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Over the last years some interest has been gathered by fðQÞ theories, which are new candidates to
replace Einstein’s prescription for gravity. The nonmetricity tensor Q allows to put forward the assumption
of a free torsionless connection and, consequently, new degrees of freedom in the action are taken into
account. This work focuses on a class of fðQÞ theories, characterized by the presence of a general power-
law term which adds up to the standard (linear in) Q term in the action, and on new cosmological scenarios
arising from them. Using the Markov chain Monte Carlo method, we carry out statistical tests relying upon
background data such as Type Ia supernovae luminosities and direct Hubble data (from cosmic clocks),
along with cosmic microwave background shift and baryon acoustic oscillations data. This allows us to
perform a multifaceted comparison between these new cosmologies and the (concordance) ΛCDM setup.
We conclude that, at the current precision level, the best fits of our fðQÞ models correspond to values of
their specific parameters which make them hardly distinguishable from our general relativity “échantillon,”
that is, ΛCDM.
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I. INTRODUCTION

TheUniverse is dominated by theweakest force of all, that
is, the gravitational interaction, and it is through a deep
comprehension of the latter that we will improve our
understanding of the former. Currently, the most successful
theory concerning the behavior and evolution of the
Universe is general relativity (GR) [1,2], which passes all
tests up to the solar system scale with flying colors [3,4].
However, when we try to explain the physics of the cosmos
on larger scales, it becomes mandatory to consider more
exotic kinds of energy and matter than the standard sources
of geometry. In this way, and under the uncontroversial
assumption of homogeneity and isotropy in a GR ruled
Universe, the ΛCDM model provides a quite worthy
chronicle of our Universe driven by new unusual compo-
nents (as we have anticipated): dark matter and dark
energy. The first one accounts proficiently for structure
formation and evolution, whereas the second one performs
quite well at explaining the current accelerated expansion of
the Universe.
Nevertheless, we cannot describe the physics of our

Universe by just scraping its surface: when we examine the

ΛCDM model in the light of the whole assortment of
evidences available, we realize that, unfortunately, its two
main components lead to new problems [5–11]. In par-
ticular, volumes have been written about the shortcomings
of the specific type of dark energy on which the model
relies, the cosmological constant (Λ). Needless to say, it is
not our purpose to dwell into this matter, but rather adopt a
different perspective.
Modified theories of gravity have precisely been pro-

posed along the years to tackle those and other challenges
[12–16]. Among the different starting points considered in
the vast literature, we will embrace that of metric-affine
geometry, which generalizes the Riemannian geometry
approach adopted in GR [17]. The connection then
becomes a nonstandard free variable at the same level as
the metric, and hence it is not necessarily of the Levi-Civita
type. Broadly speaking, this freedom in the features of the
connection brings a rich phenomenology related to the
transformations which objects of physico-mathematical
nature that undergo along a displacement [18,19].
Specifically, we are going to study theories of modified

gravity based on nonmetricity [20], a quantity which
measures how the length of a vector changes when it is
transported. After offering new views on some theoretical
aspects of this ample framework, we will resort to obser-
vational tests so as to draw conclusions on the (statistical
and physical) reliability of some specific models.
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The connection between theory and observations arises
from the possibility to write useful prescriptions for
cosmological applications. Specifically, just following
pertinent generalizations of otherwise standard procedures,
one can compute the Hubble parameter analytically [21] for
a class of nonmetricity spacetime geometries. The statis-
tical analysis is performed using state-of-the-art cosmo-
logical probes under the assumption of some specific
matter-energy content so that the candidate models offer
(a priori) viable modified gravity candidates to describe the
cosmological background. The procedure progresses from
the initial expression of the Hubble parameter to the
construction of various cosmological distances (luminosity
distance, angular diameter distance, etc.). Interestingly, the
GR limit of these modified gravity frameworks will be
easily recognizable, thus allowing for a neat statistical
analysis.
Let us now offer a guide to the organization of this paper.

