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The early Universe may have passed through an extended period of matter-dominated expansion
following inflation and prior to the onset of radiation domination. Subhorizon density perturbations grow
gravitationally during such an epoch, collapsing into bound structures if it lasts long enough. The strong
analogy between this phase and structure formation in the present-day Universe allows the use of N-body
simulations and approximate methods for halo formation to model the fragmentation of the inflaton
condensate into inflaton halos. For a simple model we find that these halos have masses of up to 20 kg and
radii of the order of 10−20 m, roughly 10−24 seconds after the big bang. We find that the N-body halo mass
function matches predictions of the mass-peak patch method and the Press-Schechter formalism within the
expected range of scales. A long matter-dominated phase would imply that reheating and thermalization
occurs in a universe with large variations in density, potentially modifying the dynamics of this process. In
addition, large overdensities can source gravitational waves and may lead to the formation of primordial
black holes.
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I. INTRODUCTION

The rapid expansion of the Universe during inflation
[1–4] is followed by an epoch dominated by an oscillating
inflaton field. In many cases the resulting condensate is
rapidly fragmented by the resonant production of quanta, a
process that depends on the detailed form of the inflaton
potential and its couplings to other fields [5–7]. In the
absence of resonance, perturbations in the condensate laid
down during inflation grow linearly with the scale factor
after they reenter the horizon and can collapse into bound
structures prior to thermalization [8,9].
It was recently demonstrated that the evolution and

gravitational collapse of the inflaton field during the
postinflationary era can be described by the nonrelativistic
Schrödinger-Poisson equations [10]. This creates a strong
analogy between the dynamics of the early Universe and
cosmological structure formation with fuzzy or axion-like
dark matter; see for example [11–14]. Building on this
realization, Ref. [15] adapted the Press-Schechter approach
to compute the mass function of the gravitationally bound
inflaton halos in the very early Universe. These halos have
macroscopic masses and microscopic dimensions: typical
values are ∼0.01 kg with a virial radius of ∼10−22 m.
The parallel with fuzzy dark matter structure formation

suggests the existence of solitonic cores, or inflaton stars in

the centers of inflaton halos with densities up to 106 times
larger than the average value, provided the reheating
temperature is sufficiently low. Early bound structures
can potentially generate a stochastic gravitational wave
background [16] and runaway nonlinearities in the post-
inflationary epoch can lead to the production of primordial
black holes (PBHs) whose evaporation could contribute
to the necessary thermalization of the postinflationary
universe [17–19].
We build upon the work presented in Refs. [10,15],

adapting a standard N-body solver to simulate the gravi-
tational fragmentation of the inflaton field during the
matter-dominated, postinflationary epoch. In addition, we
employ an approximate method to model halo formation
based on the mass-peak patch algorithm [20] to extend the
dynamical range of the simulations.
TheN-body solver is initializedN ¼ 14 e-folds after the

end of inflation and run through to N ¼ 20 e-folds for a
total growth factor of around 400. In contrast to the
Schrödinger-Poisson simulations of Ref. [10], it continues
deep into the nonlinear phase, and we observe the for-
mation and subsequent growth and evolution of gravita-
tionally bound structures (see Fig. 1). We obtain the
inflaton halo mass function (HMF) from the simulations,
evaluating the density profiles of the halos, and analyze the
density distribution of the inflaton field.
While N-body solvers have an impressive dynamic

range, they cannot capture the detailed dynamics of wave-
like matter, i.e., the formation of solitonic cores and the
surrounding incoherent granular density fluctuations.

*benedikt.eggemeier@phys.uni-goettingen.de
†jens.niemeyer@phys.uni-goettingen.de
‡r.easther@auckland.ac.nz

PHYSICAL REVIEW D 103, 063525 (2021)

2470-0010=2021=103(6)=063525(13) 063525-1 © 2021 American Physical Society

https://orcid.org/0000-0001-7939-410X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.063525&domain=pdf&date_stamp=2021-03-22
https://doi.org/10.1103/PhysRevD.103.063525
https://doi.org/10.1103/PhysRevD.103.063525
https://doi.org/10.1103/PhysRevD.103.063525
https://doi.org/10.1103/PhysRevD.103.063525


In particular, the initial power spectrum is suppressed at
comoving scales below the postinflationary horizon length
[8,9], a situation in which N-body simulations generate
spurious halos [21–24]. Fortunately, there are well-
established procedures for filtering out these halos in dark
matter simulations, which we can adapt to the early
Universe scenario considered here.
During conventional structure formation the onset of

dark energy domination puts an upper limit on the size of
nonlinear objects. The effective matter-dominated phase in
the early Universe can last much longer than its present-day
analog, so the range of nonlinear scales may be much larger

and the largest scales contained within our N-body sim-
ulation volume are becoming nonlinear as the calculation
ends. However, we use M3P,1 a modified version of the
mass-peak patch algorithm [20], to cross validate the N-
body results and explore the formation of collapsed
structures at larger scales.
This paper is structured as follows. We review single-

field inflation and the early matter-dominated epoch that
may follow it in Sec. II. We describe the initial conditions

FIG. 1. Projected inflaton density of the full simulation box fromN ¼ 14 e-folds (upper left) toN ¼ 20 e-folds (lower right) after the
end of inflation. Note that the color bar only applies to the final snapshot. The comoving length of the box is determined by the horizon
size H−1

end at the end of inflation. This corresponds to a physical size of e20H−1
end at the final snapshot of the simulations. A volume

rendering of the largest inflaton halo with virial mass of 1.2 × 103Mh;end ∼ 20 kg is shown in the lower left panel.

