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The standard theoretical description Θðn̂Þ of the observed cosmic microwave background (CMB)
temperature anisotropies is gauge dependent. It is, however, well known that the gauge mode is limited to
the monopole and that the higher angular multipoles Θl (l ≥ 1) are gauge invariant. Several attempts have
been made in the past to properly define the monopole fluctuation, but the resulting values of the monopole
power C0 are infinite due to the infrared divergences. The infrared divergences arise from the contribution
of the uniform gravitational potential to the monopole fluctuation, in violation of the equivalence principle.
Here we present the gauge-invariant theoretical description of the observed CMB temperature anisotropies
and compute the monopole power C0 ¼ 1.66 × 10−9 in a ΛCDM model. While the gauge dependence in
the standard calculations originates from the ambiguity in defining the hypersurface for the background
CMB temperature T̄ today, it is in fact well defined and one of the fundamental cosmological parameters.
We argue that once the cosmological parameters are chosen, the monopole fluctuation can be
unambiguously inferred from the angle average of the observed CMB temperature, making it a model-
dependent “observable.” Adopting simple approximations for the anisotropy formation, we derive a gauge-
invariant analytical expression for the observed CMB temperature anisotropies to study the CMB
monopole fluctuation and the cancellation of the uniform gravitational potential contributions on large
scales.
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I. INTRODUCTION

Two years after the discovery of the cosmic microwave
background (CMB) radiation by Penzias and Wilson in
1965 [1], Sachs and Wolfe published their pioneering work
[2] about the formation of the CMB temperature anisot-
ropies. Since then, the theoretical description of the CMB
anisotropies has been extensively studied in many works
(see, e.g., [3–8]). The first detection of the CMB anisotropies
by the Cosmic Background Explorer (COBE) satellite was
announced in 1992 [9], and a variety of experiments (ground,
balloon, and space based) have been carried out since then.
The polarization of the CMB was discovered in 2002 by the
Degree Angular Scale Interferometer telescope [10].
Launched in 2001, the Wilkinson Microwave Anisotropy
Probe satellite collected data for nine years, and the final data
were released in 2012 [11]. Its successor, the Planck satellite,
was launched in 2009, and the final data was released in a
series of papers in 2018 (see, e.g., [12]). Measurements on
small angular scales were provided by the Atacama
Cosmology Telescope [13] and the South Pole Telescope
[14]. In addition to observational data, accurate numerical
computations of the CMB temperature anisotropies are

provided by different versions of the Boltzmann codes
(e.g., CMBFAST [15], CAMB [16], CLASS [17]).
Given these recent developments, we revisit the standard

theoretical description of the CMB temperature anisotro-
pies, in particular, focusing on the monopole fluctuation.
Once the Universe expands and cools enough, the CMB
photons decouple from free electrons and propagate toward
the observer, so the theoretical description of the observed
CMB temperature naturally involves the physical quantities
at the decoupling point, along the photon path, and at the
observer position. At the linear order in perturbations, the
gravitational redshift, the Doppler effect, and the intrinsic
temperature fluctuation form the contributions to the CMB
temperature anisotropies at the decoupling position, while
the CMB temperature is further affected during the propa-
gation of the CMB photons through the inhomogeneous
Universe, known as the integrated Sachs-Wolfe effect [2].
At the observer position, the observer motion is the
dominant contribution to the CMB temperature anisotro-
pies, but there exist other relativistic contributions.
The standard theoretical description of the observed

CMB temperature anisotropies is the temperature fluc-
tuation at the observer position, and it is gauge dependent,
just like any perturbation quantities. However, since the
gauge transformation of the temperature fluctuation at the*sandra.baumgartner@uzh.ch
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observer position is isotropic, only the theoretical descrip-
tion of the CMB monopole anisotropy is affected, and the
theoretical descriptions of all the other higher-order angular
multipoles are gauge invariant. The gauge dependence of
the standard expression originates from the ambiguity in
defining the hypersurface for the background CMB temper-
ature today: being a function of time, the background
temperature in the standard background-perturbation split
of the observed photon temperature depends on the
coordinate system chosen to describe the time coordinate
of the observer. However, it was shown [18] that the
background CMB temperature today is in fact well defined
and there exists no further gauge ambiguity.
The gauge issues associated with the theoretical descrip-

tion of the CMB temperature anisotropies was extensively
discussed in the comprehensive work [19] by Zibin and
Scott. An analytical expression for the CMB temperature
anisotropies was derived, and the resulting monopole and
the dipole transfer functions were discussed in detail. It was
stated [19] that the choice of the observer hypersurface (or
the time coordinate of the observer) is not uniquely fixed by
any physical prescription and this ambiguity affects the
monopole of the CMB temperature anisotropy. By speci-
fying the observer hypersurface to be one of the uniform
energy density, their expression for the observed CMB
temperature anisotropy is gauge invariant, but the resulting
monopole power C0 is divergent. Other attempts have been
made in the past to derive a gauge-invariant expression,
though the focus was not on the monopole fluctuation (see,
e.g., [20]). All the predictions for the monopole power are
divergent as well.
In this work we derive a gauge-invariant analytical

expression for the observed CMB temperature anisotropies
Θ̂ðn̂Þ with particular emphasis on the CMB monopole
anisotropy and its gauge invariance. We find that the
resulting monopole power is devoid of any divergences,
as the uniform gravitational potential contributions to the
monopole fluctuation on large scales are canceled in
accordance with the equivalence principle. Our numerical
computation shows for the first time that the (finite)
monopole power is C0 ¼ 1.66 × 10−9 in a ΛCDM uni-
verse. We investigate the validity of our expression by
comparing to the Boltzmann codes and compare our results
to the previous work.
It is often said that the monopole fluctuation is not

directly observable, as it contributes to the angle average of
the observed CMB temperature together with the arbitrary
background temperature. We argue that the background
CMB temperature today in Eq. (7) is unambiguously
defined in a given model and its cosmological parameters,
and in fact it is one of the fundamental cosmological
parameters [18]. Once a choice of the cosmological
parameters is made, the monopole fluctuation can be
inferred from the angle-average of the observed CMB
temperature. Therefore, the CMB monopole fluctuation is

an observable in a sense similar to the case in galaxy
clustering, where the observed galaxy number density and
its power spectrum are observables, once a choice of
cosmological parameters is made.
The organization of this paper is as follows: in Sec. II A,

we investigate the coordinate dependence of the back-
ground photon temperature. Our main result, a gauge-
invariant analytical expression for the observed CMB
temperature anisotropies, is derived in Sec. II B. We clarify
some issues associated with both the sky average of the
observed photon temperature and the observability of the
monopole fluctuation in Sec. II C and decompose our
analytical expression for the temperature anisotropies in
terms of observed angle in Sec. II D. We focus on the
monopole and the dipole in Secs. III A and III B, respec-
tively, and numerically compute their power. Their large-
scale limits are investigated in more detail in Sec. III C. We
compare our result to previous work in Sec. III D and
conclude with a discussion in Sec. IV.

II. OBSERVED CMB TEMPERATURE

Here we present our theoretical description of the
observed CMB temperature. In Sec. II A we discuss the
coordinate dependence of the background CMB temper-
ature and the issues associated with it. A gauge-invariant
expression for the observed CMB temperature anisotropy is
then derived in Sec. II B. We discuss the sky average of the
observed temperature and clarify some ambiguities con-
cerning the observability of the monopole fluctuation in
Sec. II C and derive an expression for the multipole
coefficients of the observed CMB temperature anisotropy
in Sec. II D.

A. Background CMB temperature T̄

In perturbation analysis, it is convenient to split any
quantities into a background and a perturbation. For CMB
photons in a thermal equilibrium, the CMB temperature T
at a given spacetime position xμ can be split as

TðxμÞ ¼ T̄ðηÞ½1þ ΘðxμÞ�; ð1Þ

where η is the conformal time coordinate. The background
temperature T̄ðηÞ represents the photon temperature in a
homogeneous Universe, and the remaining part defines the
perturbation or the (dimensionless) temperature fluctuation
Θ ≔ TðxμÞ=T̄ðηoÞ − 1. The homogeneity and isotropy in
the background Universe renders the background temper-
ature T̄ðηÞ only a function of time and independent of
spatial position. This implies that the value of the back-
ground CMB temperature T̄ðηÞ at a given spacetime
position depends on our choice of coordinate system, or
the time coordinate η for the given position xμ. In particular,
the background temperature T̄ðηoÞ for the observer today
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will depend on the time coordinate ηo of the observer,
where the subscript o indicates the observer position.
Given the diffeomorphism symmetry in general relativity,

we can choose any coordinate system to describe physics,
and we consider a general coordinate transformation

xμ ↦ x̃μ ¼ xμ þ ξμ; ξμ ≔ ðξ; L;αÞ; ð2Þ

where α; β; � � � represent the spatial indices, while μ; ν; � � �
represent the spacetime indices. Under the coordinate trans-
formation, the observer position today is then described by
two different coordinates xμo ≔ ðηo; xαoÞ and x̃μo ≔ ðη̃o; x̃αoÞ
with the relation

η̃o ¼ ηo þ ξo; x̃αo ¼ xαo þ L;α
o : ð3Þ

It is now apparent that the background CMB temperature
T̄ðηoÞ at the observer position in two different coordinate
systems is different by

T̄ðη̃oÞ ¼ T̄ðηoÞ þ T̄ 0ðηoÞξo; ð4Þ

where the prime denotes the derivative with respect to the
conformal time and we expanded to the linear order in
perturbations. After recombination, the CMB photons free
stream, and the observer at xμo todaymeasures the black-body
temperature Tðn̂Þ of the CMB photons along the observed
direction n̂. The fact that the observed CMB temperature
Tðn̂Þ ¼ T̄ðηoÞð1þ ΘÞ arriving at the observer position xμo
should be independent of our coordinate choice provides the
consistency relation for the temperature fluctuation Θ under
the coordinate transformation:

Θ̃ðx̃μoÞ ¼ ΘðxμoÞ þHoξo; ð5Þ

and it is indeed consistent with the gauge transformation
property of Θ at a given coordinate xμ, where H is the
conformal Hubble parameter, T̄ ∝ 1=a, and we suppressed
the dependence of the temperature fluctuation on the
observed direction n̂.
While the observed CMB temperature Tðn̂Þ along the

direction n̂ is independent of coordinate system, both the
background T̄ðηoÞ and the perturbation Θ separately
depend on our choice of coordinate system. We remove
this coordinate dependence of the background temperature
T̄ðηoÞ by introducing a fixed reference time η̄o (or t̄o),
independent of our coordinate choice:

η̄o ≔
Z

∞

0

dz
HðzÞ ; t̄o ≔

Z
∞

0

dz
HðzÞð1þ zÞ ; ð6Þ

where HðzÞ ¼ ð1þ zÞH is the Hubble parameter. The
coordinate-independent reference time t̄o is known as the
age of the (homogeneous) Universe, and η̄o is the con-
formal time, corresponding to the proper time t̄o. Note that

the exact value of our reference η̄o (or its theoretical
prediction) depends on our choice of cosmological param-
eters, but it is independent of our choice of coordinate
system to describe the observed Universe. Furthermore, it
was noted [18,21] that the background CMB temperature
T̄ðη̄oÞ, not T̄ðηoÞ, is really the CMB temperature today in a
homogeneous Universe, corresponding to the cosmological
parameter ωγ, or the radiation density parameter. For later
convenience we define