In Sec. II, we will produce a convenient introduction to
nonmetricity theories of modified gravity. In this very
section, and for the sake of motivation of further steps, we
will revisit how one can construct genuine settings based
solely on nonmetricity which, however, do mimic GR
perfectly at all levels.
We will move then to Sec. III and build upon the

previous discussion to offer more general scenarios,
still based on nonmetricity, but not necessarily fully
equivalent to GR. Upon very general hypotheses, we will
be able to present the new versions of the Friedman and
Raychaudhuri equations. An intermediate step within this
section deals with possible equivalences between these new
frameworks and GR at the cosmological level. This gives us
a flavor of how peculiar the consequences of nonmetricity
are. The findings of this exercise will serve as an inspiration
to propose (obtain) the Hubble parameter of the final
specific model we shall work with. Our models will display
a characteristic set of parameters: all but one are very
standard, and it is upon switching off the unusual one that
we recover the customary GR sort of cosmological
evolution.
A statistical analysis based on the Markov chain

Monte Carlo (MCMC) procedure (see Sec. IV) will yield
tight enough constraints on the parameters, and results will
be shown in Sec. VI. The best fits, errors, and statistical
criteria will be driven by supernovae type Ia luminosity data
and modulated by direct Hubble (cosmic clocks), cosmic
microwave background (CMB) shift, and baryon acoustic
oscillation (BAO) data (head to Sec. V for further details).
Last, we will dissertate about our conclusions in Sec. VII.

II. SYMMETRIC TELEPARALLEL GRAVITY

Currently, the gravitational interaction is interpreted
as a geometrization of a manifold allowed by the equiv-
alence principle. Put in other words, gravity is a physical
manifestation of the mathematical conformation of that

manifold. For the case of GR, a spacetime comes about
upon endowing a manifold with a prescription to measure
distances that mathematically takes the form of the metric
tensor gμν and is the only object where gravitational effects
are encoded.
Interestingly, though, the metric does not happen

to be the only fundamental object allowing to characterize
the geometry of a manifold. Furthermore, there is an
affine structure associated with how objects move about
the manifold; this is represented by a connection, Γα

μν,
a degree of freedom (d.o.f) which may be subject to certain
specifications imposed by the theoretical setting. For
instance, in GR, the connection amounts to a combination
of (conventional) derivatives of the metric tensor
(Christoffel symbols), but other options are possible if
one ventures beyond the classical realm in gravity [22].
Hence, provided that the connection is not (so to speak)

geometrically trivial, one can define two further funda-
mental objects conveying additional relevant information
about it [23]. The first one is the nonmetricity tensor,

Qαμν ≡∇αgμν: ð1Þ

The second one is the torsion, which stems from the
antisymmetric part of the connection,

Tα
μν ≡ Γα

μν − Γα
νμ: ð2Þ

If the connection is symmetric and metricity holds (i.e.,
when the torsion and nonmetricity tensors vanish), we
recover the Levi-Civita connection; thus, gravity “à la
Einstein” is restored (i.e., the metric goes back to being is
the only d.o.f). Conversely, in the so-called Palatini
formalism (which will be addressed again below), the
metric and the connection could be considered as inde-
pendent objects whose relations would be given by the field
equations [24,25].
In addition, and in view of the previous discussions,

we can decompose a general connection Γα
μν as follows

[18,23]:

Γα
μν ¼

n α

μν

o
þ Kα

μν þ Lα
μν; ð3Þ

where

Kα
μν ¼

1

2
Tα

μν þ TðμανÞ ð4Þ

is the contortion, and

Lα
μν ¼

1

2
Qα

μν −QðμανÞ ð5Þ

is the disformation. The latter will be the relevant magni-
tude for this work, as it measures how much the symmetric
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part of the (general) connection deviates from the Levi-
Civita connection, f α

μνg. In any case, and as usual, the
curvature will be determined by the Riemann tensor in this
way,

Rα
βμνðΓÞ ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ: ð6Þ

However, all this information will be of little use without
a theory of gravity, so let us make some progress by
introducing GR through the Hilbert-Einstein action,