1Massively parallel peak patches [25].
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and the simulation setup in Sec. III; the results of the
N-body and M3P calculations are presented in Sec. IV and
we combine these to yield an understanding of the inflaton
HMF over a broad range of scales in the early Universe.
We conclude in Sec. V.

II. INFLATION AND EARLY MATTER-
DOMINATED EPOCH

We consider single-field inflation in which the homo-
geneous inflaton scalar field φ drives the expansion of the
Universe. In a flat Friedmann-Lemaitre-Robertson-Walker
space-time, the evolution is described by the Friedmann
equation

H2 ¼ 1

3M2
Pl

�
1

2
_φ2 þ VðφÞ

�
; ð1Þ

where H ¼ _a=a is the Hubble parameter, a is the scale
factor, MPl ¼ ð8πGÞ−1=2 is the reduced Planck mass and
VðφÞ denotes the effective potential of the scalar field φ.
The inflaton obeys the Klein-Gordon equation

φ̈þ 3H _φþ V 0ðφÞ ¼ 0: ð2Þ

As usual, a dot denotes a derivative with respect to cosmic
time t while a prime corresponds to a derivative with
respect to φ. The Universe expands roughly exponentially
until the slow roll parameter ε ¼ − _H=H2 ¼ 1, or
ðV 0=VÞ2=2 ≈ 1. We work with a quadratic potential,

VðφÞ ¼ 1

2
m2φ2: ð3Þ

Pure quadratic inflation is at odds with the data, but this can
be regarded as the leading-order term near the minimum.
We are assuming that the higher order terms in the potential
will not support broad resonance [26].
With a quadratic potential, Eqs. (1) and (2) combine to

deliver the well-known result

φðtÞ ∼MPl

m
sinðmtÞ

t
ð4Þ

in the postinflationary epoch. Averaged over several
oscillations, the scale factor grows as aðtÞ ∼ t2=3, thus
φðtÞ ∼ a−3=2 sinðmtÞ and H ∼ a−3=2 [27]. Similarly, the
energy density

ρφ ¼ 1

2
_φ2 þ 1

2
m2φ2 ð5Þ

decreases as ρφ ∼ a−3, so the postinflationary evolution can
be treated as a matter-dominated universe on timescales
larger than the frequency of the field oscillations.

During this epoch density perturbations on subhorizon
scales initially grow linearly, until they pass the threshold at
which collapse becomes inevitable, leading to the forma-
tion of bound structures [8,9]. Modes that are only just
outside the horizon at the end of inflation reenter the
horizon first, and are amplified the most. Hence the first
nonlinear structures form on comoving scales slightly
larger than scale of the horizon at the end of inflation.
The early matter-dominated epoch continues until the

Hubble parameter becomes comparable to the effective
decay rate Γ of the inflaton. Once H ≃ Γ, reheating sets in
and the inflaton decays into radiation. Since the decay rate
is related to the reheating temperature [6]

Trh ≃ 0.2ðΓMPlÞ1=2; ð6Þ

the energy scale at which inflation ends and the reheating
temperature combine to determine the extent of the
matter-dominated era. After the end of inflation the
Hubble parameter evolves as H ≃Hendða=aendÞ−3=2 ¼
Hend exp ð−3N =2Þ where N denotes the number of
e-folds after the end of inflation and the subscript “end”
denotes a quantity evaluated at the end of inflation. Noting
that H ≃ Γ, one obtains an estimate for the duration of the
matter-dominated epoch,

N ≃
2

3
ln

�
Hend

Γ

�
≃
2

3
ln

�
HendMPl

25T2
rh

�
: ð7Þ

III. INITIAL CONDITIONS AND
SIMULATION SETUP

For definiteness we set m ¼ 6.35 × 10−6MPl and note
that inflation ends2 when φ ≈MPl, so Hend ≈m=

ffiffiffi
6

p
. By

definition, the Hubble horizon has a radius 1=H and
contains a mass

Mh ¼
4πM2

Pl

H
; ð8Þ

so Mh;end ¼ 0.021 kg. The physical size of the horizon at
the end of inflation is H−1

end. In what follows, physical
quantities such as halo masses and length scales are
given in units of Mh;end and lu ∼H−1

end, respectively (see
Appendix B for details).

2Similar assumptions are made in previous work [8,15]. Note
that the pressure obeys p ¼ −ρ=3 at the end of inflation, or
ρend ¼ 3VðφendÞ=2 and slow roll fails for quadratic inflation
when φ ≈

ffiffiffi
2

p
MPl. It is often generically assumed that a pivot

scale k� ¼2×10−3 Mpc−1 crosses the horizons N � ¼ 60 e-folds
before inflation ends but a long matter dominated phase reduces
N � [28–30] and m is weakly dependent on the reheating scale,
for a given normalization. We ignore all these (small) corrections
in what follows.

