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We revise the non-Gaussianity of canonical curvaton scenario with a generalized δN formalism, in which
it can handle the generic potentials. In various curvaton models, the energy density is dominant in different
periods including the secondary inflation of curvaton, matter domination, and radiation domination. Our
method can unify to deal with these periods since the nonlinearity parameter fNL associated with non-
Gaussianity is a function of equation of state w. We first investigate the most simple curvaton scenario,
namely, the chaotic curvaton with quadratic potential. Our study shows that most parameter spaces are
satisfied with observational constraints. And our formula will nicely recover the well-known value of the
fNL parameter in the absence of nonlinear evolution. From the micro-origin of curvaton, we also investigate
the pseudo-Nambu-Goldstone curvaton. Our result clearly indicates that the second short inflationary
process for pseudo-Nambu-Goldstone curvaton is ruled out in light of these observations. Finally, our
method sheds a new way of investigating the non-Gaussianity of curvaton mechanism, especially for
exploring the non-Gaussianity in minimal supersymmetric Standard Model curvaton model.
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I. INTRODUCTION

The traditional diagram of producing the curvature
perturbation is sourced by the quantum fluctuations of
inflationary field. In this broad class of single inflationary
field theories, it experiences some initial condition prob-
lems associated with its corresponding potential. In order to
relax the restrictions of single field inflation, one nice
alternative called the curvaton mechanism was proposed
[1–3], in which the energy density of the curvaton is
subdominant compared with that of the inflaton during
inflationary period. After inflation decay, the role of
curvaton is more and more significant producing the
isocurvature perturbation, which can be transferred into
curvature perturbation seeding the temperature fluctuation
on cosmological microwave background (CMB).
Due to the appearance of CMB, there are huge data

waiting for the investigation. In particular, themost common
method is calculating the power spectrum of the scalar field
(driving the curvature perturbation) characterized by the
two-point correlation function, its corresponding spectral
index and tensor to scalar ratio. However, most data are still
mysterious, thereby expecting a new theoretical method for
exploring these treasures. Under this background, the

calculation of non-Gaussianity (NG) identified with the
three-point correlation function was proposed [4].
Combining with the curvaton scenario, NG, associated with
its fraction of energy density among the total energy density,
could also be produced as curvaton dominates over the
energy density [5–7]. Upon relaxing this condition (the
curvaton dominates over the energy density), it could yield
large NG [8]. However, the current observation constrains
these models [9], namely, characterizing by the local non-
linearity parameter fNL that cannot be large. This local fNL
parameter is suppressed by the quadratic potential plus
quartic potential [10] and also in the string axionic potential
[11,12]. Furthermore, the observable fNL parameter also
puts an enhanced constraint on the decay epoch of the
curvaton and its field value at the horizon exit [13]. The
implications of NG features in curvaton scenario were
also studied in Refs. [14–16]. On contrary, NG could be
produced in various curvaton models [17–19].
In most curvaton scenarios, curvaton usually is consid-

ered as an independent field. If taking the thermal effects
into account, the large NG is a necessary product due to the
observed curvature perturbation [20], even the curvaton can
be realized in low energy inflation compared with tradi-
tional curvaton mechanism [21]. Further, a similar curvaton
mechanism can also be achieved due to the coupling
between the inflaton and the curvaton [22]. From another*liuleihua8899@hotmail.com
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perspective of independent curvaton, it naturally embeds
into two-field inflationary theory, in which it can produce a
sizable NG within observations [23]. Very recently, the
authors of Ref. [24] rigorously realized the curvaton
mechanism under the covariant framework of field space.
Taking the curvaton and the inflaton into account for
perturbation, NG can be generated by inflaton curvaton
mixedmodel [18] and even the curvaton can drive the second
inflationary process [25]. However, current observational
constraints are not capable of distinguishing between the
inflaton curvaton mixed model and single field inflation
[26]. As curvaton explicitly couples to the superheavy
matter, it will lead to observational signal including NG
[27,28]. From another aspect, curvaton is dubbed as some
scalar fields, i.e., pseudo-Nambu-Goldstone boson or right-
handed sneutrino curvaton, etc. [29–33]. Due to the uni-
fication of the string theory, the curvaton scenario can also be
applied into the string cosmology framework [34,35], in
which it yields considerable NG. Since the energy scale of
the inflation is far from the Planck scale, the curvaton
scenario can be embedded into the minimal supersymmetric
StandardModel (MSSM) [36]. Another origin comes via the
inflaton decay [37].
The NG is associated with the three-point correlation