SGR ¼ 1

16πG

Z
dx

ffiffiffiffiffiffi
−g

p
RðfgÞ; ð7Þ

where RðfgÞ is the scalar of curvature upon the specific
choice of the Levi-Civita connection in Eq. (6). This action
has a special property. Let us think for a moment that we
readdress it but using rather now the general scalar of
curvature RðΓÞ, instead of RðfgÞ, and then study this
“alternative action” in the Palatini formalism. Upon the
exercise of varying the action with respect to the metric on
the one hand, and the connection on the other hand, we
obtain two sets of equations which are not blind to each
other: they specifically fix the connection to be the Levi-
Civita one. Summarizing, if GR is our gravitational theory,
both formalisms yield the same equations of motion
because nonmetricity and torsion vanish. Nevertheless,
this is but an exception of GR which will not be true
for theories of modified gravity in general, and yet it can be
used to our advantage. Indeed, incorporating the connec-
tion as a new d.o.f on the framework of modified gravity
opens a complete new range of theoretical settings to
explore.
The next stop in our journey is to study how the

Riemmann tensor is transformed by a shift of the con-
nection of the form Γ̂α

βμν ¼ Γα
μν þΩα

μν where Ωα
μν is an

arbitrary tensor which encodes the transformation.
Specifically,

R̂α
βμνðΓ̂Þ ¼ Rα

βμνðΓÞ þ Tλ
μνΩα

λβ

þ 2∇½μΩα
ν�β þ 2Ωα½μjλjΩλ

ν�β; ð8Þ

where ∇ is the covariant derivative associated to Γ.
Upon inspection of the latter, one can follow on the steps

of [18] to end up realizing the existence of a theory which is
fully equivalent to GR (as obtained from the Levi-Civita
connection) but coming instead and solely from the
disformation (the part of the connection related to the
nonmetricity).1 This requirement translates into Γ ¼ fg,
Tλ

μν ¼ 0, andΩα
μν ¼ Lα

μν. If we replace those expressions
into Eq. (8), it becomes

Rα
βμνðΓ̂Þ ¼ Rα

βμνðfgÞ þ 2∇fg
½μL

α
ν�β þ 2Lα½μjλjLλ

ν�β; ð9Þ

where the superindex in ∇fg specifies the covariant
derivative defined from the Levi-Civita connection. The
latter and other intermediate steps conform our alternative
and hopefully pedagogical explanation about how to build
such theory.
Again, inspection suggests additional requirements are

needed in order to eventually reach the goal, so in this spirit
let us demand our spacetime to be flat by the constraint
Rα

βμνðΓ̂Þ ¼ 0, which reduces the connection to the
Weitzenböck form [26,27]. The theories formulated in
these frameworks are referred to as teleparallel due to a
well-defined notion of parallelism2 as a consequence of the
vanishing of total curvature [18,32,33].
As the literature proves, in this symmetric teleparallel

framework [34], it is possible to find a theory which
reproduces exactly GR but through the nonmetricity tensor,
Qαμν which mediates the gravitational force, instead of
resorting to curvature for that task [18]. This special case is
called symmetric teleparallel equivalent general relativ-
ity (STEGR).
But we wish to throw further light into this fact, and to

that end we perform a contraction of Eq. (9) which can be
used to rewrite RðfgÞ (the piece we eventually need to show
the equivalence at the Lagrangian level),

0 ¼ RðfgÞ þ∇fg
α ðQα − Q̃αÞ þ 1

4
QαβγQαβγ

−
1

2
QγαβQαγβ −

1

4
QαQα þ

1

2
Q̃αQα; ð10Þ

where Qα ¼ Qα
μ
μ and Q̃α ¼ Qμ

α
μ. It is convenient now to

simplify the latter expression by defining the nonmetricity
scalar Q as3

Q ¼ 1

4
QαβγQαβγ −

1

2
QγαβQαγβ −

1

4
QαQα þ

1

2
Q̃αQα: ð11Þ

Therefore, for symmetric (torsionless) and flat con-
straints, we get

RðfgÞ ¼ −Q −∇fg
α ðQα − Q̃αÞ; ð12Þ

1Note that in this theory the torsion plays no role whatsoever.

2As a bonus, that this formulation can be regarded as a
“translational gauge theory” [28–31].