FORMATION OF INFLATON HALOS AFTER INFLATION PHYS. REV. D 103, 063525 (2021)

063525-3



A. Initial power spectrum

The power spectrum of density perturbations at the end
of inflation was computed in Ref. [8] both numerically over
a wide range of k and analytically for super- and subhorizon
scales. For scales that exit the horizon during inflation
(k < kend) the slow-roll approximation can be employed
and yields a weakly scale-dependent power spectrum. On
scales that never leave the horizon (k > kend) the dimen-
sionless matter power spectrum obeys Δ2 ∼ k−5 (see
Appendix A for details). The precise form of the power
spectrum is not relevant for the nonlinear evolution of the
density perturbations during the matter-dominated epoch
[10] and we interpolate between the sub- and superhorizon
forms of the initial linear matter power spectrum [15].
Density perturbations grow linearly with the scale factor,

so we evolve the power spectrum forward from the end of
inflation with the growth factor DðaÞ ∼ a. Nonlinearities
are expected to emerge after ∼17 e-folds of growth [15];
we initialize the N-body solver 14 e-folds after inflation.
The dimensionless power spectrum at this instant is shown
in Fig. 2.

B. N-body simulations

In contrast to solving the full Schrödinger-Poisson
dynamics [10] N-body simulations can easily follow the
evolution deep into the nonlinear phase. This provides an
accurate understanding of halo formation and interactions,
at the cost of obscuring small scale wavelike dynamics,
including solitonic cores in the inflaton halos and granular
density fluctuations at the de Broglie scale. In Sec. IV we
demonstrate the self-consistency of this approach by
confirming that the de Broglie wavelength is significantly
smaller than our spatial resolution.

We evolve the system through six e-folds of growth, i.e.,
from N ¼ 14 to N ¼ 20. For a reheating temperature
of Trh ≃ 107 GeV the matter-dominated era following
inflation lasts for N ≃ 24 e-folds [cf. Eq. (7)], which
leaves plenty of scope for reheating and thermalization
to take place before nucleosynthesis begins. The simula-
tions are performed using NYX [31], with only gravitational
interactions between the N-body particles. The underlying
dynamical system is identical to that which describes
structure formation and evolution in a dark-matter-
only universe but differs in parameter choices and power
spectrum. The chosen length and time units are lu ¼
1.51 × 10−20 m and tu ¼ 7.23 × 10−24 s, with more details
in Appendix B.
We generate the initial particle positions and velocities

using MUSIC [32], with the power spectrum shown in Fig. 2.
For comparison, the raw power spectra obtained from the
initial density field with 1283 and 5123N-body particles are
also plotted. Except for resolution-dependent deviations
which emerge at large k the power spectra coincide. For
further details on the normalization of the input power
spectrum in MUSIC and a detailed discussion of the small
scale form of the power spectra, see Appendix C.
Two N-body simulations were performed in comoving

boxes with sides of length of L ¼ 50lu and L ¼ 100lu
containing 5123 particles; the spatial resolution of the
simulations is then L=512. The trade-offs between param-
eter choices are discussed in Appendix D. Given that
Ωm ¼ 1 throughout the simulation, the Hubble parameter at
the end of the simulation H20 ¼ 6.49t−1u , where the sub-
script 20 indicates the value of a parameterN ¼ 20 e-folds
after the end of inflation. For a box size of L ¼ 50lu each
initial Hubble region thus contains roughly 5123=503 ≈
103N-body particles. Since the first halos form on comov-
ing scales roughly equal to H−1

end this is also the typical halo
mass, and is much larger than the smallest resolvable halo
in the simulation.
Taking further advantage of the correspondence between

dark matter and postinflationary dynamics, we adapt the
ROCKSTAR halo finder [33] to locate the inflaton halos in the
simulation outputs. The virial radius is then calculated from

rvir ¼ vmax

�
4π

3
Gρvir

�
−1=2

; ð9Þ

where ρvir ¼ Δvirρ̄ with mean density ρ̄, Δvir ¼ 18π2 for a
matter-dominated background, and vmax is the halo’s
maximum circular velocity. The virial mass of the halos
is given by Mvir ¼ 4π=3Δvirρ̄r3vir.

C. Mass-peak patch

To validate theN-body simulations we apply M3P [20,25]
to the initial density field. Rather than resolving the full
nonlinear gravitational evolution, M3P identifies peaks in

FIG. 2. Initial input power spectrum N ¼ 14 e-folds after the
end of inflation in dimensionless units and computed power
spectra from the initial density field for 1283 and 5123 particles,
respectively. The increasing deviations for large k from the
input power spectrum arise due to discretization effects (see
Appendix C for details).
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the linearly evolved density field corresponding to halos in
an N-body simulation, generating large halo catalogs using
only a fraction of the CPU time and memory [20] required
by anN-body code. M3P evolves the initial overdensity field
with the linear growth factor DðaÞ ∼ a through to the final
snapshot of the N-body simulation. Halo candidates in the
density field are identified by smoothing with a top-hat
filter on a hierarchy of filter scales, and based on the top-hat
spherical collapse model an overdensity of δc ¼ 1.686 is
the threshold at which a halo is selected.
The Lagrangian radius, and hence halo mass, is deter-

mined by solving a set of homogeneous spherical collapse
equations. To avoid double counting, halo candidates must
be distinct, with no smaller collapsed objects contained
within them and a hierarchical Lagrangian reduction
algorithm is used to exclude overlapping patches from
the halo catalog. Finally, halo positions are computed via
second order Lagrangian perturbation theory. The filters
must be chosen with care—with too few filters viable halo
candidates can be overlooked, but having too many filters is
computationally inefficient. Moreover, the set of filters has
to span the mass range of the expected halos.

