropy
modes in ekpyrosis can be made as large as wanted (it is
unbounded by ϵ), and furthermore it is not constant [it
keeps growing as the universe contracts since jHðtÞj
grows]. However, as we saw, the growth rate really is
bounded for a fixed number of e-folds of ekpyrosis; hence
we believe the more appropriate time variable is N . In that
sense, if we think of the growth rate dC=dN as character-
izing the chaotic nature of the perturbations, then we obtain

a hierarchy for the models on large scales as dCðinfÞR =dN ≃ffiffiffi
2

p
< dCðekÞR =dN ≃ 2

ffiffiffi
2

p
, assuming the entropy fluctua-

tions δs in ekpyrosis are later converted into curvature
perturbations R. We will comment on the interpretation of
this hierarchy in the discussion section.
It is interesting at this point to explore a little more the

dependence of the complexity in ekpyrosis on the EoS
parameter, in particular when it is only marginally in the
ekpyrotic domain—a numerical example of this situation
with ϵ decreasing in unit intervals from ϵ ¼ 11.1 to ϵ ¼ 3.1
is shown in Figs. 9 and 10. In all cases, the real part of the
correlator becomes small, and hence the entropy modes are
amplified. However, for small ϵ, the imaginary part grows

4From the approximate correlator on large scales in the kinetic
phase, Eq. (6.19), one can see that the complexity is dominated by
a constant term and a term growing as lnð½lnð−kτÞ�2Þ. However, it
turns out that as long as jImAδsδsðτe-kÞj ≫ AδsδsðτiÞ, the constant
term dominates over the slowly (logarithmically) growing term.
We will see below that a special case where the growing term
dominates occurs when ϵ is very close to 3 in the ekpyrotic phase.
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significantly less. This results in a slightly smaller growth
of the complexity of entropy modes. When the EoS is only
marginally larger than 3, e.g., ϵ ¼ 3.1 for the darkest curve
in Figs. 9 and 10, the evolution and behavior of complexity
starts deviating: the growth rate is still proportional to

ffiffiffi
2

p
=ϵ

on subhorizon scales, but this is nowOð1Þ rather than being
suppressed by a large ϵ; and on superhorizon scales, while
the growth rate is now smaller the smaller ϵ is, the behavior
changes upon the transition to the kinetic phase. While the
complexity saturates (or grows extremely slowly) during
kination for ϵ away from 3, when ϵ gets very close to 3
the complexity continues to grow as lnð½lnð−kτÞ�2Þ. Indeed,
as we can see from Fig. 9, jImAδsδsðτe-kÞj is actually
smaller than AδsδsðτiÞ for the darkest curve, so the constant
term ðImAδsδsÞ2=ðAδsδsðτiÞReAδsδsÞ is suppressed com-
pared to the growing term AδsδsðτiÞ=ReAδsδs in Xδs (and

correspondingly in Cδs). Let us point out that if the
imaginary part of the correlator changes too little, it will
be difficult to achieve a high degree of classicality of the
perturbations. In such extreme cases, one would have to
perform a more rigorous calculation of decoherence and the
quantum-to-classical transition, along the lines of [17].
Models with small background ϵ are nevertheless easier to
construct in supergravity (see, for instance, [84] and the
discussion in [85]). One should point out, however, that
such models require a long ekpyrotic phase, with a very
large field displacement, which may be difficult to imple-
ment in a reliable effective theory [85] (for a more general
discussion, see, e.g., [86–88] and references therein).
The evolution of complexity will change as the universe

enters the bounce phase. Just before, during, or just after the
bounce, two-field ekpyrotic models envisage a process that
uses the entropy perturbations as a source for the adiabatic
perturbations. A simple incarnation of this idea, motivated
by the original colliding brane ekpyrotic scenario [89], is
that in the effective theory a bending of the trajectory on
scalar field space will occur. Another possibility is that the
timing of the bounce itself is modulated by the entropy
perturbation, and thus the timing of reheating is modulated
[78]. Whatever the details of the process may be, during
this conversion process the adiabatic perturbations (which
due to their blue spectrum were essentially absent on large
scales) inherit the large-scale properties of the entropic
perturbations, in particular the nearly scale-invariant spec-
trum, the large amplitude, and also the complexity. In this
way, large-scale density perturbations are generated at the
start of the hot big bang phase. If the universe reaches
thermal equilibrium, then the entropy perturbations will be
unobservable later on. This in itself constitutes an efficient

FIG. 9. Graphs of the real and imaginary parts of the correlator
Aδsδs ¼ a2Ass for the EoS parameter decreasing in unit intervals
from ϵ ¼ 11.1 (lightest curve) to ϵ ¼ 3.1 (darkest curve) as a
function of conformal time. Here we take k ¼ 0.001, and αs is
taken to be 3=2 regardless of the value for ϵ since the formula for
αs given in the text is not accurate enough for small values of ϵ.
The vertical, dotted line is the time of horizon exit. As ϵ gets
smaller, the imaginary part of the correlator grows by less and less
(always in absolute value). The numerical evolution has been
normalized here such that the correlator takes the same value at
ekpyrotic-kinetic matching. In the plot there are always 20 e-folds
of ekpyrosis followed by 5 e-folds of kinetic evolution.

FIG. 10. The physical complexity for adiabatic (blue) and
entropy (red) perturbations as a function of the e-folding number
with the EoS ϵ ranging from 11.1 (lightest curves) to 3.1 (darkest
curves) in unit decreases. The same numerical values as in Fig. 9
are used, and the vertical lines are again the times of horizon exit.
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process of decoherence, rendering the curvature perturba-
tions classical [17]. Thus via the so-called entropic mecha-
nism, two-field ekpyrotic models have the potential to
explain the observed primordial perturbations—their com-
plexity being at the root of the later complexities seen in the
globally expanding and locally gravitationally collapsing
universe.