function, and in order to investigate the NG, δN formalism
was proposed [6] depending on the surface of the energy
density slicing. Its huge merit is only needed in the relation
of the corresponding background field and e-folding num-
ber. Based on a previous work, δN formalism was system-
atically developed by [38]. δN formalism has become a
standard procedure to evaluate the power spectrum and NG
in the multifield inflationary framework including the
curvaton scenario (the canonical kinetic term of the field
space). Reference [39] modified the δN formalism at the
slice of the curvaton energy density; the method could
proceed the curvaton mechanism in various periods [matter
domination (MD), radiation domination (RD), second infla-
tionary period] explicitly associated with equation of state
(EOS) w. However, this traditional δN formalism cannot
analytically evaluate the various curvaton models (distinct
potentials). In order to compensate this flaw, Refs. [40,41]
also proposed a modified δN formalism, in which this
method could deal with various curvaton potentials analyti-
cally in principle. However, they assumed that different
periods have a simple attractor solution characterized by an
ordinary parameter c, in which the kinetic term is neglected
and its contribution is enrolled into this parameter. This
estimation of their method is too coarse compared to
traditional calculation. The best way is to include the
contribution of EOS w since it is model independent. In
light of these above theoretical motivations, we suggest a
generalized δN formalism unified to evaluate the non-
linearity parameter fNL.
This paper is organized as follows. In Sec. II, we revise

the δN formalism based on [38] and meanwhile we also

give our central formula of the nonlinearity parameter fNL.
In Sec. III, we study the most classical curvaton model
whose potential is quadratic and pseudo-Nambu-Goldstone
curvaton. Section IV gives our main conclusions.
All of the calculations are adopted in the natural units in

which G ¼ MP ¼ c ¼ 1, where G is the Newton constant,
MP is the Planck mass, and c is the speed of light.

II. THE GENERALIZED δN FORMALISM OF
CURVATON DECAY

In this section, we generalize the δN formalism. In light
of Refs. [39] and [40,41], our extending framework
contains their merits. The main advantage of [40,41] for
the fNL parameter is that they build the explicit relation of
the onset of oscillation of curvaton and the curvaton value
as inflation ends, which is not included in the traditional δN
formalism. As for Ref. [39], the authors constructed the fNL
parameter associated with EOS w except the fraction of the
curvaton energy density to the total energy density denoted
by rdecay. First, we will review the δN formalism.

A. Recap of δN formalism for curvaton decay

In a traditional curvaton scenario, it will generate the
non-Gaussianity essentially characterizing by nonlocal
non-Gaussianity parameter fNL. In order to obtain its
explicit formula, the most common method for copying
is the so-called δN formalism [38], since it only requires
relation between the background field and the e-folding
number. The curvature perturbation can be expanded as
order by order,

ζðxÞ ¼ ζ1ðxÞ þ
1

2!
ζ2ðxÞ þ

1

3!
ζ3ðxÞ; ð1Þ

with ζ2 ¼ 6
5
fNLζ21 and ζ3 ¼ 54

25
gNLζ31, where ζ1 is explicitly

proportional to Gaussian field, ζ2 and ζ3 are related to non-
Gaussian field associated with Gaussian field for nonlocal
non-Gaussianity parameters fNL and gNL. Here, we are only
concerned with the fNL parameter since gNL ∝ f2NL and it
will be suppressed at higher order. The fNL parameter
originates from the three-point correlation functions,

hζðk1Þζðk2Þζðk3Þi ¼ ð2πÞ3Bðk1; k2; k3Þδ3
�X3

n¼1

kn

�
; ð2Þ

where Bðk1;k2;k3Þ¼ 5
6
fNLðPðk1ÞPðk2Þþ2 perm:Þ, where

PðkiÞ is the power spectrum of ζki field.
In order to relate to the e-folding number N, once

adopting uniform density hypersurfaces of curvaton, the
curvature perturbation can then be denoted in terms of
nonlinear curvature perturbation,
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ζðxÞ ¼ δNðxÞ þ 1

3

Z
ρðxÞ

ρ̄ðt0Þ

dρ̃

ρ̃þ P̃
; ð3Þ

where δN is the perturbed expansion, ρ̃ is the local energy
density, and P̃ is the local pressure. Given that the curvaton
decay occurs in MD period, then one naturally neglects the
contribution of pressure. Subsequently, by integrating both
sides of Eq. (3) and choosing the flat slice, one obtains

ρχ ¼ ρ̄χ expð3ζχÞ: ð4Þ

For curvaton field, its perturbation can be defined by

χ� ¼ χ̄ þ δ1χ�; ð5Þ

where δ1χ� denotes the vacuum fluctuations of the curvaton
field. For depicting the curvature perturbation of curvaton,
we need to relate the Hubble crossing value to the initial
amplitude of the curvaton oscillation. In order to achieve
this goal, one can use the Taylor expansion to build their
relation,

gðχ�Þ ¼ gðχ̄ þ δ1χ�Þ ¼ ḡþ
X∞
n¼1

gðnÞ

n!