T̄ ≔ T̄ðη̄oÞ: ð7Þ

Having defined the reference time η̄o in Eq. (6), we
express the observer position in terms of η̄o to take
advantage of its coordinate independence as

ηo ≔ η̄o þ δηo; ð8Þ

where the coordinate (time) lapse δηo represents the
difference of the time coordinate ηo of the observer in a
given coordinate system, compared to the reference time
η̄o. Mind that Eq. (8) is not the usual background-
perturbation split as in Eq. (1), rather it is a way to describe
the observer time coordinate ηo in terms of a coordinate-
independent reference η̄o. Under the coordinate transfor-
mation in Eq. (2), we can derive

δηo ↦ eδηo ¼ δηo þ ξo; ð9Þ

based on the coordinate independence of η̄o in Eq. (6). A
similar relation can be derived for the spatial coordinate
shift with respect to the reference position [22], but for our
purposes of the linear-order analysis only the coordinate
lapse δηo will be used.
Using the reference time η̄o, the background temperature

T̄ðηoÞ at the observer position today is expressed as

T̄ðηoÞ ¼ T̄ðη̄oÞð1 −HoδηoÞ; ð10Þ

and hence the observed CMB temperature along n̂ is now

Tðn̂Þ ¼ T̄ðη̄oÞð1 −Hoδηo þ ΘoÞ; ð11Þ

where Θo ≔ ΘðxμoÞ is the temperature fluctuation at the
observer position. The coordinate independence of Tðn̂Þ
can be readily verified by using the gauge transformation
properties in Eqs. (5) and (9), and the combination

Θ̂ðn̂Þ ≔ Θoðn̂Þ −Hoδηo; ð12Þ

is the linear-order gauge-invariant expression for the
observed CMB temperature anisotropies. The coordinate
lapse δηo is independent of the observed direction n̂, as it is
associated with the observer motion, rather than observa-
tions of CMB photons. Note, however, that we have not
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specified the observer and the gauge-invariant expression in
Eq. (12) is general.
The coordinate lapse δηo of the observer can be derived

simply by integrating the observer four velocity over
the observer path [23]. In a homogeneous Universe,
all the observers are stationary, and the four velocity is
ūμ ¼ ð1; 0⃗Þ=a, where a is the scale factor. The integration
of the time component of the observer four velocity yields
η̄o in Eq. (6). Due to the inhomogeneity in the Universe, the
observer four velocity uμ ¼ ð1 − α; UαÞ=a deviates from
the stationary motion in a homogeneous Universe, intro-
ducing the coordinate lapse δηo, where Uα is the peculiar
velocity and α is the metric perturbation in the time
component (see Appendix A for our notation convention).
At the linear order in perturbations, the coordinate lapse is
derived in [23] as

δηo ¼ −
1

ao

Z
t̄o

0

dt α; ð13Þ

where the integral is in fact along the motion of the observer
but equivalent to the integral along the time coordinate at
the linear order. This expression indeed satisfies the trans-
formation relation in Eq. (9).
Ignoring the vector perturbation, the spatial part of the

observer four-velocity can be expressed in terms of a scalar
velocity potential v, i.e., uα≕− av;α. If we assume that the
observer follows the geodesic motion 0 ¼ uνuμ;ν, Eq. (13)
for the coordinate lapse can be solved to yield

δηo ¼ −vo; ð14Þ

where the semicolon represents the covariant derivative
with respect to gμν. As discussed, the coordinate lapse δηo
in Eq. (13) is generic for all observers at the linear order,
and Eq. (14) is also generic for all observers on a geodesic
motion. However, it depends on spatial position and the
geodesic path.

B. Gauge-invariant expression for the observed CMB
temperature anisotropies

Equation (12) is the gauge-invariant description of the
observed CMB temperature anisotropies given the gauge-
dependent expression of the CMB temperature fluctuation
Θ at the observer position, which can be obtained by
evolving the Einstein-Boltzmann equation. Instead, we
derive a simple analytic expression for the CMB temper-
ature anisotropies Θ̂ðn̂Þ in Eq. (12). Here we assume that
(1) the baryon-photon fluid is tightly coupled until the
recombination, (2) the recombination takes place instanta-
neously as soon as the temperature of the baryon-photon
fluid reaches T� set by atomic physics, (3) the baryon-
photon fluid simultaneously decouples, and (4) no further
interaction occurs for the free-streaming photons. This
approximation has been adopted in literature to gain

intuitive understanding of CMB physics (see, e.g.,
[2,5,6,19]).
As the Universe expands, the temperature of the baryon-

photon fluid cools down, and it becomes T� at some
spacetime position denoted as xμ�, at which the CMB
photons decouple from the baryons. The equilibrium
temperature T� is again split into a background T̄ and a
perturbation Θ as

T� ≔ Tðxμ�Þ ¼ T̄ðη�Þ½1þ Θ��; ð15Þ

where Θ� ≔ Θðxμ�Þ is the temperature fluctuation at xμ�.
Under the tight coupling approximation, the baryon-photon
fluid is fully described by the density and the velocity and is
devoid of any higher-order moments in the photon dis-
tribution such as the anisotropic pressure. Note that while
T� is, under our approximation, a unique number set by
atomic physics, the individual components T̄ðη�Þ and Θ�
depend on our choice of coordinates xμ� to parametrize the
physical spacetime position at which the baryon-photon
fluid decouples.
Once the CMB photons decouple, they free stream and

the observer measures the CMB temperature Tðn̂Þ in the
rest frame along the observed direction n̂. With information
that the observed CMB photons originate from the initial
temperature T�, the observed CMB temperature Tðn̂Þ can
be used to define the observed redshift zobs of the position
xμ�, at which the photons started to free stream toward the
observer:

1þ zobsðn̂Þ ≔
T�
Tðn̂Þ : ð16Þ

The CMB photons follow the Planck distribution, and
Wien’s displacement law states that the wavelength at the
peak of the distribution is inversely proportional to the
temperature. The advantage in expressing Tðn̂Þ in terms of
zobsðn̂Þ is that we can utilize the well-known expression for
the observed redshift zobs and understand how the observed
CMB temperature Tðn̂Þ is affected throughout the photon
propagation, instead of solving the complicated Boltzmann
equation. Note that no quantities in Eq. (16) depend on our
coordinate choice. In fact, this approach to describing the
observed CMB temperature anisotropies was first devel-
oped in [2], but the modern approach in literature focuses
on the Boltzmann equation as it simplifies the calculations
of the angular multipoles.
The observed redshift is also split into a background and

a perturbation as

1þ zobsðn̂Þ ≔ ð1þ z�Þð1þ δz�Þ; ð17Þ

where the background redshift z� of the position xμ� is
literally the expression of the time coordinate η�:
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1þ z� ¼
aðη̄oÞ
aðη�Þ

¼ T̄ðη�Þ
T̄ðη̄oÞ

: ð18Þ

It is convention to set aðη̄oÞ≡ 1, while it is noted that the
scale factor at the observer position is

aðηoÞ ¼ aðη̄oÞ þ a0ðη̄oÞδηo ≠ 1: ð19Þ

Consequently, the time coordinate z� of the decoupling
position differs in two different coordinates in Eq. (2) as

1þ z̃� ¼ ð1þ z�Þð1 −H�ξ�Þ: ð20Þ

The perturbation δz� in the observed redshift can be
derived by solving the geodesic equation (see, e.g., [24]) as

δz�ðn̂Þ ¼ −H�χ� þ ðHδηþHχÞo − ½vχ;αnα þ αχ ��o
−
Z

r̄�

0

dr̄ðαχ − φχÞ0; ð21Þ

where nα is the α component of the unit directional vector n̂
and r̄ is the line-of-sight distance. The script � indicates that
the quantities are evaluated at the decoupling point with xμ�.
αχ and φχ are the two gauge-invariant potentials corre-
sponding to the Bardeen variablesΦA andΦH in [25], and χ
is the scalar shear of the normal observer. The velocity
potential v is combined with the scalar shear χ to form the
gauge-invariant variable vχ (see Appendix A). The term
αχ j�o (the Sachs-Wolfe effect [2]) accounts for the gravita-
tional redshift induced by the difference in the gravitational
potential at departure xμ� and arrival x

μ
o, and the integral term

is the integrated Sachs-Wolfe effect that takes into account
the variation in time of the scalar metric perturbations αχ
and φχ . The individual terms in Eq. (21) are expressed in
terms of gauge-invariant variables (such as αχ) and the
gauge-invariant combination ðHδηþHχÞo, except the first
term H�χ�. Therefore, the perturbation δz� is gauge
dependent and transforms as

eδz� ¼ δz� þH�ξ�: ð22Þ

Note, however, that together with Eq. (20), the combination
for the observed redshift in Eq. (17) remains unchanged, as
the coordinate transformation in Eq. (2) describes the same
physical spacetime point of the baryon-photon decoupling
in two different coordinates and the physical observables
should be independent of our coordinate choice.
Using Eqs. (15)–(18) and noting T̄ ≔ T̄ðη̄oÞ, the

observed CMB temperature can be written as

Tðn̂Þ ¼ T̄½1þ Θ̂ðn̂Þ�; ð23Þ
and we arrive at one of our main results, or the gauge-
invariant expression for the CMB temperature anisotropies
Θ̂ðn̂Þ at the linear order in perturbation:

Θ̂ðn̂Þ ≔ Θoðn̂Þ −Hoδηo ¼ Θ� − δz�ðn̂Þ: ð24Þ

The first equation states that the observed CMB temperature
anisotropies are not described by the gauge-dependent Θo,
but the gauge-invariant Θ̂, which includes the correction
Hoδηo due to the observer position. The second equation
provides a physical description for the observed CMB
temperature anisotropies. Owing to the fluid approximation,
the temperature fluctuationΘ� at decoupling is isotropic and
does not depend on the observed direction n̂. However, it is
evaluated at the point of decoupling xμ�, which is a function
of the observed direction.