VII. MATTER DOMINATION AND ADIABATIC
EKPYROSIS AS OTHER ALTERNATIVES

In our review of adiabatic perturbations in Sec. III, which
was then applied to inflation (ϵ ≪ 1) and ekpyrosis (ϵ > 3),
we always had the underlying assumption that the EoS ϵ is
actually constant (or close enough to a constant as a
leading-order approximation). In more generality, this
might not hold, and one may as well construct different
early universe scenarios in which the EoS has an important
time dependence. The more general equation of motion for
the canonical variable of a single adiabatic mode, v≡ zR,
is still given by Eq. (3.12), except with z≡ a

ffiffiffiffiffiffiffiffiffiffiffi
2ϵ=cs

p
, with

dy≡ csdτ, as well as where a prime in the equation of
motion now denotes a derivative with respect to the
rescaled conformal time y. This way, one allows for a
sound speed cs possibly different from unity and time
dependent, as may arise with a scalar field having a
noncanonical kinetic structure. If z ∝ jyjn, then z00=z ¼
nðn − 1Þτ2, and the requirement for scale invariance,
z00=z ¼ 2=τ2, is achievable if n ¼ −1 or n ¼ 2. There are
thus many possible ways in which aðτÞ, ϵðτÞ, and csðτÞmay
yield a scale-invariant power spectrum. If we consider cs to
be constant for simplicity, this means y ¼ τ, and so one
needs a

ffiffiffi
ϵ

p
∝ τ2 or a

ffiffiffi
ϵ

p
∝ jτj−1. If ϵ is also constant, then

a ∝ τ2 corresponds to the matter-dominated contracting
scenario [7,90,91] (see also [92] for a recent exposition of
the so-called matter bounce scenario and its issues), while
a ∝ jτj−1 is slow-roll inflation (de Sitter to this level of
approximation); those correspond to the two “standard”
adiabatic structure formation scenarios. Conversely, we
could explore cases where a is essentially constant (as in
the original ekpyrotic scenario), but where ϵ is (strongly)
time dependent. In this case, we see that

ffiffiffi
ϵ

p
∝ jτj−1

constitutes an interesting scenario in which the EoS starts
small (inflationlike, though the universe is very slowly
contracting) at early times (τ → −∞) and increases to large
ekpyroticlike values at late times (τ → 0−). This is the basis
of the adiabatic ekpyrosis5 model [99,100] (note that in this
model adiabatic perturbations behave differently from the
adiabatic perturbations in ordinary ekpyrosis studied in
Secs. V and VI).

Matter-dominated contraction is an adiabatic scenario
with constant EoS ϵ ¼ 3=2 [so aðτÞ ∝ τ2]. Thus most
expressions of Sec. III are immediately applicable, in
particular Eq. (3.26b) for the correlator Aσσ on large
scales with ασ ¼ 3=2. Multiplying by z2 ¼ 3ā20τ

4 yields
ReARR ∼ τ6 and ImARR ∼ jτj5; hence the amplification is
very efficient as 1=ReARR ∼ τ−6 and so is squeezing
with ImARR=ReARR ∼ jτj−1. Regarding complexity, from
Eq. (3.31) one has CR ≃ 2

ffiffiffi
2

p
N on subhorizon scales,

while the evolution on superhorizon scales can be approxi-
mated as CRðτÞ≃CRðτ⋆Þþ3

ffiffiffi
2

p
lnðτ⋆=τÞ; hence the super-

horizon complexity growth is ΔCR ≃ 3
ffiffiffi
2

p
ΔN . We note

that those are the largest growth rates of complexity
encountered so far in this work. We present a full numerical
calculation of the complexity during matter contraction in
Fig. 11 where this is explicit.
Let us now turn our attention to adiabatic ekpyrosis. In a

realistic adiabatic ekpyrosis scenario, the phase during
which the EoS rapidly evolves can last for only a few
e-folds at most. It is then followed by a standard ekpyrotic
phase where the EoS settles to a (large) constant value. This
phase can last longer, but perturbations exiting the horizon
during this phase will not acquire a scale-invariant power
spectrum. Thus, appropriate model building gives one a

FIG. 11. Physical complexity (denoted CR in every case) as a
function of the number of e-folds for matter-dominated con-
traction (orange curve) and an example of adiabatic ekpyrosis
(blue curve), namely using Eq. (7.1) for the evolution of z. For the
latter, the following numerical values are taken:H0 ¼ −5 × 10−4,
c ¼ 140, and k ¼ 0.05. As usual, the vertical, dotted lines
indicate the respective horizon exit times. In the adiabatic
ekpyrotic model, horizon exit is taken to occur during the phase
of rapidly evolving EoS, z ∼

ffiffiffi
ϵ

p
∼ 1=ð−tÞ. The transition to the

phase of constant EoS occurs at later times, when N ≳ 17, and
from there complexity saturates. The complexity during inflation
and two-field ekpyrosis (both curvature and isocurvature modes)
with the parameter values of the previous sections are depicted
with fainter colors for the sake of comparison.

5In a similar spirit, there exist other alternative proposals with
time-varying EoS or sound speed (see, e.g., [93–98]). One could
certainly study the evolution of complexity in any such scenario,
but in this section we focus on matter domination and the only
other ekpyroticlike model for concreteness.
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scale-invariant power spectrum over the range of modes
that are of observational interest, but which becomes blue
outside of this range. Models that can satisfy all the
constraints (observational and theoretical [100]) can be
engineered with some level of tuning. For the purpose of
the present analysis, we will rather consider a toy model
from [99], which may not meet all constraints, but which
will capture the essential features of adiabatic ekpyrosis
with regard to complexity. Specifically, let us parametrize
the evolution of the function z as