�
δ1χosc
g0

�
n
; ð6Þ

where g0 ¼ dg
dχ�

and χosc denote the value of the curvaton
field that begins to oscillate. Apparently, gðχ�Þ depends on
the model. Until present, the discussion of curvature
perturbation of the curvaton is generic which means that
the curvaton potential is general. In order to relate to some
specific curvaton models, Ref. [38] assumes the simplest
potential (quadratic potential) for curvaton. Apparently, it
shows that gðχ�Þ ∝ χ�. Subsequently, one can consider this
potential as energy density and then expand it to the second
order of perturbation of the curvaton field for comparison;
finally, we find that

ζχ1 ¼
2

3

δ1χ

χ̄
; ð7Þ

ζχ2 ¼ −
3

2

�
1 −

gg00

g02

�
: ð8Þ

Next, we need to find the relation between ζχ and ζ.
Following the sudden decay approximation, this relation
can be analytically obtained, which is realized on a uniform
total density hypersurface as H ¼ Γχ (the decay rate of
curvaton). On this curvaton decay hypersurface, one
accordingly has

ρrðtdecayÞ þ ρχðtdecayÞ ¼ ρ̄ðtdecayÞ; ð9Þ

where ρ̄ denotes the background field energy density.
Meanwhile, we have δN ¼ ζ on the curvaton decay

hypersurface. Observing that the production of curvaton
decay is relativistic and total pressureP ¼ 1

3
ρ, consequently

one easily obtains

ρr ¼ ρ̄r exp½4ðζr − ζÞ�; ð10Þ

ρχ ¼ ρ̄χ exp½3ðζχ − ζÞ�: ð11Þ

Using these two formulas into Eq. (9) and defining a
dimensionless quantityΩχ ¼ ρ̄χ=ðρ̄χ þ ρ̄rÞ, after some alge-
bra, one obtains

ð1 −ΩχÞ exp½4ðζr − ζÞ� þΩχ exp½3ðζχ − ζÞ� ¼ 1: ð12Þ

Once this central formula of δN formalism is derived, we can
set the relations between the ζχ and ζ. Expanding up to the
second order of Eq. (12), we collect these relations,

ζ1 ¼ rdecayζχ1; ð13Þ

ζ2 ¼
�

3

2rdecay

�
1þ gg00

g02

�
− 2 − rdecay

�
ζ2χ2; ð14Þ

where we define

rdecay ¼
3Ωχ;decay

4 − Ωχ;decay
¼ 3ρ̄χ

3ρ̄χ þ 4ρ̄r
: ð15Þ

It naturally yields nonlinearity parameter using the sudden
decay approximation [6,7],

fNL ¼ 5

4rdecay

�
1þ gg00

g02

�
−
5

3
−
5rdecay

6
: ð16Þ

We observe that this nonlinearity parameter highly depends
on the rdecay and meanwhile mildly depends on the structure
of model shown in g and g0. Although we adopted the
simplest potential for curvaton, the final result is almost
quadratic potential independent. Actually, one can roughly
estimate this result when expanding the energy density of
curvaton up to the second order. Subsequently, one can
discover via Eqs. (4) and (6) that the background of curvaton
will be canceled comparing them through their equations.
Furthermore, the generic potential of curvaton should be

taken into account. The time of occurrence of curvaton
mechanism (various decays of curvaton models will happen
in RD or MD) is also different. In order to compensate these
two missing places into curvaton mechanism, some distinct
generalized δN formalisms are proposed.

B. Generalized δN formalism

In this section, we construct a generalized δN formalism
with a generic potential and EOS w. Consequently, it is
valid for broad kinds of curvaton models. In Ref. [39], the

REVISED fNL PARAMETER IN A CURVATON … PHYS. REV. D 103, 063515 (2021)

063515-3



authors innovatively assumed that the curvaton decay
occurs on a uniform curvaton density slice. Being different
from the definition of the total energy density in Sec. II A,
they found that