C. Sky average of the observed CMB temperature and
the observed monopole fluctuation

The observed CMB temperature Tðn̂Þ can be averaged
over the sky to yield the mean temperature:

hTiΩ ≔
Z

d2n̂
4π

Tðn̂Þ ¼ T̄½1þ Θ̂0�; ð25Þ

where Θ̂0 is the angle-averaged anisotropy (or monopole
fluctuation)

Θ̂0 ≔
Z

d2n̂
4π

Θ̂ðn̂Þ; ð26Þ

and it should not be confused with the gauge-dependent
temperature fluctuation Θoðn̂Þ at the observer position
(mind the difference in the two subscripts 0 and o). In
comparison, the ensemble average of the observed CMB
temperature is

hTðn̂Þi ¼ T̄; hΘ̂ðn̂Þi ¼ 0: ð27Þ

We want to emphasize that T̄, not hTiΩ [or a coordinate-
dependent T̄ðηoÞ], is the CMB temperature today in a
homogeneous Universe, corresponding to a cosmological
parameter, while hTiΩ is the observed CMB temperature
today upon angle average.
Equations (25) and (27) make it clear that the observed

mean temperature hTiΩ, for instance, from the COBE Far
Infrared Absolute Spectrometer (FIRAS) [26] differs from
the background CMB temperature T̄, or the ensemble
average, as it includes the monopole fluctuation Θ̂0 at
our position. It was pointed out [18,27] that the ensemble
average is equivalent to the Euclidean average, including
not only the angle average over the sky but also the spatial
average over different observer positions. Consequently,
the mean temperature hTiΩ today (or the angle average)
depends on the spatial position of the observation due to the
monopole fluctuation, and its value alone cannot determine
the cosmological parameter ωγ (or T̄). This implies that if
one takes hTiΩ as the “ensemble average,” there is no
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observed monopole fluctuation by construction. In practice,
given the rms fluctuation amplitude ∼10−5 of the monopole
computed in Sec. III A, the difference between hTiΩ and T̄
is negligible.
In addition, Eq. (25) makes it clear that once the

cosmological parameter ωγ (or T̄) is chosen, the observed
mean temperature hTiΩ directly translates into the
“observed” monopole fluctuation Θ̂0. Although model
dependent, the monopole fluctuation can be inferred once
a cosmological model is chosen. The resulting value is
model dependent, but independent of our choice of
coordinate system. On the other hand, the observed photon
temperature can be split according to Eq. (1) into the two
gauge-dependent quantities T̄ðηoÞ and ΘðxμoÞ, and the
angle-averaged CMB temperature takes the form

hTiΩ ≔
Z

d2n̂
4π

Tðn̂Þ ¼ T̄ðηoÞ½1þ Θ0ðxμoÞ�; ð28Þ

where Θ0ðxμoÞ is the angle average (or monopole) of the
temperature fluctuation ΘðxμoÞ at the observer position. The
background temperature T̄ðηoÞ is ambiguous as it depends on
the time coordinate of the observer and therefore on the
coordinate system chosen. Accordingly, Θ0ðxμoÞ is ambigu-
ous as well. This ambiguity in the background-perturbation
split is the reason why the monopole fluctuation is often
referred to be unobservable. However, the CMB temperature
today in a homogeneous Universe is correctly described by
T̄ðη̄oÞ and there is no ambiguity in its definition in a given
model and its cosmological parameters.
Any measurements of cosmological observables in

practice involve measurement uncertainties, and hence
the cosmological parameters in a given model have
uncertainties in their best-fit values, which result in
uncertainties in the theoretical predictions. However, this
aspect is rather independent from the goal of this work.
These uncertainties in the predictions for the cosmological
observables are solely due to the uncertainties in our
estimates of the cosmological parameters, not due to the
ambiguities in the theoretical predictions. The primary goal
in this current investigation is to have a unique prediction
for the monopole power C0, given a model and its assumed
cosmological parameters.

D. Multipole expansion

The observed CMB temperature anisotropy Θ̂ðn̂Þ is
traditionally decomposed in terms of spherical harmonics
Ylmðn̂Þ as

Θ̂ðn̂Þ ¼
X
lm

âlmYlmðn̂Þ; ð29Þ

and the multipole coefficients are

âlm ¼
Z

d2n̂Y�
lmðn̂ÞΘ̂ðn̂Þ: ð30Þ

Defining the standard multipole coefficients alm (without
hat) in the same way for the gauge-dependent temperature
fluctuation Θoðn̂Þ at the observer position, we derive the
relation between the two different multipole coefficients

âlm ¼ alm −
ffiffiffiffiffiffi
4π

p
Hoδηoδl0δm0: ð31Þ

With no angular dependence for δηo, the difference resides
only at the monopole with l ¼ 0, reaffirming that all the
multipole coefficients alm derived in literature are gauge
invariant for l ≥ 1. The gauge dependence of the (standard)
monopole a00 is well known and also evident in Eq. (5).
However, we emphasize that the correct monopole coef-
ficient â00 is indeed gauge invariant and well defined.
While the difference is limited to the monopole coef-

ficient in theory, all the multipole coefficients are indeed
affected in reality, though the impact is rather negligible in
practice due to the small rms fluctuation amplitude of the
monopole. The standard Boltzmann codes such as CAMB

[16] and CLASS [17] provide the multipole coefficients alm
and their angular power spectra Cl ≔ hjalmj2i with l ≥ 2,
and the comparison to observations determines the best-fit
cosmological parameters. However, in the standard data
analysis of CMB measurements, the background CMB
temperature is set equal to the observed mean temperature
T̄ ≡ hTiΩ by hand, and this formally incorrect procedure
results in two problems [18]: (1) the background dynamics
in our model predictions differs from the background
evolution in our Universe, unless the monopole Θ̂0 at
our position happens to be zero by accident. (2) By using
the observed mean hTiΩ as the background temperature T̄,
the angular multipole coefficients obtained from the obser-
vations correspond to

âobslm ¼ âlm
1þ Θ̂0

: ð32Þ

While these two issues are shown [18] to have negligible
impact on our current cosmological parameter analysis due
to the small rms fluctuation of the monopole, these
systematic errors in the standard data analysis are always
present, which may become a significant component in the
systematic errors in future surveys (see, e.g., [28] for recent
discussion).
Combining Eqs. (21) and (24), we expressed the

observed CMB temperature anisotropies as

Θ̂¼Θχ�þ½vχ ;αnαþαχ ��oþHovχoþ
Z

r̄�

0

dr̄ðαχ−φχÞ0; ð33Þ

where the temperature fluctuation Θ� at decoupling in
Eq. (24) is combined with the gauge-dependent term H�χ�
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in Eq. (21) to form a gauge-invariant temperature fluc-
tuation Θχ in the conformal Newtonian gauge

Θχ ≔ ΘþHχ; ð34Þ

and we assumed that the observer motion is geodesic in
Eq. (14) to form a gauge-invariant variable for the scalar
velocity potential vχ at the observer position. Note that the
decoupling position xμ� is a function of the observed
direction n̂. To derive the expressions for the multipole
coefficients âlm, we first define the transfer functions
Tðη; kÞ for the gauge-invariant variables in Eq. (33) in
terms of the primordial fluctuation ζðkÞ set at the initial
condition. For instance, the transfer function for αχ is then

αχðη;kÞ≕ Tαχ ðη; kÞζðkÞ; ð35Þ

providing the relation of αχðη;kÞ in Fourier space at any
conformal time η to the initial condition ζðkÞ of the
comoving gauge curvature ζ ≔ φ −Hv, where the initial
power spectrum is set as Δ2

ζ ≔ k3Pζ=2π2 ¼ Asðk=k∘Þns−1
in terms of the primordial fluctuation amplitude As at pivot
scale k∘ and the spectral index ns (see, e.g., [12]). It is well
known that on large scales k → 0 the comoving gauge
curvature is conserved in time, and the gauge-invariant
variable is then related as

αχðηmdeÞ ¼ −
3

5
ζ; ð36Þ

where we suppressed the scale dependence and considered
the conformal time in the matter-dominated era (mde). This
implies that the transfer function has the limit

lim
k→0

Tαχ ðηmde; kÞ ¼ −
3

5
: ð37Þ

Using the plane-wave expansion

eik·x ¼ 4π
X
l;m

iljlðkrÞYlmðk̂ÞY�
lmðx̂Þ; ð38Þ

the multipole coefficients âlm of the CMB temperature
anisotropies can be derived according to Eq. (30) as

âlm ¼ 4πil
Z

dkk2

2π2

�
ðTΘχ

þ Tαχ Þ�jlðkr̄�Þ

þ kTvχ�j
0
lðkr̄�Þ − ðTαχ −HTvχ Þoδl0 −

k
3
Tvχoδl1

þ
Z

r̄�

0

dr̄ðT 0
αχ − T 0

φχ
Þjlðkr̄Þ

�Z
dΩk

4π
Y�
lmðk̂ÞζðkÞ;

ð39Þ
where jlðxÞ are the spherical Bessel functions, δll0 is the
Kronecker delta, and we suppressed the k dependence of

the transfer functions, while the time dependence is
indicated in terms of subscripts. In the matter dominated
Universe, the gravitational potential is constant, and the
integrated Sachs-Wolfe contribution vanishes. So, the
dominant contributions to the CMB temperature anisotro-
pies today at higher angular multipoles (l ≥ 2) are the
temperature fluctuation with the gravitational potential
contribution at the source plus the Doppler effect (see,
e.g., [5,6,29])

âlm ∝ ðTΘχ
þ Tαχ Þ�jlðkr̄�Þ þ kTvχ�j

0
lðkr̄�Þ: ð40Þ

III. MONOPOLE AND DIPOLE OF THE CMB
TEMPERATURE ANISOTROPIES

The multipole coefficients âlm in observations can be
summed over m to yield an estimate of the angular power
spectrum Cl. Its theoretical prediction can be obtained by
taking the ensemble average of the multipole coefficients as

Cl ¼ hjâlmj2i ¼ 4π

Z
d ln kΔ2

ζðkÞjT lðkÞj2; ð41Þ

where the stochasticity in ζðkÞ is averaged out to yield the
power spectrum by using

hζðk1Þζðk2Þi ¼
ð2πÞ3
k21

Pζðk1ÞδDðk1 − k2ÞδDðΩk1 − Ωk2Þ;

ð42Þ

and the various effects in the curly bracket in Eq. (39) are
lumped into the transfer function T lðkÞ for the angular
power spectrum

T lðkÞ≔ ðTΘχ
þ Tαχ Þ�jlðkr̄�Þ þ kTvχ�j

0
lðkr̄�Þ−

k
3
Tvχoδl1

− ðTαχ −HTvχ Þoδl0 þ
Z

r̄�

0

dr̄ðT 0
αχ − T 0

φχ
Þjlðkr̄Þ:

ð43Þ

Since the primordial power spectrum Δ2
ζ is nearly scale

invariant, the shape of the transfer function T lðkÞ contains
all the information about the angular power spectrum Cl.
Our main focus in this section is on the monopole and the
dipole transfer functions, which can be readily obtained
from Eq. (43) with l ¼ 0 and l ¼ 1.
Our analytical expression describes the simple situation in

which the CMB photons in thermal equilibrium with T� are
emitted at the decoupling point xμ� and these photons are
measured by the observer at xμo. Though both the temperature
and the radiation energy density are observer-dependent
quantities, the dependence arises at the second order from the
Lorentz boost, and no further specification of the source and
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the observer frames is necessary. However, the observed
redshift zobs and its perturbation δz are affected by themotion
of the source and the observer via the linear-order Doppler
effect. At the decoupling point xμ�, the source is described as
the baryon-photon fluid, so thevelocity atxμ� is thevelocity of
the baryon-photon fluid. For the observermotion, we assume
that the observer ismoving togetherwithmatter (baryons and
dark matter), vo ≡ vmðηo; kÞ. It is important to note that the
velocity terms in Eq. (21) are those specifying the rest frames
at the emission (or decoupling) and the observation of the
photons; they do not have to be the velocity potential of the
same fluid at both emission and observer points.
In Secs. III A and III B we present our numerical

computation of the monopole transfer function T 0ðkÞ
and the dipole transfer function T 1ðkÞ. Section III C takes
a closer look at the large-scale limit of the two transfer
functions T 0ðkÞ and T 1ðkÞ. We then compare our results to
previous work on T 0ðkÞ and T 1ðkÞ in Sec. III D. We
choose the conformal Newtonian gauge (χ ≡ 0) for the
numerical calculations of our gauge-invariant expression
in Eq. (43).
To calculate the transfer functions of the individual scalar

perturbation variables, we use the Cosmic Linear Anisotropy
Solving System (CLASS) [17] and the Code for Anisotropies
in theMicrowave Background (CAMB) [16]. We find that the
difference between twoBoltzmann code solvers is negligible
in our calculations.Herewe adopt theΛCDMmodelwith the
cosmological parameters consistent with the Planck 2018
results [12]: dimensionless Hubble parameter h ¼ 0.6732,
the baryon density parameter Ωbh2 ¼ 0.02299, the (cold)
dark matter density parameter Ωcdmh2 ¼ 0.12011, the reio-
nization optical depth τ ¼ 0.0543, the scalar spectral index
ns ¼ 0.96605, and the primordial amplitude lnð1010AsÞ ¼
3.0448 at k∘ ¼ 0.05 Mpc−1.

