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Reaching the sufficient sensitivity to detect primordial B-modes requires modern CMB polarization
experiments to rely on new technologies, necessary for the deployment of arrays of thousands of detectors
with a broad frequency coverage and operating them for extended periods of time. This increased
complexity of experimental design unavoidably introduces new instrumental and systematic effects, which
in turn may impact performance of the new instruments. In this work we extend the standard data analysis
pipeline by including a (parametric) model of instrumental effects directly in the data model. We then
correct for them in the analysis, accounting for the additional uncertainty in the final results. We embed
these techniques within a general, end-to-end formalism for estimating the impact of the instrument and
foreground models on constraints on the amplitude of the primordial B-mode signal. We focus on the
parametric component separation approach which we generalize to allow for simultaneous estimation of
instrumental and foreground parameters. We demonstrate the framework by studying in detail the effects
induced by an achromatic half-wave plate (HWP), which lead to a frequency-dependent variation of the
instrument polarization angle, and experimental bandpasses which define observational frequency bands.
We assume a typical Stage-3 CMB polarization experiment, and show that maps recovered from raw data
collected at each frequency band will unavoidably be linear mixtures of theQ andU Stokes parameters. We
then derive a new generalized data model appropriate for such cases, and extend the component separation
approach to account for it. We find that some of the instrumental parameters, in particular those describing
the HWP, can be successfully constrained by the data themselves without need for external information,
while others, like bandpasses, need to be known with good precision in advance. We also show that if the
assumed model is an accurate description of the HWP and we have sufficient information about
bandpasses, our approach can successfully correct for these effects. In particular, we recover the tensor-to-
scalar ratio r down to the precision levels typical of Stage-3 experiments, which aim at setting a (1σ) upper
limit on r of ∼10−3 if r ¼ 0.

DOI: 10.1103/PhysRevD.103.063507

I. INTRODUCTION

Most of current and future cosmic microwave background
(CMB) experiments aim at detecting large scale primordial
B-modes and measuring the tensor-to-scalar ratio r as low as
r ∼ 0.001. This detection requires unprecedented instrumen-
tal sensitivity, calling for deployment of many thousands of
photon-noise limited detectors, along with new technologies
atmany stagesof thedetectionchain.This increasedcomplex-
ity will introduce new instrumental and systematic effects,
which will need to be characterized, accounted for and most
likely mitigated. Moreover, the B-modes signal is overshad-
owed by galactic polarised emission due to thermal dust
emission and synchrotron radiation. Separating sky compo-
nents and isolating theCMBsignal isoneof thekeychallenges
in the search for cosmological B-modes. This requires the
deployment of multifrequency experiments and multichroic
focal planes to take advantage of the fact that different sky
components do not have the same frequency scaling.

In this context, it is crucial to develop efficient tools for
processing next generation CMB polarization experiments
datasets, to ensure that these experiments achieve the
required performance. It is also essential to develop reliable
techniques for forecasting the performance of the future
experiments, so we can be better prepared for deployment
and data analysis.
CMB data analysis is a complex process composed of

many steps. One of its milestones is map-making, that aims
at reconstructing single frequency intensity and polariza-
tion maps from raw (time-domain) data collected by a
CMB instrument. Another one is component separation,
that aims at separating the CMB emission from that of
galactic foregrounds. Component separation methods pro-
posed to date, e.g., [1–5], typically use maps as produced
during the map-making as inputs, and component separa-
tion operations are performed in the pixel (or equivalently
harmonic) domain. However, many of the instrumental
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effects can be modeled reliably only in the raw data (time)
domain. In this work we therefore consider both steps, map-
making and component separation, which we extend by
including explicitly models of instrumental systematic
effects. We then attempt to correct for them as part of the
analysis process. For definiteness, we focus hereafter on a
pixel-based parametric component separation technique
[6,7] and implement the extensions within the previously
validated framework for parametric component separation,
XFORECAST [8,9]. In order to demonstrate this general
approach, we study in detail the interplay between HWP
frequency-dependent characteristics, frequency bandpasses,
and galactic foreground emission laws, and their impact on
the precision of the primordial B-modes detection.
Frequency-dependent, instrumental effects are par-

ticularly insidious for CMB polarization instruments as
they are likely to have significant impact on the component
separation procedure, potentially leading to large fore-
ground residuals left in the cleaned CMB map. This could
bias the derived constraints on the cosmological signal, in
particular the tensor-to-scalar ratio r that we seek to
measure. We note that while in our worked example we
showcase the proposed methodology in the context of
performance forecasting, the proposed approach is appli-
cable to actual analysis of the forthcoming CMB datasets.
We derive a new generalized time-domain data model

in Sec. II, where we also discuss its consequences for the
map-making procedure and its output. In Sec. III we
elaborate on the parametric component separation pro-
cedure and present the self-consistent, end-to-end frame-
work adapted to features of the new data model. We
validate and demonstrate the framework in the context
of performance forecasting in Sec. IV.

II. INSTRUMENTAL FRAMEWORK

The instrument we consider in this work is composed of
a continuously rotating multilayer half-wave plate and
sinuous antennas coupled to total power detectors, such
as transition edge sensors (TES) bolometers. In this section,
we detail mathematical models describing such an instru-
ment, and use them to derive a corresponding data model of
its measurements. We then discuss its consequences for the
map-making procedure.

A. Mueller matrix formalism

The Mueller matrix formalism is widely used to model
polarizers in general, and HWP in particular (see for
example [10–12]). Incoming light is described by the four
Stokes parameters:

I≡

0
BBB@

I

Q

U

V

1
CCCA ð1Þ

Mueller matrices are ð4 × 4Þ operators acting on Stokes
parameters and describing the impact of different stages of
the detection chain on the state of the incoming light.

1. Half-wave plate

A single-layer half-wave plate (HWP) is a retarder
made of a bi-refringent material that introduces a phase
shift of π between the input and output polariza-
tion states. However, this relationship is true only
for a given frequency (monochromatic light). In more
generic cases where the light is poly-chromatic, a
HWP introduces a phase δ between polarization com-
ponents, which depends on observing frequency. The
general Mueller matrix for a single-layer HWP can be
written as:

Mlayer ≡

0
BBB@

1 0 0 0

0 1 0 0

0 0 cos δ − sin δ

0 0 sin δ cos δ

1
CCCA; ð2Þ

where the phase shift δ is given by:

δ≡ 2πθhwpjno − nejν
c

; ð3Þ

where c refers to the usual speed of light in vacuum.
Through Eq. (3) defining δ, coefficients of the HWP
Mueller matrix depend on thickness of the bi-refringent
layer θhwp, optical indices of the ordinary and extraor-
dinary axes of bi-refringent material no and ne, and the
frequency of observation ν.
For typical CMB experiments observing in the milli-

meter range, achromatic HWP are made of several layers of
bi-refringent materials, such as sapphire [13]. Each layer
can be modeled as in Eq. (2).
In this work, we neglect reflections at the interface

between two stacked layers, as well as effects of slant
incidence angles. We thus model an achromatic HWP
as a perfect stack of layers, each layer being rotated with
respect to the reference frame of the instrument by an
angle αi:

MHWP ¼
Ynlayers
i¼1

Rð−2αiÞMlayer;iRð2αiÞ ð4Þ

where R is a rotation matrix.
For the HWP is continuously spinning around its axis,

we denote the rotation angle between its axis and the
reference frame of the instrument by φt (see Fig. 1), and we
have:

Mrotating HWP ¼ Rð−2φtÞMHWPRð2φtÞ: ð5Þ
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2. Sinuous antennas

The sky signal modulated by the HWP falls then onto an
antenna coupled to a detector pair. The antenna separates
the orthogonal polarization states of the incident light
which are then measured by the detectors. Several future
CMB experiments will deploy sinuous antennas, which
are broad frequency-band, but introduce a frequency-
dependent rotation of the polarization angle of the incident
light [14].
Following [14], we model a sinuous antenna as a usual

double-slot antenna (equivalent to a grid), rotated by a
frequency-dependent angle ην (see Figure 1), and write its
Mueller matrix:

Mantenna ¼ Rð−2ηνÞMgridRð2ηνÞ; ð6Þ

where [14]

ην½deg� ≃ 4.9 sin ð12 logðνÞ þ 4.7Þ ð7Þ

and

Mgrid ≡ 1

2

0
BBB@

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1
CCCA: ð8Þ

The complete Mueller matrix of this optics system can
therefore be written as:

Moptics ¼ MantennaRð−2φtÞMHWPRð2φtÞ: ð9Þ

This matrix is the transfer function of the optical system
in the Stokes parameter domain, applied to the incoming
light represented by the four Stokes parameters, Eq. (1). In
what follows, for definiteness, we assume that circular

polarization of the incident light is negligible and we set it
to zero, i.e., Vin ¼ 0. This is consistent with the expectation
that for the relevant cosmological, astrophysical, or atmos-
pheric signals, V is either zero or negligible [15,16].

B. Time domain data model

During observations, CMB telescopes scan the sky and
their orientation with respect to the sky changes. This
introduces a time-dependent rotation angle, ψ t, defining the
position of the instrument with respect to sky coordinates
(see Fig. 1), modifying the Mueller matrix:

Mtot ¼ MopticsRð2ψ tÞ: ð10Þ

1. Single layer HWP

In the simple case of a monochromatic single layer
rotating HWP with grid antenna, the Mueller matrix of the
optics system reads:

Moptics;mono ¼ MgridRð−2φtÞMlayerðδ ¼ πÞRð2φtÞ; ð11Þ

what is a special case of Eq. (9). Taking into account sky
rotation as in Eq. (10), the time domain data model for an
instrument pointing in the direction γ at time t, can be
written as:

mtðνÞ ¼ Iðγt; νÞ þ cosð4φt þ 2ψ tÞQðγt; νÞ
þ sinð4φt þ 2ψ tÞUðγt; νÞ þ nt: ð12Þ

This is the standard data model of a HWP-modulated
CMB measurement, as assumed in the standard map-
making procedure. While all three Stokes parameter maps
are mixed together in every single measurement, we can
separate them from each other owing to a different time
dependence of their respective coefficients: the signals
modulated in Eq. (12) as cosð4φt þ 2ψ tÞ are those of
the Q parameter, those modulated as sinð4φt þ 2ψ tÞ of U,
and the nonmodulated ones of the total intensity. This
separation is done during the map-making procedure which
thus produces three sky maps of I, Q, and U for each
frequency band.