z ¼ a
ffiffiffiffiffi
2ϵ

p
¼ cð−tÞ2=c2

1þ c2H0t
; ð7:1Þ

where c and H0 are constants. It is assumed that the scale
factor is almost a constant throughout [e.g., aðtÞ ∝
ð−tÞ2=c2 ≈ 1 with c ≫ 1], so that physical time and con-
formal time are approximately equal, t ≈ τ. Then at early
times (τ → −∞), the EoS rapidly evolves as desired,
ϵ ∼ 1=τ2, while at late times (τ → 0−) the EoS tends to a
large constant, ϵ ≃ c2=2. From this, the function z behaves
as in inflation (more precisely the de Sitter limit ϵ → 0) at
early times, z ∼ 1=jτj, which does not only imply the same
scale-invariant power spectrum on large scales but also the
same complexity growth for that time period on sub- and
superhorizon scales, specifically CR ≃

ffiffiffi
2

p
N . Modes of

observational interest have thus evolved to large scales
when the EoS moves closer to its constant, late-time
value. At that point, we expect the perturbations to be
matched with the superhorizon mode solutions of standard
single-field ekpyrotic cosmology and acquire the corre-
sponding complexity evolution. In that limit, z is approx-
imately constant, so from the mode equation in the far
infrared (k → 0), R00

k þ 2ðz0=zÞR0
k ≃ 0, we can see that

vk ∼Rk ∼ c1 þ c2jτj for some integration constants c1;2
that are obtainable upon matching. Therefore, to leading
order the correlators Aσσ and ARR and the corresponding
complexities, Cv and CR, all tend to constants at late
times.
This can be verified by taking Eq. (7.1) and solving the

mode equation (3.12) by means of numerical methods.
Subsequently, using the numerical solution for the mode
function, one can compute the correlators and then the
complexity. The result is shown in Fig. 11 in dark blue. In
the rapidly evolving EoS phase, the complexity behaves as
in inflation (light pink curve). On sub- and superhorizon
scales (for N ≲ 11.5 and 11.5≲N ≲ 17), the curvature
complexity CR grows as

ffiffiffi
2

p
N . Then, as the EoS tends

toward its constant value (i.e., z ∼
ffiffiffi
ϵ

p
∼ const), happening

whenN ≳ 17 (still on superhorizon scales), the complexity
tends to a constant; i.e., it saturates. This is in agreement
with the analytical approximation derived in the previous
paragraph.

VIII. DISCUSSION AND CONCLUSIONS

All viable early universe models must in some way be
able to explain the fluctuations observed in the CMB. In the
present work, we have shown how quantum circuit com-
plexity provides a useful characterization of the different
ways in which cosmological scenarios achieve this goal.
The different theories of the early universe all possess
different Hamiltonians (by virtue of having different
equations of state), which in turn fully describe the
evolution of cosmological perturbations. In that sense, a
given model with prescribed initial conditions and
Hamiltonian is a quantum computer with the necessary
complexity to yield the CMB, but we do not know which
quantum computer actually evolved our universe. Our
calculation precisely extracts the underlying quantum
complexity of a given Hamiltonian with its set of initial
conditions, given a set of elementary quantum gates. This
paper thus addressed the question of how complex a
quantum computer simulating the evolution of cosmologi-
cal perturbations of different early universe scenarios
would have to be. In essence, we attempted to determine
how many quantum gates (taken from a specified set) a
table-top experiment would need in order to replicate the
transition from initial quantum fluctuations to classical
density perturbations.
The models we have analyzed (inflation, ekpyrosis, and

a contracting matter phase) all rely on the amplification and
squeezing of quantum perturbations. But the details of how
these phases proceed differ markedly. A useful summary of
our results is provided by Fig. 11, and let us also recall the
following superhorizon evolutions:

ΔCinfR ≃
ffiffiffi
2

p
ð1þ 2ϵÞΔN ;

ΔCekp ðentropicÞδs ≃ 2
ffiffiffi
2

p �
ϵ − 3

2

ϵ − 1

�
ΔN ;

ΔCmatter
R ≃ 3

ffiffiffi
2

p
ΔN : ð8:1Þ

Two main features are immediately obvious: the complex-
ity that is achieved depends primarily (essentially linearly)
on the number of e-folds of evolution. And the coefficient
of proportionality depends on the cosmological model; i.e.,
it serves to distinguish the different models.
The growth of complexity is smallest for the most

popular early universe model, namely inflation. (In adia-
batic ekpyrosis the growth rate is the same, before it caps
off.) Thus inflation acts as a comparatively “simple”
quantum computer in drawing quantum perturbations out
of the vacuum and turning them into effectively classical
density perturbations. Contracting models have a higher
growth of complexity, and hence they are more “efficient”
at quickly producing a complex system; in particular, a
contracting matter phase leads to the largest complexity.
Ekpyrotic models reside in between inflation and matter
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contraction, and they possess the distinguishing feature that
on subhorizon scales the growth of complexity is very
small, so that essentially the entire complexity comes from
superhorizon evolution (cf. again Fig. 11). It is interesting
that the models come out as being so clearly distinguished.
Note in particular that within each class of models the
specific dependence on the equation of state is rather
modest. Also, a dependence on the wave number comes
about only through its influence on the time of horizon exit,
and even this only when there is a significant difference in
the growth of complexity before and after horizon crossing.
Moreover, there is no explicit dependence at all on the
energy scales involved (e.g., of the potential). Thus com-
plexity provides a truly complementary characterization
of cosmological models, more attuned to their quantum
properties.
In order to define complexity we have used a measure

that was developed in particular for Gaussian states and that
is related to the Spð2;RÞ symmetry of the associated
quantum mechanics [23,24]. This measure is conceptually
appealing, as it provides a link with hyperbolic geometry—
see Fig. 2 for a useful visual illustration of the evolution of
cosmological correlations (using the same numerical mod-
els as in Fig. 11). Moreover, the hyperbolic measure has a
structure that is sensitive to both amplification and squeez-
ing, which are precisely the features that are important for
early universe models. A comparison with another popular
measure is provided in Appendix. It will be important to see
how the present study can be generalized to non-Gaussian
corrections, which are bound to play a significant role in
future observations.
We have focused on the complexity of the physical