IV. SIMULATION RESULTS

The N-body simulations show the formation and evolu-
tion of gravitationally bound inflaton halos. Visualizations of
the full L ¼ 50lu simulation region at the beginning and end
of the run, together with an enlargement of the largest halo,
are shown in Fig. 1. At N ¼ 20 e-folds after the end of
inflation, ∼60% of the total mass is bound in inflaton halos
with masses in the range Mvir ∈ ½0.2; 1.2 × 103�Mh;end and
corresponding virial radii rvir ∈ ½0.1; 2.0�lu.
The spatial size of a solitonic core in the center of an

inflaton halo is determined by its de Broglie wavelength
λdB ¼ 2πℏ=ðmvvirÞ, where vvir is the virial velocity of the
halo. The largest solitonic cores therefore exist in low-mass
halos. N-body simulations are unable to capture wavelike
dynamics, even in principle. However, λdB ∼ 10−4lu for a
low-mass halo N ¼ 20 e-folds after the end of inflation so
even the most spatially extended solitons would be beneath
the threshold for resolution by our simulations. On scales
larger than λdB, the Schrödinger-Poisson dynamics are
governed by the Vlasov-Poisson equations justifying the
use of N-body methods in this regime [34,35].

A. Halo mass function

N-body simulations with an initial power spectrum that
has a well-resolved small-scale cutoff are known to produce
spurious halos. These are found preferentially along fila-
ments and can outnumber genuine physical halos below
some mass scale. They are caused by artificial fragmenta-
tion of filaments and are common in warm dark matter
(WDM) simulations [21–24] where the free-streaming
of particles induces a cutoff in the matter power spectrum.

Via Eq. (5) of Ref. [22], the scale below which spurious
halos dominate is

Mlim ¼ 10.1ρ̄dk−2peak; ð10Þ

where d is the effective spatial resolution and kpeak is the
wave number at which the dimensionless initial power
spectrum has its maximum (see Fig. 2).
With L ¼ 50lu and 5123 particles, d ¼ 9.8 × 10−2lu and

we see fromFig. 2 that kpeak¼1.7l−1u . Consequently, spurious
halos dominate the HMF below Mlim ∼ 0.1Mh;end. These
small-scale halos are resolution dependent and thus clearly
unphysical [21] and must be filtered out of the halo catalog.
Algorithms that distinguish between artificial and genuine
halos have been developed for WDM simulations3 and we
adapt a simplified but sufficient version for use here, as
described in Appendix E.
The inflaton HMF is shown in Fig. 3 at four different

times during the N-body simulation. We compare the
numerical HMFs with those computed using the M3P

algorithm and Press-Schechter (PS) predictions [38] with
a sharp-k filter [15,23,24]. This choice produces HMFs for
power spectra with a cutoff at high wave numbers [23,24]
and can be written as

dn
d lnM

¼ 1

6

ρ̄

M
νfðνÞΔ

2ð1=RÞ
δ2c

; ð11Þ

where

Δ2ðkÞ ¼ PðkÞk3
2π2

: ð12Þ

Following Ref. [24], we relate a mass M to the filter scale
R via

M ¼ 4π

3
ρ̄ðεRÞ3; ð13Þ

where the free parameter ε has to be matched to simu-
lations. We find that ε ¼ 2.5 yields Press-Schechter halo
mass functions (PS-HMFs), displayed as black lines in
Fig. 3, that are in good agreement with the simulations at
all times. In agreement with Ref. [39], we slightly rescaled
the critical density δc in Eq. (11) to match the data (see
Appendix F for details).
Consistent with Eq. (10), spurious halos dominate

the N-body HMF for halos with masses lower than
Mlim ∼ 0.1Mh;end, and account for the strong increase of
the HMF forM ≲Mlim, which becomes steeper for smaller
N . As discussed in Appendix E, the removal of spurious

3Instead of running a standard N-body simulation, it is also
possible to trace dark matter sheets in phase space [36],
significantly suppressing the formation of spurious halos [37].
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halos is incomplete which explains the observed increase of
the HMF at low masses.
However, the M3P results are unaffected by spurious

low-mass halos and thus serve as a consistency check.
Based on the mass range of the HMF from the N-body
simulations we performed an M3P run with a total of 20
real space filters logarithmically spaced between 0.195lu
and 10lu. In order to adequately compare the M3P results to
the N-body HMF we chose a larger box size of L ¼ 100lu
for the M3P run (see Sec. IV B). The corresponding HMFs
are shown as dotted lines in Fig. 3. ForN ≤ 19 they agree
with theN-body HMFs over the entire mass range down to
Mlim. Notably, the low-mass end of the M3P-HMF is
slightly underpopulated compared to both the N-body and
the PS-HMF at N ¼ 19.6, which becomes more pro-
nounced at N ¼ 20 when additionally more high-mass
halos than expected are identified. The reason why M3P

reproduces the N-body and PS-HMF over the entire
mass range at early times but cannot adequately do so
at N ≥ 19.6 is that M3P identifies halos in the linearly
evolved density field and is hence not capable of including
possible nonlinear contributions. This is further discussed
in Sec. IV B.

B. Power spectrum

Since we used different box sizes for the comparison of
the inflaton HMFs in the previous section, we now analyze
the power spectra with respect to different box sizes. The
evolving power spectrum of density fluctuations in dimen-
sionless units is shown in Fig. 4 for box sizes of L ¼ 50lu
and L ¼ 100lu. Comparing the initial power spectrum of
L ¼ 50lu at N ¼ 14 with the one at N ¼ 16.9 shows that
the discretization artifacts at large k, which are discussed in
Appendix C, are washed out at N ¼ 16.9. Unsurprisingly,
we observe an overall increase in power with time,
particularly for high-k modes.
The dotted lines in Fig. 4 show the M3P power spectrum.