A. Monopole

The transfer function of the monopole in the conformal
Newtonian gauge is

T 0ðkÞ ¼ ½TΘðη�; kÞ þ Tψ ðη�; kÞ�j0ðkr̄�Þ
þ kTvγ ðη�; kÞj00ðkr̄�Þ − Tψ ðηo; kÞ þHoTvmðηo; kÞ

þ
Z

r̄�

0

dr̄½T 0
ψðη; kÞ − T 0

ϕðη; kÞ�j0ðkr̄Þ; ð44Þ

where ψ ≔ α and ϕ ≔ φ in the conformal Newtonian
gauge. Though ψ ≈ −ϕ already at the decoupling, we
use the exact transfer functions for ψ and ϕ to compute
the monopole transfer function T 0ðkÞ. The monopole
fluctuation is composed of the photon temperature
fluctuation Θ�, the gravitational redshift ψ�, and the
baryon-photon velocity vγ� at the decoupling point, the
gravitational redshift ψo and the observer velocity potential
vm at the observer position, and finally the integrated
Sachs-Wolfe effect (ISW). Note that the velocity potential

vm at the observer position arises from the coordinate lapse
δηo in Eq. (14), while the Doppler effect by the observer
velocity is absent in the monopole transfer function. For
later convenience, we refer to those contributions at the
decoupling xμ� as the source terms, while those at the
observer position as the observer terms. Although they are
not individually observables, the decomposition into the
individual components helps understand the monopole
transfer function intuitively.
Figure 1 describes the monopole transfer function T 0ðkÞ

and its individual contributions. To facilitate the compari-
son, we plot the absolute values of the individual transfer
functions. The ISW effect (dot-dashed) and the contribu-
tions at the decoupling (source terms; dotted) are the
dominant contribution to the monopole transfer function
on large scales, while the contributions at the observer
position (observer terms; dashed) are dominant on small
scales, as the source terms are suppressed due to the
spherical Bessel function. The source terms oscillate
rapidly largely due to the baryon-photon velocity vγ, and
because of the Silk damping [30] the baryon-photon
fluctuations decay fast on small scales. On large scales,
all three contributions (source terms, observer terms, and
ISW) are constant, and these individual contributions on
superhorizon scales (k ≪ H0 ¼ 3.3 × 10−4h Mpc−1) result
in infrared divergences for the monopole power in Eq. (41),
respectively. However, as evident in Fig. 1, the sum of all
the individual contributions to T 0 (solid) falls as k2 on large
scales due to the cancellation of the individually diverging
contributions, and the monopole power C0 is finite and

FIG. 1. Monopole transfer function T 0 and individual contri-
butions as a function of the wave number k. The analytic
expression (44) derived in this paper is represented by the black
solid line, while the contributions from terms evaluated at
decoupling (denoted as source terms) and at the observer position
are indicated by the dotted and the dashed line, respectively. The
dot-dashed line corresponds to the ISW contribution. The thick
gray line shows the transfer function from the Boltzmann codes
serving as a reference for our analytical expression.
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devoid of any divergences. To put it differently, the
theoretical prediction for the observed CMB temperature
today upon angle average in Eq. (25) is finite and
independent of the fluctuations on very large scales beyond
our horizon (see also [19]).
To better understand the subtle cancellation on large

scales, we show the individual contributions of the source
terms and the observer terms in Fig. 2 in linear scale as a
function of dimensionless argument kr� in the Bessel
function, where the distance to the decoupling is r� ¼
13.87 Gpc (or 9.34 h−1 Gpc) at z� ¼ 1088 with our fidu-
cial cosmological parameters, so that the x range in Fig. 2 is
approximately equivalent to the range of the wave number
in Fig. 1. The upper panel shows the contributions at the
decoupling or the source terms that are the photon temper-
ature fluctuation Θ (dot-dashed), the gravitational redshift
ψ (solid) and the Doppler effect vγ (dotted). Since these
quantities contribute to the observed monopole fluctuation
via photon propagation from the decoupling point toward
the observer position, all three terms are multiplied by the
spherical Bessel function j0ðxÞ (gray solid) or its derivative
j00ðxÞ, and hence are suppressed by 1=x (or 1=x2 for the
Doppler term) on small scales (x ≫ 10). On large scales
(j0 ≃ 1), the first two contributions Θ and ψ are dominant
and in fact constant in k but with opposite signs, giving rise
to cancellation between the two contributions. The Doppler
effect vγ is again negligible on large scales, as it is a
gradient (∝ k) and j00 ≃ 0.
The bottom panel shows the contributions at the observer

position or the observer terms that are made of the

gravitational redshift ψ (dashed) and the coordinate lapse
Hvm (solid). Since the observer terms are without the
spherical Bessel function, their contributions are relatively
larger than the source terms on small scales, though the
transfer functions still decay on small scales. The two
contributions on large scales are also constant but with
opposite signs. Their amplitude is almost identical, result-
ing in near cancellation, so the contribution of the observer
terms is smaller than the source terms on large scales,
apparent in Fig. 1. These two contributions (the source and
the observer terms) add up to nearly cancel the positive
contribution from the line-of-sight integration or the ISW
term. Mind that while the gravitational potentials (ψ and ϕ)
decay in time, the line-of-sight direction increases backward
in time to yield the positive contribution of the ISW term.
To check the validity of our analytical expression, we

plot the monopole transfer function T code
0 ðkÞ (gray solid) in

Fig. 1 from the Boltzmann codes CLASS and CAMB.
Numerical computation in these Boltzmann codes is
performed in the synchronous gauge, where α ¼ β ¼ 0.
Using the residual gauge freedom in the synchronous gauge
(see, e.g., [23]), an extra gauge condition is imposed in the
Boltzmann codes, in which vm ¼ 0. So, the resulting gauge
condition is indeed (dark-matter) comoving-synchronous
gauge. The observed CMB temperature anisotropies in this
gauge condition are then

Θ̂ðn̂Þ ¼ Θsync
o ðn̂Þ; ð45Þ

from Eq. (24), where the coordinate lapse is vanishing with
vm ¼ 0. Therefore, we can use the transfer function for the
photon temperature fluctuation today from the Boltzmann
codes for the monopole transfer function (gray solid) in
Fig. 1:

T code
0 ðkÞ ¼ T sync

Θ ðηo; kÞ ð46Þ

(see Appendix B for more details). Note that the transfer
function T sync

Θ in the Boltzmann codes (hence T code
0 ) is

obtained by numerically solving the full Boltzmann equa-
tion to the present day without any approximations we
adopted for our analytical calculations, while our monopole
transfer function T 0 (solid curve) is obtained by using the
analytic expression in Eq. (44).
Figure 1 shows an astonishing agreement for the

monopole transfer function (solid and gray curves) on
all scales, which strongly supports that our approximations
for the analytical expression capture the essential physics of
the CMB anisotropy formation, at least for the monopole.
Our approximations neglect collisions against free elec-
trons after the recombination and assume a sharp transition
from tight coupling to complete decoupling, none of which
matters on large scales. Though we do expect the break-
down of our approximations on small scales, the monopole
transfer function on small scales is dominated by the

FIG. 2. Individual contributions to the monopole and dipole
transfer functions as a function of dimensionless argument kr�,
where r� is the comoving distance to the last scattering surface.
The range of the x axis is approximately the same as in Figs. 1
and 3. The top panel shows terms evaluated at decoupling (i.e.,
source terms), in addition to the two spherical Bessel functions
j0ðxÞ and j1ðxÞ. The bottom panel shows terms evaluated at the
observer position. Note that the dotted curve shows kvm=30
instead of kvm=3, with another factor of 10 to fit in the plot.
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contribution at the observer position, independent of the
validity of our approximations.
Using the monopole transfer function, we numerically

compute the monopole power in Eq. (41)

C0 ¼ hjâ00j2i ¼ 1.66 × 10−9; ð47Þ

and the rms fluctuation of the angle-averaged anisotropy is

ffiffiffiffiffiffiffiffiffiffi
hΘ̂2

0i
q

¼
ffiffiffiffiffiffi
C0

4π

r
¼ 1.15 × 10−5: ð48Þ

We emphasize that this is the first time to correctly compute
these values (see Sec. III D). It turns out that the rms
fluctuation in our ΛCDM model is very small, and in
particular a lot smaller than the measurement uncertainty in
the COBE FIRAS observation [26,31],

hTiΩ ¼ 2.7255� 5.7 × 10−4 K: ð49Þ

This explains why the systematic errors in the standard
cosmological parameter estimation are in practice negli-
gible despite the formally incorrect assumption of setting
T̄ ≡ hTiΩ (see [18]).
We want to emphasize again that the monopole fluc-

tuation Θ̂0 is directly “observable” once a choice of
cosmological parameters is made, as the latter uniquely
fixes the value of the background temperature T̄. The
monopole fluctuation can then be inferred from the
observed mean temperature hTiΩ via Eq. (25), although
the resulting value is of course model dependent. This is
discussed in more detail in Sec. II C.
In the past analytical calculations have been performed

in particular with the choice of the conformal Newtonian
gauge. However, the gauge invariance of the expression
was not verified, and the coordinate lapse δηo at the
observer position is neglected. To be fair, the focus of
previous analytic calculation (see, e.g., [5,6]) is on the
higher angular multipoles rather than the monopole and the
dipole. Apparent from Figs. 1 and 2, the monopole transfer
function would be constant in k on large scales, if δηo is
neglected, and the resulting monopole power C0 would be
infinite. Comparison to previous work will be presented in
Sec. III D.
Figure 2 also shows the velocity potential vm (gray

dotted) of the dark matter at the decoupling point. On large
scales, it is identical to the photon velocity vγ (and hence
the baryon velocity vb ¼ vγ), but it deviates significantly
on small scales, as dark matter decoupled in the early
Universe and evolved separately from the baryon-photon
plasma. However, the impact of using vm instead of vγ on
the monopole transfer function T 0ðkÞ is negligible.