3However, the most general even-parity second order quadratic
form of the nonmetricity is

Q ¼ c1
4
QαμνQαμν −

c2
2
QαμνQμαν −

c3
4
QαQα

þ c4
2
QαQ̃

α þ ðc5 − 1ÞQ̃αQ̃
α;

which is a generalization of Eq. (11) that gets recovered by setting
c1 ¼ c2 ¼ c3 ¼ c4 ¼ 1.
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where ∇fg
α is a total divergence term. Continuing with this

lengthy scheme, we can verify that if we take the scalar of
curvature obtained from the Levi-Civita connection appear-
ing in Eq. (7) and we replace it with Eq. (12), we in fact
build a theory which is equivalent to GR up to a total
derivative in the action, which, in any case, does not
contribute to the equations of motion,

SGR ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
RðfgÞ

¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Q ¼ SSTEGR: ð13Þ

Therefore, the STEGR theory and GR are equivalent
frameworks of gravity but formulated with R and Q,
respectively. Obviously, cosmological models following
from these two settings are completely identical, and
cosmological observations would no offer hints as to which
is the underlying theory. However, we now are in a position
which allows us to go one step beyond and build fðQÞ
models, close enough to GR to make sense, but at the same
time, different enough so that small modifications could
ideally be spotted. In this sense, we want to stress that
theories stemming from actions based on Q have only
began to be explored in what regards observations. For
instance, a previous work by some of us [35] adopted a
more phenomenological perspective by putting forward
expressions for fðQÞ directly as functions of the redshift
with some parameters which cannot be readily associated to
a specific matter/energy content. Of course, both routes are
complementary and for this reason, we feel that continuing
to explore statistical examinations of the free parameters of
fðQÞ cosmologies in the light of astrophysical data could
help us discuss the suitability of fðQÞ in general.

III. FðQÞ COSMOLOGIES

Following the justification offered in the previous
sections, we generalize now the STEGR action as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
fðQÞ þ LM

�
; ð14Þ

where STEGR is directly recovered for fðQÞ ¼ Q=8πG.
Analogously to [21], we are going to work in the

coincident gauge, which allows to use a null connection,
that is,

cgΓα
μν ¼ 0 → ∇αgμν ¼ ∂αgμν: ð15Þ

Besides, we will consider a spatially flat Friedmann-
Lemaître-Robertson-Walker spacetime, as the most used
homogeneous an isotropic standard spacetime to describe
the Universe on large scales,

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð16Þ

for which the nonmetricity scalar reads

Q ¼ 6
H2

N2
: ð17Þ

As shown in [36], fðQÞ theories let us fix a particular lapse
function because Q retains a residual time-reparametriza-
tion invariance, in spite of which we have already used
diffeomorphisms to select the coincident gauge. Therefore,
and for simplicity, we will take this to our advantage
and choose NðtÞ ¼ 1. Then, the cosmological equations
become

6fQH2 −
1

2
f ¼ ρ; ð18Þ

ð12H2fQQ þ fQÞ _H ¼ −
1

2
ðρþ pÞ; ð19Þ

where the subindex denotes derivatives with respect to Q.
Examination shows that we can reproduce exactly the GR
background behavior under the prescription

QfQ −
1

2
f ¼ 3H2

8πG
¼ Q

16πG
; ð20Þ

which implies

fðQÞ ¼ 1

8πG
ðQþM

ffiffiffiffi
Q

p
Þ; ð21Þ

where M is a constant which can be interpreted as a mass
scale [21]. The analogy between the particular case with
M ¼ 0 and GR should be not surprising at all, because it
corresponds to the STEGR framework we already dis-
cussed in the previous section. But the M ≠ 0 case
represents a whole class of theories with the same back-
ground as GR whose differences do not show up at the
background level, although they do it at the perturba-
tion level.
An alternative route is to put forward an ansatz for fðQÞ

that includes Eq. (21) as a particular case in the hope that
this analytical extension will let us integrate Eqs. (18) and
(19) and so progress will be made possible. This happens to
be the case for the proposal presented in [21]

fðQÞ ¼ 1

8πG

�
Q − 6λM2

�
Q

6M2

�
α
�
; ð22Þ

where λ and α are dimensionless parameters and M ≠ 0.
Interestingly, different values of α can be chosen to
construct solutions depicting new early or late Universe
behaviors.
From Eq. (22) and using Eq. (17), the Friedmann

equation (18) can be integrated to yield
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H2