It is related to the initial power spectrum via the linear
growth factor DðaÞ:

Δ2ðk; aÞ ¼
�

a
ainit

�
2

Δ2ðk; ainitÞ: ð14Þ

As expected, theN-body and M3P power spectra coincide
for small k, i.e., in the linear regime for lower values of N .
However, at N ≥ 19 the M3P spectra differ significantly

FIG. 3. Evolution of the inflaton HMF. The blue solid lines represent the mass distribution of the halos identified in the L ¼ 50lu
simulation box. Dashed orange lines display the HMF obtained via the M3P algorithm with box size of L ¼ 100lu, while the black solid
lines show the prediction from the Press-Schechter formalism with ε ¼ 2.5.
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from the N-body spectra for L ¼ 50lu even at small k,
indicating that all scales are now nonlinear. Thus, the
linearly evolved M3P power spectrum for L ¼ 50lu at
N ≥ 19 should not be used to obtain the corresponding
HMF; an M3P run with a larger box size can resolve this
issue though.
As expected, the L ¼ 100lu M3P spectra shown in the

right panel of Fig. 4 agree with the N-body power spectra
at small k for a longer time, however slight deviations at
large scales are observable at N ≳ 19.6. This leads to
inaccuracies in the M3P-HMF in a sense that compared to
the N-body results and the PS-HMF more high-mass and
less low-mass halos are predicted atN ¼ 20, as can be seen
in the lower right panel of Fig. 3.

C. Density distribution

We determine the density distribution of the matter field
(i.e., the one-point probability distribution function) by
binning the normalized density ρn ¼ ρ=ρ̄ ¼ 1þ δ, where δ
is the overdensity, using a logarithmic bin width
Δ logðρnÞ ¼ 0.1. The density distribution function PðρnÞ
illustrates the relative frequency of overdensities. It is
defined to be the normalized number of cells whose
corresponding density value lies in a range by Δ logðρnÞ,
i.e., PðρnÞ ¼ ΔNcell=Δ logðρnÞN−3

cell, where Ncell ¼ 512 is
the grid size.
The evolution of the density distribution in the L ¼ 50lu

simulation is shown in the left panel of Fig. 5. It initially
is a narrow distribution, reflecting the shape of the power
spectrum, which widens as the nonlinear phase continues.
The observed maximal overdensity increases, due to
ongoing gravitational collapse, mergers, and accretion onto

existing halos. As a consequence, the number of cells with
a low mass density increases in order to supply the raw
material for the growing overdensities. At N ¼ 20 the
densities range from roughly 10−6 to nearly 105, with the
distribution peaks at ρn ∼ 0.2.
We now approximate the density distribution functions

that we obtained from the numerical simulations. As a
starting point, we introduce the log-normal distribution
function [40]

PLNðρnÞ ¼
1

ρn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2LN

p exp

�
−
ðlnðρnÞ þ σ2LN=2Þ

2σ2LN

�
; ð15Þ

where σ2LN is the only free parameter. A fit for N ¼ 16.4 is
shown in the right panel of Fig. 5, however the log-normal
distribution does not provide an accurate fit to the tails of
the distribution function and does not align at all with the
simulation results at later times. Consequently we use a
power law PðρnÞ ∼ ραn with slope parameter α truncated on
small and large densities with exponential terms [40] to
model the distribution for ρn ≤ 0.2 and another power law
with an exponential cutoff for ρn > 0.2. Specifically, the
distribution functions are [40]

PðρnÞ ¼ Aραn exp ð−ðρ1=ρnÞ1.1Þ exp ð−ðρn=ρ2Þ0.55Þ ð16Þ

for ρn ≤ 0.2 and

PðρnÞ ¼ Bρβn exp ð−bρn=ρ3Þ ð17Þ

for ρn > 0.2. In these two expressions A, B, α, β, b, ρ1, ρ2,
and ρ3 are free fitting parameters. With slope parameters of

FIG. 4. Dimensionless power spectrum for increasing N for a simulation box size of L ¼ 50lu (left) and L ¼ 100lu (right). The
dashed lines display the M3P power spectrum, see Eq. (14).
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α ¼ 0.8 and β ¼ −0.8, the numerical data can be modeled
accurately over the entire range of ρn. The combination of
Eqs. (16) and (17) is also suited to describe the density
distribution at earlier times; i.e., this approach is not limited
to the N ¼ 20.0 case.

D. Halo density profiles

Dark matter halos developed via hierarchical structure
formation are well-described by the Navarro-Frenk-White
(NFW) profile [41]

ρNFWðrÞ ¼
ρ0

r=rsð1þ r=rsÞ2
; ð18Þ

where ρ0 is the characteristic density of a halo and rs the
scale radius, and depend only weakly on the halo mass and
cosmological parameters. The scale radius sets the size of
the central region where ρ ∼ r−1 and ρ ∼ r−3 for r ≫ rs.
The concentration of the halo is defined to be c ¼ rvir=rs.
We study the density profiles of the halos in our final

snapshot in two mass regimes. Since we are limited by
spatial resolution, we focus on inflaton halos at the high-
mass end of the HMF and separate between the mass
regimesM > 5 × 102Mh;end andM ∈ ½2; 3� × 102Mh;end, at
N ¼ 20 in the L ¼ 50lu simulation.
The averaged radial density profiles of ten inflaton halos

in each mass sample are shown in Fig. 6. Black dashed lines
represent NFW fits, given by Eq. (18), and the total range in
the sample is shown by the colored regions. Deviations
from the NFW fits are displayed in the lower panel of
Fig. 6. There is very good agreement for inflaton halos with