B. Dipole

The transfer function of the dipole in the conformal
Newtonian gauge is

T 1ðkÞ ¼ ½TΘðη�; kÞ þ Tψðη�; kÞ�j1ðkr̄�Þ

þ kTvγ ðη�; kÞj01ðkr̄�Þ −
k
3
Tvmðηo; kÞ

þ
Z

r̄�

0

dr̄½T 0
ψðη; kÞ − T 0

ϕðη; kÞ�j1ðkr̄Þ: ð50Þ

Similar to the monopole, the dipole transfer function has
the same contributions of the source terms (the photon
temperature fluctuation Θ�, the gravitational redshift ψ�,
and the baryon-photon velocity vγ�) and the integrated
Sachs-Wolfe effect. These contributions are already shown
in Fig. 2, but they are multiplied with the spherical Bessel
function for the dipole (l ¼ 1: gray dashed). The key
difference compared to the monopole transfer function
arises from the observer terms. The observer velocity vm
contributes to the dipole via the Doppler effect, whereas the
gravitational redshift ψo and the coordinate lapse δηo drop
out in the dipole transfer function.
Figure 3 plots the dipole transfer function T 1ðkÞ and its

individual contributions. The observer velocity (dashed) is
the dominant contribution on all scales, and this contribution
(−kvm=3) is positive as shown in Fig. 2 (but note that the
dotted curve is kvm=30 instead of kvm=3with another factor
ten to fit in the plot). On large scales k < 10−3h−1 Mpc, the
source terms (dotted) and the integrated Sachs-Wolfe term
(dot-dashed) become comparable to the observer velocity
contribution (dashed), and these contributions cancel each
other to yield the dipole transfer function (solid) in proportion
to k3. As evident in Fig. 2, the individual transfer functions
such as TΘ, Tψ , and so on become constant on large scales,

FIG. 3. Dipole transfer function T 1 and individual contribu-
tions as a function of the wave number k, in the same format as
in Fig. 1.
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and hence they all fall as k due to the spherical Bessel
function j1ðxÞ (or due to the extra k factor for Tvγ and Tvm).
Upon cancellation of these contributions on large scales, the
dipole transfer function picks up extra k2 (as in themonopole
transfer function) to scale with k3.
Again to check the validity of our analytical expression

of the dipole transfer function, we plot the dipole transfer
function T code

1 ðkÞ (gray solid) from the Boltzmann codes.
The numerical computation in the Boltzmann codes is
performed in the (dark-matter) comoving-synchronous
gauge, where the matter velocity is zero (vm ¼ 0). Since
the dipole is the spatial energy flux of the CMB photon
distribution measured by the observer, the dipole transfer
function is literally the relative velocity between the
observer and the CMB photon fluid (see Appendix B; this
point was also emphasized in [19]). Therefore, in the
comoving-synchronous gauge, the dipole transfer function
can be obtained as

T code
1 ðkÞ ¼ k

3
T sync
vγ ðηo; kÞ: ð51Þ

As in the case of the monopole transfer function, our
analytical expression provides an accurate description of
the dipole transfer function, in particular on large scales,
where the cancellation of the individual contributions takes
place. The dipole transfer function is again dominated by
the contribution at the observer position on small scales,
where our approximation is expected to be less accurate.
Using the dipole transfer function, we numerically

compute the dipole power in Eq. (41)

C1 ¼
1

3

X
m

hjâ1mj2i ¼ 4.51 × 10−6; ð52Þ

and the rms fluctuation of the relative velocity

σ2vr ¼ hv⃗r · v⃗ri ¼
Z

d ln kΔ2
ζðkÞjkTvrðηo; kÞj2;

¼ 9C1

4π
¼ ð540 km=sÞ2: ð53Þ

The Planck measurement [32] of the CMB dipole
anisotropy yields that our rest frame is moving 369.82�
0.11 km=s with respect to the CMB rest frame, which is
consistent with our theoretical expectation of the one-
dimensional rms relative velocity σvr=

ffiffiffi
3

p ¼ 311 km=s.
Note that our scalar velocity potential vγ is related to the
variable θγ in the convention of [33] through θγ ¼ k2vγ.
It should be emphasized that the dipole is a measure of

the relative velocity, not the absolute velocity. The velocity
potential v gauge transforms as ṽ ¼ v − ξ, in the same way
for all species, such that the relative velocity is gauge
invariant. In relativity, the absolute velocity has no physical
meaning and only the relative velocity at the same

spacetime position has physical significance. At different
positions, not only the observer velocity but also the photon
velocity vary from those at our position, invalidating the
notion that the CMB rest frame provides an absolute frame
for all observers in the Universe.

C. Large-scale limit of the monopole and the dipole
transfer functions

Having presented our numerical calculations of the
monopole and the dipole transfer functions in Eqs. (44)
and (50), here we investigate their large-scale behavior
analytically by taking the limit k → 0. For a small argument
x ¼ kr� ≪ 1, the spherical Bessel function can be approxi-
mated as

jlðxÞ ¼
2ll!

ð2lþ 1Þ! x
l þOðxlþ2Þ; ð54Þ

and for the monopole and the dipole, they become

j0ðxÞ ≃ 1þOðx2Þ; j1ðxÞ ≃
1

3
xþOðx3Þ: ð55Þ

In the limit k → 0, the monopole transfer function in
Eq. (44) is approximated as

T 0ðkÞ ≃ TΘðη�; kÞ þ Tψ ðη�; kÞ − Tψðηo; kÞ

þHoTvmðηo; kÞ þ
Z

r̄�

0

dr̄½T 0
ψðη; kÞ − T 0

ϕðη; kÞ�;

ð56Þ

where the baryon-photon velocity vγ� term is dropped due
to its k factor and the spherical Bessel function j00ðxÞ.
Figure 2 shows all these contributions are constant in k on
large scales. In this large-scale limit, the integrated Sachs-
Wolfe term can be analytically integrated by part to yield

T 0ðkÞ≃ TΘðη�; kÞ þ Tϕðη�; kÞ þHoTvmðηo; kÞ− Tϕðηo; kÞ;
ð57Þ

where dr̄ is the line-of-sight integration (d=dr̄ ¼ ∂r − ∂η)
and the two gravitational redshift terms ψ are canceled. The
conservation equation of the photon energy-density takes
the form

_Θþ _ϕ ¼ 0; ð58Þ

on large scales (see, e.g., [33]), yielding

Θðη�Þ þ ϕðη�Þ ¼ ΘðηoÞ þ ϕðηoÞ ¼ C; ð59Þ

where C is a constant and we suppressed the scale
dependence as these quantities are taken in the limit
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k → 0. This further simplifies the monopole transfer
function as

T 0ðkÞ ≃ TΘðηo; kÞ þHoTvmðηo; kÞ: ð60Þ

Combining the time-time and the time-space compo-
nents of the Einstein equation, we derive the relation
between the velocity potential and the matter density on
large scales:

vm ¼ −
δρm

3aHρ̄m
¼ δρm

a _̄ρm
; ð61Þ

where we used the background conservation equation for
the matter density. Further assuming the adiabaticity for
each species at k ¼ 0

δρm
_̄ρm

¼ δργ
_̄ργ

; ð62Þ

the two contributions to the monopole transfer function
T 0ðkÞ cancel in the large-scale limit. The next-leading
order contribution (∝ k) could come from the same terms in
Eq. (56), as the next-leading order in j0ðxÞ is proportional
to k2. Each term in Eq. (56) can be expanded as a power
series in k, and the subsequent derivations are exactly the
same for terms in proportion to k, since the conservation
Eq. (58) is valid up to k2. While we chose the observer
moving together with matter for computing δηo, the
coordinate lapse δηo is in fact independent of this choice,
as discussed in Sec. II A.
The absence of contributions that are independent of

scales or in proportion to k is the consequence of the
equivalence principle, which states the equality of the
gravitational and the inertial mass. Consequently, a local
observer cannot tell the existence of a uniform gravitational
force, as the reference frame and the apparatus of the local
observer are affected altogether in the same way. For our
calculations, a uniform gravitational potential corresponds to
the constant contributions in individual transfer functions
such as Tψ , while a uniform gravitational acceleration
corresponds to the contributions in proportion to k (or the
gradient of the potential contributions). Itwas shown [34–37]
that the theoretical descriptions of the luminosity distance
and galaxy clustering are devoid of such contributions.
Applying the equivalence principle to the CMB monop-

ole transfer function T 0ðkÞ, we find that the gravitational
potential fluctuations or the gravitational accelerations of
wavelength larger than r̄� act as uniform fields and they
have no impact on our local physical observables such as
the observed CMB temperature (or the monopole fluc-
tuation). This argument is borne out by the cancellation of
individually diverging contributions to the monopole power
at low k in our numerical and analytical calculations of the
monopole transfer function T 0ðkÞ. Keep in mind that if any

of the potential contributions such as the coordinate lapse
δηo at the observer position is ignored, the cancellation of
each contribution at low k would not take place, and the
monopole transfer function T 0ðkÞ is nonvanishing even in
the limit k → 0, leading to an infinite monopole power C0

(hence the observed CMB temperature) or the monopole
power highly sensitive to the lower cutoff scale in the
integral of Eq. (41). This would work against the equiv-
alence principle, as the superhorizon scale fluctuations
dictate our local observables or put it differently we can
infer the existence of such superhorizon scale fluctuations
based on our local observables.
In the limit k → 0, the dipole transfer function in Eq. (50)

is approximated as

T 1ðkÞ ≃ ½TΘðη�; kÞ þ Tψ ðη�; kÞ�
kr̄�
3

þ k
3
Tvγ ðη�; kÞ

−
k
3
Tvmðηo; kÞ þ

Z
r̄�

0

dr̄½T 0
ψ ðη; kÞ − T 0

ϕðη; kÞ�
kr̄
3
:

ð63Þ

Given that the individual transfer functions are constant at
low k, it is apparent that the dipole transfer function goes at
least as k. Using the conservation equation (58), we first
replace the term ϕ0 with Θ0 in the integrated Sachs-Wolfe
term, and by performing the integration by part, the dipole
transfer function can be expressed as

3

k
T 1ðkÞ ≃ Tvγ ðη�; kÞ − Tvmðηo; kÞ

þ
Z

r̄�

0

dr̄½Tψðη; kÞ þ TΘðη; kÞ�: ð64Þ

Similarly to the monopole, we make use of the conservation
equation for the photon energy momentum on large scales

_vγ ¼
1

a
ψ þ 1

aðρ̄γ þ p̄γÞ
δpγ ¼

1

a
ðψ þ ΘÞ; ð65Þ

and integrate along the line of sight to obtain

Tvγ ðη�Þ − Tvγ ðηoÞ ¼ −
Z

r̄�

0

dr̄ðTψ þ TΘÞ; ð66Þ

where we suppressed the scale dependence. Using the
adiabaticity condition in Eq. (62) and the velocity potential
for matter in Eq. (61), we find that the dipole transfer
function vanishes on large scales. Again, the large-scale
limit of the conservation equation is valid up to k2, and the
leading term in the dipole transfer function comes in
proportion to k3.
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D. Comparison to previous work

1. Zibin and Scott 2008

In the comprehensive work by Zibin and Scott [19], an
analytic expression of the observed CMB temperature
anisotropies was derived with close attention to the gauge
issues associated with the monopole and the dipole transfer
functions. Despite the apparent difference in their approach
and the notation convention, the theoretical description in
their work is based on the same assumptions adopted in this
work—CMB photons decouple abruptly from the local
plasma at the temperature TE (E: emission) in the rest frame
of the baryon-photon plasma with four-velocity uμE, and
they freely propagate to the observer, moving together with
matter, where the photons are received with temperature TR
(R: reception) along the observed direction nα.
Compared to our expression in Eq. (33), the key differ-

ence lies in the observer position today. Here we briefly
compare how the difference arises in the work [19]. The
main calculation is to derive the exact description of the
temperature ratio in their Eq. (24) and its linearized
equation (29):