�
1þ ð1 − 2αÞλ

�
H2

M2

�
α−1�

¼ 8πG
3

ρ: ð23Þ

Note that a background evolution identical to that of GR is
recovered for either λ ¼ 0 or α ¼ 1=2. In addition, the case
for α ¼ 1 follows the same dynamics than GR after a
redefinition of G.
In this paper, though, we will follow [21] and set the

focus on the α ¼ −1 case, which leads to a solution with
two possible branches,

H2
� ¼ 4πG

3
ρ

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

27λM4

ð4πGρÞ2

s !
; ð24Þ

where ρ is the sum of all energy densities (as customary it
will be regarded as positive). The correction with respect to
the GR case becomes larger as ρ decreases, so the new
degree of freedom plays the effective role of dark energy.
Note the considerable level of nonlinearity at play in
Eq. (24).
From now on, and in order to be able to exploit the

predicting capabilities of an assortment of cosmological
data sets, we are going to consider our Universe’s evolution
is driven by the three usual kinds of matter energy: cosmic
dust, radiation, and a cosmological constant.
The explicit presence of a cosmological constant might

seem redundant or unnecessary, as we rather want to
explore geometric corrections that mimic its effect.
However, it will become clear that, as far as statistical
comparisons are concerned, the presence of such a term
renders the whole analysis far more palpable.
Additionally, the whole lot of standard matter-energy

fields will satisfy the continuity equation, that is,

_ρ ¼ −3Hðρþ pÞ; ð25Þ

where the dot denotes derivation with respect to cosmic
time. With our choices, ρ reads

ρ ¼ 3H2
0

8πG
½ΩΛ þ Ωmð1þ zÞ3 þ Ωrð1þ zÞ4�; ð26Þ

where we letΩΛ,Ωm, andΩr stand for current values of the
fractional densities of the three cosmological fluids com-
prising our matter-energy lot. Under this whole set of
prescriptions, the way to recover the ΛCDM setting, for the
positive branch, is

H2þjΩQ¼0 ¼ H2
ΛCDM: ð27Þ

We will also resort to the customary “normalization” of
the Hubble parameter so as to lighten the notation when-
ever possible,

Eðz ¼ 0Þ ¼ H�ðz ¼ 0Þ
H0

¼ 1: ð28Þ

This gives us

−
M4λ

H4
0

¼ 1

3
ð1 −ΩΛ − Ωm −ΩrÞ≡ΩQ

3
; ð29Þ

which can be seen to hold for both branches (obviously, the
standard ΛCDM normalization condition follows from
choosing ΩQ). Besides, and consequently, we will say that
ΩΛ;Ωm, and Ωr are primary parameters, in contrast to ΩQ

which is a derived one.
In addition, let us remark a peculiarity from the previous

normalization. When it is carried out for the positive
branch, one of the intermediate steps is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12λM4

H4
0ðΩΛ þ Ωm þ ΩrÞ2

s
¼ 2 − ΩΛ −Ωm − Ωr

ΩΛ þ Ωm þ Ωr
: ð30Þ

Because the left side of this equation is positive, the right
side must be as well. Therefore, it is also necessary to
impose the condition 0 < ΩΛ þ Ωm þ Ωr < 2, and this
condition lets ΩQ take negative values. By contrast, a
healthy behavior enabling the normalization in the negative
branch would demand either ΩΛ þΩm þΩr > 2 or
ΩΛ þΩm þΩr < 0 (clearly, the second condition makes
no sense physically).
After these convenient remarks, we can use Eq. (29) to

rewrite the Hubble parameter as a function of the free
parameters to be fitted at a later stage in this work,

H2
� ¼ H2

0

2
½ΩΛ þ Ωmð1þ zÞ3 þ Ωrð1þ zÞ4�

×

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ΩQ

½ΩΛ þΩmð1þ zÞ3 þ Ωrð1þ zÞ4�2
s !