ζ ¼ ζχ þ
1

4
ln

�
4ρ̄r þ 3ðρ̄χ þ P̄χÞ
4ρr þ 3ðρ̄χ þ P̄χÞ

�
: ð17Þ

By inserting Eq. (11) into Eq. (17),

�
1 −

1 − 3w
4

Ωχ

�
exp½4ðχ − χrÞ�

¼ ð1 −ΩχÞ exp½4ðζr − ζχÞ� þ
3ð1þ wÞ

4
Ωχ ; ð18Þ

where w ¼ P̄χ

ρ̄χ
. Following the standard procedure, the

relation between ζ and ζχ can be derived order by order,

ζ1 ¼ r̃decayζχ1; ð19Þ

ζ2
ζ2χ2

¼ 3ð1þ wÞ
2r̃decay

�
1þ gg00

g02

�
þ 1 − 3w

r̃decay
− 4; ð20Þ

where r̃decay ¼ 3ð1þwÞΩχ

4þð3w−1ÞΩχ
is introduced. Apparently, the

nonlinearity parameter associated with non-Gaussianity
can be explicitly derived by

fNL ¼ 5

4

1þ w
r̃decay

�
1þ gg00

g02

�
þ 5

6

1 − 3w
r̃decay

−
10

3
: ð21Þ

Observe that the value of the fNL parameter will get
enhanced in the limit of w → 0 which is equivalent to
r̃decay → 0. Reference [39] described that this case will
appear in the secondary inflation. The similar process
was also discussed in various curvaton models [42,43].
Consequently, one can conclude that w is a possible
criterion for assessing the occurrence of secondary infla-
tionary process.
This nonlinearity parameter is tiny and different com-

pared to (16). This difference comes from the slice of
energy density. In inflationary period, there are at least two
components if the existence of curvaton field is required. In
order to remove the influence of the other field from the
non-Gaussianity, this method is necessary and more precise
compared to traditional δN formalism. The huge merit of
this generalized δN formalism is that it can deal with the
second scalar field in different epochs. Especially for the
curvaton mechanism, it is usually dubbed as pressless
matter, namely, that it happens in MD before it decays.
With the introduction of this method, the curvaton mecha-
nism can be fulfilled in various eras. Consequently, it will
extend the application of curvaton mechanism.

However, one cannot manage it analytically
with generic potential besides the quadratic potential.
References [40,41] accordingly proposed another general-
ized δN formalism for dealing with the generic potential
analytically. In their method, the nonlinearity parameter is
written as

fNL ¼ −
5

6
rdecay −

5

3
þ 5

2rdecay
ð1þ AÞ; ð22Þ

where A is given as

A ¼
�
V 0ðχoscÞ
VðχoscÞ

−
3XðχoscÞ
χosc

�
−1
�

X0ðχoscÞ
1 − XðχoscÞ

þ V 00ðχoscÞ
V0ðχoscÞ

− ð1 − XðχoscÞÞ
V 00ðχ�Þ
V 0ðχoscÞ

�

þ
�
V 0ðχoscÞ
VðχoscÞ

−
3XðχoscÞ
χosc

�
−2
�
V 00ðχoscÞ
VðχoscÞ

−
�
V 0ðχoscÞ
VðχoscÞ

�
2

−
3X0ðχoscÞ

χosc
þ 3XðχoscÞ

χ2osc

�
: ð23Þ

Here A is characterized by a curvaton with a generic energy
potential, in which it experiences a nonuniform onset of its
oscillation. Its validity only requires starting a sinusoidal
oscillation by satisfying

H2
osc ¼

V 0ðχoscÞ
cχosc

; ð24Þ

where c is given as 9=2 and 5 when the curvaton begins to
oscillate during MD and RD, respectively. The information
of different periods is explicitly included in parameter c
characterized by the attractor solution.
In order to relate the method of Ref. [39], we need to find

the correspondence between Eqs. (22) and (21). Before
finding the correspondence, the relation between Eqs. (22)
and (16) is necessary since these two methods are adopted
in the total energy density slice. Maybe this slice for [40,41]
is not explicit. However, one can easily check that the
whole calculation is depended on the total energy density in
the curvaton dominant period after inflation. Furthermore,
the total energy slice is approximately equal to the curvaton
energy density slice after inflation, since the curvaton
is dominant which is also an assumption for original
curvaton scenario. In light of this logic, we should find
the correspondence between Eqs. (22) and (16) and
then explicitly adopt this correspondence for Eq. (22).
Comparing with Eqs. (22) and (16), an explicit correspon-
dence can be found by

1þ 2A ¼ gg00

g02
: ð25Þ

Using this correspondence into Eq. (21), we obtain
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fNL ¼ 5

2

1þ w
r̃decay

ð1þ AÞ þ 5

6

1 − 3w
r̃decay

−
10

3
: ð26Þ

In this formula, we observe that r̃decay is also the function of
w. Following the traditional logic, we will work with the
fNL parameter in terms of rdecay and w. In order to achieve
this goal, the relation between rdecay and r̃decay is man-
datory. In light of their relation, the nonlinearity parameter
can be rewritten as

fNL ¼ 5ð3Awþ 3Aþ 4Þ
6rdecayðwþ 1Þ þ 5ð3Aw2 þ 3Aw − 4Þ

6ðwþ 1Þ : ð27Þ

Thus, we obtain the central result of this paper, in which
it can tackle the generic potential analytically and can
assess the existence of second inflationary process for
curvaton field. In the next section, we will investigate the
nonlinearity parameter fNL in various curvaton models
under the observational constraints.

