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In the presence of a dilatonic coupling between an inflaton and a Uð1Þ gauge field, a persistent electric
field (i.e., an anisotropic inflation) is obtained as a solution of the classical field equations. We introduce
charged, massive, and conformally coupled fields into this model and study the pair production of charged
particles. The semiclassical approach allows us to evaluate the induced current due to the pair production on
the general dilatonic factor and electric field. Solving the field equations with the induced current, we find
that the electric field shows a damped oscillation, whose amplitude decays to zero regardless of the values
of the masses of charged fields. In other words, we derive a no-go theorem of anisotropic inflation by taking
into account the Schwinger mechanism.
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I. INTRODUCTION

In four dimensions, the electromagnetic field becomes
diluted during inflation as long as the kinetic term of the
gauge field is canonical. Introducing a dilatonic coupling
between the inflaton and the Uð1Þ gauge field, Watanabe
et al. showed that a persistent electric field can be obtained
as a solution of the classical field equations [1]. The
persistence of the electric field is equivalent to that of
the anisotropic expansion rate. This model thus describes
an anisotropic inflation at the classical level.
It should be recalled that the presence of a strong

electric field leads to the pair production of charged
particles [2]. This so-called Schwinger mechanism induces
the Uð1Þ current, which screens the electric field at least
in Minkowski space. We thus have a conjecture that
the induced current screens the electric field also in the
inflation model with the dilatonic coupling; i.e., the infla-
tionary expansion becomes isotropic via the Schwinger
mechanism.1

In the previous study [6], we evaluated the first-order
backreaction to the electric field and found that the electric
field starts to decay with the cosmic expansion. The
previous study indicates that the no-anisotropic hair con-
jecture is true. However, it can describe only the initial

behavior of the backreaction because the induced current
is evaluated on the classical dilatonic factor and elec-
tric field.
In order to prove the no-anisotropic hair conjecture, we

need to evaluate the whole time evolution of the back-
reaction. In this paper, we evaluate the induced current on
the general dilatonic factor and electric field by using the
semiclassical method proposed in [7]. The induced current
is expressed as a functional of the dilatonic factor and the
electric field. Solving the field equations with the induced
current, we can evaluate the backreaction on the whole time
range.2

The organization of this paper is as follows. In Sec. II, we
review that a persistent electric field is obtained as a
classical solution in the inflation model with the dilatonic
coupling. In Sec. III, with the help of the semiclassical
method, we study the pair production of charged particles
without specifying the time dependences of the dilatonic
factor and the electric field. Specifically, we derive a
general expression of the induced current as a functional
of them. In Sec. IV, we evaluate the backreaction to the
dilatonic factor and the electric field by solving the field
equations with the induced current. We conclude with a
discussion in Sec. V.

II. CLASSICAL SOLUTION

Here, we give a brief review of the anisotropic inflation
model proposed in [1]. The specific feature of this model is
that the inflaton φ is coupled to the Uð1Þ gauge field Aμ

through the following dilatonic factor:
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1The Schwinger mechanism can affect not only the electric
field but also the magnetic field. See, e.g., [3–5] for the effect on
the magnetic field.

2Such methods were developed to study the Schwinger
mechanism in Minkowski space. See, e.g., [8–14].
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Z ffiffiffiffiffiffi

−g
p
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�
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−
1
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f2ðφÞgμρgνσFμνFρσ

�
; ð1Þ

fðφÞ ¼ exp

�
2c
M2

pl

Z
dφ

V
∂φV

�
; ð2Þ

where c is a free parameter larger than unity, c > 1.
Imposing the slow-roll condition,

ϵV ≡M2
pl

2

�∂φV

V

�
2

≪ 1; ηV ≡M2
pl

∂2
φV

V
≪ 1; ð3Þ

the background spacetime is approximated by de Sitter
space,

ds2 ≃ −dt2 þ a2ðtÞdx2; aðtÞ ≃ eHt; ð4Þ

where t is the cosmic time and H is the Hubble parameter.
The variation of H and the anisotropic expansion rate is
suppressed by the slow-roll parameters.
We consider the homogeneous background gauge field

and adopt the temporal gauge:

A0 ¼ 0; Ai ¼ AðtÞδ1i : ð5Þ

The physical scale of the electric field (we simply call it the
electric field in this paper) is given by

E ¼ −fa−1 _A; ð6Þ

where_means the derivativewith respect to the cosmic time.
Solving the classical field equations under the slow-roll

condition3

3M2
plH

2 ≃ V; ð7Þ

3H _φþ ∂φV − f−1∂φf · E2 ≃ 0; ð8Þ

ða2fEÞ· ¼ 0; ð9Þ

we obtain

f ¼ a−2; E ¼ E0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðc − 1ÞϵV

p
c

MplH; ð10Þ

where (7) determines the scalar factor to be approximately
eHt. It should be noted that the electric field is persistent;
i.e., its variation is suppressed by the slow-roll parameters.
The persistent electric field gives the persistent aniso-

tropic expansion rate:

ds2 ¼ −dt2 þ a2ðtÞ½e−4σðtÞdx21
þ e2σðtÞdx22 þ e2σðtÞdx23�; ð11Þ

_σ ¼ E2
0

9M2
plH

¼ c − 1

3c2
ϵVH: ð12Þ

Note that _σ=H is suppressed by the slow-roll parameter.
This is why we can evaluate the anisotropic expansion rate
as a linear response from the electric field in the isotropic
inflation.
As reviewed above, the model (1)–(2) realizes the

anisotropic inflation by making the electric field persistent.
However, if charged particles are present, the anisotropic
inflation may become unstable due to their pair production.
In the subsequent sections, we discuss the instability of the
anisotropic inflation via the Schwinger mechanism.

III. INDUCED CURRENT DUE TO PAIR
PRODUCTION

As an example of test fields, we consider a charged,
massive, conformally coupled scalar field4:

Sϕ ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−gμνð∂μ þ ieAμÞϕ�ð∂ν − ieAνÞϕ

−
�
1

6
Rþm2

�
ϕ�ϕ

�
: ð13Þ

Inversely solving (6), the gauge field is expressed by the
dilatonic factor and the electric field,

AðtÞ ¼ −
Z

t
dt0af−1Eðt0Þ: ð14Þ

We often use abbreviations such as aðtÞf−1ðtÞEðtÞ →
af−1EðtÞ in this paper. The Schwinger mechanisms on
some fixed ðf; EÞ were already studied; e.g., [3,18,19]
studied the ðf; EÞ ¼ ð1; const:Þ case, and [6,20] studied the
ðf; EÞ ¼ ða−2; const:Þ case. In both cases, awas fixed to be
the de Sitter one. Here, we study the Schwinger mechanism
on general ðf; EÞ (and general a) to evaluate the whole time
evolution of the backreaction.
For convenience, we use the conformal time τ ¼R

t dt0a−1ðt0Þ and the conformal transformation:3In this paper, a persistent electric field is prepared completely
at the classical level. On the other hand, in [4,15,16], a persistent
electric field is prepared by considering the horizon crossing
mode of the gauge field which may experience the quantum-to-
classical transition. We thus study the Schwinger mechanism in
the situation different from [4,15,16].

4In this paper, we introduce charged test fields into the
inflation model (1)–(2). On the other hand, in [17], the Schwinger
mechanism is studied in the minimal setup where the inflaton
takes the role not only as the dilaton but also as the charged field.
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ϕ̃ðxÞ ¼ aðτÞϕðxÞ: ð15Þ

The scalar field can be expanded as follows:

ϕ̃ðxÞ ¼
Z

d3k
ð2πÞ3 ½akϕ̃kðτÞ þ b†−kϕ̃

�
kðτÞ�eik·x; ð16Þ

where the annihilation and the creation operators satisfy

½ak; a†k0 � ¼ ½bk; b†k0 � ¼ ð2πÞ3δð3Þðk − k0Þ; ð17Þ

and the other commutators are zero. The Klein-Gordon
equation is given by

�
d2

dτ2
þ ω2

kðτÞ
�
ϕ̃kðτÞ ¼ 0; ð18Þ

ω2
kðτÞ ¼ ½k1 − eAðτÞ�2 þ k2⊥ þm2a2ðτÞ; ð19Þ

where k ¼ ðk1; k2; k3Þ is the comoving momentum and
k2⊥ ¼ k22 þ k23.
For slowly varying ωkðτÞ, we can evaluate the pair

production based on the adiabatic mode function ϕ̄kðτÞ:

ϕ̃kðτÞ ¼ αkðτÞϕ̄kðτÞ þ βkðτÞϕ̄�
kðτÞ;

d
dτ

ϕ̃kðτÞ ¼ −iωkðτÞαkðτÞϕ̄kðτÞ
þ iωkðτÞβkðτÞϕ̄�

kðτÞ; ð20Þ

ϕ̄kðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p e−iΘkðτÞ;

ΘkðτÞ ¼
Z

τ
dτ0ωkðτ0Þ: ð21Þ

The Bogoliubov coefficients αkðτÞ and βkðτÞ satisfy
jαkðτÞj2 − jβkðτÞj2 ¼ 1 as a consequence of the commu-
tation relation.
The purpose in this section is to evaluate the Uð1Þ

current (density):

j̃μ ¼ −ie½hϕ̃�ð∂μ − ieAμÞϕ̃i − hϕ̃ð∂μ þ ieAμÞϕ̃�i�: ð22Þ

From (5), it is written as follows:

j̃0 ¼ 0; j̃i ¼ j̃ðτÞδ1i : ð23Þ

Substituting (20) into (22), the induced current due to the
pair production is given by

j̃ðτÞ ¼ j̃condðτÞ þ j̃polðτÞ; ð24Þ

j̃condðτÞ ¼ 2e
Z

d3k
ð2πÞ3

k1 − eAðτÞ
ωkðτÞ

jβkðτÞj2; ð25Þ

j̃polðτÞ ¼ 2e
Z

d3k
ð2πÞ3

k1 − eAðτÞ
ωkðτÞ

× Re½αkðτÞβ�kðτÞe−2iΘkðτÞ�: ð26Þ

Since jβkðτÞj2 and ½k1 − eAðτÞ�=ωkðτÞ mean the distribu-
tion function and the velocity of produced particles,
respectively,

nkðτÞ ¼ jβkðτÞj2; vkðτÞ ¼
k1 − eAðτÞ
ωkðτÞ

; ð27Þ

we can identify (25) with the conductive current. As
discussed later, (26) can be identified with the polarization
current.
First, we evaluate the conductive current (25). It should

be noted that the adiabatic approximation breaks down in
the vicinity of the turning point of the frequency in the
complex time plane

ωkðτ�Þ≡ 0; ð28Þ

because dωkðτÞ=dτ ≫ ω2
kðτÞ and d2ωkðτÞ=dτ2 ≫ ω3

kðτÞ
there. In other words, the pair production occurs on this
turning point. Specifically, the distribution function of
produced particles is given by

nk ¼ exp½4ImΘkðτ�Þ�: ð29Þ

See [7] for the derivation of this formula.
In (19), the ½k1 − eAðτÞ�2 term may be dominant com-

pared with the k2⊥ þm2a2ðτÞ term because it includes the
growing factor f−1ðτÞ. We thus treat the latter term as the
perturbation from the former term. For the turning point,
the ½k1 − eAðτÞ�2 term determines its real part, while the
k2⊥ þm2a2ðτÞ term determines its imaginary part:

τ� ¼ Re τ� − iϵ; ð30Þ

k1 − eAðRe τ�Þ ≃ 0; ð31Þ

ϵ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2a2ðRe τ�Þ

p
ea2f−1jEjðRe τ�Þ

; ð32Þ

where ϵ ¼ −Im τ� is taken positive for a convergence. We
thus evaluate ImΘkðτ�Þ around the turning point:

ωkðτ0Þ ≃ ½e2a4f−2jEj2ðRe τ�Þðτ0 − Re τ�Þ2
þ k2⊥ þm2a2ðRe τ�Þ�12; ð33Þ

ImΘkðτ�Þ ¼ −
π

4

k2⊥ þm2a2ðRe τ�Þ
ea2f−1jEjðRe τ�Þ

: ð34Þ

NO-GO THEOREM OF ANISOTROPIC INFLATION VIA … PHYS. REV. D 103, 063521 (2021)

063521-3



From (30)–(34), (29) is given by

nk ¼ exp

�
−π

k2⊥ þm2a2ðRe τ�Þ
ea2f−1jEjðRe τ�Þ

�
: ð35Þ

This distribution function does not include time depend-
ence because Re τ� is a function of k1. It should be noted
that the pair production occurs when τ exceeds Re τ�. We
thus define the distribution function by introducing the step
function5

nkðτÞ ¼ exp

�
−π

k2⊥ þm2a2ðRe τ�Þ
ea2f−1jEjðRe τ�Þ

�

× θðτ − Re τ�ÞθðRe τ� − τ0Þ; ð36Þ

where τ0 means the initial time.
Substituting (36) into (25), the conductive current is

given by

j̃condðτÞ ¼ 2e
Z

d3k
ð2πÞ3 vkðτÞnkðτÞ

¼ e3

4π3

Z
t

t0

dt0a3f−2jEj2ðt0ÞsgnðEðt0ÞÞ

× exp

�
−

πm2

ef−1jEjðt0Þ
�
: ð37Þ

In deriving (37), we approximated the velocity as
vkðτÞ ≃ sgnðEðRe τ�ÞÞ. We performed the Gaussian inte-
grals with respect to k2 and k3:

Z
dk2dk3 exp

�
−

πk2⊥
ea2f−1jEjðRe τ�Þ

�

¼ ea2f−1jEjðRe τ�Þ: ð38Þ

The k1 integral was translated into the time integral:

Z
dk1θðτ − Re τ�ÞθðRe τ� − τ0Þ

¼ e
Z

τ

τ0

dτ0a2f−1jEjðτ0Þ ¼ e
Z

t

t0

dt0af−1jEjðt0Þ: ð39Þ

As a consistency check, we show that (37) can reproduce
the previous results, including their numerical coefficients.
Substituting ðf; EÞ ¼ ð1; const:Þ into (37), we obtain the
result in [3]:

j̃condðτÞ ≃
e3

4π3
a3ðτÞ
3H

jEj2sgnðEÞ exp
�
−
πm2

ejEj
�
: ð40Þ

Substituting ðf; EÞ ¼ ða−2; const:Þ into (37), we obtain the
result in [6]:

j̃condðτÞ ≃
e3

4π3
a7ðτÞ
7H

jEj2sgnðEÞ exp
�
−

πm2

ea2ðτÞjEj
�
: ð41Þ

In both cases, a was set to be eHt. We skipped the initial
time dependences of these currents for simplicity.
Second, we evaluate the other current (26). From (18)

and (20), we can derive the following relation:

Re½αkðτÞβ�kðτÞe−2iΘkðτÞ� ¼ ωkðτÞ
d
dτ ωkðτÞ

d
dτ

nkðτÞ: ð42Þ

As well as in (30)–(32), we approximate the derivative of
the frequency as follows:

d
dτ

ωkðτÞ ≃
k1 − eAðτÞ
ωkðτÞ

· ea2f−1EðτÞ: ð43Þ

The current (26) is thus written as follows:

j̃polðτÞ ¼ 2e
Z

d3k
ð2πÞ3

ωkðτÞ
ea2f−1EðτÞ

d
dτ

nkðτÞ: ð44Þ

Since ωkðτÞ=½ea2f−1EðτÞ� means the distance of produced
particles

lkðτÞ ¼
ωkðτÞ

ea2f−1EðτÞ ; ð45Þ

we can identify (44) with the polarization current.
Substituting (36) into (44), the polarization current is

given by

j̃polðτÞ ¼ 2e
Z

d3k
ð2πÞ3 lkðτÞ

d
dτ

nkðτÞ

¼ e
5
2

8π3
a3f−

3
2jEj32ðτÞsgnðEðτÞÞ 2ffiffiffi

π
p Γ

�
3

2
;