perturbations and contrasted it to that of the rescaled mode
functions. This distinction ends up being rather crucial. The
canonically normalized mode functions are not directly
sensitive to the overall expansionor contractionof spacetime,
and thus they miss the sometimes vast changes of physical
wavelength that various cosmological models cause (how-
ever, they are highly sensitive to the changes in physics
occurring near horizon exit, or at junctions with different
phases of evolution). Physical perturbations are not only the
ones that are directly related to observations, but they depend
much more crucially on the entire history of a cosmological
phase, and in particular they are sensitive to the conditions at
the beginning. Thus the complexity of physical perturbations
offers the prospect of better characterizing the initial con-
ditions for the cosmological models that are studied, which
will be important in terms of incorporating such phases
into a complete cosmology. In this respect we suspect that
useful linkswith the puzzles of trans-Planckian perturbations
may also be developed in future work.
An additional theoretical avenue that deserves further

exploration is the relation of complexity to chaos. For
inflation, these issues are already understood to some extent,
principally because inflation may be regarded as a thermal

system.But for alternative cosmologicalmodels, in particular
contractingmodels, such an identification is not available.Yet
some chaotic features are certainly present in the dynamics of
suchmodels, and it would be interesting to see towhat extent
complexity may provide a useful diagnostic of these. As is
often the case, the confrontation of ideas from different parts
of physics is likely to lead to fruitful new insights.
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APPENDIX: COMPARISON WITH
THE ANALYTICALLY CONTINUED

COMPLEXITY FORMULA

Asmentioned inSec. II, a straightforwardgeneralizationof
the simplest measure of complexity is obtained by analyti-
cally continuing that formula to the case where the frequen-
cies involved may be complex. This approach, and its
implications for some cosmological models, has been pur-
sued in [20–22]. In many circumstances, the two approaches
yield qualitatively similar results, but there are exceptions.
To illustrate this, it is useful to compare Fig. 10, showing

the evolution of hyperbolic complexity C for ekpyrotic

FIG. 12. The analytically continued complexity for adiabatic
(blue) and entropy (red) perturbations as a function of the e-folding
number with the EoS ϵ ranging from 11.1 (lightest curve) to 3.1
(darkest curve) in unit decreases. Themodels are identical to those
in Fig. 10, where hyperbolic complexity was plotted instead.
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models with relatively small EoS, with Fig. 12, which
shows the analytically continued complexity Cða:c:Þ for the
same models. As can be seen from the figures, the evolution
of hyperbolic complexity follows a natural progression as
the EoS is lowered, while the analytically continued
complexity starts showing bizarre features when the EoS
approaches the lower bound ϵ ¼ 3. This may be understood
from the following heuristic rewriting of the two definitions
of complexity. The inverse of the real part of the correlator
determines the amplification A, while the ratio of the
imaginary to the real part of the correlator is a measure of
the squeezing S. Then the two definitions of complexities
may be heuristically written as

C ∼
1ffiffiffi
2

p ln

�
Aþ 1

A
ð1þ S2Þ

�
; ðA1aÞ

Cða:c:Þ ∼
1ffiffiffi
2

p ln

�
1

A2
ð1þ S2Þ

�
: ðA1bÞ

Thus we see that the hyperbolic complexity is separately
dependent on the amplification and the squeezing and can
grow when either of these properties evolves. By contrast,
for the analytically continued complexity, amplification
and squeezing may counteract each other to some extent.
This is exactly what happens for ekpyrotic perturbations
when ϵ is small, since one can see from Fig. 9 that in such a
case the imaginary part of the correlator grows only slowly
(though it is quite large), while the amplification proceeds
without much change compared to the cases with a larger
EoS. This has as a consequence that the analytically
continued complexity is reduced again, even though the
perturbations are both amplified and squeezed. This then
leads to the misleading perception that the perturbations
evolve just as much during a short phase of kination as
during the preceding ekpyrotic phase. The hyperbolic
definition avoids this pitfall and seems better suited to
us in order to characterize cosmological perturbations.

[1] A. H. Guth, The inflationary universe: A possible solution
to the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[2] A. D.Linde,Anewinflationaryuniverse scenario:Apossible
solution of the horizon, flatness, homogeneity, isotropy and
primordial monopole problems, Phys. Lett. 108B, 389
(1982).

[3] V. F. Mukhanov and G. V. Chibisov, Quantum fluctuations
and a nonsingular universe, JETP Lett. 33, 532 (1981),
http://www.jetpletters.ac.ru/ps/1510/article_23079.shtml.

[4] A. Albrecht and P. J. Steinhardt, Cosmology for Grand
Unified Theories with Radiatively Induced Symmetry
Breaking, Phys. Rev. Lett. 48, 1220 (1982).

[5] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, The
Ekpyrotic universe: Colliding branes and the origin of the
hot big bang, Phys. Rev. D 64, 123522 (2001).

[6] J. L. Lehners, Ekpyrotic and cyclic cosmology, Phys. Rep.
465, 223 (2008).

[7] D. Wands, Duality invariance of cosmological perturbation
spectra, Phys. Rev. D 60, 023507 (1999).

[8] Y. Z. Li and J. Liu, On quantum simulation of cosmic
inflation, arXiv:2009.10921.

[9] L. Grishchuk and Y. Sidorov, Squeezed quantum states of
relic gravitons and primordial density fluctuations, Phys.
Rev. D 42, 3413 (1990).

[10] R. H. Brandenberger, R. Laflamme, and M. Mijic,
Classical perturbations from decoherence of quantum
fluctuations in the inflationary universe,Mod. Phys. Lett. A
05, 2311 (1990).

[11] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec,
Inflation and squeezed quantum states, Phys. Rev. D 50,
4807 (1994).

[12] L. Grishchuk, Quantum effects in cosmology, Classical
Quantum Gravity 10, 2449 (1993).

[13] D. Polarski and A. A. Starobinsky, Semiclassicality and
decoherence of cosmological perturbations, Classical
Quantum Gravity 13, 377 (1996).