:

ð31Þ

Note that theΩQ < 0 case of the latter bears resemblance to
the Dvali-Gabadadze-Porrati scenario with and anti–de
Sitter bulk studied in [37], and therefore exploring whether
our case experiences a sudden future singularity in the
future may be an interesting future prospect, we will come
back to this shortly.
Up to this point, we have presented a discussion as general

as possible, but in the remainder,wewill consider thepositive
branch only, because the negative one depicts a Hubble
parameterwhich decreases as z increases and therefore seems
quite unlikely to match observational evidences.
Obviously, at high redshifts, the contribution of ΩQ

becomes negligible and one recovers the usual ΛCDM
Hubble parameter, as we have already mentioned.
However, at the asymptotic future, one rather has
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lim
ρm;ρr→0

H2þ ¼ 1

2
H2

0

h
ΩΛ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

Λ þ 4ΩQ

q i
ð32Þ

and for the extremal case without a cosmological constant,
that is, ΩΛ ¼ 0, H2

ds ¼ H2
0

ffiffiffiffiffiffiffi
ΩQ

p
.

It is clear that in order to guarantee the physicality of our
expression in this particular regime we should impose more
restrictive conditions (priors), as the positivity ofΩQ for the
case without cosmological constant, or Ω2

Λ > −4ΩQ for the
general case. This subject is related to the possible
appearance of sudden cosmological singularities which
we have mentioned before. Interestingly, if such singular-
ities occurred, then the above physicality conditions would
be no longer necessary, as the singularity would happen
earlier than the above considered asymptotic future. Again,
the parameter space could be restricted through priors to
preclude such singular behavior. However, we will rather
let data speak for themselves and see whether observations
end up favoring parameter values capable of causing
trouble in the negative redshift region (of which they really
offer no control).
From a wider perspective, one could also wonder about

the particular case of our fðQÞ model that follows from
setting ΩΛ ¼ 0, thus letting the effects of nonmetricity
account entirely for the dark energy sector allowing us to
waive the presence of a cosmological constant or any other
form of dark energy altogether. Although this scenario
might seem too optimistic, we will examine it too.

IV. MCMC ANALYSIS

One of the main objectives of this paper is to obtain as
tight as possible constraints on the parameters of the fðQÞ
model under study. Results will throw some light as to
whether nonmetricity effects are compatible with observa-
tions, thus opening a new window of interest on the
possibility of an underlying modified gravity description
of our Universe. In order to narrow down our conclusions,
we will combine different background astrophysical probes
of known statistical relevance.
As it has been already stressed, we are sticking to the

positive branch Eq. (31) of these new cosmological
scenarios. The tests will be implemented using an
MCMC code [38,39], which, upon minimization of a total
χ2, will produce proficient fits of the values of Ωm, h, ΩΛ,
ΩQ, and Ωb; and, by the same token, this analysis will also
produce selection criteria permitting us to draw unimpaired
conclusions.

A. Priors

Our results will be obtained under the assumption of
some priors, which give some room to modified gravity
features, enforce the choice of the right branch, and
preclude nonphysical behavior and pronounced departures
from the well-established standard evolution (the ΛCDM

golden pattern). Specifically, we assume a uniform unin-
formative probability for values of the parameters within
the intervals defined by the following:

(i) 0 < Ωr < Ωb < Ωm
(ii) 0 < h < 1
(iii) 0 < Ωm þΩΛ þ Ωr < 2

We stress again that according to our earlier discussion, and
in view of these priors, ΩQ can be either positive or
negative.
But the best fits and errors alone are not all the

information we can infer from the MCMC procedure.
Indeed, we can also learn about the reliability of the model
by invoking the evidence E, also dubbed marginal like-
lihood or integrated likelihood. It is defined as follows:

E ¼ PðDjMÞ ¼
Z

PðDjθ;MÞPðθjMÞdθ; ð33Þ

that is, it estimates the support of the (measured) data D for
a given model M once all possible values for the
parameters θ have been considered. The evidence is
generally recognized as the most reliable statistical tool
for model comparison in cosmology [40], provided that
wide-enough priors are chosen.
Specifically, the performance of different models is

compared through the Bayes factor, that is, the ratio of
their evidences,

Bi
j ¼

Ei

Ej
: ð34Þ

In gross terms if Bi
j > 1, that is, Ei > Ej for the measured

data D, then model Mi is preferred over model Mj.
However, it is difficult to quantify how much better (or

worse) is one scenario as compared to the other. Jeffreys’
scale [41] is typically adduced in this regard. According to
that criterion, if lnBi

j < 1, the evidence in favor of the
modelMi is not significant; if 1< lnBi

j <2.5, the evidence
is substantial; if 2.5< lnBi

j <5, it is strong; and if lnBi
j > 5,

it is decisive. Nevertheless, Jeffreys’ scale is not completely
flawless, as discussed in [40]. Along this work, we will fix
Ej to be the evidence of ΛCDM to be used as a standard
value, in opposite to Ei, which will be the evidence of the
studied model.

B. Cosmographic parameters

On the other hand, it is customary to examine other
quantities which offer a clearer picture of the evolutionary
features of the particular Friedmann-Lemaître-Robertson-
Walker spacetime under study. In fact, once constraints on
Ωm, h, ΩΛ, ΩQ, and Ωb are obtained through our MCMC
procedure, we can also draw inferences on the well-known
cosmographic parameters, which follow from the Taylor
expansion of the scale factor,
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aðtÞ ¼ a0

�
1þH0Δt −

q0
2
H2

0Δt2 þ
j0
3!
h30Δt3

þ s0
4!
h40Δt4 þOðΔt5Þ

�
: ð35Þ

In the latter, we have defined Δt ¼ t − t0 while q0, j0, and
s0 are the so-called deceleration, jerk, and snap parameters,
respectively, evaluated at t0 (present time) [42,43]. Explicit
expressions to evaluate them can be found in many
references and we just reproduce them here for the benefit
of the readers,

qðtÞ ¼ −
aä
_a2

→ qðzÞ ¼ −1þ ð1þ zÞE
0ðzÞ

EðzÞ ; ð36Þ

jðtÞ ¼ a2 _ä
_a3

→ jðzÞ ¼ ð1þ zÞ2 E
00ðzÞ
EðzÞ þ q2ðzÞ; ð37Þ

sðtÞ ¼ a3 ̈ä
_a4

→ sðzÞ ¼ −ð1þ zÞj0ðzÞ − 2jðzÞ − 3qðzÞjðzÞ;
ð38Þ

where the dot and the prime denote differentiation with
respect to cosmic time and z, respectively.

V. OBSERVATIONAL DATA AND
STATISTICAL ANALYSIS

In this section, we put forward the cosmological data
used in this work for an observational scrutiny of both
ΛCDM and the fðQÞ given by Eq. (31). Specifically, we
use Type Ia supernovae with Pantheon data, the expansion
rate data from early type galaxies as cosmic chronometers
with Hubble data, cosmic microwave background shift
parameters from Planck 2018, and baryon acoustic oscil-
lations data to this purpose.
We are going to proceed as follows. First, we will

provide details on how to apply each probe on its own,
that is, we will explain how we will construct each separate
χ2 contributing to the total one (the sum of all previous
ones). Then we will find the values of the parameters which
minimize each of those individual contributions (with the
pertinent errors) in order to appreciate the contribution of
each data set, and after this we will repeat the procedure but
using the total χ2.
Our best fits report will be arranged in a table so as to

make the conclusions readier to be drawn. We will also
provide the complementary visual support of confidence
contours, which inform us pictorially on the degree of
correlations among parameters, the tightness of the con-
straints each data set suggests, and various other interpre-
tation tools.