Z
E

R
dtHnN ¼

Z
t̄E

t̄R

dtHnN þ ðH̄δtDÞER; ð67Þ

where Hn is the derivative of the photon frequency along
the line-of-sight, N is the time lapse in the Arnowitt-Deser-
Misner (ADM) formalism [38], and δtD describes the
deviation of the exact positions at emission and reception
from the background coordinate t̄. The left-hand side is
essentially the line-of-sight integration but replaced with
the coordinate integration to yield the frequency ratio of
photons emitted at the position E and received at the
position R. Since the computation of the line-of-sight
integration is performed for an ADM normal observer
with uμADM, they perform Lorentz boosts δtB both at the
emission and the reception to match the physical frames of
the baryon-photon plasma and the observer, of which the
four-velocity is then uμ ¼ uμADM þ δtB;μ. This yields their
main equation (35) for the observed CMB temperature
anisotropies:

δTðnμÞ
T̄R

¼
Z

t̄E

t̄R

dtδðHnNÞ þ ðH̄δtD þ nμδtB;μÞER; ð68Þ

where the background temperature at reception is
defined as

T̄R ≔ TE exp

�Z
t̄E

t̄R

dtH̄

�
; ð69Þ

and their photon propagation direction nμ in a coordinate is
the opposite of our observed direction nα in addition to the
overall scale factor a:

nμ ¼ −
1

a
ð0; nαÞ þOð1Þ: ð70Þ

This formula describes the observed anisotropies Θ̂ðn̂Þ,
corresponding to our Eq. (24), and the derivation above is
equivalent to our Eq. (16) for the observed redshift with T�
replaced by TE. In more detail, the line-of-sight integration
was computed in the conformal Newtonian gauge in their
Eq. (41) as

Z
t̄E

t̄R

dtδðHnNÞ →
Z

r̄�

0

dr̄ðψ − ϕÞ0 þ ψ
����
o
; ð71Þ

where we used our notation convention in the right-hand
side. The boost parameters δtB are set to transform an ADM
normal observer to an observer without any spatial energy
flux in their Eq. (43):

δtB ¼ −
Hψ − _ϕ

4πGðρþ pÞ : ð72Þ

Using the Einstein equation, we derive that the boost
parameter is indeed

δtB → −avN; ð73Þ

corresponding to an observer velocity, moving together
with the total matter component, where the subscript N
denotes that the quantity is computed in the conformal
Newtonian gauge in addition to the two gravitational
potentials ψ and ϕ. Since the radiation energy density is
already smaller at the decoupling, this velocity at emission
would correspond to the matter component. Note that
the velocity at emission in our formula is the one for the
baryon-photon fluid, regardless of the validity of the
approximation in the analytical expression, as the rest
frame of the photon emission is specified by the baryon-
photon plasma. However, we showed in Fig. 2 that since the
matter velocity is the same as the baryon-photon velocity
on large scales, this difference has no impact on the
monopole transfer function. At reception, this boost
parameter gives the matter velocity, as in our formula.
Now we come to the temporal displacement terms δtD.

Compared to our Eq. (24) for Θ̂ðn̂Þ, the absence of the
temperature fluctuation Θ� at decoupling is apparent in
Eq. (68), as their equations are derived specifically for the
hypersurface in which the photon density is uniform, i.e.,
Θ� ≡ 0. This corresponds to a gauge choice, set by δtD at
emission. The time coordinate of the emission point is t̄E,
corresponding to our η�, and the CMB photon temperature
has no fluctuation, i.e.,

TE≕ T̄ðtEÞ ¼ T̄ðt̄EÞð1 −HδtDÞ: ð74Þ

By identifying to Eq. (15), we find that the temporal
displacement δtD at emission plays a role of restoring the
broken gauge symmetry:
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−HδtD → Θ�: ð75Þ

Indeed, the temporal displacement terms δtD were
computed at both positions by gauge transforming to the
uniform energy density gauge in their Eq. (42)

δtD ¼ −
δρN
_̄ρ

¼ −
3HðHψ − _ϕÞ þ Δ

a2 ϕ

12πGHðρþ pÞ ; ð76Þ

where the matter or the photon density fluctuations are
also vanishing with the adiabaticity assumption. Using the
Einstein equation, we find that the temporal displace-
ments are

δtD →
δN
3H

; ð77Þ

where δN ≔ δ − χð _̄ρ=ρ̄Þ is the gauge-invariant expression
for the density fluctuation in the conformal Newtonian
gauge. While this transformation δtD correctly captures the
emission point in Eq. (75), the observer position today is
not at the hypersurface of the uniform energy density or the
matter density. In fact, it was argued [19] that δtD at
reception is not uniquely fixed by any physical prescription,
the choice of δtD at reception only affects the monopole,
and they chose it to be the gauge transformation to the
uniform energy density gauge as above.
We argued in Sec. II A that the observer position is

uniquely fixed, once we assume that the observer is moving
together with the matter, as its trajectory in time determines
the current position in Eqs. (8) and (13). In fact, the
coordinate lapse δηo in Eq. (13) is generic for all observers
at the linear order. By further assuming that the observer
motion is geodesic, the expression for the observer posi-
tion, or the coordinate (time) lapse is simplified as δηo ¼
−vo in Eq. (14). The temporal displacement δtD at
reception in [19] is then expressed as

δtD → δηo −
Δϕ

12πGa2Hðρþ pÞ
����
o
¼ δηo þ

δv
3Ho

; ð78Þ

where δv ≔ δN − avNð _̄ρ=ρ̄Þ is the gauge-invariant expres-
sion for the matter density in the comoving gauge (or the
usual matter density from the Boltzmann codes) and we
used the Einstein equation in the last equality.
One subtlety in [19] is that the “background” observed

temperature T̄R in Eq. (69) or their Eq. (34) needs further
clarification. In order to set T̄R equal to our coordinate-
independent background CMB temperature T̄ ≔ T̄ðη̄oÞ, the
explicit definition of t̄R and t̄E in a coordinate-independent
way would be needed. Upon setting T̄R → T̄, we derive the
relation of the observed CMB temperature anisotropies in
[19] in Eq. (68) to our expression as

Θ̂ZS ¼ Θ̂here −
1

3
δv: ð79Þ

We emphasize again that the difference arises due to the
observer position today and it only affects the monopole
transfer function. Figure 4 compares the monopole transfer
function in this work (solid) and in [19] (dashed). Given
that the matter density fluctuation in the comoving gauge
δv ∝ k2ϕ, the monopole transfer function is expected to
behave as T ZS

0 ðkÞ ∝ k2 on large scales. However, the
adiabatic condition in the comoving gauge imposes

Θ ¼ 1

4
δγ ¼

1

3
δm; ð80Þ

leading to another cancellation on large scales, and the
resulting behavior is T ZS

0 ðkÞ ∝ k4 and the monopole power
CZS
0 is devoid of infrared divergences. Note that the

coordinate lapse vanishes in the comoving gauge and
our gauge-invariant expression Θ̂ coincides with Θ in
the comoving gauge. However, as the density fluctuation
δv becomes dominant on small scales, the monopole
transfer function T ZS

0 ðkÞ ∝ δvðkÞ (dashed) increases with
≃k0.15, leading to the UV divergence in the monopole
power C0. It was concluded in [19] that “this divergence
makes it impossible to quantify the total power C0.” The
dipole and other multipoles are the same as derived in this
work. Note that the transfer function in [19] is defined with
an extra factor five: T ZS

l ¼ 5T here
l .

FIG. 4. Comparison of the analytic expression of the monopole
transfer function derived in this paper (solid) and the one derived
in [19] (dashed), the one without the observer terms (dotted), and
the one without the coordinate lapse (dot-dashed). All the
monopole transfer functions except T here

0 lead to an infinite
monopole power.
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2. Case A: Without the observer terms

There exist few work that focus on the gauge invariance
of the full observed CMB temperature anisotropies, rather
than the expressions for the higher angular multipoles. In
Hwang and Noh [20] the gauge invariance of the observed
CMB temperature anisotropies was investigated, though
the main focus is not the monopole anisotropy. Starting
with the same assumption that the observed CMB temper-
ature anisotropies at one direction originate from the
photons emitted at a single point, they derive the expression
for the observed CMB temperature anisotropies in their
Eq. (14):

Tðn̂Þ
T̄ðηoÞ

− 1 ¼ ðΘþHχÞ� þ ðvχ ;αnα þ αχÞ� − ðvχ ;αnαÞo

−Hoχo − αχo þ
Z

r̄�

0

dr̄ðαχ − φχÞ0; ð81Þ

where we used our notation convention to express the right-
hand side of the equation. They noted that the first two
terms at the source is the gauge-invariant combination
ðΘþHχÞ� → Θχ�. More importantly, they identified the
gauge dependence of the expression for the observed CMB
temperature anisotropies due to the term Hoχo. Since it is
independent of the angular direction (also the term αχo),
they argued that it will be absorbed into the background
CMB temperature or the angle average hTiΩ in Eq. (25). So
they arrived at the gauge-invariant expression for the
observed CMB temperature anisotropies in their Eq. (15),

Θ̂A¼Θχ�þðvχ ;αnαþαχÞ�−ðvχ ;αnαÞoþ
Z

r̄�

0

dr̄ðαχ−φχÞ0;

ð82Þ

after removing the two terms at the observer position
without the angular dependence. Despite the procedure to
subtract the contribution to hTiΩ, Eq. (82) still has the
monopole fluctuation.
In comparison to our gauge-invariant expression in

Eq. (33), it is clear that the gauge dependence in Eq. (81)
arises from the background temperature at the observer
position T̄ðηoÞ in the left-hand side. As shown in
Eq. (10), the value of T̄ðηoÞ depends on our choice of
coordinate, and it is composed of the background temper-
ature T̄ in a homogeneous Universe and the coordinate
lapse δηo. This yields extra terms in Eq. (81) that are not
included in Θ̂A:

−Hoδηo −Hoχo − αχo: ð83Þ

Consequently, we derive the relation of the observed CMB
temperature anisotropies to our expression as

Θ̂A ¼ Θ̂here þ αχo −Hovχo: ð84Þ

Figure 4 shows the monopole transfer function for Θ̂A

(dotted). With two extra potential terms missing, no can-
cellation occurs on large scales, and the transfer function
does not vanish in the infrared.Therefore, despite the absence
of divergences in the UV, the monopole power is also
infinite CA

0 ¼ ∞.

3. Case B: Without the coordinate lapse

Another common case in literature is to neglect the
coordinate lapse. Though calculations are done properly
(up to δηo), less attention is paid to the gauge invariance of
the resulting expression. In the pioneering work [2], the
expression for the observed CMB temperature anisotropies
was derived (see also [39,40]) by using the relation of the
observed CMB temperature to the observed redshift in
Eq. (16). Perturbing all the quantities in Eq. (16), we obtain
their key equation for the observed CMB temperature
anisotropies

ΔTðn̂Þ
Tðn̂Þ ¼ ΔT�

T�
−

Δz
1þ zobs

; ð85Þ

which is similar to our Eq. (24). By defining the last-
scattering surface as a hypersurface of the uniform energy
density ΔT� ≡ 0, they computed the perturbation to the
observed redshift. However, the devils are again in details,
and the ambiguities arise from identifying the correct
background quantities. At the linear order in perturbations,
Δz can be safely equated to ð1þ z�Þδz in our notation
convention, but without the coordinate lapse δηo. Again,
the missing lapse term is owing to the lack of proper
consideration of the observer position today. The final
expression for the observed CMB temperature anisotropies
is then

Θ̂B ¼ Θ̂here −Hovχo: ð86Þ

Figure 4 shows the monopole transfer function for Θ̂B (dot-
dashed line). Similar to Θ̂A, the monopole power is plagued
with infrared divergences, but without UV divergences.
The monopole power CB

0 is again infinite.