[14] T. Prokopec and G. I. Rigopoulos, Decoherence from
isocurvature perturbations in inflation, J. Cosmol. Astropart.
Phys. 11 (2007) 029.

[15] C. Kiefer, I. Lohmar, D. Polarski, and A. A. Starobinsky,
Origin of classical structure in the Universe, J. Phys. Conf.
Ser. 67, 012023 (2007).

[16] J. Martin, The quantum state of inflationary perturbations,
J. Phys. Conf. Ser. 405, 012004 (2012).

[17] L. Battarra and J. L. Lehners, Quantum-to-classical tran-
sition for ekpyrotic perturbations, Phys. Rev. D 89, 063516
(2014).

[18] R. Jefferson and R. C. Myers, Circuit complexity in
quantum field theory, J. High Energy Phys. 10 (2017) 107.

[19] M. A. Nielsen, A geometric approach to quantum circuit
lower bounds, arXiv:quant-ph/0502070.

[20] T. Ali, A. Bhattacharyya, S. Shajidul Haque, E. H. Kim, and
N. Moynihan, Time evolution of complexity: A critique of
three methods, J. High Energy Phys. 04 (2019) 087.

[21] A. Bhattacharyya, S. Das, S. S. Haque, and B. Underwood,
Cosmological complexity, Phys.Rev.D101, 106020 (2020).

[22] A. Bhattacharyya, S. Das, S. S. Haque, and B. Underwood,
The rise of cosmological complexity: Saturation of growth
and chaos, Phys. Rev. Research 2, 033273 (2020).

[23] H. A. Camargo, P. Caputa, D. Das, M. P. Heller, and R.
Jefferson, Complexity as a Novel Probe of Quantum
Quenches: Universal Scalings and Purifications, Phys.
Rev. Lett. 122, 081601 (2019).

JEAN-LUC LEHNERS and JEROME QUINTIN PHYS. REV. D 103, 063527 (2021)

063527-20

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
http://www.jetpletters.ac.ru/ps/1510/article_23079.shtml
http://www.jetpletters.ac.ru/ps/1510/article_23079.shtml
http://www.jetpletters.ac.ru/ps/1510/article_23079.shtml
http://www.jetpletters.ac.ru/ps/1510/article_23079.shtml
http://www.jetpletters.ac.ru/ps/1510/article_23079.shtml
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevD.64.123522
https://doi.org/10.1016/j.physrep.2008.06.001
https://doi.org/10.1016/j.physrep.2008.06.001
https://doi.org/10.1103/PhysRevD.60.023507
https://arXiv.org/abs/2009.10921
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1142/S0217732390002651
https://doi.org/10.1142/S0217732390002651
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1088/0264-9381/10/12/006
https://doi.org/10.1088/0264-9381/10/12/006
https://doi.org/10.1088/0264-9381/13/3/006
https://doi.org/10.1088/0264-9381/13/3/006
https://doi.org/10.1088/1475-7516/2007/11/029
https://doi.org/10.1088/1475-7516/2007/11/029
https://doi.org/10.1088/1742-6596/67/1/012023
https://doi.org/10.1088/1742-6596/67/1/012023
https://doi.org/10.1088/1742-6596/405/1/012004
https://doi.org/10.1103/PhysRevD.89.063516
https://doi.org/10.1103/PhysRevD.89.063516
https://doi.org/10.1007/JHEP10(2017)107
https://arXiv.org/abs/quant-ph/0502070
https://doi.org/10.1007/JHEP04(2019)087
https://doi.org/10.1103/PhysRevD.101.106020
https://doi.org/10.1103/PhysRevResearch.2.033273
https://doi.org/10.1103/PhysRevLett.122.081601
https://doi.org/10.1103/PhysRevLett.122.081601


[24] S.Chapman, J. Eisert, L.Hackl,M. P.Heller, R. Jefferson,H.
Marrochio, and R. C. Myers, Complexity and entanglement
for thermofield double states, SciPost Phys. 6, 034 (2019).

[25] W. E.East,M.Kleban,A.Linde, andL. Senatore,Beginning
inflation in an inhomogeneous universe, J. Cosmol.
Astropart. Phys. 09 (2016) 010.

[26] K. Clough, E. A. Lim, B. S. DiNunno, W. Fischler, R.
Flauger, and S. Paban, Robustness of inflation to inho-
mogeneous initial conditions, J. Cosmol. Astropart. Phys.
09 (2017) 025.

[27] K. Clough, R. Flauger, and E. A. Lim, Robustness of
inflation to large tensor perturbations, J. Cosmol. Astropart.
Phys. 05 (2018) 065.

[28] J. C. Aurrekoetxea, K. Clough, R. Flauger, and E. A. Lim,
The effects of potential shape on inhomogeneous inflation,
J. Cosmol. Astropart. Phys. 05 (2020) 030.

[29] S. Hofmann, M. Schneider, and M. Urban, Quantum
complete prelude to inflation, Phys. Rev. D 99, 065012
(2019).

[30] A. Di Tucci, J. Feldbrugge, J. L. Lehners, and N. Turok,
Quantum incompleteness of inflation, Phys. Rev. D 100,
063517 (2019).

[31] A. Bedroya and C. Vafa, Trans-planckian censorship and
the swampland, J. High Energy Phys. 09 (2020) 123.

[32] A. Bedroya, R. Brandenberger, M. Loverde, and C. Vafa,
Trans-planckian censorship and inflationary cosmology,
Phys. Rev. D 101, 103502 (2020).

[33] R. Brandenberger and E. Wilson-Ewing, Strengthening
the TCC bound on inflationary cosmology, J. Cosmol.
Astropart. Phys. 03 (2020) 047.

[34] C. Joana and S. Clesse, Inhomogeneous initial conditions
for inflation: A wibbly-wobbly timey-wimey path to
salvation, arXiv:2011.12190

[35] C. Jonas, J. L. Lehners, and J. Quintin, Cosmological
consequences of a principle of finite amplitudes,
arXiv:2102.05550.