M > 5 × 102Mh;end deviating not more than∼20% even for
large r. For lower-mass halos the NFW fit is less accurate at
large r where the averaged density profile is slightly
underdense compared to the NFW fit. Nevertheless, the
profiles of the largest halos are NFW-like and exhibit

FIG. 5. Left: one-point probability distribution function of the density field for increasing N . Right: the same as on the left but with
additional dashed lines that show a log-normal fit forN ¼ 16.4 [see Eq. (15)] and a combined fit consisting of a power-law times double
exponential fit for ρn ≤ 0.2 [see Eq. (16)] and a power-law times exponential fit for ρn > 0.2 for N ¼ 20.0 [see Eq. (17)], respectively.

FIG. 6. Averaged radial density profiles (upper panel) of 10
inflaton halos at N ¼ 20 in two different mass bins (solid lines).
The density profiles of the inflaton halos of masses M ∈ ½2; 3� ×
102Mh;end are rescaled by a factor of 10−1 for illustration
purposes. The shaded regions display the area filled by all 10
density profiles in the two mass bins. The black dashed lines
represent NFW fits, the deviations from the fits are shown in the
lower panel.
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concentrations c ∈ ½10; 13.5�. Likewise, consistent with
standard dark matter simulations, the concentration param-
eter increases for a decreasing halo mass.

V. CONCLUSIONS AND DISCUSSION

We have performed the largest-ever simulation of the
smallest fraction of the Universe, evolving it from N ¼ 14

to N ¼ 20 e-folds after the end of inflation with a final
physical box size of only ∼10−18 m, to explore the details
of the gravitational fragmentation of the inflaton conden-
sate during the early matter-dominated era following
inflation. We confirm that in the absence of prompt
reheating small density fluctuations (as first analyzed in
detail in Ref. [10]) in the inflaton field collapse into
gravitationally bound inflaton halos during this epoch.
Our results provide the first quantitative predictions for

the mass and density statistics of the collapsed objects
found in the very early Universe during this phase. The
inflaton halos have masses up to ∼103Mh;end and their mass
distribution is in agreement with the prediction of the mass-
peak patch algorithm and with the Press-Schechter halo
mass function as proposed in [15] after the first 1–3 e-folds
of nonlinear growth. As expected from dark matter N-body
simulations, the density profiles of the inflaton halos are
NFW-like with concentrations of Oð10Þ. Overall, the
inflaton field reaches overdensities of close to 105 in these
simulations after three e-folds of nonlinear growth.
The results do not depend on the precise form of the

inflaton potential, provided (i) there is no strong resonant
production of quanta in the immediate aftermath of
inflation and (ii) couplings between the inflaton and other
species leave space for a long phase of matter-dominated
expansion before thermalization.
It is conceivable that dark matter is produced during

the thermalization process [42–50]. Even if this is not the
case, the presence of gravitationally bound structures in the
postinflationary universe will modify the dynamics of
reheating in ways that are yet to be properly explored.
The formation of gravitationally bound structures and

their subsequent nonlinear evolution can source gravita-
tional wave production [16]. Investigating a possible
stochastic background sourced during this epoch is an
obvious extension of this work, which will likely require
N-body computations that extend further into the nonlinear
epoch, potentially complemented by halo realizations of
the mass-peak patch method. Thus, it will be possible to
revisit the bounds obtained in [16]. Likewise, the formation
of solitons at the centers of the inflaton halos is currently
unexplored, and will require full simulations (at least
locally) of the corresponding Schrödinger-Poisson dynam-
ics. Moreover, given the duality between the underlying
dynamics of the two eras any supermassive black hole
formation mechanism in the present epoch that is driven by
dark-matter dynamics (and not baryonic physics) will have

an early Universe analog with a mechanism for potential
primordial black hole formation.
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APPENDIX A: PERTURBATION EQUATION
AND POWER SPECTRUM

Decomposing the scalar field into an inhomogeneous
perturbation δφ and a position-independent background φ̄,
and working in spatially flat gauge, the perturbation
equation in Fourier space is [8]

�
k2

a2
þ V 00ðφ̄Þ þ 2M−2

Pl

_̄φ

H
V 0ðφ̄Þ þM−4

Pl

_̄φ2

H2
Vðφ̄Þ

�
δφk

þ 3Hδ _φk þ δφ̈k ¼ 0: ðA1Þ

To compute the power spectrum of density perturbations
over a wide range of k at the end of inflation, Eq. (A1)
has to be solved numerically. However, it is possible to
calculate the power spectrum at super- and subhorizon
scales using the slow-roll and the Wentzel-Kramers-
Brillouin (WKB) approximations, respectively. We work
with the quadratic potential from Eq. (3) in the spatially flat
gauge where the curvature perturbation R is related to δφ
via R ¼ −Hδφ= _̄φ.
Modes that left the horizon during slow-roll inflation

can be handled using the slow-roll approximation, i.e.,
ε ≪ 1 and η ≪ 1. In terms of the potential VðφÞ, it is
η ¼ M2

PlV
00=V ¼ m2=ð3H2Þ ≪ 1 and thus the inflaton

mass m ≪ H can be neglected. Since ε ¼ − _H=H2 ¼
_̄φ2=ð2H2M2

PlÞ ≪ 1 during slow-roll inflation,H is constant
and the _̄φ=H terms in Eq. (A1) can be dropped. Hence, the
perturbation equation reduces in this case to