III. CASE STUDY

The realization of curvaton mechanism depends on the
models, particularly on the potential of curvaton. The shape
of potential for curvaton will lead to the difference in
various curvaton models, e.g., chaotic curvaton model,
axionic curvaton, etc.
Before discussing the non-Gaussianity identified with

the nonlinearity parameter fNL, the consideration of power
spectrum of curvaton must be taken into account. Recalling
that our derivation of the fNL parameter is mainly according
to the framework of [40,41], they found that the power
spectrum of curvaton is nearly scale invariant for different
values of k in various models of curvaton (exactly speaking
for the various potentials of curvaton). Furthermore,
Ref. [44] also studied that power spectrum only depends
on rdecay and χ explicitly. Thus, the power spectrum of
curvaton is the same for various models of curvaton. This
issue can be easily checked in [38,40,41].
The second issue should also be clarified, which is

related to the period of occurrence for curvaton mechanism.
In a traditional curvaton mechanism, it happens in the MD
whose corresponding value of w ¼ 0 behaves like a
presssureless matter [1–3]. However, this similar mecha-
nism can be realized in different periods, e.g., Ref. [44]
considered a curvaton mechanism that occurred in RD due
to the decay of inflaton inspired by [45,46], in which the
key ingredient is the explicit coupling between the curvaton
field and the inflaton field. Once the curvaton is obtained,
the curvaton field will also decay into the Standard Model’s
degrees of freedom as inflaton decay (the generation of
curvaton comes via inflaton decay). Consequently, it will
lead to the amount of isocurvature perturbation without
thermalizing with the Standard Model degrees. From the
current constraint [9], the power spectrum of isocurvature

perturbation compared with curvature perturbation cannot
be large. In order to transfer this isocurvature perturbation
into curvature perturbation, Refs. [32,47] proposed the
viable curvaton mechanism embedded into MSSM in light
of [48] by considering the thermalization. Thus, the
curvaton mechanism can be realized in various epochs
under the framework of MSSM. Furthermore, the curvaton
mechanism can also be achieved by the curvaton brane
leading to the large NG [39] whose corresponding value
w ¼ −1. From the central formula of (21), it is also known
that proceeding with the curvaton mechanism is adopted for
various epochs. Meanwhile, the variants of δN formalism
contain the method proceeding with the curvaton mecha-
nism in distinct periods. In light of the above theoretical
motivations, we could find that the curvaton mechanism
will be realized in various periods corresponding to differ-
ent values of w.

A. Chaotic curvaton

Chaotic curvaton indicates that the potential of curvaton
is quadratic. These kinds of curvaton have been inves-
tigated broadly, in particular, for the non-Gaussianity
characterized by nonlinearity parameter fNL [6,7]. In light
of quadratic potential, Ref. [38] proposed a generalized δN
formalism to investigate the non-Gaussianity, in which
curvature perturbation can be derived up to any order. We
accordingly concern the second order of curvature pertur-
bation associated with the fNL parameter.
We will give an analysis of the fNL parameter for chaotic

curvaton based on our central result (26). In our previous
work [44], we have clearly shown that A ¼ − 1

2
as the

potential of curvaton proportional to χ2 where χ denotes
the value of curvaton field, in which it is explicitly
consistent with simple analysis of Ref. [41] (only adopting
the different notation for the fraction of curvaton energy
density among the total energy density). Accordingly, the
central result of the fNL parameter becomes

fNL ¼ −
5ð3w − 5Þ

12rdecayðwþ 1Þ −
5ð3w2 þ 3wþ 8Þ

12ðwþ 1Þ : ð28Þ

We will use this formula to investigate the non-Gaussianity
compared to the previous relevant work. This fNL param-
eter is a generic formula for curvaton associated with non-
Gaussianity.
Case a.—w → −1
In various models, the EOS w can have different values.