[36] P. J. Steinhardt and N. Turok, Cosmic evolution in a cyclic
universe, Phys. Rev. D 65, 126003 (2002).

[37] P. J. Steinhardt, N. Turok, and N. Turok, A cyclic model of
the universe, Science 296, 1436 (2002).

[38] J. Khoury, P. J. Steinhardt, and N. Turok, Designing Cyclic
Universe Models, Phys. Rev. Lett. 92, 031302 (2004).

[39] P. J. Steinhardt and N. Turok, The cyclic model simplified,
New Astron. Rev. 49, 43 (2005).

[40] J. L. Lehners and P. J. Steinhardt, Dark energy and the
return of the phoenix universe, Phys. Rev. D 79, 063503
(2009).

[41] J. L. Lehners, P. J. Steinhardt, and N. Turok, The return of
the phoenix universe, Int. J. Mod. Phys. D 18, 2231 (2009).

[42] A. Ijjas and P. J. Steinhardt, A new kind of cyclic universe,
Phys. Lett. B 795, 666 (2019).

[43] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy
Phys. 10 (2008) 065.

[44] L. Susskind, Addendum to fast scramblers, arXiv:
1101.6048.

[45] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[46] L. Aalsma and G. Shiu, Chaos and complementarity in
de Sitter space, J. High Energy Phys. 05 (2020) 152.

[47] H. Geng, Non-local entanglement and fast scrambling in
de-Sitter holography, Ann. Phys. (Berlin) 426, 168402
(2021).

[48] S. S. Haque and B. Underwood, Squeezed out-of-time-
order correlator and cosmology, Phys. Rev. D 103, 023533
(2021).

[49] T. Ali, A. Bhattacharyya, S. S. Haque, E. H. Kim, N.
Moynihan, and J. Murugan, Chaos and complexity in
quantum mechanics, Phys. Rev. D 101, 026021 (2020).

[50] A. Bhattacharyya, W. Chemissany, S. Shajidul Haque, and
B. Yan, Towards the web of quantum chaos diagnostics,
arXiv:1909.01894.

[51] B. Yan, L. Cincio, and W. H. Zurek, Information Scram-
bling and Loschmidt Echo, Phys. Rev. Lett. 124, 160603
(2020).

[52] B. Yan and W. Chemissany, Quantum chaos on complexity
geometry, arXiv:2004.03501.

[53] A. Bhattacharyya, W. Chemissany, S. S. Haque, J.
Murugan, and B. Yan, The multi-faceted inverted
harmonic oscillator: Chaos and complexity, SciPost Phys.
Core 4, 002 (2021).

[54] A. Bhattacharyya, S. S. Haque, and E. H. Kim, Complexity
from the reduced density matrix: A new diagnostic for
chaos, arXiv:2011.04705.

[55] A. Bedroya, de Sitter complementarity, TCC, and the
swampland, arXiv:2010.09760.

[56] P. Creminelli, A. Nicolis, and M. Zaldarriaga, Perturba-
tions in bouncing cosmologies: Dynamical attractor versus
scale invariance, Phys. Rev. D 71, 063505 (2005).

[57] F. Finelli, Assisted contraction, Phys. Lett. B 545, 1
(2002).

[58] A. Notari and A. Riotto, Isocurvature perturbations in the
ekpyrotic universe, Nucl. Phys. B644, 371 (2002).

[59] F. Di Marco, F. Finelli, and R. Brandenberger, Adiabatic
and isocurvature perturbations for multifield generalized
Einstein models, Phys. Rev. D 67, 063512 (2003).

[60] J. L. Lehners, P. McFadden, N. Turok, and P. J. Steinhardt,
Generating ekpyrotic curvature perturbations before the
big bang, Phys. Rev. D 76, 103501 (2007).

[61] K. Koyama and D. Wands, Ekpyrotic collapse with
multiple fields, J. Cosmol. Astropart. Phys. 04 (2007) 008.

[62] K. Koyama, S. Mizuno, and D. Wands, Curvature pertur-
bations from ekpyrotic collapse with multiple fields,
Classical Quantum Gravity 24, 3919 (2007).

[63] J. L. Lehners, Diversity in the phoenix universe, Phys. Rev.
D 84, 103518 (2011).

[64] K. Koyama, S. Mizuno, F. Vernizzi, and D. Wands, Non-
Gaussianities from ekpyrotic collapse with multiple fields,
J. Cosmol. Astropart. Phys. 11 (2007) 024.

[65] J. L. Lehners and P. J. Steinhardt, Non-Gaussian density
fluctuations from entropically generated curvature pertur-
bations in Ekpyrotic models, Phys. Rev. D 77, 063533
(2008).

[66] J. L. Lehners and P. J. Steinhardt, Intuitive understanding
of non-gaussianity in ekpyrotic and cyclic models, Phys.
Rev. D 78, 023506 (2008).

[67] J. L. Lehners and P. J. Steinhardt, Non-Gaussianity gen-
erated by the entropic mechanism in bouncing cosmolo-
gies made simple, Phys. Rev. D 80, 103520 (2009).