2. Multilayer HWP

In a more general case of the multilayer HWP, the
detected signal can be expressed as:

mtðνÞ ¼ M00ðνÞIðγt; νÞ þM01ðν;φt;ψ tÞQðγt; νÞ
þM02ðν;φt;ψ tÞUðγt; νÞ þ nt ð13Þ

where M0i denotes the elements of the first row of Mtot,
Eq. (10). These elements can be represented as:

FIG. 1. Depiction of sky rotation angle, ψ t, defined as an angle
between the sky reference frame and the telescope reference
frame, and of HWP rotation φt and sinuous antenna ην angles,
both assumed to be measured with respect to the telescope
reference frame.
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M0iðφt;ψ t; ν; νÞ ¼
X
k¼0;4

C0i;kðνÞ cosðkφt þ 2ψ tÞ

þ
X
k¼0;4

S0i;kðνÞ sinðkφt þ 2ψ tÞ; ð14Þ

where we have introduced C0i;k (resp. S0i;k), the coeffi-
cients of the cosine (resp. sine) modulated terms, which are

linear combinations of elements of the Mueller matrix of
the system, M0i. They therefore depend explicitly on
instrumental, i.e., here HWP and sinuous antennas param-
eters, as well as observational frequency. We give explicit
expressions for these coefficients in Appendix A.
Combining Eqs. (13) and (14) we can rewrite the data

model by grouping together terms with the same time
dependence:

mtðνÞ≡ nt þM00ðνÞIðγt; νÞ
þ ½C01;0ðνÞQðγt; νÞ þ C02;0ðνÞUðγt; νÞ� × cos 2ψ t

þ ½S01;0ðνÞQðγt; νÞ þ S02;0ðνÞUðγt; νÞ� × sin 2ψ t

þ ½C01;4ðνÞQðγt; νÞ þ C02;4ðνÞUðγt; νÞ� × cosð4ϕt þ 2ψ tÞ
þ ½S01;4ðνÞQðγt; νÞ þ S02;4ðνÞUðγt; νÞ� × sinð4ϕt þ 2ψ tÞ: ð15Þ

This expression highlights the fact that in the case of a
multilayer HWP, Stokes parameters Q and U of the sky
signal are not simply modulated at cosð4φt þ 2ψ tÞ and
sinð4φt þ 2ψ tÞ, respectively. Instead, and in contrast to the
case of the simple polarized data model in Eq. (12), the
terms modulated in this way are composed of mixtures of
these two Stokes parameters. We refer to those signals
hereafter as mixed-Stokes single frequency signals. We also
note the presence of two extra terms which are modulated
by the sky angle only. Sky signals they correspond to
constitute two additional, independent combinations of the
Stokes Q and U parameters. As the coefficients C0i;k and
S0i;k, depend on instrumental parameters (see Appendix A)
so do the mixed-Stokes signals, which are therefore specific
to a given experiment.
As mentioned earlier, the map-making procedure enables

an estimation of the terms with different time dependence,
assuming that those dependencies are such that they are
linearly independent when limited to observations of a single
skypixel for every such apixel. If these conditions aremet, the
map-making procedure applied to the data model in Eq. (15)
could recover for each frequency channel a map of total
intensity accompanied by four maps composed of different
linear combinations of Stokes Q and U parameters. These
would be those maps which could and should be considered
as inputs to the next data processing stages and specifically
that of the component separation. We explore some of the
consequences of this fact in the remainder of this article.
One important implication of the more involved data

model in Eq. (15) is that solving the complete map-making
problem in this case will in general require sufficient
redundancy in observations of every sky pixel, with a
number of different HWP as well as sky rotation angles.
This can have important impact on scan designs of the
future CMB experiments.

In our case we will however assume a perfectly
uniform sky coverage, both in terms of the number
of observations of each pixel, as well as distributions of
the HWP and sky angles. With these assumptions the
map-making problem for the data model in Eq. (15) is
not only solvable, but results in estimates of the five
sky signals which have mutually uncorrelated noise.
Assuming furthermore that the instrumental noise is
white, the RMS of the noise in the four mixed-Stokes
maps and one total intensity is the same as in the
standard case, i.e.,

σRMSðPOLÞ ¼ σRMSðINTÞ
ffiffiffi
2

p
∝

ffiffiffiffiffiffiffiffi
2

nhits

s
ð16Þ

In the following, we use these estimates as reflecting the
noise levels in our mixed-Stokes maps.
For shortness, hereafter we denote the four mixed-Stokes

signals as C0, S0, C4, S4, and introduce an effective
intensity signal, Iðγt; νÞ≡M00Iðγt; νÞ, rewriting our data
model as:

mtðνÞ≡ Iðγt; νÞ
þ C0ðγt; νÞ cosð2ψ tÞ
þ S0ðγt; νÞ sinð2ψ tÞ
þ C4ðγt; νÞ cosð4ϕt þ 2ψ tÞ
þ S4ðγt; νÞ sinð4ϕt þ 2ψ tÞ
þ nt: ð17Þ

These mixed Stokes components are related to standard
Stokes components, see Eq. (15), via a linear transforma-
tion given by:

VERGÈS, ERRARD, and STOMPOR PHYS. REV. D 103, 063507 (2021)

063507-4



0
BBBBBB@

Iðγt; νÞ
C0ðγt; νÞ
S0ðγt; νÞ
C4ðγt; νÞ
S4ðγt; νÞ

1
CCCCCCA ¼

2
6666664

M00ðνÞ 0 0

0 C01;0ðνÞ C02;0ðνÞ
0 S01;0ðνÞ S02;0ðνÞ
0 C01;4ðνÞ C02;4ðνÞ
0 S01;4ðνÞ S02;4ðνÞ

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡MðνÞ

×

0
B@ Iðγt; νÞ

Qðγt; νÞ
Uðγt; νÞ

1
CA; ð18Þ

where the transformation matrix, MðνÞ, depends on instru-
mental parameters. We conclude therefore that the map-
making procedure could render estimates of pure Q and U
Stokes parameters only if the true values of the relevant
instrumental parameters are known.
Lastly, we note that the fact that the mixed Stokes signals

are combinations of only Stokes Q and U parameters is not
universal. Indeed, this is, for instance, not the case when-
ever I-to-P leakage is present. The formalism presented
hereafter can be straightforwardly extended to include
such cases.

3. Bandpasses

The actual CMB experiments detect the incoming
signal integrated over some frequency bands rather than
the monochromatic one. The frequency bands are centered
at desired frequencies, νc, and are defined by the instru-
mental response functions referred to hereafter as band-
passes. These are denoted as Bðν; νcÞ. To account for
their effects we need to introduce bandpass-averaged
quantities, which we distinguish with a bar over a symbol
and defined as:

X̄ðνcÞ≡
R
dνBðν; νcÞXðνÞkðνÞR

dνBðνÞkðνÞ ; ð19Þ

where k is a conversion factor which reconciles the units
used for the data, X, and the bandpasses, B.
We can then rewrite the data model in Eq. (17) using the

bandpass averaged objects as:

m̄tðνcÞ≡ Īðγt; νcÞ
þ C̄0ðγt; νcÞ cosð2ψ tÞ
þ S̄0ðγt; νcÞ sinð2ψ tÞ
þ C̄4ðγt; νcÞ cosð4ϕt þ 2ψ tÞ
þ S̄4ðγt; νcÞ sinð4ϕt þ 2ψ tÞ
þ n̄t: ð20Þ

The map-making codes can be used assuming this data
model in the same way as in the monochromatic case

however they will now produce bandpass-averaged maps of
mixed-Stokes and effective total intensity.
We further note that going from these maps to the maps

of pure Stokes parameters for each frequency band is not
possible once the bandpasses are explicitly included. This
is because the integration over the bandpasses does not
preserve the matrix form of Eq. (18) as the pure Stokes
signals, Iðγt; νÞ, Qðγt; νÞ, Uðγt; νÞ, are integrated over the
frequency together with the corresponding elements of
the matrixMðνÞ. Consequently, the mixed-Stokes maps are
the only available objects at the end of the map-making
even if the instrumental parameters were perfectly known.
This does not however prevent us from recovering pure
Stokes parameters of maps of components of a different
physical origin. We discuss this in the following.

C. Multi-component data model

The polarized sky signal as measured at different
frequencies and characterized by three Stokes parameters,
I, Q, U, is really a mixture of the genuine CMB signal and
polarized galactic foregrounds. The two most important
polarized foregrounds are polarized thermal dust emission
and synchrotron radiation. Separating the measured signals
into signals of the sky components is the goal of component
separation procedures. Those typically are performed in the
pixel domain and use maps produced on the map-making
step as inputs. In this section we derive a data model for the
mixed-Stokes maps, Eq. (20), which in the discussed case
constitute the output of the map-making procedure and
therefore the input of the component separation.

1. Sky components

We model foregrounds by a sky template at a reference
frequency ν0, scaled to the observation frequency ν using
foregrounds emission models. The effective signal as
measured at each frequency is a mixture of these three
major sky components (CMB, dust, and synchrotron),
which is described by a mixing matrix A containing the
scaling laws for each sky component at each frequency. The
scaling laws we assume in this work are fairly standard,
e.g., [9], and in the μKRJ units they are given by:

Asyncðν; ν0Þ ¼
�
ν

ν0

�
βs ð21Þ

where βs is the synchrotron spectral index, and

Adustðν; ν0Þ ¼
�
ν

ν0

�
βdþ1 exp hν0

kTd
− 1

exp hν
kTd

− 1
ð22Þ

where βd is the dust spectral index and Td is the dust
temperature.
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The CMB follows a known black body emission spec-
trum, with TCMB ¼ 2.7255K, leading to the assumption
that ACMBðν; ν0Þ ¼ 1 in μKCMB units.
For a given observed frequency ν, the sky signal can be

modeled as:0
B@ IðνÞ

QðνÞ
UðνÞ

1
CA ¼

X
comp¼cmb
dust;sync

Acompðν; ν0Þ

0
B@

Icompðν0Þ
Qcompðν0Þ
Ucompðν0Þ

1
CA; ð23Þ

with Acomp a diagonal matrix scaling each component
template to the desired frequency, ν. The latter, as presented

here, are in μKRJ, but for simplicity, we generate maps
at all frequencies and for all components in μKCMB
units, as are the recovered maps of the CMB and
foreground signals. A conversion factor is then taken
into account so that units are handled consistently
throughout the process.

2. Multicomponent sky model

To derive a complete multicomponent model of the
mixed-Stokes maps, we first introduce explicitly the
different sky components in the model in Eq. (18)
using Eq. (23):

0
BBBBBB@

Iðγt; νÞ
C0ðγt; νÞ
S0ðγt; νÞ
C4ðγt; νÞ
S4ðγt; νÞ

1
CCCCCCA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡sðγt;νÞ

≡ X
comp¼cmb
dust;sync

2
6666664

M00;cos0ðνÞ 0 0

0 C01;0ðνÞ C02;0ðνÞ
0 S01;0ðνÞ S02;0ðνÞ
0 C01;4ðνÞ C02;4ðνÞ
0 S01;4ðνÞ S02;4ðνÞ

3
7777775A

compðν; ν0Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Acompðν;ν0Þ

0
B@

Icompðγt; ν0Þ
Qcompðγt; ν0Þ
Ucompðγt; ν0Þ

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡ccompðγt;ν0Þ

: ð24Þ

We then average both sides of this equation over the bandpasses using the prescription in Eq. (19), and define component-
specific, bandpass-integrated matrices, Ā as:

Ācompðνc; ν0Þ≡
R
dνMðνÞBðν; νcÞAcompðν; ν0ÞkðνÞR

dνBðνÞkðνÞ ; ð25Þ

where we assumed that the bandpass center frequency is νc.
We can now finally write our multicomponent, bandpass-integrated data model for the mixed-Stokes maps as:

s̄ðγt; νc; ν0Þ ¼ ½ Ācmbðνc; ν0Þ; Ādustðνc; ν0Þ; Āsyncðνc; ν0Þ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Āðνc;ν0Þ

0
B@ ccmbðγt; ν0Þ

cdustðγt; ν0Þ
csyncðγt; ν0Þ

1
CA

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡cðγt;ν0Þ

¼ Āðνc; ν0Þcðγt; ν0Þ: ð26Þ

We point out that while this equation is more involved
than the usual relation between the standard observables
(i.e., single frequency maps of each Stokes parameter) and
the underlying components, Eq. (23), the relation in both
these cases is linear as far as sky component amplitudes
are concerned. However the system (mixing) matrix in the
mixed-Stokes case depends on both foreground spectral
parameters as well as instrumental parameters.
We explore consequences of these two observations in

the follow-up sections.