δφ̈k þ 3Hδ _φk þ
k2

a2
δφk ¼ 0: ðA2Þ

One finds that a solution to this equation is given by

δφk ¼
1

a
ffiffiffiffiffi
2k

p
�
1þ i

aH
k

�
exp

�
ik
aH

�
; ðA3Þ
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and

jδφkj2 ¼
1

2ka2

�
1þ a2H2

k2

�
¼ H2

2k3

�
1þ k2

a2H2

�
; ðA4Þ

so δφk → H=ð2k3Þ1=2 for superhorizon scales k ≪ aH.
The dimensionless curvature power spectrum at horizon
crossing (k ¼ a�H�) is

Δ2
RðkÞ ¼

k3

2π2
jRkj2 ¼

H2�
ð2πÞ2

H2�
_̄φ2

; ðA5Þ

and depends only weakly on scale k.
We now consider nonrelativistic modes (k=a ≪ m) that

never leave the horizon (k ≫ aH). The slow-roll approxi-
mation is not applicable but the Vðφ̄Þ _̄φ2=H2 term from
Eq. (A1) can be omitted as it decays as a−3 in the
postinflationary epoch while the V 0ðφ̄Þ _̄φ=H term scales
as a−3=2. Hence, the equation of motion for the subhorizon
scales reads [8]

δφ̈k þ 3Hδ _φk þ
�
k2

a2
þm2 þ 6Hm sinð2mtÞ

�
δφk ¼ 0:

ðA6Þ

In the absence of parametric resonance [k=a ≫ ð3mHÞ1=2
[9] ] the last term in Eq. (A6) can be neglected and one can
use the leading-order WKB approximation to find

δφk ¼
1

a3=2
ffiffiffiffiffiffiffiffiffiffiffi
2ωðtÞp exp

�
i
Z

ωðtÞdt
�

ðA7Þ

with

ωðtÞ ¼
�
k2

a2
þm2

�
1=2

: ðA8Þ

Since k=a ≪ m, one can make the ansatz

δφkðtÞ ¼
1

a3=2
ffiffiffiffiffiffiffi
2m

p ðAðtÞe−imt þ BðtÞeimtÞ: ðA9Þ

Plugging this ansatz into Eq. (A6), the perturbation
equation can be written as a system of coupled equations
for A and B which can be transformed into a second order
differential equation. Solving this equation for A gives the
result for B which leads to (see Ref. [8] for further details)

δφk ¼
15ffiffiffiffiffiffiffi
2m

p i
a9=2m3H3

k6
cosðmtÞ ðA10Þ

for subhorizon scales at the end of inflation. From this one
can obtain jRkj2 and thus [8]

Δ2
RðkÞ ¼

75m5

8π2
H6

M2
Pl

a9

k9
: ðA11Þ

Since H6a9 is constant during the postinflationary epoch
it can be evaluated at any time, most conveniently at the
end of inflation. The power spectrum of the density
perturbations

Δ2
mðkÞ ¼

4

25

�
k

aendHend

�
4

Δ2
RðkÞ ðA12Þ

at the end of inflation thus scales as Δ2
m ∼ k−5 for

subhorizon modes.

APPENDIX B: UNIT SYSTEM FOR THE
SIMULATIONS

We take the physical size of the horizonN ¼ 20 e-folds
after the end of inflation to define the comoving length unit
lu ¼ e20H−1

end ¼ 1.51 × 10−20 m, where Hend ¼ m=
ffiffiffi
6

p
.

Since inflaton halos are expected to have OðgÞ masses
[15], we choose the mass unit as mu ¼ 10−3 kg. Taking
the gravitational constant in the new unit system as
G ¼ 1l3u=ðmut2uÞ, our time unit is

tu ¼
�

1

6.67 × 10−11
ðlu=mÞ3 kg=mu

�
1=2

s; ðB1Þ

i.e., tu ¼ 7.23 × 10−24 s. The Hubble parameter at the end
of the simulation is H20 ¼ e−30Hend ¼ 6.49t−1u . Using that
ρ20 ¼ 3H2

20=ð8πGÞ, the energy density at the end of the
simulation in physical units is ρ20 ¼ 5.02mu=l3u. We
normalize the final scale factor to unity such that the initial
scale factor corresponds to ainit=a20 ¼ e−6.

APPENDIX C: INITIAL CONDITIONS
FROM MUSIC

MUSIC requires a transfer function as input, which is
related to the power spectrum PðkÞ via

PðkÞ ¼ σ8knsT2ðkÞ; ðC1Þ

where ns ¼ 0.961 is the constant power spectrum
spectral index after inflation and σ8 is the normalization
of the power spectrum. In the standard cosmology it
is σ8 ¼ 0.811 but since we use another power spectrum
σ8 has to be computed from

σ28 ¼
1

2π2

Z
WðkÞ2k2PðkÞdk; ðC2Þ

where WðkÞ is a top-hat filter function in Fourier space:
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WðkÞ ¼ 3j1ðkR8Þ
kR8