QUANTUM CIRCUIT COMPLEXITY OF PRIMORDIAL … PHYS. REV. D 103, 063527 (2021)

063527-21

https://doi.org/10.21468/SciPostPhys.6.3.034
https://doi.org/10.1088/1475-7516/2016/09/010
https://doi.org/10.1088/1475-7516/2016/09/010
https://doi.org/10.1088/1475-7516/2017/09/025
https://doi.org/10.1088/1475-7516/2017/09/025
https://doi.org/10.1088/1475-7516/2018/05/065
https://doi.org/10.1088/1475-7516/2018/05/065
https://doi.org/10.1088/1475-7516/2020/05/030
https://doi.org/10.1103/PhysRevD.99.065012
https://doi.org/10.1103/PhysRevD.99.065012
https://doi.org/10.1103/PhysRevD.100.063517
https://doi.org/10.1103/PhysRevD.100.063517
https://doi.org/10.1007/JHEP09(2020)123
https://doi.org/10.1103/PhysRevD.101.103502
https://doi.org/10.1088/1475-7516/2020/03/047
https://doi.org/10.1088/1475-7516/2020/03/047
https://arXiv.org/abs/2011.12190
https://arXiv.org/abs/2102.05550
https://doi.org/10.1103/PhysRevD.65.126003
https://doi.org/10.1126/science.1070462
https://doi.org/10.1103/PhysRevLett.92.031302
https://doi.org/10.1016/j.newar.2005.01.003
https://doi.org/10.1103/PhysRevD.79.063503
https://doi.org/10.1103/PhysRevD.79.063503
https://doi.org/10.1142/S0218271809015977
https://doi.org/10.1016/j.physletb.2019.06.056
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://arXiv.org/abs/1101.6048
https://arXiv.org/abs/1101.6048
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP05(2020)152
https://doi.org/10.1016/j.aop.2021.168402
https://doi.org/10.1016/j.aop.2021.168402
https://doi.org/10.1103/PhysRevD.103.023533
https://doi.org/10.1103/PhysRevD.103.023533
https://doi.org/10.1103/PhysRevD.101.026021
https://arXiv.org/abs/1909.01894
https://doi.org/10.1103/PhysRevLett.124.160603
https://doi.org/10.1103/PhysRevLett.124.160603
https://arXiv.org/abs/2004.03501
https://doi.org/10.21468/SciPostPhysCore.4.1.002
https://doi.org/10.21468/SciPostPhysCore.4.1.002
https://arXiv.org/abs/2011.04705
https://arXiv.org/abs/2010.09760
https://doi.org/10.1103/PhysRevD.71.063505
https://doi.org/10.1016/S0370-2693(02)02554-6
https://doi.org/10.1016/S0370-2693(02)02554-6
https://doi.org/10.1016/S0550-3213(02)00765-4
https://doi.org/10.1103/PhysRevD.67.063512
https://doi.org/10.1103/PhysRevD.76.103501
https://doi.org/10.1088/1475-7516/2007/04/008
https://doi.org/10.1088/0264-9381/24/15/010
https://doi.org/10.1103/PhysRevD.84.103518
https://doi.org/10.1103/PhysRevD.84.103518
https://doi.org/10.1088/1475-7516/2007/11/024
https://doi.org/10.1103/PhysRevD.77.063533
https://doi.org/10.1103/PhysRevD.77.063533
https://doi.org/10.1103/PhysRevD.78.023506
https://doi.org/10.1103/PhysRevD.78.023506
https://doi.org/10.1103/PhysRevD.80.103520


[68] J. L. Lehners and S. Renaux-Petel, Multifield cosmological
perturbations at third order and the ekpyrotic trispectrum,
Phys. Rev. D 80, 063503 (2009).

[69] J. L. Lehners, Ekpyrotic non-Gaussianity: A review, Adv.
Astron. 2010, 1 (2010).

[70] A. Fertig, J. L. Lehners, E. Mallwitz, and E.Wilson-Ewing,
Converting entropy to curvature perturbations after a
cosmic bounce, J. Cosmol. Astropart. Phys. 10 (2016) 005.

[71] T.Qiu,X.Gao, andE. N. Saridakis, Towards anisotropy-free
and nonsingular bounce cosmology with scale-invariant
perturbations, Phys. Rev. D 88, 043525 (2013).

[72] M. Li, Note on the production of scale-invariant entropy
perturbation in the Ekpyrotic universe, Phys. Lett. B 724,
192 (2013).

[73] A. Ijjas, J. L. Lehners, and P. J. Steinhardt, General
mechanism for producing scale-invariant perturbations
and small non-Gaussianity in ekpyrotic models, Phys.
Rev. D 89, 123520 (2014).

[74] A. Fertig, J. L. Lehners, and E. Mallwitz, Ekpyrotic
perturbations with small non-Gaussian corrections, Phys.
Rev. D 89, 103537 (2014).

[75] A. Fertig and J. L. Lehners, The non-minimal ekpyrotic
trispectrum, J. Cosmol. Astropart. Phys. 01 (2016) 026.

[76] Y. I. Takamizu and K. I. Maeda, Collision of domain walls
and reheating of the brane universe, Phys. Rev. D 70,
123514 (2004).

[77] K. I.Maeda,Collision of domainwalls and creation ofmatter
in brane world, Prog. Theor. Phys. Suppl. 172, 90 (2008).

[78] T. Battefeld, Modulated perturbations from instant preheat-
ing after new ekpyrosis, Phys. Rev. D 77, 063503 (2008).

[79] J. Quintin, Y. F. Cai, and R. H. Brandenberger, Matter
creation in a nonsingular bouncing cosmology, Phys.
Rev. D 90, 063507 (2014).

[80] W. Hipolito-Ricaldi, R. Brandenberger, E. G. M. Ferreira,
and L. Graef, Particle production in ekpyrotic scenarios,
J. Cosmol. Astropart. Phys. 11 (2016) 024.

[81] L. Battarra, M. Koehn, J. L. Lehners, and B. A. Ovrut,
Cosmological perturbations through a non-singular Ghost-
Condensate/Galileon bounce, J. Cosmol. Astropart. Phys.
07 (2014) 007.

[82] J. Quintin, Z. Sherkatghanad, Y. F. Cai, and R. H.
Brandenberger, Evolution of cosmological perturbations
and the production of non-Gaussianities through a non-
singular bounce: Indications for a no-go theorem in single
field matter bounce cosmologies, Phys. Rev. D 92, 063532
(2015).

[83] J. Quintin and D. Yoshida, Cuscuton gravity as a classi-
cally stable limiting curvature theory, J. Cosmol. Astropart.
Phys. 02 (2020) 016.

[84] M. Koehn, J. L. Lehners, and B. A. Ovrut, Cosmological
super-bounce, Phys. Rev. D 90, 025005 (2014).