In Ref. [39], the authors constructed a curvaton scenario
under the framework of brane world, in which the corre-
sponding w → −1. In this case, it clearly indicates that the
fNL parameter is divergent by exceeding the range of
current observational constraints [49].
Case b.—w → 0
In this case, the curvaton behaves as the pressureless

matter. The parameter fNL simplifies into
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fNL ¼ 25

12rdecay
−
10

3
: ð29Þ

In the limit of rdecay → 1, fNL ¼ − 5
4
nicely recovers with

Eq. (26) in Ref. [38] in the absence of nonlinear evolution
for the curvature perturbation of curvaton (also emphasized
in Ref. [6]), in which the curvaton scenario is the simplest
curvaton model whose potential is 1

2
m2

χχ
2 (χ denotes the

curvaton field) and behaves as pressureless matter accord-
ing to our analysis. Meanwhile, curvaton dominates the
energy density. For large non-Gaussianity, it requires that
rdecay → 0. In order to better understand the possible range
of rdecay, we plotted Eq. (29).
Case c.—w → 1

3
In this case, curvaton decay is a relativistic process.

Then, the parameter fNL becomes

fNL ¼ 5

4rdecay
−
35

12
: ð30Þ

A similar analysis is given in case b. In the limit of
rdecay → 1, fNL → − 5

3
. The value is almost the same as in

case b, in which one cannot distinguish the tiny difference
between case b and case c. Frankly speaking, curvaton is an
independent and extra field during inflationary process
(even including the preheating process); however, curvaton
can be induced by the inflaton decay whose realization
occurs from the transfer of entropy perturbation to curva-
ture perturbation [44]; in order to realize this transfer, the
curvaton can be embedded into MSSM [47].
We have discussed the nonlinearity parameter with

various cases of chaotic curvaton, whose potential is propor-
tional to χ2. Although we cannot distinguish the difference
between case b and case c via observational constraints, it is
expected to obtain the distinct values for the corresponding
cases. Reference [9] tells that fNL ¼ 2.5� 5.7, afterward,
combining with Eqs. (29) and (30), we can plot them for a
comparison. In Fig. 1, the constraints of rdecay for case b and
case c, respectively, are explicitly depicted. The correspond-
ing values are 0.18 for the left panel (case b) and 0.11 for
the right panel (case c). This trend is logical since
case c illustrates that curvaton behaves as relativistic matter,

meaning the curvaton will last for a longer time occurrence
of its decay.
For the careful reader, they may find that there is still

some lose information on the transition from w → 0 to
w → 1

3
, since the curvaton will become the relativistic

matter as the long time occurrence of curvaton decay
(from MD to RD). If we consider this case, rdecay will be a
small number, but what will be the precise value. We need a
more detailed investigation on the parameter fNL varying
w. In order to achieve this goal, we show the density plot of
the nonlinearity parameter fNL depending on the param-
eters rdecay and w in Fig. 2. It clearly indicates that the non-
Gaussianity will get dramatically enhanced as w → 0 and
rdecay → 0, which is consistent with our previous discus-
sion. Interestingly, the parameter fNL is still within the
observational constraints [49], in which w approaches −1
before curvaton decays. This is one of our new findings for
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FIG. 1. The left panel shows the nonlinearity parameter fNL for case b and the right panel for case c. The brown and blue lines denote
the upper and lower bounds for the fNL parameter. The corresponding value of rdecay is 0.18 and 0.11 with respect to case b and case c,
respectively.
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FIG. 2. Contour plot of nonlinearity parameter (28): the
horizontal line corresponds to rdecay whose range is
0⩽rdecay⩽1 including the whole possible value. The vertical line
denotes the value of equation of state w locating from −1 to 1

3
, in

which it includes that dark energy epoch, radiation domination
period, matter domination period, and it could indicate the
transition from one era to another era. The right panel shows
that the value of fNL matches its corresponding color.
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chaotic curvaton model. As the decay of curvaton con-
tinues, we find that there are lots of parameter spaces
satisfied with observational constraints, showing the blue
area of Fig. 2 as rdecay < 0.5.

B. Pseudo-Nambu-Goldstone curvaton

In this case, we will further consider the origin of
curvaton from microscopic physics, namely, pseudo-
Nambu-Goldstone boson with a broken Uð1Þ symmetry.
The curvaton mass will be suppressed by the approximat-
ing symmetry. Since curvaton has the periodicity of Uð1Þ
leading to minima and maxima along the potential, it will
generate the blue and red tiled curvature perturbation of
curvaton. What we are concerned with is the potential of
pseudo-Nambu-Goldstone curvaton. It reads as

VðχÞ ¼ Λ4

�
1 − cos

�
χ

f

��
; ð31Þ

where f andΛ denote the energy scale. In order to obtain its
corresponding fNL parameter, the relation between the χ�
and χosc is mandatory. To achieve this goal, we need the
modified KG equation (24), and one can derive

ln

�
tanðχosc=2fÞ
tanðχ�=2fÞ

�
¼ −

N�
3H2

inf

Λ4

f2
−

1

2ðc − 3Þ
χosc=f

sinðχosc=fÞ
;