: ðC3Þ

Here, R8 denotes a top-hat filter of radius R8 ¼ 8lu and j1 is
the first order spherical Bessel function

j1ðxÞ ¼
sinðxÞ − x cosðxÞ

x2
: ðC4Þ

Solving the integral in Eq. (C2) and including the growth
factor by adding a factor of ða20=ainitÞ2 ¼ ðe6Þ2 in the
integral in Eq. (C2) gives σ8 ¼ 1.71.
To verify the initial conditions setup we compare the

power spectrum that was inserted in MUSIC with the power
spectrum calculated from the initial density field in NYX;
these are shown in Fig. 2. The power spectra agree over a
wide range of k but for large k there are deviations from the
input power spectrum which are explained by two effects.
The first is the sharp cutoff that arises at different k for
different grid sizes, determined by the Nyquist frequency
kNy ¼ π × Ncell=L, where Ncell denotes the grid size and
L ¼ 50lu is the size of the simulation box. For Ncell ¼ 512,
kNy ≃ 32.2l−1u and for Ncell¼128, kNy ≃ 8.05l−1u . However,
there is also an artifact arising from an interpolation used in
NYX to compute the particle mass density. This process
requires roughly 3–4 cells and the deviations thus become
apparent at k ∼ kNy=3. For larger Ncell the deviation from
the input power spectrum kicks in at larger k, as seen
in Fig. 2.

APPENDIX D: SPATIAL RESOLUTION
OF N-BODY SIMULATIONS

We need sufficient spatial resolution to accurately
determine the halo mass function and the density profiles
of inflaton halos. Conversely, larger boxes are needed for
longer runs but increasing the box size in order to evolve
the simulation for a longer time (and to get more massive
inflaton halos) at a fixed grid size reduces the spatial
resolution.
For our choice of L ¼ 50lu with 5123 particles we

achieve a spatial resolution of Δx ¼ 9.8 × 10−2lu, ensuring
we can resolve the density profiles of the highest-mass
halos. However, the NFW profile is unresolved for most of
the inflaton halos in our volume; see Sec. IV D. As seen in
Fig. 3, the N-body HMF at N ¼ 19.6 exhibits a turnover
that is no longer fully resolved atN ¼ 20.0. Consequently,
we have saturated the limits on the spatial resolution for
these computations.

APPENDIX E: IDENTIFICATION OF SPURIOUS
HALOS FROM ARTIFICIAL FRAGMENTATION

To identify spurious halos and to remove them from the
halo catalog, we follow the procedure from Ref. [22]. In a
first step, we trace all the particles that are in a parent halo at

a certain N to their positions at the initial snapshot. This
collocation of particles is the so-called protohalo. As
suggested in Refs. [33,52,53], the appropriate way of
computing the ellipsis parameters of a (proto)halo is via
the shape tensor S. Since all of the N-body particles in our
simulation have the same mass, the shape tensor is

Sij ¼
1

N

X
k

xk;ixk;j; ðE1Þ

where xk;i denotes the ith component of the position of the
kth particle relative to the center of mass of the protohalo.
The sorted eigenvalues (λa, λb, λc) of S are related to the
ellipsis parameters (c ≤ b ≤ a) of the protohalo via a2=3,
b2=3 and c2=3, and the sphericity of the protohalo is
defined as s ¼ c=a ¼ ðλc=λaÞ1=2.
We show the distribution of the sphericity s of all

protohalos corresponding to the identified halos at
N ¼ 20 in the L ¼ 50lu simulation in Fig. 7. Based on
the strong increase of protohalos with s < 0.13 we decided
to set a cutoff scut ¼ 0.13 below which protohalos are to
be marked as spurious. The corresponding halos are
removed from the halo catalog. This procedure removes
most but not all of the artificial halos. In principle, one
should also filter out halos that do not have a counterpart in
simulations of the same initial conditions but with a
different spatial resolution. However, we only make the
sphericity cut since the N-body HMF is additionally
confirmed by the M3P results.

APPENDIX F: PRESS-SCHECHTER HMF
WITH SHARP-k CUTOFF

As noted in Sec. IVA, we employed a sharp-k filter to
calculate the PS-HMF—similar to the procedure used with
WDM. This is a top-hat window function with a radius R,
defined in Fourier space as

FIG. 7. Histogram of the sphericity s ¼ c=a of all protohalos
that belong to the identified halos N ¼ 20 e-folds after the end
of inflation. The dashed vertical black line marks the sphericity
cut scut ¼ 0.13.
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WkðkRÞ ¼ Θð1 − kRÞ: ðF1Þ

This is in contrast to a top-hat window function in real
space, with a filter scale RT given by

WTðkRTÞ ¼
3j1ðkRTÞ

kRT
ðF2Þ

in Fourier space, and j1 is the first order spherical Bessel
function from Eq. (C4). Because of its sharp boundaries
in real space, it is straightforward to define a mass
MT ¼ 4πρ̄RT=3 to the filter scale RT .
However the sharp-k filter has contributions on all

scales in real space. This makes it difficult to assign a
mass to the filter scale and a free parameter ε is added to
the mass assignment in Eq. (13), chosen so that the PS-
HMF matches the numerical simulations. Similarly to
Refs. [24,39,54] ε ¼ 2.5 provides a good fit to the data
and does not vary with time.
The critical density δc in Eq. (11) must also be rescaled

since δc was originally derived from simulations of
spherical top-hat collapse. Following Ref. [39], we com-
pared the variance of density perturbations on a filter
scale R,

σ2ðRÞ ¼ 1

2π2

Z
k2PðkÞW2ðkRÞdk; ðF3Þ

using the window functions from Eqs. (F1) and (F2), see
Fig. 8. We found that σ2ðRÞ using the sharp-k window
function is larger by a factor of 1.44 for large R (high
masses). As discussed in Ref. [39], the critical density δc in
Eq. (11) has to be adjusted correspondingly.
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