πm2

ef−1jEjðτÞ
�
;

ð46Þ

where Γðs; zÞ is the incomplete gamma function. When
m2=½ef−1jEjðτÞ� ≪ 1, the last factor becomes unity:

2ffiffiffi
π

p Γ
�
3

2
;

πm2

ef−1jEjðτÞ
�
≃ 1: ð47Þ

When m2=½ef−1jEjðτÞ� ≫ 1, it behaves as the suppression
factor:

5The adoption of the step function corresponds to a kind of
Markov limit. See [13,14] for non-Markov effects in Minkowski
space and [15,16] for those in inflation.
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2ffiffiffi
π

p Γ
�
3

2
;

πm2

ef−1jEjðτÞ
�
≃

2ffiffiffi
π

p
�

πm2

ef−1jEjðτÞ
�1

2

× exp

�
−

πm2

ef−1jEjðτÞ
�
: ð48Þ

In deriving (46), the k1 integral was performed trivially:

Z
dk1δðτ − Re τ�Þ ¼ ea2f−1jEjðτÞ: ð49Þ

We performed the integrals with respect to k2 and k3:

Z
dk2dk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2a2ðτÞ

q
exp

�
−π

k2⊥ þm2a2ðτÞ
ea2f−1jEjðτÞ

�

¼ 1

2
e
3
2a3f−

3
2jEj32ðτÞ 2ffiffiffi

π
p Γ

�
3

2
;

πm2

ef−1jEjðτÞ
�
: ð50Þ

In the semiclassical description of produced particles, the
induced current is divided into the conductive current and
the polarization current. We expressed them as functionals
of the dilatonic factor and the electric field: (37) and (46). In
the next section, we construct the self-consistent equations
for the dilatonic factor and the electric field by using the
general expression of the induced current.
We mention the induced current of charged Dirac fields

before moving to the next section. A parallel study can be
done for Dirac fields because they are conformally coupled
to the background spacetime. The translation process from
conformally coupled scalar fields to Dirac fields is quite
simple; we have only to introduce the overall factor 2 into
(37) and (46), which comes from the spin sum. The same
factor was discussed in [4,10,14,18]. Therefore, we explic-
itly discuss only the contribution from conformally coupled
scalar fields.

IV. BACKREACTION TO THE DILATONIC
FACTOR AND ELECTRIC FIELD

Under the slow-roll condition, the field equations with
the induced current are given by

3M2
plH

2 ≃ V; ð51Þ

3H _φþ ∂φV − f−1∂φf · E2 ≃ 0; ð52Þ

ða2fEÞ· þ a−1j̃½f; E� ¼ 0; ð53Þ

where we substituted the general expression of the induced
current derived in the previous section:

j̃½f; E� ¼ e3

4π3

Z
t

t0

dt0a3f−2jEj2ðt0ÞsgnðEðt0ÞÞ

× exp
�
−

πm2

ef−1jEjðt0Þ
�

þ e
5
2

8π3
a3f−

3
2jEj32ðtÞsgnðEðtÞÞ

×
2ffiffiffi
π

p Γ
�
3

2
;

πm2

ef−1jEjðtÞ
�
; ð54Þ

where the nonlocal term is the conductive current and the
local term is the polarization current. In fact, we may
express (54) as j̃½a; f; E� because we do not specify the time
dependence of the scale factor in deriving it. Note that
under the slow-roll condition, (51) determines the scale
factor as aðtÞ ≃ eHt, independently of the other two
equations. Therefore, we abbreviate j̃½a; f; E� as j̃½f; E�.
From (2), the derivative of f is given by