IV. DISCUSSION

We have derived an analytic expression for the observed
CMB temperature anisotropies Θ̂ðn̂Þ in Eqs. (24) and (33)
and investigated the gauge issues in comparison to previous
work. It is well known that a general coordinate trans-
formation in Eq. (2) induces a gauge transformation for the
temperature fluctuation Θ at the observer position xμo:

Θ̃ðx̃μoÞ ¼ ΘðxμoÞ þHoξo; ð87Þ

as the background CMB temperature depends only on the
time coordinate
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T̄ðη̃oÞ ¼ T̄ðηoÞ þ T̄ 0ðηoÞξo: ð88Þ

Consequently, the temperature fluctuationΘ at the observer
position is gauge dependent (in fact at any position).
However, since the gauge mode is independent of observed
angular direction n̂, only the monopole fluctuation Θ0 is
gauge dependent, and the other angular multipoles Θl with
l ≥ 1 are gauge invariant when decomposed in terms of
observed angle n̂. This statement is correct, but the gauge
dependence of the temperature fluctuationΘ at the observer
position indicates that it cannot be the correct description of
the observed CMB temperature anisotropies. To put it
differently, the theoretical prediction for the observed
values of the CMB temperature anisotropies should be
independent of our choice of gauge condition.
With a few exceptions [19,20], relatively little attention

has been paid in literature to this flaw in the theoretical
description of the observed CMB temperature anisotropies,
largely because the angular multipoles alm of the temper-
ature fluctuation Θðn̂Þ with l ≥ 1 are gauge invariant and
they contain most of the cosmological information, and
also because the angle-averaged CMB temperature, or the
combination of the background and the fluctuation

hTiΩ ≔
Z

d2n̂
4π

Tðn̂Þ ¼ T̄ðηoÞ½1þ Θ0ðxμoÞ�; ð89Þ

is well measured and gauge invariant, where Θ0ðxμoÞ is the
angle average (or monopole) of the temperature fluctuation
ΘðxμoÞ at the observer position and it gauge transforms as in
Eq. (87). However, we showed that the monopole power C0

computed by using the gauge-dependent description of
Θðn̂Þ is infinite, logarithmically diverging in the infrared.
The angle-averaged CMB temperature is expected to

fluctuate around the background temperature from place to
place, but its variance C0 cannot be infinite. Figures 1 and 2
show that the infrared divergence in the monopole power
originates from the gravitational potential contributions on
very large scales or low k. Those contributions act as a
uniform gravitational potential on scales smaller than their
wavelength, and they should have no impact on any local
measurements, as any test particles and the measurement
apparatus would move together, according to the equiv-
alence principle. In fact, our investigation of the monopole
fluctuation in the large-scale limit in Sec. III C proves that
our gauge-invariant expression for the observed CMB
temperature anisotropies Θ̂ in Eqs. (24) and (33) (as
opposed to the gauge-dependent expression Θ) indeed
contains numerous components that act as a uniform
gravitational potential on very large scales, but their
large-scale contributions cancel to yield the leading-order
contribution in proportion to k2. The infrared divergence of
the monopole power arises due to the use of the gauge-
dependent expression of the CMB temperature fluctuation,
which neglects one or a few contributions, breaking the

gauge invariance and the subtle balance for the cancella-
tion. In fact, the cancellation of such contributions is
stronger, as the equivalence principle states that a uniform
gravitational acceleration cannot be measured locally,
preventing any gradient contributions of the gravitational
potentials on large scales.
In Sec. III D, we have compared our gauge-invariant

expression for the observed CMB temperature anisotropies
to previous work. The major physical process of the CMB
temperature anisotropy formation was fully identified in the
pioneering work by Sachs and Wolfe in 1967 [2]—once the
baryon-photon plasma cools to decouple, the CMB photons
propagate freely in space, and they are measured by the
observer. This physical process naturally involves the
physical quantities along the photon path as well as those
at the decoupling position and the observer position. The
first contribution is referred to as the integrated Sachs-
Wolfe effect, and the contributions at the source position
are made of the gravitational redshift (or Sachs-Wolfe
effect), the Doppler effect, and the (intrinsic) temperature
fluctuation, while the contributions at the observer position
were often neglected in literature. In the comprehensive
work by Zibin and Scott [19], this physical process was
carefully examined in close attention to the gauge invari-
ance of the theoretical description of the observed CMB
temperature anisotropies. The observer should be moving
together with baryon and matter components, at least in the
linear-order description, and this observer motion contrib-
utes to the dipole anisotropy. According to [19], however,
there still remains one ambiguity, which is the choice of the
observer hypersurface, or the time coordinate of the
observer position. This is evident in Eqs. (87) and (88),
and such ambiguity in defining the observer position is one
source for the gauge dependence of the analytical expres-
sions in literature. A hypersurface of the uniform energy
density was chosen in [19], though it was also noted that
this choice is not unique. By specifying the hypersurface,
their expression for the observed CMB temperature is
gauge invariant, but the resulting monopole power is UV
divergent.
In this work we have shown that there is no ambiguity in

describing the observed CMB temperature anisotropies, as
expected for any physical observations; the observer
position today is uniquely determined, once a physical
choice of the observer is made. The observer is moving
together with the matter component, and its time coordinate
ηo today can be computed by following the motion of the
observer in time. Compared to the reference time coor-
dinate η̄o of the observer in the background in Eq. (6), the
observer time coordinate today deviates from η̄o by the
coordinate lapse δηo, defined as in Eq. (8): ηo ≔ η̄o þ δηo.
The coordinate lapse δηo, of course, gauge transforms, as
the time coordinate of the observer depends on the choice
of coordinate system. However, it is this extra gauge-
dependent term that compensates for the gauge dependence
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in the temperature fluctuation Θ at the observer position, as
expressed in Eq. (24). Due to the absence of the angular
dependence, the expressions for the higher-order multi-
poles are gauge invariant.
Using our gauge-invariant expression for the observed

CMB temperature anisotropies in Eq. (24) and the
Boltzmann codes CLASS and CAMB, we have numerically
computed the monopole power for the first time

C0 ¼ 1.66 × 10−9; ð90Þ

corresponding to the rms monopole fluctuation

ffiffiffiffiffiffiffiffiffiffi
hΘ̂2

0i
q

¼
ffiffiffiffiffiffi
C0

4π

r
¼ 1.15 × 10−5: ð91Þ

The largest contribution to the monopole power is the
gravitational potential at the decoupling point, which is also
the main source for the Sachs-Wolfe plateau at low angular
multipoles. A finite value of the monopole power indicates
that the angle average of the CMB temperature fluctuates in
space around the background CMB temperature T̄ðη̄oÞ
evaluated at the reference time coordinate η̄o, and the
COBE FIRAS measurement hTiΩ is not the background
temperature T̄ðη̄oÞ, but one with the monopole fluctuation
Θ̂0 at our position. Given that the current measurement
uncertainty is ∼10 times larger than the rms fluctuation, the
impact of properly accounting for the difference between
T̄ðη̄oÞ and hTiΩ is negligible [18] for the CMB power
spectrum analysis. With T̄ ≔ T̄ðη̄oÞ being one of the
fundamental cosmological parameters, the monopole fluc-
tuation Θ̂0 (or the angle-averaged anisotropy) can be
inferred from the measurement of hTiΩ once a cosmologi-
cal model is chosen. This is in contrast to the coordinate-
dependent T̄ðηoÞ and Θ0ðxμoÞ in Eq. (89), which are not
separable from the measurement of hTiΩ due to their
ambiguous definition. Hence the monopole fluctuation
Θ̂0 is a model-dependent, but coordinate-independent,
“observable.”
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APPENDIX A: METRIC CONVENTION AND
GAUGE TRANSFORMATION PROPERTIES OF

THE PERTURBATION VARIABLES

In this appendix we introduce the notation convention
used in this paper. The background Universe is described
by a Robertson-Walker metric:

ds2 ¼ −a2ðηÞdη2 þ a2ðηÞḡαβdxαdxβ;

with conformal time η and scale factor aðηÞ. To account for
the inhomogeneities in the Universe, we introduce scalar
perturbations to the metric tensor with the following
convention:

g00 ≔ −a2ð1þ 2αÞ; g0α ≔ −a2β;α;

gαβ ≔ a2½ð1þ 2φÞḡαβ þ 2γ;αjβ�: ðA1Þ

The comma represents the coordinate derivative, while the
vertical bar represents the covariant derivative with respect
to the three metric ḡαβ. We do not consider vector and
tensor perturbations in this paper. The timelike four
velocity vector is introduced as

uμ ¼ 1

a
ð1 − α; UαÞ; −1 ¼ uμuμ; ðA2Þ

and we define the scalar velocity potentials as

Uα ≔ −U;α; v ≔ U þ β: ðA3Þ

Under the general coordinate transformation in Eq. (2),
the metric tensor gauge transforms as

δξgμν ¼ g̃μνðxÞ − gμνðxÞ ¼ −£ξgμν

at linear order. The Lie derivative £ of a rank 2 tensor is
given by

£ξgμν ¼ gμν;ρξρ þ gρνξ
ρ
;μ þ gμρξ

ρ
;ν:

For the time-time component, this leads to

α̃ðxÞ ¼ αðxÞ − 1

a
ðaξÞ0;

where the prime denotes the partial derivative with respect
to conformal time η. The time-space component and the
space-space component of the metric reveal the trans-
formation properties of the other scalar perturbation var-
iables introduced in Eq. (A1):

β̃ ¼ β þ L0 − ξ; φ̃ ¼ φ −Hξ; γ̃ ¼ γ − L:

Since theoretical descriptions of observables have to be
gauge invariant, it is most convenient to work with gauge-
invariant variables [25]:

αχ ≔ α −
1

a
χ0; φχ ≔ φ −Hχ;

with the scalar shear of the normal observer
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χ ≔ aðβ þ γ0Þ;

introduced in [41]. It gauge transforms as χ̃ ¼ χ − aξ. The
two potentials correspond to the Bardeen variables αχ →
ΦA and φχ → ΦH in [25]. The energy-momentum tensor
transforms in the same way as the metric tensor. The time-
time and the time-space components reveal the trans-
formation properties of the density fluctuation and the
scalar velocity potential:

δ̃ ¼ δ −
ρ̄0

ρ̄
ξ; ṽ ¼ v − ξ:

Therefore, we construct two gauge-invariant quantities

Θχ ≔
1

4
δγχ ¼ 1

4
δγ þHχ; vχ ≔ v −

χ

a
:

APPENDIX B: NUMERICAL COMPUTATION OF
THE MONOPOLE AND DIPOLE TRANSFER

FUNCTIONS

For the black-body radiation, the temperature anisotropy
Θ is related to the fluctuation in the photon distribution
function f at the linear order as

fðq; n̂Þ ¼ −
df̄

d ln q
Θðn̂Þ; ðB1Þ

where q is the comoving momentum and the photon
distribution function in the background is

f̄ðqÞ ¼
�
exp

�
q

aT̄ðηÞ
	
− 1

�
−1
: ðB2Þ

Noting that the temperature anisotropy is independent of q,
we can integrate over q to derive

Θðn̂Þ ¼ 2π

a4ρ̄γ

Z
dq q3fðq; n̂Þ; ðB3Þ

where the photon energy density is

ρ̄γðηÞ ¼
2

a4

Z
d3q qf̄ðqÞ: ðB4Þ

The temperature anisotropy can be decomposed in terms
of observed angle, and the multipole coefficients in Eq. (30)
are

alm ¼ 2π

a4ρ̄γ

Z
d2n̂Y�

lmðn̂Þ
Z

dq q3fðq; n̂Þ: ðB5Þ

The monopole coefficient is, therefore, related to the
photon density fluctuation δγ as

a00 ¼
ffiffiffiffiffiffi
4π

p
×
1

4
δsyncγ ¼

ffiffiffiffiffiffi
4π

p
Θsync; ðB6Þ

and using Eq. (39) the monopole transfer function is
obtained as

T 0ðkÞ ¼ T sync
Θ ðkÞ; ðB7Þ

where δργ ¼ ρ̄γδγ is related to the distribution function
fðq; n̂Þ as in Eq. (B4). For the monopole transfer function,
we need to use the gauge-invariant expression Θ̂ðn̂Þ, rather
than the gauge-dependent expression Θðn̂Þ. In the comov-
ing-synchronous gauge, where the coordinate lapse van-
ishes, both values are identical.
The dipole coefficient is

a10 ¼
ffiffiffiffiffiffi
3π

4

r
2

a4ρ̄γ

Z
d3q q cos θfðq; n̂Þ ¼

ffiffiffiffiffiffi
3π

4

r
sz
ρ̄γ

; ðB8Þ

where the spatial energy flux of the photon distribution is
defined as

si ≔
2

a4

Z
d3q qifðq; n̂Þ: ðB9Þ

Using the fluid description for the photon energy-momentum
tensor, the spatial energy fluxof thephoton distribution can be
expressed as

si ¼ ðρ̄þ p̄Þγuiγ ðB10Þ

in terms of the photon velocity uiγ measured in the observer
rest frame. The photon velocity

uiγ ¼ ½ei�obsμ uμγ ¼ ðvobs − vγÞ;i ðB11Þ

is literally the relative velocity between the observer and the
photon fluid at the linear order, and it is evidently gauge
invariant, where ½ei�μobs is a spatial directional vector (or a
spatial tetrad) of the observer (see, e.g., [24,42]). Finally, by
using Eq. (39), the dipole transfer function is obtained as

T 1ðkÞ ¼
k
3
ðTvγ − TvobsÞðkÞ: ðB12Þ

In the comoving-synchronous gauge, where the observer
velocity vanishes, the dipole transfer function becomes

T 1ðkÞ ¼
k
3
T sync
vγ ðkÞ: ðB13Þ

The monopole and the dipole transfer functions T 0ðkÞ
and T 1ðkÞ are obtained by using the above expressions and
numerically evaluating T sync

Θ ðkÞ and T sync
vγ ðkÞ at present day

from the Boltzmann codes CLASS and CAMB.

SANDRA BAUMGARTNER and JAIYUL YOO PHYS. REV. D 103, 063516 (2021)

063516-18



[1] A. A. Penzias and R.W. Wilson, Astrophys. J. 142, 419
(1965).

[2] R. K. Sachs and A.M. Wolfe, Astrophys. J. 147, 73 (1967).
[3] J. R. Bond and G. Efstathiou, Astrophys. J. Lett. 285, L45

(1984).
[4] J. R. Bond and G. Efstathiou, Mon. Not. R. Astron. Soc.

226, 655 (1987).
[5] U. Seljak, Astrophys. J. Lett. 435, L87 (1994).
[6] W. Hu and N. Sugiyama, Astrophys. J. 444, 489 (1995).
[7] W. Hu and M. White, Phys. Rev. D 56, 596 (1997).
[8] W. Hu, U. Seljak, M. White, and M. Zaldarriaga, Phys. Rev.

D 57, 3290 (1998).
[9] G. F. Smoot, C. L. Bennett, A. Kogut, E. L. Wright, J.

Aymon et al., Astrophys. J. Lett. 396, L1 (1992).
[10] J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N.W.

Halverson, and W. L. Holzapfel, Nature (London) 420, 772
(2002).

[11] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G.
Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 20 (2013).

[12] P. Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J.
Aumont, C. Baccigalupi et al., Astron. Astrophys. 641, A6
(2020).

[13] J. Dunkley, R. Hlozek, J. Sievers, V. Acquaviva, P. A. R.
Ade et al., Astrophys. J. 739, 52 (2011).

[14] R. Keisler, C. L. Reichardt, K. A. Aird, B. A. Benson, L. E.
Bleem et al., Astrophys. J. 743, 28 (2011).

[15] U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996).
[16] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).
[17] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[18] J. Yoo, E. Mitsou, Y. Dirian, and R. Durrer, Phys. Rev. D

100, 063510 (2019).
[19] J. P. Zibin and D. Scott, Phys. Rev. D 78, 123529 (2008).
[20] J.-C. Hwang and H. Noh, Phys. Rev. D 59, 067302 (1999).
[21] J. Yoo, E. Mitsou, N. Grimm, R. Durrer, and A. Refregier, J.

Cosmol. Astropart. Phys. 12 (2019) 015.
[22] G. Fanizza, J. Yoo, and S. G. Biern, J. Cosmol. Astropart.

Phys. 09 (2018) 037.

[23] J. Yoo, Phys. Rev. D 90, 123507 (2014).
[24] J. Yoo, N. Grimm, E. Mitsou, A. Amara, and A. Refregier, J.

Cosmol. Astropart. Phys. 04 (2018) 029.
[25] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
[26] D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A.

Shafer, and E. L. Wright, Astrophys. J. 473, 576 (1996).
[27] E. Mitsou, J. Yoo, R. Durrer, F. Scaccabarozzi, and V.

Tansella, Phys. Rev. Research 2, 033004 (2020).
[28] Y. Wen, D. Scott, R. Sullivan, and J. P. Zibin, arXiv:

2011.09616.
[29] S. Dodelson, Modern Cosmology (Academic Press, 2003),

https://www.sciencedirect.com/book/9780122191411/
modern-cosmology?via=ihub=.

[30] J. Silk, Astrophys. J. 151, 459 (1968).
[31] D. J. Fixsen, Astrophys. J. 707, 916 (2009).
[32] Planck Collaboration, N. Aghanim, Y. Akrami, F. Arroja,

M. Ashdown, J. Aumont, C. Baccigalupi, and others,
Astron. Astrophys. 641, A1 (2020).

[33] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995).
[34] D. Jeong, F. Schmidt, and C. M. Hirata, Phys. Rev. D 85,

023504 (2012).
[35] S. G. Biern and J. Yoo, J. Cosmol. Astropart. Phys. 04

(2017) 045.
[36] F. Scaccabarozzi, J. Yoo, and S. G. Biern, J. Cosmol.

Astropart. Phys. 10 (2018) 024.
[37] N. Grimm, F. Scaccabarozzi, J. Yoo, S. G. Biern, and J.-O.

Gong, J. Cosmol. Astropart. Phys. 11 (2020) 064.
[38] R. L. Arnowitt, S. Deser, and C.W. Misner, Canonical

analysis of general relativity, in Recent Developments in
General Relativity (Polish Scientific Publishers, Warsaw,
1962), p. 127.

[39] L. F. Abbott and M. B. Wise, Phys. Lett. 135B, 279 (1984).
[40] W. R. Stoeger, G. F. R. Ellis, and C. Xu, Phys. Rev. D 49,

1845 (1994).
[41] J. M. Bardeen, in Cosmology and Particle Physics, edited

by L.-Z. Fang and A. Zee (Gordon and Breach Science
Publishers, New York, 1988), p. 1.

[42] E. Mitsou and J. Yoo, SpringerBriefs in Physics (Springer,
Cham, 2020), https://doi.org/10.1007/978-3-030-50039-9.

MONOPOLE FLUCTUATION OF THE CMB AND ITS GAUGE … PHYS. REV. D 103, 063516 (2021)

063516-19

https://doi.org/10.1086/148307
https://doi.org/10.1086/148307
https://doi.org/10.1086/148982
https://doi.org/10.1086/184362
https://doi.org/10.1086/184362
https://doi.org/10.1093/mnras/226.3.655
https://doi.org/10.1093/mnras/226.3.655
https://doi.org/10.1086/187601
https://doi.org/10.1086/175624
https://doi.org/10.1103/PhysRevD.56.596
https://doi.org/10.1103/PhysRevD.57.3290
https://doi.org/10.1103/PhysRevD.57.3290
https://doi.org/10.1086/186504
https://doi.org/10.1038/nature01269
https://doi.org/10.1038/nature01269
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1088/0004-637X/739/1/52
https://doi.org/10.1088/0004-637X/743/1/28
https://doi.org/10.1086/177793
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1103/PhysRevD.100.063510
https://doi.org/10.1103/PhysRevD.100.063510
https://doi.org/10.1103/PhysRevD.78.123529
https://doi.org/10.1103/PhysRevD.59.067302
https://doi.org/10.1088/1475-7516/2019/12/015
https://doi.org/10.1088/1475-7516/2019/12/015
https://doi.org/10.1088/1475-7516/2018/09/037
https://doi.org/10.1088/1475-7516/2018/09/037
https://doi.org/10.1103/PhysRevD.90.123507
https://doi.org/10.1088/1475-7516/2018/04/029
https://doi.org/10.1088/1475-7516/2018/04/029
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1086/178173
https://doi.org/10.1103/PhysRevResearch.2.033004
https://arXiv.org/abs/2011.09616
https://arXiv.org/abs/2011.09616
https://www.sciencedirect.com/book/9780122191411/modern-cosmology?via=ihub=
https://www.sciencedirect.com/book/9780122191411/modern-cosmology?via=ihub=
https://www.sciencedirect.com/book/9780122191411/modern-cosmology?via=ihub=
https://www.sciencedirect.com/book/9780122191411/modern-cosmology?via=ihub=
https://doi.org/10.1086/149449
https://doi.org/10.1088/0004-637X/707/2/916
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1086/176550
https://doi.org/10.1103/PhysRevD.85.023504
https://doi.org/10.1103/PhysRevD.85.023504
https://doi.org/10.1088/1475-7516/2017/04/045
https://doi.org/10.1088/1475-7516/2017/04/045
https://doi.org/10.1088/1475-7516/2018/10/024
https://doi.org/10.1088/1475-7516/2018/10/024
https://doi.org/10.1088/1475-7516/2020/11/064
https://doi.org/10.1016/0370-2693(84)90391-5
https://doi.org/10.1103/PhysRevD.49.1845
https://doi.org/10.1103/PhysRevD.49.1845
https://doi.org/10.1007/978-3-030-50039-9