III. COMPONENT SEPARATION

In this section, we follow the formalism of [8], adapting
their procedure to account for mixed Stokes components to

include instrumental parameters (HWP, sinuous antenna,
bandpasses). We first elaborate the mixed component maps
data model (III A), and subsequently discuss component
separation and estimation of foreground and hardware
parameters from these mixed-Stokes maps (III B). With
the estimated parameters, we reconstruct the sky signal and
estimate residuals (III C), as well as noise after component
separation (III D). Finally, we evaluate the impact of the
studied effects on cosmological parameters (III E).

A. Data model

Following Eq. (26) and as shown in Fig. 2, we collect
together all single-frequency mixed-Stokes maps, and we
can write our data model for the entire multifrequency
dataset:

VERGÈS, ERRARD, and STOMPOR PHYS. REV. D 103, 063507 (2021)

063507-6



m̄ ¼ s̄þ n̄≡ Ācþ n̄; ð27Þ

Here the combined data vector m̄ includes all the bandpass-
integrated mixed-Stokes maps, C̄0, C̄4, S̄0, S̄4, as mea-
sured for all frequency bands which are all concatenated
together in a single data vector. From now on, we focus
only on the polarization and exclude total intensity from
our consideration. While this is not the most general case,
the generalization to all three Stokes parameters is straight-
forward. s̄ is the noiseless signal in the all mixed-Stokes
maps recovered at all frequencies, and Ā is a generalized,
multifrequency mixing matrix. It is composed of single
channel matrices, Āðνc; ν0Þ defined in Eq. (26), put on top
of each other. n̄ denotes the actual noise present in all
the mixed-Stokes maps as derived by the map-making
procedure.
To improve readability, as we always integrate over

bandpass hereafter, we drop the bar that indicates bandpass
integration in the follow-up.
For a given pixel p, we have:

mp ¼ sp þ np ≡Apðβf; βhÞcp þ np ð28Þ

where βf refers to foregrounds spectral parameters and βh
to hardware parameters. Whereas βf parameters apply to a
specific component (dust or synchrotron) and can vary
between sky pixels, βh are typically global parameters,
applied to all pixels and all sky components—including
CMB. For simplicity, we hereafter assume that the fore-
ground parameters βf that we fit for are not pixel-dependent
(we consider a single set of βf for the entire observed sky).
The generalization of the proposed formalism to pixel-
dependent foreground parameters is possible following the
steps already outlined in [9].
We also note that the proposed formalism can be

extended to allow for the variability of some of the detector
properties across the detector arrays thus permitting to
study their impact on the experiment performance. Such
arrays are envisaged for the future generation of the
CMB experiments, making this feature of the framework
very timely. We leave detailed investigation of such
issues to future work and in the following we give an
example of the impact of a mismatch between the param-
eters used for generating the data and those assumed in their
modeling in the case of bandpasses. The mismatch could
arise in practice as a difference between effective bandpass

parameters resulting from averaging data of many detectors
and a single set of idealized parameters assumed in the
reconstruction.

B. Parameter estimation

The generalized data model, although more involved
than the standard model assumed by component separation
methods, retains all the essential features of the latter and
most of the existing component separation procedures can
be adapted to account for the extensions. In this work, we
focus on the parametric component separation technique as
a method of choice for the component separation and in
particular its two step implementation as proposed in [7]
and elaborated on in [8,9,17]. We discuss below essential
ingredients of the method, emphasising the new features
due to the specificity of the new data model.

1. Ensemble average likelihood

For the data model in Eq. (28), we write an effective
spectral likelihood [7]. This is obtained by replacing the
standard mixing matrix A (see, e.g., Eq. (6) of [8]) by the
generalized mixing matrix, A. This generalized log-like-
lihood reads therefore as:

S ¼ −
X
p

ðAt
pN−1

p mpÞtðAt
pN−1

p ApÞ−1At
pN−1

p mp ð29Þ

where Np is the noise covariance matrix. A key difference
with the standard case is that now the mixing matrix, A,
depends on both foreground and instrumental parameters.
While ideally the latter are known with sufficient precision
from an instrument calibration campaign, this is hardly the
case for most of the parameters of interest. Here, we
therefore aim at determining both these sets of parameters,
i.e., βf and βh, from the available dataset via the maximi-
zation of the spectral likelihood. Clearly, this may not be
always possible and some external information may be
required or beneficial, as detailed in Secs. III B 2 and
IV B 3 b. This procedure can be applied to any specific
input dataset, thus providing a basis for actual data
processing framework. In the context of performance
forecasting we are interested in quantities averaged over
statistical ensembles of the possible input datasets. In view
of this, we derive the ensemble-averaged version of the
likelihood in Eq. (29) [8]:

hSi ¼ −tr
X
p

fðN−1
p − PpÞðhspstpi þNpÞg; ð30Þ

where Pp is the projection operator defined as:

Pp ≡ N−1
p − N−1

p ApðAp
tN−1

p AÞ−1p At
pN−1

p : ð31Þ

The single-pixel data covariance matrix in Eq. (30), hspstpi,
reflects the properties of what we assume to be the true sky.

FIG. 2. Data model with generalized mixing matrix, Eq. (26).
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Unlike in the case studied in [8] it has to now explicitly
account for the presence of the CMB contribution. This is
due to the fact that instrumental parameters can, and do,
affect the frequency scaling of the CMB signal. In order to
calculate the covariance we splitAp and cp into their CMB
and foregrounds parts:

cp ≡
� ccmb

p

cfgp

�
ð32Þ

A ¼ ½Acmb
p ;Afg

p �; ð33Þ

and we split the single-pixel data covariance matrix into its
CMB and foregrounds contributions accordingly:

hspstpi ¼ Acmb
p hccmb

p ccmb;t
p iAcmb;t

p þAfg
p c

fg
p c

fg;t
p Afg;t

p :

ð34Þ

The foregrounds contribution (the second term) is easy to
compute as we consider foregrounds as a fixed template
independent on the realization. This is not the case for the
CMB contribution though, and in principle the average in
the first term of the above equation should include the
pixel-pixel correlations. However, if we assume that neither
the pointing matrices, Ap, nor the noise matrices, Np, are
pixel-dependent and that the noise is white, we do not need
the full multipixel covariance matrix for the CMB but only
its single pixel version. Considering the two polarization
states Q and U,

ccmb
p ≡ ½ccmb

p;Q; c
cmb
p;U �; ð35Þ

the single-pixel covariance of the CMB signal is a 2-by-2
matrix, Ŝcmb ≡ hccmb

p ccmb;t
p i, given by:

Ŝcmb ≡
"
σ2QQ σ2QU

σ2UQ σ2UU

#
; ð36Þ

and can be straightforwardly calculated for any standard
theoretical model.
We can write the total ensemble average likelihood

explicitly as:

S ¼ −trfnpixðN−1 − PÞðFþNþAcmbŜcmbAcmb;tÞg;
ð37Þ

where:

F≡ 1

npix
Afg

X
p

cfgp c
fg;t
p Afg;t: ð38Þ

The total ensemble average likelihood therefore takes into
account average over noise realizations through the noise

covariance matrix N, and over CMB realizations through
the single-pixel, CMB covariance matrix Ŝcmb. In what
follows, we use the expression Eq. (37) for the spectral
likelihood, and therefore keep the assumption thatA andN
are sky pixel independent.

2. Priors on instrumental parameters

As mentioned earlier we expect that not all instrumental
parameters can be constrained using the observed data with
sufficient precision. Whenever this is the case, we may
need to introduce calibration priors on some instrumental
parameters either to break degeneracies in the system and/
or to ensure a tolerable level of residuals. Where appro-
priate, we add Gaussian priors to the ensemble average
spectral likelihood as:

S0 ¼ S þ
X
βh

1

2σ2βh
ðβh − β̃hÞ2; ð39Þ

where S is the likelihood of Eq. (37) and σβh is the
calibration error on parameter βh. We assume the calibra-
tion measurement to be unbiased with a 1σ error given by
σβh . Its best fit value will be typically different than the true
value of the parameter, denoted with β̃h, but should be
within the estimated uncertainty from it, σ2βh . Our prior in
Eq. (39) is assumed to be averaged over an ensemble of
calibration procedures. Consequently, it is centered at the
true value of the parameter and its uncertainty is larger by a
factor of 2 (in quadrature) than that of a single calibration
result.

3. Statistical error

In this approach, the maximum-likelihood values
obtained by minimizing Eq. (39) are average values, and
we can compute the matrix of second derivatives at the peak
of the likelihood—the Hessian matrix H:

Hββ0 ≡
� ∂2S0

∂β∂β0
				
peak



cmbþnoise

; ð40Þ

where we do not assume that the peak of the likelihood
corresponds to true values of parameters ðβ̃f; β̃hÞ. The
Hessian measures the curvature of the likelihood at its peak,
and is directly related to the uncertainty due to instrumental
noise and the CMB:

Σ ≃H−1: ð41Þ

This statistical error matrix Σ can be computed analytically
following Eq. (A5) in [8].
If the assumed mixing matrix Aðβf; βhÞ corresponds to

the true A for a given set of parameters ðβf; βhÞ derived
from the minimization of the spectral likelihood, the
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statistical uncertainty on the estimated parameters
expressed by Σ will be the only source of residuals in
the cleaned CMB map. Following [8] we refer to those as
statistical residuals. These increase the error on the esti-
mated cosmological parameters but do not bias their
estimated values [17]. However, if the assumed and true
mixing matrices do not match in average, there will be
systematic differences between the estimated and true sky
components leading to systematic residuals in the cleaned
CMB map and therefore potentially to biases in the
estimated values of cosmological parameters [8].
In the next section, we derive the expression of both

systematic and statistical residuals for the case of the
generalized data model.

C. Residuals

Given a set of ðβf; βhÞ parameters, we can compute
the corresponding mixing matrix A, and reconstruct the
estimation of the noiseless component maps ĉ [6]:

ĉp ¼ ðAtN−1AÞ−1AtN−1sp ≡Wðβf; βhÞsp; ð42Þ

where we recall that s is the noiseless sky signal. The
noiseless residuals are defined as the difference between the
reconstructed map and the true signal:

rp ≡ ĉp − cp ¼ Wðβf; βhÞsp − cp: ð43Þ

We consider two main contributions to the residuals:
(1) statistical residuals, reflecting the statistical scatter
due to the instrumental noise and CMB realizations; and
(2) systematic residuals, reflecting the systematic (aver-
aged) differences between the true sky and the best-fit of
the assumed model. Rewriting Eq. (43) for the CMB
channel only, we have:

rCMB
p ðβf; βhÞ ¼ W0ðβf; βhÞFp|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

foregrounds residuals

þW0ðβf; βhÞCp − ccmb
p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CMB residuals

; ð44Þ

where the index 0 denotes the CMB part of theW operator,
and Fp (resp. Cp) is the total foreground (resp. CMB)
contribution at each frequency, gathering contribution from
all mixed Stokes parameters (C0;S0;C4;S4) defined in
Eq. (20). Whenever elements of the mixing matrix corre-
sponding to the CMB component are assumed to be known,
as it was the case in the original application of this
framework [8,9], the second term in Eq. (44) vanishes
and the recovered CMB map contains always all the CMB
signal and is merely contaminated by the foreground
residuals. However, this term has to be taken into account

in the present case as the instrumental effects may change
the way the CMB amplitude varies between frequency
bands. Here we therefore generalize the derivation of [8]
explicitly accounting for this term.
We can rewrite the CMB contribution of Eq. (44) as:

W0C − ccmb ¼ W0Acmbccmb − ccmb

¼ ðW0Acmb − 1Þccmb: ð45Þ

This simplifies the estimation of the CMB contribution in
the residuals, that can be computed using the simplified
procedure described in Appendix D of [8].
We perform a Taylor expansion of Eq. (44) around the

estimated best fit values for β ¼ fβh; βfg, denoted β̂:

rCMB
p ðβÞ ≃W0

pðβ̂ÞðFp þCpÞ

þ
X

β
δβ

∂W0
p

∂β
				
β̂

ðFp þCpÞ

þ
X

β;β0
δβδβ0

∂2W0
p

∂β∂β0
				
β̂

ðFp þ CpÞ

− ccmb
p ; ð46Þ

with δβ≡ β − β̃.
We introduce new quantities in pixel-domain as in [8]:

yp ≡W0
pðβ̂ÞðFp þ CpÞ − ccmb

p

Yð1Þ
p;β ≡

X
β

∂W0
p

∂β
				
β̂

ðFp þCpÞ

Yð2Þ
p;ββ0 ≡

X
β;β0

∂2W0
p

∂β∂β0
				
β̂

ðFp þ CpÞ; ð47Þ

so that we can rewrite Eq. (46):

rCMB
p ðβÞ ≃ yp þ

X
β

δβYð1Þ
p;β þ

X
β;β0

δβδβ0Yð2Þ
p;ββ0 : ð48Þ

We fit for a single value of every β for all considered pixels
and can rewrite the same equation in the harmonic domain
and express the total level of foreground residuals as:

Cresl ≡ ⊗l ðrCMB; rCMBÞ ð49Þ

≃ ⊗l ðy; yÞþ ⊗l ðy; zÞþ ⊗l ðz; yÞ
þ tr½Σ ⊗l ðYð1Þ;Yð1ÞÞ� ð50Þ

where the symbol ⊗ denotes the cross-spectrum of two
quantities averaged over statistical ensemble of the
CMB realizations. We note that in the case studied in
[8] this average was trivial as there was no CMB
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contribution to the residuals and therefore usually omitted.
z is defined as:

zp ≡ tr½Yð2Þ
p Σ�: ð51Þ

As outlined previously, residuals are composed of two main
contributions, statistical and systematic residuals, as well as
a cross-term:

Csystl ≡ ⊗l ðy; yÞ ð52Þ

Cstatl ≡ tr½Σ ⊗l ðYð1Þ;Yð1ÞÞ�: ð53Þ

Ccrossl ≡ ⊗l ðy; zÞþ ⊗l ðz; yÞ: ð54Þ

We can also write the full covariance matrix of the CMB
map, c̃cmbð≡cþ rCMB þ nÞ, as recovered via the compo-
nent separation procedure described here. It reads:

E≡ hc̃cmbc̃cmbicmbþnoise ¼ Ccmb þNþ hyy†icmb

þ hzy†icmb þ hyz†icmb þ hYð1ÞΣYð1Þ;†icmb; ð55Þ

where Ccmb denotes the covariance of the CMB signal, N
that of the noise in the recovered map, and the angle
brackets denote averaging over statistical ensemble as
defined by the subscript.

D. Noise

We assume that the noise is homogeneous and uncorre-
lated for all frequency channels, and given that we have one
value of all parameters β for the entire sky patch we can
express the noise power spectrum in the cleaned CMB map
as in Eq. (32) of [8]:

Cnoisel ¼ ½ðAtN−1
l AÞ−1�CMB×CMB ð56Þ

with Nl describing the noise spectra of each frequency
map, taking its resolution into account:

Nij
l ≡ ðwiÞ−1 exp

�
lðlþ 1Þ FWHM2

i

8 log 2

�
δji ð57Þ

with ðwiÞ−1=2 the sensitivity, and FWHMi the full-width
half maximum of the corresponding frequency band i.

E. Cosmological likelihood

Following Appendix C2 in [8], we write the cosmologi-
cal parameter likelihood, averaged over instrumental noise
and CMB signal realizations:

hScosi≡ trC−1Eþ ln detC ð58Þ

where C is the assumed multipixel covariance of the
cleaned CMB signal, and E is the multipixel correlation

matrix of the CMB map retrieved with the component
separation procedure as defined in Eq. (55). Consequently,
E takes into account the presence of the residuals,
Eqs. (52), (53), and (54), and all which can be computed
semianalytically given the actual model of the data.
The assumed covariance C expresses the state of our

knowledge about the data. Ideally, we would wish that
C ¼ E, however in practice this is rarely the case. In the
following we will consider two cases. In the first case, the
assumed covariance is that of the CMB signal only, thus
ignoring entirely the effects of the component separation.
We have therefore:

C ¼ Ccmb þ N: ð59Þ

In the second case we assume that the statistical errors can
be modelled on some level. Specifically, we assume that:

C ¼ Ccmb þCstat þN; ð60Þ

where Cstat is the covariance matrix of the statistical
residuals Cstat

l defined in Eq. (53). We note that sufficient
information allowing for effective modeling of the stat-
istical residuals may be indeed available either internally, in
some self-consistent statistical approaches, e.g., [5,7], or
using some external data, e.g., [18]. Hereafter, we refer to
this second case as the deprojection case. Detailed expres-
sions are given in Appendix C.

IV. APPLICATION

In this section, we first introduce the instrumental
configuration and parametrization that we adopt in this
work (IVA), then we present various sets of parameters that
we consider and discuss uncertainties and degeneracies on
parameters in these various cases (IV B). From these, we
can finally estimate foreground residuals and forecast their
impact on tensor-to-scalar ratio determination (IV C).

A. Configuration

The framework presented here is very flexible and could
be adapted to a broad range of experiment designs with
different instrument models. For definiteness, we demon-
strate it in the case of a typical, ground-based, Stage 3 CMB
polarization experiment. The configuration and parameters
we use are motivated by the publicly available Simons
Observatory Small Aperture Telescopes design [19].

1. Telescopes and frequency bands

As outlined in the Introduction, to enable for component
separation, modern CMB polarization experiments typi-
cally deploy several instruments to trace foregrounds at
different frequencies, so that we can disentangle them
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from the black body CMB signal. In several ground-based
experiments, these frequency bands are grouped by two
on the same focal plane, hence the use of an achromatic
HWP that has to accommodate two different observing
frequencies in the same optics tube. Following the Simons
Observatory configuration [19], we consider three tele-
scopes, whose frequency coverage is as follows:

(i) Low frequency (LF) telescope: frequency bands
centered at 27 GHz and 39 GHz;

(ii) Mid frequency (MF) telescope: frequency bands
centered at 93 GHz and 145 GHz;

(iii) Ultra-high frequency (UHF) telescope: frequency
bands centered at 225 GHz and 280 GHz.

We model input noise covariance matrices in the pixel
domain as

Nii
p ¼ w−1

i ; ð61Þ

with w−1
i the sensitivity of the corresponding frequency

band i. We use the publicly available sensitivity calculator
[20] to compute realistic instrumental sensitivities corre-
sponding to the frequency coverage.

2. HWP

For each telescope (LF, MF, UHF), we consider a typical
3-layer achromatic HWP, for which only the central layer is
rotated with respect to the reference frame of the instru-
ment, i.e., α1 ¼ α3 ¼ 0, as for example in [21]. This typical
choice of angle is driven by the maximization of trans-
mitted power and is known as Pancharatnam design [13].
This could be straightforwardly generalized to other cases,
for example for an HWP with more than 3 layers, as
proposed for the LiteBIRD mission which will deploy a
9 layers on its low-frequency telescope [11,22].
The Mueller matrix of the 3-layer HWP that we consider

can therefore be written as:

MHWP ¼ MlayerRð−2α2ÞMlayerRð2α2ÞMlayer; ð62Þ

with Mlayer defined as in Eq. (2). The Mueller matrix of a
single layer is parametrized by δ, Eq. (3). As already
pointed out in Sec. II A 1, once the birefringent material is
chosen, δ depends on observing frequency, ν, and thickness
of each layer, θhwp. For a given HWP, we assume all layers
to be identical, and parametrize Mlayer with only its thick-
ness θhwp.
Based on existing optimized parameters [23] and pro-

posed designs [10,19,21], we choose the following nominal
values for HWP parameters:

(i) θhwpðLFÞ ¼ 14.36 mm
(ii) θhwpðMFÞ ¼ 3.8 mm
(iii) θhwpðUHFÞ ¼ 1.86 mm
(iv) α2 ¼ 58°

We note here that θhwp is different for each telescope since
the thickness is adapted to the frequency range of obser-
vation, when α2 is in principle the same. However, to
account for possible fabrication and/or calibration
differences between HWP, we allow α2 to vary for each
of the telescopes when fitting for parameters (although they
have the same nominal value).
Details of μij, the coefficients of the HWP Mueller

matrix, MHWP, as functions of α2 and θhwp can be found in
Appendix B.

3. Bandpasses

We parametrize each bandpass by two parameters: its
center ν0 and its half-width Δν. For the mock data we
assume the standard 30% bandpass bandwidths for all
frequency bands and therefore set Δν ¼ 0.15 × ν0. In the
model, we allow ν0 and Δν to vary independently.
We model the bandpass as a top-hat function with

smoothed edges as shown in Fig. 3. The analytic expression
of the bandpass BðνÞ as a function of ν0 and Δν is

BðνÞ ¼ exp

�
−
�jν − ν0j

Δν

�
20
�
: ð63Þ

Realistic parametric modeling of bandpass can be complex
because true bandpasses are never as regular as the one
shown in Fig. 3, see, e.g., [24]. The idealized model in
Eq. (63) is however convenient as it permits studying the
impact on the results of the two main bandpasses character-
istics: the band center and its width.
Concurrently, we also explore the effects of potential

deviations from this simplified bandpass form. This
can reflect more complex intrinsic shape of the realistic

FIG. 3. Ideal and varying bandpass model for the 27 GHz
channel, for a ¼ 0.05 and different b values following Eq. (64).
We first use the ideal bandpass in both data and model, and we
then introduce a varying bandpass in data only, to study the
impact of this mismatch on systematic residuals, as detailed in
Sec. IV D 2.
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bandpasses but also can be due to detector-to-detector
variations. To this end we propose a toy-model given by:

B0ðνÞ ¼ BðνÞ × ½1 − a × sin ðb × 2πνÞ�; ð64Þ

and which includes deviations from the idealized, “aver-
age,” form in Eq. (63). An example of such bandpasses is
shown in Fig. 3.
In the following, we first use the simplified bandpass

model, BðνÞ, in both the input data and the model, to assess
the impact of uncertainty in the bandpass position and
width on component separation. Subsequently, we use the
more complex form, B0ðνÞ, to generate input data, but we
continue fitting the simple model of Eq. (63) to the data,
thus neglecting the presence of the small-scale features in
the bandpasses, which are left unmodeled. As pointed
out in Sec. III C, a mismatch between the data and the fitted
model will typically result in systematic residuals in
reconstructed maps. As mentioned earlier such a mismatch
could arise due to detector-to-detector variability of the
bandpasses. We therefore explore the impact on systematic
residuals level and cosmological parameters of various
a and b values in Sec. IV D 2, trying to understand what
level of unmodeled deviations, in terms of their scale or
their amplitude, can be tolerated and at what point they
need to be modeled (or measured in advance).