∂φf ¼ 2cffiffiffiffiffiffiffiffi
2ϵV

p
Mpl

f: ð55Þ

Using (51) and (55), we rewrite (52) as follows:

_φþ
ffiffiffiffiffiffiffiffi
2ϵV

p
MplH ¼ 2c

3
ffiffiffiffiffiffiffiffi
2ϵV

p
MplH

E2: ð56Þ

Multiplying both sides by a4cf2 and using (55), we
furthermore rewrite it as follows:

ða4cf2Þ· ¼ 4c2

3ϵVM2
plH

a4cf2E2: ð57Þ

On the other hand, (53) can be integrated as follows:

a2fE ¼ a20f0E0 −
Z

t

t0

dt0a−1j̃ðt0Þ; ð58Þ

where a0, f0, and E0 are the initial values of the scale
factor, the dilatonic factor, and the electric field, respec-
tively. Substituting (58) into (57) and integrating it, we
obtain

a4cf2 ¼ 4c2

3ϵVM2
plH

Z
dta4ðc−1Þ

×

�
a20f0E0 −

Z
t

t0

dt0a−1j̃ðt0Þ
�
2

; ð59Þ

where the first integral is an indefinite integral.
Let us consider the classical limit where any charged

field is absent. The indefinite integral in (59) is evaluated as
follows:
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a4cf2 ¼ c2

3ðc − 1ÞϵVM2
plH

2
a4ðc−1Þa40f

2
0E

2
0; ð60Þ

where we neglected the integration constant term. This term
is subdominant compared with the a4ðc−1Þ term because
c > 1. From (60) and the classical limit of (58), we obtain

f ¼ a−2; E ¼ E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðc − 1ÞϵV

p
c

MplH; ð61Þ
where we normalized the initial values of the scale factor
and the dilatonic factor: a0 ¼ 1 (i.e., t0 ¼ 0), f0 ¼ 1.
We identified the initial value of the electric field by

considering the classical limit. Let us go back to the case
where a charged field is present. Using the explicit value of
E0 in (61), we can express (57) as follows:

ða4cf2Þ· ¼ 4ðc − 1ÞHa4cf2E2=E2
0: ð62Þ

Consequently, what we need to solve are the self-consistent
equations for the dilatonic factor and the electric field: (53)
with (54) and (62). For the scale factor, we may substitute

a ¼ eHt into these two equations under the slow-roll
condition.
We show the numerical solutions of (53) with (54) and

(62) in Figs. 1 and 2. As seen in figures, the decay of the
dilatonic factor f eventually becomes faster than a−2 due to
the backreaction. From (62), we can identify the eventual
behavior as f ∝ a−2c. Furthermore, these figures show that
the electric field E shows a damped oscillation, whose
amplitude decays to zero even though m2=ðeE0Þ ¼ 1. This
is a specific feature of the Schwinger mechanism in the
inflation model (1)–(2).
From the general expression of the induced current (54),

we can see that the suppression factor of the Schwinger
mechanism is given by

exp

�
−

πm2

ef−1jEj
�
: ð63Þ

FIG. 1. Taking the coupling and the free parameter in (2) as
e ¼ 0.1, c ¼ 1.5, the time evolutions of f and E were calculated.

From (61), E0=H2 is expressed as E0=H2 ¼
ffiffiffiffiffiffiffiffiffiffi
3ðc−1Þ

c

q
=

ffiffiffiffiffiffiffiffiffiffiffiffi
8π2As

p
,

where As is the scalar amplitude As ¼ H2=ð8π2ϵHM2
plÞ,

ϵH ≡ − _H=H2 ¼ ϵV=c. We determined it from the observed value
As ¼ 2 × 10−9.