[85] J. L. Lehners, Small-field and scale-free: Inflation and
ekpyrosis at their extremes, J. Cosmol. Astropart. Phys. 11
(2018) 001.

[86] H. Ooguri and C. Vafa, On the geometry of the string
landscape and the swampland, Nucl. Phys. B766, 21
(2007).

[87] P. Agrawal, G. Obied, P. J. Steinhardt, and C. Vafa, On the
cosmological implications of the string swampland, Phys.
Lett. B 784, 271 (2018).

[88] R. Blumenhagen, Large field inflation/quintessence and
the refined swampland distance conjecture, Proc. Sci.,
CORFU2017 (2018) 175 [arXiv:1804.10504].

[89] J. L. Lehners, P. McFadden, and N. Turok, Effective
actions for heterotic M-theory, Phys. Rev. D 76, 023501
(2007).

[90] F. Finelli and R. Brandenberger, On the generation of a
scale invariant spectrum of adiabatic fluctuations in cos-
mological models with a contracting phase, Phys. Rev. D
65, 103522 (2002).

[91] R. H. Brandenberger, The matter bounce alternative to
inflationary cosmology, arXiv:1206.4196.

[92] J. Quintin, Topics in pre-big bang cosmology, Ph.D thesis,
McGill University, 2019.

[93] J. Khoury and F. Piazza, Rapidly-varying speed of sound,
scale invariance and non-Gaussian signatures, J. Cosmol.
Astropart. Phys. 07 (2009) 026.

[94] J. Khoury and G. E. Miller, Towards a cosmological dual to
inflation, Phys. Rev. D 84, 023511 (2011).

[95] D. Baumann, L. Senatore, and M. Zaldarriaga, Scale-
invariance and the strong coupling problem, J. Cosmol.
Astropart. Phys. 05 (2011) 004.

[96] A. Joyce and J. Khoury, Scale invariance via a phase of
slow expansion, Phys. Rev. D 84, 023508 (2011).

[97] G. Geshnizjani, W. H. Kinney, and A. Moradinezhad
Dizgah, General conditions for scale-invariant perturba-
tions in an expanding universe, J. Cosmol. Astropart. Phys.
11 (2011) 049.

[98] G. Geshnizjani, W. H. Kinney, and A. Moradinezhad
Dizgah, Horizon-preserving dualities and perturbations
in non-canonical scalar field cosmologies, J. Cosmol.
Astropart. Phys. 02 (2012) 015.

[99] J. Khoury and P. J. Steinhardt, Adiabatic Ekpyrosis: Scale-
Invariant Curvature Perturbations from a Single Scalar
Field in a Contracting Universe, Phys. Rev. Lett. 104,
091301 (2010).

[100] J. Khoury and P. J. Steinhardt, Generating scale-invariant
perturbations from rapidly-evolving equation of state,
Phys. Rev. D 83, 123502 (2011).

JEAN-LUC LEHNERS and JEROME QUINTIN PHYS. REV. D 103, 063527 (2021)

063527-22

https://doi.org/10.1103/PhysRevD.80.063503
https://doi.org/10.1155/2010/903907
https://doi.org/10.1155/2010/903907
https://doi.org/10.1088/1475-7516/2016/10/005
https://doi.org/10.1103/PhysRevD.88.043525
https://doi.org/10.1016/j.physletb.2013.06.035
https://doi.org/10.1016/j.physletb.2013.06.035
https://doi.org/10.1103/PhysRevD.89.123520
https://doi.org/10.1103/PhysRevD.89.123520
https://doi.org/10.1103/PhysRevD.89.103537
https://doi.org/10.1103/PhysRevD.89.103537
https://doi.org/10.1088/1475-7516/2016/01/026
https://doi.org/10.1103/PhysRevD.70.123514
https://doi.org/10.1103/PhysRevD.70.123514
https://doi.org/10.1143/PTPS.172.90
https://doi.org/10.1103/PhysRevD.77.063503
https://doi.org/10.1103/PhysRevD.90.063507
https://doi.org/10.1103/PhysRevD.90.063507
https://doi.org/10.1088/1475-7516/2016/11/024
https://doi.org/10.1088/1475-7516/2014/07/007
https://doi.org/10.1088/1475-7516/2014/07/007
https://doi.org/10.1103/PhysRevD.92.063532
https://doi.org/10.1103/PhysRevD.92.063532
https://doi.org/10.1088/1475-7516/2020/02/016
https://doi.org/10.1088/1475-7516/2020/02/016
https://doi.org/10.1103/PhysRevD.90.025005
https://doi.org/10.1088/1475-7516/2018/11/001
https://doi.org/10.1088/1475-7516/2018/11/001
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1016/j.physletb.2018.07.040
https://doi.org/10.1016/j.physletb.2018.07.040
https://arXiv.org/abs/1804.10504
https://doi.org/10.1103/PhysRevD.76.023501
https://doi.org/10.1103/PhysRevD.76.023501
https://doi.org/10.1103/PhysRevD.65.103522
https://doi.org/10.1103/PhysRevD.65.103522
https://arXiv.org/abs/1206.4196
https://doi.org/10.1088/1475-7516/2009/07/026
https://doi.org/10.1088/1475-7516/2009/07/026
https://doi.org/10.1103/PhysRevD.84.023511
https://doi.org/10.1088/1475-7516/2011/05/004
https://doi.org/10.1088/1475-7516/2011/05/004
https://doi.org/10.1103/PhysRevD.84.023508
https://doi.org/10.1088/1475-7516/2011/11/049
https://doi.org/10.1088/1475-7516/2011/11/049
https://doi.org/10.1088/1475-7516/2012/02/015
https://doi.org/10.1088/1475-7516/2012/02/015
https://doi.org/10.1103/PhysRevLett.104.091301
https://doi.org/10.1103/PhysRevLett.104.091301
https://doi.org/10.1103/PhysRevD.83.123502