4. Summary of instrumental parameters

Table I summarizes the hardware parameters that we
consider in this model and their nominal values, used to
generate the input data. We recall here that all parameters
are independent and can in principle all vary when we
minimize the likelihood of Eq. (39).
In contrast, while we include in our data models

parameters describing sinuous antennas, Sec. II A 2, those
are fixed throughout this analysis. Similarly, although
beam modeling and beam systematics could also be
investigated within this framework, we leave this for future
work and do not assume any beam smoothing of input
maps. Note that beam smoothing is taken into account in
the harmonic domain when we estimate noise after com-
ponent separation in Eq. (57). Again, beam sizes that we
adopt here correspond roughly to the Simons Observatory
Small Aperture Telescopes ones [19].

5. Input sky

We use the PYSM package [25] to generate foregrounds,
and the HEALPY package [26,27] to generate CMB maps
from fiducial CMB power spectra. We choose the following
reference frequencies for the foregrounds templates:

ν0;sync ¼ 70 GHz; ν0;dust ¼ 353 GHz ð65Þ

We fix the dust temperature at T ¼ 19.6 K and for spectral
indices we consider the nominal values:

βd ¼ 1.59; βs ¼ −3.1: ð66Þ

We take constant foreground parameters across the sky,
although the effect of varying spectral parameters could be
included within our framework. For details we refer the
reader to [9].

PYSM uses the HEALPY wrapper of the HEALPix pixeliza-
tion scheme [26,28], and we use nside ¼ 256 throughout
this work. We use a mask corresponding to 10% of the sky.
When it comes to power spectrum reconstruction, we
therefore consider multipoles from l ¼ 30 to l ∼ 500,
given the limitation by the mask at low l, and by the pixel
size at high l.
We consider two cosmological parameters, the tensor-to-

scalar ration r which sets the amplitude of primordial B
modes:

CBB
l;primordial ¼ r × CBB

l;primordialðr ¼ 1Þ; ð67Þ

and the lensing parameter which sets the delensing ampli-
tude (AL ¼ 1 corresponds to no delensing and AL ¼ 0
corresponds to full delensing):

CBB
l;lensing ¼ AL × CBB

l;lensingðAL ¼ 1Þ: ð68Þ

We choose

r ¼ 0; AL ¼ 1; ð69Þ

as our reference case but also explore other cases in
Sec. IV D.
Finally, as we aim at modeling a ground-based experi-

ment, we consider that sky-only modulated terms, i.e.,
C0 and S0 in our model, will be compromised by the
atmospheric noise at long temporal modes of the collected
data streams [29,30]. In what follows, we therefore use only
C4 and S4, in the simulated data and in the model. However,
we point out that, for a space mission such as LiteBIRD, it
could be possible to recover all four mixed polarized Stokes
components.

B. Optimization of the generalized spectral likelihood

In this section, we explore the parameter space des-
cribed in the previous section: 18 instrumental parameters

TABLE I. Nominal values of instrumental parameters.

LF MF UHF

LF1 LF2 MF1 MF2 UHF1 UHF2

HWP
α2 58° 58° 58°
θhwp 14.36 mm 3.8 mm 1.86 mm

Bandpass (GHz)
ν0 27 39 93 145 225 280
Δν 4.05 5.85 13.95 21.75 33.75 42.0
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(6 for the HWPs and 12 for the bandpasses), as well as 2
foreground spectral parameters βs and βd. We start by
fixing all instrumental parameters to their nominal values,
and we only estimate foreground parameters, βd and βs.
This constitutes our reference scenario for uncertainties,
residuals and bias on r, and we compare results obtained
when estimating instrumental parameters to this case. We
then progressively free instrumental parameters in the
spectral likelihood, Eq. (37). We do not consider priors
in the first instance, but will introduce them for specific
cases whenever it becomes necessary.
We consider the following cases, and corresponding

abbreviations to identify them throughout this work:
(i) Spectral Energy Distribution (SED) parameters

(foreground spectral indices) only → SED only
(ii) SEDþ HWP central layer angle for all three

HWP → SEDþ α2
(iii) SEDþ HWP layer thickness for all three HWP →

SEDþ θhwp
(iv) SEDþ HWP central layer angleþ HWP layer

thickness for all three HWP → SEDþ HWP
(v) SEDþ Bandcenters for all bandpasses → SEDþ ν0
(vi) SEDþ Bandwidths for all bandpasses→ SEDþΔν
(vii) SEDþ Bandcentersþ Bandwidths for all band-

passes → SEDþ Bandpass
(viii) SEDþ all the above → SEDþ All

1. Method

For each case, once the generalized spectral likelihood is
optimized, we compute the Hessian matrixH as defined in
Eq. (40) at the numerically determined peak of the like-
lihood. We compare the one-dimensional spectral like-
lihood where we fix all parameters but one to their nominal
value, to a Gaussian function whose variance is determined
by the diagonal of the Hessian matrix:

σi ¼
1ffiffiffiffiffiffiffi
Hii

p ð70Þ

for any parameter i.
We also compute the eigenvalues and eigenvectors

decomposition of the Hessian matrix, to test for the
presence of possible degeneracies in the considered param-
eter space.
Finally, we evaluate the marginalized error bar on

spectral parameter using the diagonal of the inverse of
the Hessian matrix, Σ, as defined in Eq. (41):

σðβiÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Σβi;βi

q
: ð71Þ

The errors on instrumental and foreground parameters are
of primary importance as they determine the amplitudes of
both statistical and systematic residuals which impact
directly our estimates of r. Generically, we expect that

uncertainty on these parameters will increase as we increase
the number of free instrumental parameters.
We emphasize however that there are fundamental

differences in the way the data constrain both these types
of parameters, and therefore the number of parameters
that can be constrained. Indeed, the foreground para-
meters are usually specific to a sky component, be that
dust or synchrotron, and therefore tend to affect only a
single column of the generalized mixing matrix. In contrast,
the instrumental parameters are rather frequency channel
specific and determine the rows of the matrix. As a
consequence, the constraints on the instrumental parame-
ters do not benefit from the multifrequency information as
much as do the foregrounds parameters. In particular, the
quality of the constraints do not improve with the increas-
ing number of frequency bands (while the number of
parameters will typically increase). In the simple case of
instrumental parameters specific to only a single frequency
channel we expect that only one such parameter can be well
constrained with the data. However, as we measure a few
pieces of information per frequency channel, corresponding
to the mixed-Stokes maps which we consider for each
frequency channel, we could in principle set more than a
single constraint, and up to as many as the available pieces
of information. Most of these constraints, in fact all but one,
will typically be of significantly lower precision and often
insufficient for our purpose, rendering only one, useful
constraints on a linear combination of the considered
parameters. If instrumental parameters are relevant to more
than a single frequency channel the number of potentially
well constrained parameters increases. We note that these
analytic insights are fully borne-out by our numerical
results as we discuss in the following section.

2. HWP parameters

We first consider the following cases, involving only
HWP parameters:

(i) SEDþ α2
(ii) SEDþ θhwp
(iii) SEDþ HWP
We find that all the likelihoods corresponding to these

cases are very well approximated by a Gaussian, with the
dispersion obtained by the corresponding inverse Hessian
calculated at the peak of each likelihood. Moreover, the
Hessians are very well conditioned, and all the parameters
in all these cases are consequently well constrained and
only weakly correlated.
These observations apply to conditional and margin-

alized likelihoods. We then consequently use the Gaussian
approximations and the Hessians to compute the margin-
alized uncertainty on spectral parameters [defined in
Eq. (71)] in these various cases. We find that there is no
significant increase of the marginalized uncertainty on
spectral indices when adding HWP parameters, as shown
in Table II and Fig. 4.
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We thus expect that when only HWP parameters are
considered, the impact on foreground residuals and r
estimation should be limited, as we will demonstrate in
Sec. IV C. We therefore conclude that in none of these
cases we need priors to properly constrain HWP param-
eters. Though this conclusion is drawn in the case of the
specific model of the HWP and the specific experimental
setup, we expect that it will hold as long as the number of
HWP parameters does not exceed the number of frequency
channels in the corresponding focal plane, otherwise some
prior knowledge may become necessary.

3. Bandpass parameters

In the case of bandpasses we consider the follow-
ing cases:

(i) SEDþ ν0
(ii) SEDþ Δν
(iii) SEDþ Bandpass

Without priors.—In the cases with only either bandcenters
or bandwidths in addition to foreground parameters
allowed to change, i.e., fSEDþ ν0g and fSEDþ Δνg,
the system is not degenerate: its Hessian matrix is still
formally positive definite as all eigenvalues are strictly
positive. The spectral likelihood is well approximated by a
Gaussian in these cases and we use the Hessian to set the
constraints. We note that though the constraints on the
bandpass centers are more precise relative to the parameter
values than those obtained for the bandwidths, the impact

of the former on the spectral parameters errors is signifi-
cantly more pronounced. This is shown in Fig. 4. We
discuss the impact of this observation on the shape of
foreground residuals in the next section.
When all bandpass parameters are allowed to vary at the

same time, i.e., case fSEDþ Bandpassg, the system
becomes nearly degenerate as we have two independent
parameters for each frequency channel. In this case, the
uncertainty on both spectral and instrumental parameters
increases significantly. The Hessian matrix is still positive
definite and errors on all parameters can be formally set,
however, the eigenvalues of the Hessian matrix span now a
range from 104 to 10−2, rendering some of the constraints
weak. As expected, the marginalized errors on spectral
parameters largely increase in this case, as shown in Fig. 4
and Table II.
The near degeneracies in this case appear between a

bandcenter and bandwidth of the same frequency band.
This is illustrated by the elongated shape of the likelihood
in a 2d space ðν0;ΔνÞ for the same bandpass as shown in
Fig. 5. We note that the Gaussian approximation fails in
these cases to reproduce the behavior of the actual like-
lihood, but only in the ill-constrained directions. For the
well-constrained directions, the Gaussian approximation
and the Hessian continue however providing a very good
description.
We thus conclude that adding bandpass parameters

significantly increases uncertainties on both spectral and
instrumental parameters, in particular in comparison with
the case of the HWP parameters, impact of which was

FIG. 4. Marginalized 1-σ uncertainties on foreground spectral indices. The inclusion of HWP parameters has a negligible impact on
the uncertainty on spectral parameters, which is why we do not consider the inclusion of priors. However, the effect is much more
sensitive when including bandpass parameters, thus the inclusion of priors. The uncertainty on spectral parameters when considering
only ν0 or Δν does not change much when adding priors, as shown in Table II. However, we show that adding priors when all bandpass
parameters are considered is required to limit uncertainty on foreground parameters and avoid degeneracies for instrumental parameters.
In the case when all parameters are considered, priors are necessary because the system is otherwise degenerate.
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found to be very minor. We therefore consider the inclusion
of calibration priors on bandpass parameters to alleviate
this issue.