FIG. 2. Taking the coupling as e ¼ 0.01, the time evolutions
of f and E were calculated. The other conditions were set to be
the same as Fig. 1. The coupling is 1=10 times smaller than that in
Fig. 1, while the plateau range (i.e., the classical range) is only a
few times longer than that in Fig. 1. This is because the dilatonic
factor enhances the coupling as ef−1. Compared with Fig. 1,
the mass difference becomes smaller during the coupling
enhancement.
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The growing f−1 makes the exponent diluted, and thus the
suppression factor does not work. The nonzero initial value
of the exponent can just delay the onset of the Schwinger
mechanism. This is why the Schwinger mechanism com-
pletely screens the electric field regardless of the values of
the masses of charged fields.
For comparison, we mention the Schwinger mechanism

in Minkowski space. In the flat limit where a ¼ 1 and
f ¼ 1, (53) with (54) reduces to

_Eþ jflat½E� ¼ 0; ð64Þ

jflat½E� ¼ e3

4π3

Z
t

t0

dt0jEj2ðt0ÞsgnðEðt0ÞÞ exp
�
−

πm2

ejEjðt0Þ
�

þ e
5
2

8π3
jEj32ðtÞsgnðEðtÞÞ 2ffiffiffi

π
p Γ

�
3

2
;
πm2

ejEjðtÞ
�
: ð65Þ

This self-consistent equation for the electric field is what
we need to solve. We show the numerical solutions in
Fig. 3. As seen in figure, E shows a damped oscilla-
tion whose amplitude approaches a finite value if the
masses of charged fields are finite. This is because the
suppression factor does not include the f dependence in
Minkowski space.

V. CONCLUSION

Employing the semiclassical method, we studied the pair
production of charged particles without specifying the time
dependences of the dilatonic factor and the electric field
(and the scale factor). Specifically, we derived the general
expression of the induced current (54) as a functional of
these backgrounds.

We thus obtained the self-consistent equations for these
backgrounds: (51)–(53) with (54). Solving them numeri-
cally, we evaluated the whole time evolutions of the
dilatonic factor and the electric field including the back-
reaction from the Schwinger mechanism.
We found that the decay of the dilatonic factor f

becomes faster than the classical one. From (62),
the eventual behavior of f is given by f ∝ a−2c.
Furthermore, we found that the electric field shows a
damped oscillation, whose amplitude decays to zero
regardless of the values of the masses of charged fields.
This is because in the presence of the dilatonic factor, the
suppression factor of the Schwinger mechanism is given
not by exp½−πm2=ðejEjÞ�, but by exp½−πm2=ðef−1jEjÞ�.
Since the growing f−1 makes the exponent diluted, the
suppression factor can just delay the onset of the Schwinger
mechanism. The Schwinger mechanism eventually cancels
out the electric field as well as in the massless case. We thus
conclude that as long as charged and conformally coupled
fields are present, the no-go theorem of anisotropic infla-
tion holds true regardless of the values of their masses.6

It should be noted that we considered conformally
coupled fields in this paper. The numerical solutions show
that the electric field eventually exceeds zero. If super-
curvature modes are present, their contribution becomes
dominant in the weak electric field region, and it cannot be
evaluated by the semiclassical method [3,19]. This is why
we imposed the conformally coupled condition. It is a
future subject to study the contribution from supercurva-
ture modes.
Finally, we mention that a two-form field also gives rise

to an anisotropic inflation at the classical level if it is
coupled to the inflaton through a dilatonic factor [22]. It is
an interesting question whether there exists a certain
microscopic mechanism, which screens the anisotropic
hair originating from the two-form field.
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FIG. 3. Taking the coupling as e ¼ 1, the time evolution of E
was calculated. The E0 dependence appears only in m2=ðeE0Þ
after rescaling the horizontal and the vertical axes.

6Here, we consider the case where the total duration of
inflation is sufficiently longer than the minimum value, about
60 e-folds. Looking at Figs. 1 and 2, it only has to be more than
several e-folds longer than the minimum value. In contrast, if it
was just about 60 e-folds as the Swampland conjectures suggest
[21], this model could leave an observable anisotropic hair.
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