ð32Þ
where N� denotes the e-folding number at the horizon exit
and Hinf represents the Hubble parameter during inflation.
After some algebras, we can represent χ� in terms of χosc,

χ�¼
1

f

2
64arccot

0
B@exp

0
B@−

3fχosc cscðχoscf Þ
c−3 þ2Λ4N�

H2
inf

6f2

1
CAcot

�
fχosc
2

�1CA
3
75

þconstant: ð33Þ

In this calculation, the constant can be set to zero and the
maxima of χosc is around 0.08 based on the periodic
condition. It is worthwhile to plot their relation after
choosing suitable parameters in Planck units. Figure 3
clearly indicates that the maximal value of curvaton field is
approximately equal to 0.7 whose value is lighter than
Planck mass at the horizon exit. Compared with inflaton
field, it is a light field that makes its energy density
subdominant during inflation. Once their explicit relation
is found, we can find the formula of A corresponding to
pseudo-Nambu-Goldstone curvaton. Due to the complica-
tion of formula of A, all the formulas will be tackled by
Mathematica. Being armed with these formulas, we will
plot the nonlinearity parameter in various epochs including
second inflationary process, RD, and MD. Being different
by investigating chaotic curvaton, A is also a function of c
whose various values correspond to different periods. Due

to this parameter, we cannot vary with w to analyze the
nonlinearity parameter fNL. Finally, we only study the
individual case referring to specific w and c.
Case a.—w ¼ −1 and c ¼ 3
The explicit of fNL parameter is too complicated to

express due to the complication of A. Actually, most
curvaton models with various potentials cannot express
A explicitly since the relation between χosc and χ� is almost
not possible, which takes place by numerical methods as
shown in Refs. [40,41]. Once we have this knowledge and
meanwhile observe that w ¼ −1 and c ¼ 3, it will lead to
the divergence of the fNL parameter from Eq. (27). For a
better understanding of this case, the plot will be given. In
Fig. 4, we can clearly see that the fNL parameter varies with
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FIG. 3. The relation of χoscc and χ� according to their
explicit relation (33). During the whole range of χosc, the
corresponding maximal value of χ� is 0.7. The parameters are
set as N� ¼ 50, f ¼ 3.36 × 10−2, c ¼ 9=2 (MD as an instance),
Λ ¼ 3.56 × 10−4, and Hinf ¼ 10−5 as adopted in Ref. [40].
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FIG. 4. The horizontal line corresponds to rdecay whose range is
0⩽rdecay⩽1 including the whole possible value. The vertical line
denotes the value of equation of χosc locating from 0 to 0.08. The
right panel shows that the value of the fNL parameter matches its
corresponding color. The parameters are set the same as in Fig. 3.
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χosc and rdecay. The observational constraint gives the upper
limit whose value is less than 10. From Fig. 4, it is almost
impossible to find this value, in particular, as r < 0.3, fNL
parameter already exceeds the upper limit of the observa-
tional constraint. Additionally, there is also divergence as
χosc is between 0.018 and 0.03. The varying trend of the
fNL parameter will flip by crossing these divergent areas.
To sum up, the secondary inflation for curvaton will not
happen in light of our discussion.
Case a.—w ¼ 0 and c ¼ 9=2
In this case, axionic curvaton behaves like pressureless

matter. Its plot will also be gotten. Figure 5 clearly
indicates that most parameter spaces are satisfied with
observational constraints [9] especially for rdecay > 0.2.
The value of the fNL parameter will become negative as
0.067 ≤ χosc ≤ 0.075. If the observation can constrain the
sign of the fNL parameter, it will give a strong constraint of
our mechanism for curvaton. Comparing with Ref. [40],
our formula is not so highly depended on the field value of
χ, in which we replace χ� with χosc to investigate. In this
case, the upper limit rdecay is smaller as compared to chaotic
curvaton, which means that the fraction of curvaton among
the total energy could be less even in MD.
Case c.—w ¼ 1

3
, c ¼ 5

In this case, we will study the nonlinearity parameter in
RD. Generically, the trend of Fig. 6 is similar to Fig. 5. It
contains lots of parameter spaces satisfied with observa-
tional constraints. The difference comes for the upper limit
of rdecay, its value is even smaller whose range could reach
0.1, and the discussion is the same since one can consider
that curvaton is the production in MD as shown in our
previous work [44]. Another distinct place is that the sign
of the fNL parameter flips around 0.07 ≤ χosc ≤ 0.08.