With priors.—To remove bandpass-associated degeneracies
in the parameter space, we introduce Gaussian priors on ν0
and Δν as proposed in Eq. (39).
In general, the eigenvalues decomposition of the Hessian

matrix provides good guidance on how to introduce priors
in a most efficient and economic way. We start from the
lowest eigenvalues and candidate parameters are those
which are most aligned with the corresponding eigenvector.
In the specific case here, the lowest eigenvalues of the
Hessian matrix are associated with eigenvectors with
dominant components corresponding to the bandpass

parameters of the same frequency band. This is illustrated
in Fig. 5. As we found that the eigenvectors components in
the directions of the band center and widths are compa-
rable, we decided to set prior constraints on both of them
for each band. We note that while other priors can also be
considered here and may be helpful, the bandpass param-
eter degeneracies are the only degeneracies found in the
studied problem and therefore the priors on these param-
eters are the most efficient and have the most pronounced
impact.
In the absence of calibration data, we test three levels of

the priors, in order to best illustrate the impact of them on
the conclusions. These are

(i) Pessimistic: 5% on ν0 and 8% on Δν;
(ii) Fiducial: 1% on ν0 and 5% on Δν;
(iii) Optimistic: 0.5% on ν0 and 1% on Δν.
The corresponding uncertainties on spectral parameters

for these different choices are listed on Table III.
We also show uncertainties with and without priors on

Fig. 4 for the fiducial case. The priors are efficient to reduce
uncertainties in all considered cases, but their effect is most
pronounced whenever all bandpass parameters are allowed
to vary. These are indeed the cases when the system is
nearly degenerate—and the Hessian nearly singular.
Introducing the priors reduces the range of eigenvalues
by at least one or two orders of magnitude as does the
condition number of the Hessian matrix.
When it comes to the level of priors, even not very

accurate priors allow for a significant reduction of mar-
ginalized uncertainties on spectral parameters. However,
the change in eigenvalues is not significant between
pessimistic and fiducial cases, although it is better than
in the no prior case. In what follows, unless otherwise is
specified, we choose to keep the fiducial values as our
nominal level of the priors, as they are closer to currently
achieved calibration performance.
This choice of priors is not unrealistic at least in the cases

of limited number of detectors, for instance compared to
calibration performance currently achieved with a Fourier-
transform spectrometer (FTS) on a typical CMB experi-
ment. Accuracy of such measurements has been demon-
strated to be at the level of 1 GHz for the POLARBEAR
experiment [31] for example. Future experiments such as
LiteBIRD plan on even higher accuracy on bandpass
calibration, up to 0.2 GHz [32]. The priors at the level

FIG. 5. Two-dimensional gridding of the generalized spectral
likelihood, Eq. (37), estimated from 100 random sky pixels. We
overplot in blue the Gaussian approximation given by the
Hessian, and show that in this case it fails to describe the system.
The red cross indicate true values of parameters.

TABLE III. Marginalized 1-σ uncertainties on spectral param-
eters when considering bandpass parameters for different choices
of priors.

Priors σðβd ¼ 1.59Þ σðβs ¼ −3.1Þ
SEDþ Bandpass No 0.108 0.358

Pessimistic 0.0690 0.0419
Fiducial 0.0472 0.0249
Optimistic 0.0281 0.0161

TABLE II. Summary of 1-σ marginalized uncertainties on
spectral parameters. Priors refer to the fiducial case: 1% on
bandcenters (ν0) and 5% on bandwidths (Δν).

Priors σðβd ¼ 1.59Þ σðβs ¼ −3.1Þ
SED only No 5.291 × 10−3 6.420 × 10−3

SEDþ α2 No 5.292 × 10−3 6.423 × 10−3

SEDþ θhwp No 5.292 × 10−3 6.422 × 10−3

SEDþ HWP No 5.300 × 10−3 6.444 × 10−3

SEDþ ν0 No 4.609 × 10−2 1.890 × 10−2

SEDþ ν0 Yes 3.761 × 10−2 1.736 × 10−2

SEDþ Δν No 7.155 × 10−3 7.129 × 10−3

SEDþ Δν Yes 7.014 × 10−3 6.538 × 10−3

SEDþ Bandpass No 1.074 × 10−1 3.577 × 10−1

SEDþ Bandpass Yes 4.721 × 10−2 2.493 × 10−2

SEDþ All No Degenerate Degenerate
SEDþ All Yes 6.825 × 10−2 3.903 × 10−2
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we assume here should therefore be available for future
analyses.
Overall, this shows that the inclusion of the priors at the

level we propose is necessary and efficient to reduce
marginalized uncertainties and lift degeneracies in the
multiparameter space. We also show in the next section
that it reduces foreground residuals and bias on r.

4. All parameters

We consider here the case of
(i) SEDþ All,

when all instrumental and foreground parameters are
allowed to vary. In this case, if we do not include priors,
the Hessian matrix is nearly singular with some of the
eigenvalues numerically zero. This is expected given the
large number of parameters. We therefore once again
include priors on bandpass parameters as discussed in
the previous section, which resolves the degeneracy as
shown in Table II. In the follow-up, unless otherwise
specified, in the case fSEDþ Allg we always consider
fiducial priors on bandpass parameters.

5. Summary

In this first part of our work, we have studied parameter
space degeneracies as well as statistical uncertainties on
spectral parameters estimated by the Hessian matrix at the
peak of the spectral likelihood. We showed that we can
estimate HWP parameters from the actual data with no
significant increase of marginalized uncertainties, and
without adding priors. This is due to the fact that HWP
parameters apply to more than one frequency band, and
therefore we have enough leverage to constrain them.
However, when it comes to bandpass parameters, we

showed that it is necessary to introduce priors on both
bandcenters and bandwidths to avoid degeneracies in the
parameter space and maintain marginalized error bars on
spectral parameters low enough. This is due to the fact that
we have two bandpass parameters (bandwidth and band-
center) for only one frequency band, and therefore these
two parameters are degenerate. In what follows, unless
otherwise is specified, we keep the following priors on
bandpass parameters anytime these parameters are esti-
mated: 1% on ν0 and 5% on Δν.
Overall, and as it could have been expected, we show

that the more parameter we consider in the spectral like-
lihood, the higher statistical uncertainties. However, differ-
ent instrumental parameters affect the uncertainties on
spectral parameters to a different degree. All results of
this section are summarized in Table II. All these factors
determine the level and shape of foreground residuals and
the estimation of r, as we will now demonstrate.

C. Residuals

1. Statistical residuals

At first, we assume the same model underlying the
dataset as it is used for its analysis. In this case, we expect
no systematic residuals, and we can therefore limit our-
selves to statistical residuals as defined in Eqs. (53). We
compute foreground residuals for all cases studied in the
previous section as shown in Fig. 6.
As expected, the level of statistical residuals scales

directly as the statistical uncertainties on recovered fore-
ground parameters: the more parameters, the greater the
uncertainties and the higher the statistical residuals.
Including priors on bandpass parameters lower the level
of residuals as expected.

FIG. 6. Foreground statistical residuals on B-modes, for various instrumental parameter sets. As expected, statistical residuals scale as
statistical uncertainty on the estimated parameters. The bump at high l is due to statistical uncertainty dominated by uncertainty on
instrumental parameters, resulting into a CMB E- to B-mode leakage.
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We note that, despite being very similar in shape at low
l, the various residuals curves differ occasionally at
higher l: the bump is due to the leakage of CMB
polarization signal (E-modes) to the total residuals,
referred to as the CMB residuals in Eq. (44). The relative
amplitude of both residual terms (foregrounds and CMB)
depends on the instrumental parameters. For the param-
eters which do not affect much the determination of the
spectral parameters, the additional foreground residuals
and the CMB residuals scale the same way, as they both
are proportional to the uncertainties on these parameters.
As the CMB E-mode power dominates that of the fore-
grounds at small angular scales the CMB residuals may
then become dominant at high-l s. If the instrumental
parameters are strongly coupled to the spectral ones, there
is an extra increase of the foreground residuals because
of the larger errors on the spectral parameters themselves
and the foreground residuals may therefore dominate
over the entire range of angular scales considered here.
In such cases no high-l bump is seen in the residuals
spectra.
We validate these expectations by computing residuals

assuming no CMB and show that this distinctive feature
disappears. This is illustrated in Fig. 7.
As we observed in Sec. IV B 3 (see Fig. 4), marginalized

uncertainties on spectral parameters in the fSEDþ ν0g
case are much higher than in the fSEDonlyg case, while
there is only a negligible increase in the fSEDþ Δνg case.
This is reflected in Fig. 6, where at low l the statistical
residuals in the fSEDþ ν0g case are higher than in the
fSEDþ Δνg case. Moreover, in the former case, unlike
in the latter, there is no high–l bump in the residuals,
and the residuals are dominated by the foreground term.
We also note that including either the bandpass widths,

fSEDþ Δνg, or the HWP parameters, fSEDþ HWPg,
gives rise to residuals which are very much comparable
across the entire range of the considered angular scales.
This is because in both these cases the spectral parameters
uncertainties are not significantly affected by these instru-
mental parameters, whereas the instrumental parameters
themselves are estimated with similar precision. Therefore
the levels of the foreground and CMB residuals are
expected to be indeed comparable.
In Fig. 7 we show the impact of priors on the residuals.

We see that more stringent priors indeed lower the overall
level of the residuals but also that the relative import of the
CMB residual progressively decreases.

2. Systematic residuals

We now introduce a mismatch between simulated data
and the model. As outlined in Sec. IVA 3, we investigate
the effect of slowly varying, more realistic bandpass in the
data, while we keep on using a simple smoothed top-hat
model in the analysis. We consider the following cases:

(i) SED only
(ii) SEDþ HWP
(iii) SEDþ Bandpass
(iv) SEDþ All

For each case, we compute residuals when introducing
a discrepancy between bandpass data and model, with
a ¼ 0.01 and b ¼ 1 in the varying bandpass. We compare
them to residuals in the same instrumental configuration,
but with no bandpass variation in the input data. For both
statistical [Eq. (53)] and systematic residuals [Eq. (52)], we
verify that they behave as expected:

(i) no notable difference between statistical residuals,
as they are unaffected by discrepancy between data
and model;

FIG. 7. Foreground statistical residuals on B-modes, with and without including CMB contribution. We also compare different level of
priors on bandwidths, to show the effective reduction of statistical residuals by choosing more stringent priors. The case without CMB is
computed with fiducial priors.
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(ii) increase of systematic residuals as they are pre-
cisely sensitive to the mismatch between data and
its model.

We demonstrate that this is true for all cases and, for
reference, show the result for the fSEDþ Allg case in the
left panel of Fig. 8.
The level of systematic residuals depends on parameters

a and b (defined in Sec. IVA 3), which set the amplitude
and frequency of bandpass variations. We investigate this
dependence focusing on the fSEDþ Allg case, as this is
the case where we expect the biggest impact. We consider
various fa; bg combinations and compute corresponding
residuals. We find that, for a fixed value of a, i.e., the
amplitude of the bandpass variation, a smaller b, corre-
sponding to variations on larger scales, leads to an increase
in the systematic residuals. On the contrary, the effects of
small-scale features in the bandpass are quickly becoming
very small, suggesting that characterizing the bandpasses
with a ∼1 GHz sampling as this is most often the case in
practice [31], should indeed be sufficient. Moreover, for a
given value of b, the systematics residuals increase with
increasing value of a. This is an expected effect, since a sets
the amplitude of bandpass variation. These two effects
are demonstrated on Fig. 8. In Sec. IV D 2 hereafter, we
comment on the impact of the systematic residuals on r
estimation.

D. Constraints on tensor-to-scalar ratio

With the residuals estimated for various cases, we now
estimate their impact on the determination of the tensor-
to-scalar ratio r. We use the cosmological likelihood in

Eq. (58) and consider two models for the assumed
covariance of the CMB signal, C, as described in
Sec. III E. These correspond to two extreme cases when
we either assume complete ignorance of the residuals
present in the cleaned CMB maps, Eq. (59), or when
the statistical residuals are modeled and deprojected con-
sistently, Eq. (60). We focus only on the B-mode polari-
zation and the CMB covariance includes only the BB
power spectra parametrized by the tensor-to-scalar ratio r
as elaborated on in Sec. IVA 5.

1. Cases with statistical residuals only

In this case the model underlying the data coincides with
that assumed in the analysis and the only residuals are
statistical. We first assume that the actual value of r is zero.
In this first approach we ignore the residuals present in

the recovered CMB map and therefore expect that any
residual, be it statistical or systematic, will result in a bias
on rwhich in turn will depend on their level. The results are
shown in Fig. 9 and the corresponding values of r and σðrÞ
for all instrumental parameter sets are collected in Table IV.
As expected, the higher the residuals, the bigger the bias

on r. We can therefore suppress the bias by suppressing the
residuals. This can be achieved with help of additional
priors on instrumental parameters. As shown in Fig. 9 and
Table IV, this way is indeed efficient in reducing the bias
on r and ensuring that it does not lead to an erroneous but
statistically significant detection. Its downside is that it
may call for high precision priors. This can be particularly
demanding if a large number of relevant instrumental
effects is present.

FIG. 8. Left: Statistical and systematic residuals, showing the increase of systematic residuals when introducing a mismatch between
bandpass in data and model when considering the fSEDþ Allg case. Center and right: scaling of systematic residuals depending on
bandpass variation, compared to statistical residuals. We consider here all 20 parameters, i.e., the fSEDþ Allg case. The systematic
residuals in the case with no bandpass variation should be zero, the light blue curve defines therefore numerical precision of our
computations.
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The statistical residuals can be effectively marginalised,
or deprojected, by using the model covariance in Eq. (60),
therefore minimizing potential bias of the measured value
of r. In this case, we may hope that the need for high
precision priors can at least be partly alleviated. This
expectation is indeed confirmed in the cases studied here,
as it is shown with a gray solid line in Fig. 9. The loss of
accuracy and precision seems to be in this case negligible.
In more realistic cases and in the presence of a potentially
significant mismatch between the assumed sky and instru-
ment models, and the true ones, the deprojection may not
be however as successful as in the simple cases studied
here. We expect therefore that the calibration priors will
continue playing a key role in the component separation
process either in order to suppress the residuals, as in the
first method described above, or to demonstrate that the
deprojection was indeed performed successfully.

We also test our framework with other values of
cosmological parameters considering for the tensor-to-
scalar ratio a value of r ¼ 0.01 consistent with what
typical Stage 3 experiment plan to achieve and assuming
partial delensing with AL ¼ 0.5 in addition to the no-
delensing case AL ¼ 1. We limit ourselves to the case
with all instrumental parameters and include priors,
fSEDþ Allg. Results without the residual deprojec-
tion are shown in Fig. 10. We show that in all considered
cases, our estimates of the value of r are consistent with
the true values with precision much better than the
1 − σðrÞ uncertainty, even if we do not deproject statis-
tical residuals. As shown in Fig. 10 and Table V, the
uncertainty on r is reduced when we assume partial
delensing, as expected.

TABLE IV. Best-fit values for r and σðrÞ without the residuals
deprojection. Corresponding cosmological likelihoods for se-
lected cases are shown in Figure 9.

r (×10−5) σðrÞ (×10−3)
SED only 0.819 1.47
SEDþ α2 0.870 1.47
SEDþ θhwp 0.823 1.47
SEDþ HWP 1.15 1.47
SEDþ ν0—fiducial priors 8.40 1.47
SEDþ Δν—fiducial priors 1.38 1.47
SEDþ Bandpass—no priors 98.6 1.51
SEDþ Bandpass—fiducial priors 14.1 1.48
SEDþ All—fiducial priors 47.6 1.49
SEDþ All—optimistic priors 29.1 1.48

FIG. 10. Cosmological likelihood on r without the residual
deprojection for two different fiducial values of the tensor-to-
scalar ratio, r ¼ 0 or r ¼ 0.01, and assuming either no, AL ¼ 1,
or partial, 50% delensing, AL ¼ 0.5. The shown results are for
the case of fSEDþ Allg, thus including priors on bandpass
parameters.

FIG. 9. Cosmological likelihood Eq. (58) as a function of the tensor-to-scalar ratio r, with its fiducial value assumed to be 0. In all
cases, but one as marked in the legend, no deprojection is applied. In these cases the priors are shown to be efficient to alleviate the bias
on r. The deprojection of the residuals not only resolves the issue of the bias (due to the statistical residuals) but also recovers the lowest,
theoretically possible uncertainty on r.
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Overall, these results demonstrate that the proposed
framework allows to correct for the effects related to the
presence of the HWP and bandpasses without compromis-
ing the precision of the constraints which can be set on the
tensor-to-scalar ratio, r, and does so down to the precision
levels expected for typical Stage-3 experiments. In par-
ticular, the limits we derive within this framework are in
line with Simons Observatory forecast, as shown in e.g.,
Tables 4 and 5 of [19]. However, we emphasize that in our
analysis, we have not fully accounted for all characteristics
of the Simons Observatory instrument model, nor have we
included 1=f noise.

2. Impact of bandpass imperfections

As we have shown previously, the mismatch in the
bandpass parameters unavoidably leads to the presence of
the systematic residuals. These were found to be subdomi-
nant with respect to the statistical residuals in the all the
cases studied in this work, Sec. IV C 2. As long as no
deprojection is applied both types of the residuals impact
the estimates of r in the same way. Consequently, in all our
cases the effect on r due to the systematic residuals is found
to be subdominant and negligible. This remains to be the
case also when the statistical residuals are deprojected.
The impact of the systematic residuals on the value of r is
then very minor and much smaller than the statistical
error on r. This is due to the low absolute level of the
systematic residuals present in the studied cases. This result
is consistent with the complementary analysis [33] which in
addition to bandpasses also includes other hardware
parameters, and performs component separation in the
power spectrum domain.

V. CONCLUSIONS

In this work we have extended the standard CMB data
analysis pipeline to include explicitly a treatment of
instrumental effects. We focused on two key data analysis
stages, map-making, and component separation, and con-
sidered, as an example, instrumental effects related to the
presence of a broadband HWP in the instrument optical
design, and bandpasses defining the frequency bands of the
observations.
We have subsequently implemented the proposed

framework as part of the performance forecasting tool
XFORECAST [8,9], extending it to account for instrumental

effects. This has allowed us to propagate the impact of the
instrumental effects all the way to cosmological constraints.
We have applied the method in the context of a modern

CMB experiment of the 3rd generation, modeled on the
small aperture telescopes of Simons Observatory [19]
assessing its performance in the light of setting constraints
on the tensor-to-scalar ratio r. We have discussed the role
and impact of the instrumental parameters on the cosmo-
logical constraints. The constraints on cosmological param-
eters that we derive, as well as the level of instrumental
priors that we suggest are consistent with results presented
in [33], which have been derived using a different approach
and are more specific to the Simons Observatory. This
shows that our method is reliable in forecasting exper-
imental performance.
We have shown how calibration information can

be incorporated in the analysis and how to determine
which instrumental parameters may need such external
prior information in order to not compromise the analysis
results. We have demonstrated that in the studied cases
with help of either suitable priors or data analysis tech-
niques we can efficiently suppress the systematic biases
and control the statistical uncertainties. In turn, these results
can provide insights about the precision level for calibration
of various instrumental parameters required given prede-
fined science goals.
The cases studied here were clearly overidealized. This

concerns both the models assumed for the foregrounds
and the instruments. This is because our main purpose
was to describe, validate, and demonstrate the proposed
approach. However, more complex foreground models can
be included following the procedures of [9], as can more
realistic instrument models. As an example we have studied
the case of the bandpasses where in addition we allowed for
a mismatch between the underlying bandpass model and
the one used for the analysis. We leave a more thorough
and exhaustive exploration of other possible effects to
future work.
The key feature of the proposed approach is the

assumption that efficient, parametric models of the instru-
mental effects can be devised and then used to mitigate
their impact. We emphasize that such models may be
merely approximate and phenomenological, as in our
bandpass example. The proposed forecasting tool allows
us to evaluate efficiency (and sufficiency) of a model given
more complex real instruments which could be char-
acterized by nonparametric models derived from actual
measurements.
Overall, the method we propose allows a more compre-

hensive approach of component separation, taking into
account various instrumental systematic effects. We have
demonstrated both the feasibility of the method, and its
ability to reproduce results derived using other methods in
the context of a typical Stage-3 CMB polarization experi-
ment. The flexibility and reliability of the framework opens
the possibility to apply it to various CMB experiments, in

TABLE V. Uncertainties on r without residual deprojection,
with varying tensor-to-scalar ratio r and lensing amplitude AL, in
the case of SEDþ All, including priors on bandpasses.

AL ¼ 1 AL ¼ 0.5

r ¼ 0 σðrÞ ¼ 1.49 × 10−3 σðrÞ ¼ 1.05 × 10−3

r ¼ 0.01 σðrÞ ¼ 1.96 × 10−3 σðrÞ ¼ 1.51 × 10−3
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particular those which will deploy continuously rotating
HWP such as the LiteBIRD mission [22,34].
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APPENDIX A: HWP OPTICS

We give here the detailed expressions of C0i;k and S0i;k

coefficients introduced in Eq. (15), as a function of HWP
Mueller matrix elements μij. We note that μ0i and μi0
elements are zeros by design of the HWP, so we have:

C01;0ðνÞ ¼
1

2
ðμ11 þ μ22Þ cos ð2ηνÞ ðA1Þ

C01;4ðνÞ ¼
1

2
½ðμ11 − μ22Þ cos ð2ηνÞ − ðμ12 þ μ21Þ sin ð2ηνÞ�

ðA2Þ

S01;0ðνÞ ¼ −
1

2
ðμ11 þ μ22Þ sin ð2ηνÞ ðA3Þ

S01;4ðνÞ ¼
1

2
½ðμ12 þ μ21Þ cosð2ηνÞ þ ðμ11 − μ22Þ sin ð2ηνÞ�

ðA4Þ

C02;0ðνÞ ¼ −
1

2
ðμ11 þ μ22Þ sin ð2ηνÞ ðA5Þ

C02;4ðνÞ ¼
1

2
½ðμ12 þ μ21Þ cos ð2ηνÞ þ ðμ11 − μ22Þ sin ð2ηνÞ�

ðA6Þ

S02;0ðνÞ ¼ −
1

2
ðμ11 þ μ22Þ cos ð2ηνÞ ðA7Þ

S02;4ðνÞ ¼ −
1

2
½ðμ11 − μ22Þ cos ð2ηνÞ− ðμ12 þ μ21Þ sin ð2ηνÞ�

ðA8Þ

We have explicitly included the frequency dependence of
the coefficients, as Mueller matrix elements of the HWP
[through δ defined in Eq. (3)] and sinuous antenna depend
on observing frequency. This allows us to naturally take
into account the instrumental frequency-dependent effects
in the model.

APPENDIX B: COEFFICIENTS IN THE
3-LAYER HWP CASE

In Eqs. (A1)–(A8) in Appendix A, we expressed the
coefficients of the full optics chain Mueller matrix, as a
function of HWP Mueller matrix coefficients μij. These
coefficients can be computed from Eq. (4) for any HWP
configuration, or obtained from measurements.
We give here the full analytical expression of these

coefficients in the instrumental configuration that we
detailed in Sec. IVA 2. We recall that we have two
parameters per HWP:

(i) α2: central layer rotation angle;
(ii) θhwp: thickness of one layer.
For clarity reasons, we use δ instead of θhwp, defined as

in Eq. (3):

δ ¼ 2πθhwpjno − nejν
c

: ðB1Þ

We can then express HWPMueller matrix coefficients as:

μ11 ¼ cos2ð2α2Þ þ cosðδÞ sin2ð2α2Þ
μ12 ¼ μ21 ¼ sinð2α2Þ cosð2α2Þ½cos2ðδÞ − cosðδÞ�

− sin2ðδÞ sinð2α2Þ
μ22 ¼ cos2ðδÞ sin2ð2α2Þ þ cos3ðδÞ cos2ð2α2Þ

− ½2 sin2ðδÞ cosðδÞ cosð2α2Þ þ sin2ðδÞ cosðδÞ�: ðB2Þ

APPENDIX C: COSMOLOGICAL LIKELIHOOD

Our implementation of the cosmological likelihood is
based on the one proposed in Appendix C of [8]. The
cosmological likelihood Eq. (58) is split into three terms:

hScosi ¼ trC−1Ĉþ trC−1ðE − ĈÞ þ ln detC; ðC1Þ

where E is the true (observed) signal covariance matrix.
Note that when there are no systematic residuals (our main
case in this work, except when we consider bandpass
variation), the second term of the sum actually vanishes. As
outlined in Sec. III E, we consider two cases for the
assumed signal covariance matrix: the no deprojection
case, where C ¼ Ccmb; and the deprojection case,
where C ¼ Ccmb þCstat.