In this section, we apply our extending fNL parameter to
different curvaton models. First, in light of this framework
[40], it is already known that the power spectrum does not
vary dramatically with the energy scale. According to this
point, we are only concerned with the nonlinearity param-
eter fNL. Our findings are the generic curvaton mechanism
that will not experience the second inflationary process,
although there is a tiny choice of parameter space for
chaotic curvaton. As for a pseudo-Nambu-Goldstone cur-
vaton, our findings show that no matter what curvaton
behaves as pressure or pressureless matter, most of the
parameter spaces satisfy with observational constraints [9].
The only differences are determined by their decay process,
and this point is illustrated in Ref. [41] identified with
comparison between tdecay and treheating.

IV. CONCLUSION

In this paper, we constructed a generalized δN formalism
consisting of merits of Refs. [39,40]. Our method deals
with curvaton models with generic potentials only requiring
sinusoidal oscillation; meanwhile, it can also handle
curvaton mechanism in various periods explicitly shown
by EOS w (secondary inflation, MD, RD) with correspond-
ing parameter c in Sec. II B. For achieving a successful
curvaton mechanism in different era, Refs. [32,47] pro-
posed the curvaton mechanism embedded into MSSM with
the consideration of thermalization, in which the effect of
thermalization could transfer the isocurvature perturbation
into curvature perturbation ensuring nearly scale invariant
power spectrum. From another perspective, Ref. [40]
analyzed the non-Gaussianity associated with the fNL
parameter. Although the method could work with different
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FIG. 5. The horizontal line corresponds to rdecay whose range is
0⩽rdecay⩽1 including the whole possible value. The vertical line
denotes the value of equation of χosc locating from 0 to 0.08. The
right panel shows that the value of the fNL parameter matches its
corresponding color. The parameters are set the same as in Fig. 3.
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corresponding color. The parameters are set the same as in Fig. 3.
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periods (MD, RD, etc.), the authors simply assumed that
the different epochs correspond to various values of c by
neglecting the contribution of the kinetic term. It is
unavoidable to wrongly estimate the precise contribution
of kinetic terms. In order to compensate this flaw, we
adopted the advantage of Ref. [39], directly associated with
EOS w, for investigation.
Once the key result for the nonlinearity parameter fNL

(27) was obtained, we implemented it into two curvaton
models. One is the chaotic curvaton and the other one the
Pseudo-Nambu-Goldstone curvaton. In light of the frame-
work of [41], we were only concerned with non-
Gaussianity identified with the fNL parameter since the
power spectrum is nearly scale invariant in various models.
In a traditional curvaton scenario, it behaves as pressless
matter with w ¼ 0. However, we are not capable of
distinguishing the period of occurrence of curvaton mecha-
nism from the observations. Thus, the curvaton mechanism
can be fulfilled in various periods, e.g., the curvaton
mechanism is achieved by the decay of inflaton field
[44] during the preheating period, in which it may be
realized in RD as inflaton practically decays. Furthermore,
the variants of δN formalism could proceed with various
epochs of curvaton mechanism [39–41]. Accordingly, we
discussed two specific curvaton models in distinct era.
For the chaotic curvaton, we investigate the fNL param-

eter. In the limit of rdecay → 1, f → − 5
4
nicely recovers the

analysis of Ref. [38] in case a of chaotic curvaton and the
fNL parameter will be divergent in the limit of rdecay → 0.
For case a, it indicates that the secondary inflationary
process is ruled out by observational constraints. However,
there will be occurrence of second inflationary process if
there is a transition from DE era to MD as shown in Fig. 2.

The original curvaton mechanism assumed that it was an
extra and independent field compared to inflaton field. One
possibility of accounting for its origin is pseudo-Nambu-
Goldstone curvaton. In this model, the value of the fNL
parameter shows the similar varying trend with chaotic
curvaton as shown in Figs. 4–6. Due to the complication ofA
as in Eq. (23), we could not transitw from one era to another
taking place by parameter c. These figures explicitly show
that most parameter spaces are satisfied with observational
constraints which determine the upper limit of rdecay > 0.1.
And the case a will be ruled out by these observations.
Finally, we emphasized on the further validity of our new

formula for the fNL parameter. For the traditional curvaton
mechanism, the curvaton corresponds to a pressureless
matter with w ¼ 0, and our formula nicely recovers the
classical result fNL ¼ −5=4 in the limit of rdecay ≈ 1. For its
validity in RD, the curvaton mechanism can be realized as
inflaton decay. As our previous discussions mentioned,
isocurvature perturbation can be transferred into curvature
perturbation by considering thermalization. This idea was
proposed in [48,50]. The inflaton coupling is not a constant
anymore; subsequently, it can translate into fluctuations in
the reheating temperature. As a result, our formula of
Eq. (27) can be naturally applied into the framework of
MSSM for curvaton model construction. Furthermore, we
can also implement our method to explore the non-
Gaussianity in MSSM curvaton model.
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