1. No deprojection case

In the no deprojection case, the three terms of the
cosmological likelihood are written as:

trC−1Ĉ ¼
X
l

�ð2lþ 1Þ
Cl

ðĈl þ tr½Σ ⊗l ðỸð1Þ; Ỹð1ÞÞ�Þ
�
ðC2Þ

FRAMEWORK FOR ANALYSIS OF NEXT GENERATION, … PHYS. REV. D 103, 063507 (2021)

063507-21



trC−1ðE − ĈÞ ¼
X
l

�ð2lþ 1Þ
Cl

ð⊗l ðỹ; ỹÞþ ⊗l ðz̃; ỹÞþ ⊗l ðỹ; z̃ÞÞ
�

ðC3Þ

ln detC ¼ ln detCcmb ðC4Þ

2. Deprojection case

In the deprojection case, we consider that we have a model for the statistical residuals, that we include in the modeled
covariance matrix C. The three terms of the cosmological likelihood then reads as (note that this case corresponds
to previous implementation of the formalism, and thus the following equations are exactly equations (C9), (C10), and (C12)
of [8]):

trC−1Ĉ ¼
X
l

�
ð2lþ 1Þ Ĉl

Cl
ð1 − C−1

l tr½U ⊗l ðỸð1Þ; Ỹð1ÞÞ�Þ þ ð2lþ 1Þ
Cl

tr½Σ ⊗l ðỸð1Þ; Ỹð1ÞÞ�
�

−
X
l;l0

ð2lþ 1Þ
Cl

ð2l0 þ 1Þ
C0
l

tr½U ⊗l0 ðỸð1Þ; Ỹð1ÞÞΣ ⊗l ðỸð1Þ; Ỹð1ÞÞ� ðC5Þ

trC−1ðE − ĈÞ ¼
X
l

�
2lþ 1

Cl
ð⊗l ðỹ; ỹÞþ ⊗l ðz̃; ỹÞþ ⊗l ðỹ; z̃ÞÞ

�

−
X
l;l0

ð2lþ 1Þ
Cl

ð2l0 þ 1Þ
C0
l

× tr½Uð⊗l0 ðỸð1Þ; ỹÞ ⊗l ðỹ; Ỹð1ÞÞþ ⊗l0 ðỸð1Þ; ỹÞ ⊗l ðz̃; Ỹð1ÞÞþ ⊗l0 ðỸð1Þ; z̃Þ ⊗l ðỹ; Ỹð1ÞÞÞ� ðC6Þ

ln detC ¼ ln
detCcmb

detU
; ðC7Þ

where we have introduced U as defined in Eq. (C1) in [8]:

U≡ ðΣ−1 þ Ỹð1Þ†CcmbỸð1ÞÞ−1: ðC8Þ
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VERGÈS, ERRARD, and STOMPOR PHYS. REV. D 103, 063507 (2021)

063507-22

https://doi.org/10.1051/0004-6361:200810116
https://doi.org/10.1051/0004-6361:200810116
https://doi.org/10.1086/422807
https://doi.org/10.1109/JSTSP.2008.2005346
https://doi.org/10.1109/JSTSP.2008.2005346
https://doi.org/10.1093/ptep/ptz009
https://doi.org/10.1093/ptep/ptz009
https://doi.org/10.1086/525277
https://doi.org/10.1086/525277
https://doi.org/10.1111/j.1365-2966.2010.17281.x
https://doi.org/10.1111/j.1365-2966.2010.17281.x
https://doi.org/10.1111/j.1365-2966.2008.14023.x
https://doi.org/10.1103/PhysRevD.94.083526
https://doi.org/10.1103/PhysRevD.94.083526
https://doi.org/10.1088/1475-7516/2016/03/052
https://arXiv.org/abs/1808.07442
https://doi.org/10.1117/1.JATIS.5.4.044008
https://doi.org/10.1117/1.JATIS.5.4.044008
https://doi.org/10.1364/AO.49.006313
https://doi.org/10.1364/AO.49.006313
https://doi.org/10.1007/BF03047097


[14] A. Suzuki, Ph.D. thesis, University of California, Berkeley,
2013.

[15] I. L. Padilla, J. R. Eimer, Y. Li, G. E. Addison, A. Ali, J. W.
Appel, C. L. Bennett, R. Bustos, M. K. Brewer, M. Chan
et al., Astrophys. J. 889, 105 (2020).

[16] T. A. Enßlin, S. Hutschenreuter, V. Vacca, and N.
Oppermann, Phys. Rev. D 96, 043021 (2017).

[17] J. Errard, F. Stivoli, and R. Stompor, Phys. Rev. D 84,
069907 (2011).

[18] Planck Collaboration, P. A. R. Ade, N. Aghanim, C.
Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-
Barand ela, J. Aumont, C. Baccigalupi, A. J. Banday
et al., Astron. Astrophys. 571, A15 (2014).

[19] The Simons Observatory Collaboration, J. Cosmol. Astro-
part. Phys. 02 (2019) 056.

[20] SO_Noise_Calculator_Public.py available at https://
simonsobservatory.org/publications.php.

[21] C. A. Hill, S. Beckman, Y. Chinone, N. Goeckner-Wald, M.
Hazumi, B. Keating, A. Kusaka, A. T. Lee, F. Matsuda, R.
Plambeck et al., Design and Development of an Ambient-
Temperature Continuously-Rotating Achromatic Half-Wave
Plate for CMB Polarization Modulation on the POLAR-
BEAR-2 Experiment, Vol. 9914 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series (SPIE,
2016), p. 99142U, https://doi.org/10.1117/12.2232280.

[22] Y. Sakurai, T. Matsumura, N. Katayama, K. Komatsu, R.
Takaku, S. Sugiyama, Y. Nomura, T. Toda, T. Ghigna, T.
Iida et al., in Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy X, edited by
J. Zmuidzinas and J.-R. Gao, International Society for
Optics and Photonics (SPIE, 2020), Vol. 11453, pp. 743–
762, https://doi.org/10.1117/12.2560289.

[23] T. Matsumura, S. Hanany, P. Ade, B. R. Johnson, T. J. Jones,
P. Jonnalagadda, and G. Savini, Appl. Opt. 48, 3614 (2009).

[24] J. T. Ward, D. Alonso, J. Errard, M. J. Devlin, and M.
Hasselfield, Astrophys. J. 861, 82 (2018).

[25] B. Thorne, D. Alonso, S. Naess, and J. Dunkley, http://ascl
.net/1704.007.

[26] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, Astrophys.
J. 622, 759 (2005).

[27] A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E.
Hivon, and K. Gorski, J. Open Source Softw. 4, 1298
(2019).

[28] https://healpix.sourceforge.io/.
[29] A. Kusaka, T. Essinger-Hileman, J. W. Appel, P. Gallardo,

K. D. Irwin, N. Jarosik, M. R. Nolta, L. A. Page, L. P.
Parker, S. Raghunathan et al., Rev. Sci. Instrum. 85,
024501 (2014).

[30] S. Takakura, M. Aguilar, Y. Akiba, K. Arnold, C. Bacci-
galupi, D. Barron, S. Beckman, D. Boettger, J. Borrill,
S. Chapman et al., J. Cosmol. Astropart. Phys. 05 (2017)
008.

[31] F. Matsuda, L. Lowry, A. Suzuki, M. Aguilar Fáundez, K.
Arnold, D. Barron, F. Bianchini, K. Cheung, Y. Chinone, T.
Elleflot et al., Rev. Sci. Instrum. 90, 115115 (2019).

[32] T. Ghigna, T. Matsumura, G. Patanchon, H. Ishino, and M.
Hazumi, J. Cosmol. Astropart. Phys. 11 (2020) 030.

[33] M. H. Abitbol, D. Alonso, S. M. Simon, J. Lashner, K. T.
Crowley, A. M. Ali, S. Azzoni, C. Baccigalupi, D. Barron,
M. L. Brown et al., arXiv:2011.02449.

[34] H. Sugai, P. A. R. Ade, Y. Akiba, D. Alonso, K. Arnold, J.
Aumont, J. Austermann, C. Baccigalupi, A. J. Banday, R.
Banerji et al., J. Low Temp. Phys. 199, 1107 (2020).

[35] https://pysm3.readthedocs.io/en/latest/#.
[36] https://fgbuster.github.io/fgbuster/index.html.
[37] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,

P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith et al., Nature (London) 585, 357 (2020).

[38] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W.
Weckesser, J. Bright et al., Nat. Methods 17, 261 (2020).

FRAMEWORK FOR ANALYSIS OF NEXT GENERATION, … PHYS. REV. D 103, 063507 (2021)

063507-23

https://doi.org/10.3847/1538-4357/ab61f8
https://doi.org/10.1103/PhysRevD.96.043021
https://doi.org/10.1103/PhysRevD.84.069907
https://doi.org/10.1103/PhysRevD.84.069907
https://doi.org/10.1051/0004-6361/201321573
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1088/1475-7516/2019/02/056
https://simonsobservatory.org/publications.php
https://simonsobservatory.org/publications.php
https://simonsobservatory.org/publications.php
https://simonsobservatory.org/publications.php
https://doi.org/10.1117/12.2232280
https://doi.org/10.1117/12.2232280
https://doi.org/10.1117/12.2232280
https://doi.org/10.1117/12.2232280
https://doi.org/10.1117/12.2560289
https://doi.org/10.1364/AO.48.003614
https://doi.org/10.3847/1538-4357/aac71f
http://ascl.net/1704.007
http://ascl.net/1704.007
http://ascl.net/1704.007
https://doi.org/10.1086/427976
https://doi.org/10.1086/427976
https://doi.org/10.21105/joss.01298
https://doi.org/10.21105/joss.01298
https://healpix.sourceforge.io/
https://healpix.sourceforge.io/
https://healpix.sourceforge.io/
https://doi.org/10.1063/1.4862058
https://doi.org/10.1063/1.4862058
https://doi.org/10.1088/1475-7516/2017/05/008
https://doi.org/10.1088/1475-7516/2017/05/008
https://doi.org/10.1063/1.5095160
https://doi.org/10.1088/1475-7516/2020/11/030
https://arXiv.org/abs/2011.02449
https://doi.org/10.1007/s10909-019-02329-w
https://pysm3.readthedocs.io/en/latest/#
https://pysm3.readthedocs.io/en/latest/#
https://pysm3.readthedocs.io/en/latest/#
https://fgbuster.github.io/fgbuster/index.html
https://fgbuster.github.io/fgbuster/index.html
https://fgbuster.github.io/fgbuster/index.html
https://fgbuster.github.io/fgbuster/index.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2