A. Pantheon supernovae data

This sample is one of the latest Type Ia supernovae
(SNeIa) compilations [44] and it contains 1048 SNeIa at
redshift 0.01 < z < 2.26. The constraining power of SNeIa
becomes manifest when used as standard candles. This can
be implemented through the use of the distance modulus,

F ðz;xÞtheo ¼ 5 log10 ½DLðz;xÞ� þ μ0; ð39Þ

where DL is the luminosity distance given by

DLðxÞ ¼ ð1þ zÞ
Z

z

0

cdz0

H0Eðz0;xÞ
; ð40Þ

and x is the vector with the free parameters to be fit. Note
that the factor c=H0 can be reabsorbed into μ0. Then, one
can construct ΔF ðxÞ ¼ F theo − F obs, using for this pur-
pose the distance modulus F obs associated with the
observed magnitude. At this point, it may be thought that
a possible χ2SN is

χ2SNðxÞ ¼ ðΔF ðxÞÞT · C−1
SN · ΔF ðxÞ: ð41Þ

However, the latter would contain the nuisance param-
eter μ0, which in turn is a function of the Hubble constant,
the speed of light c, and the SNeIa absolute magnitude. In
order to circumvent this problem, χ2SN is marginalized
analytically with respect to μ0 as in [45], thus obtaining a
new χSN estimator of the form

χ2SNðxÞ¼ ðΔF ðxÞÞT ·C−1
SN ·ΔF ðxÞþ ln

S
2π

−
k2ðxÞ
S

; ð42Þ

where CSN is the total covariance matrix, S is the sum of all
entries ofC−1

SN , which gives an estimation of the precision of
these data independently of x, and k is ΔF ðΩm;Ωr;ΩΛÞ
but weighed by a covariance matrix with as follows:

kðxÞ ¼ ðΔF ðxÞÞT · C−1
SN: ð43Þ

B. Hubble data

Early time passively evolving galaxies have some
peculiar features in their spectra which have been shown
to correlate with their evolving stage. Thus, direct astro-
physical measurements can estimate their differential
ages at different redshifts and this can be finally related
to the Hubble parameter. For more details, see [46–48].
Therefore, and essentially, this is a sample of 31 values of
HðzÞ for 0.07 < z < 1.965 [49,50] to assist us in fitting the
free parameters of our theoretical setting through the
construction of a χ2H as follows:

χ2H ¼
X31
i¼1

½Hðzi;xÞ −HobsðziÞ�2
σ2HðziÞ

; ð44Þ
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where HobsðziÞ is the observed value at zi, σHðziÞ are the
observational errors, and Hðzi;xÞ is the value of a theo-
retical H for the same zi with the specific parameter vector
x. Needless to say, for our case of interest Hðzi;xÞ will be
given by the positive branch of Eq. (31).

C. Cosmic microwave background data

It is common practice to condense CMB data into the so-
called shift parameters [51] when examining the evolution
of the cosmological background. This set of three quantities
basically informs us of the position of the first peak in the
temperature angular power spectrum through the ratio
between its position in the model one wants to analyze
and that of an SCDM model (standard cold dark matter).
The set of shift parameters is formed by the exact
expression of that quadrature ratio (an approximate yet
quite accurate expression) and the normalized density
fraction of baryons. We construct the χ2CMB estimator as

χ2CMB ¼ ðΔFCMBÞT · C−1
CMB · ΔFCMB; ð45Þ

where ΔFCMB is a vector formed by those three quantities
mentioned above [51].
We have used the Planck 2018 data release [52] to obtain

the shift parameters which, according to our earlier sketch,
are defined as

RðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q rðz�;xÞ
c

; ð46Þ

laðxÞ≡ π
rðz�;xÞ
rsðz�;xÞ

; ð47Þ

ωb ≡Ωbh2; ð48Þ

where rðz;xÞ is the comoving distance to z, which reads

rðz;xÞ ¼
Z

z

0

c
Hðz0;xÞ dz

0; ð49Þ

and rsðz;xÞ is the comoving sound horizon, defined as

rsðz;xÞ ¼
Z

∞

z

csðz0Þ
Hðz0;xÞ dz

0: ð50Þ

In the latter, we must take into account that the sound speed
csðzÞ is given by the expression

csðzÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ R̂bð1þ zÞ−1Þ
q ; ð51Þ

where

R̂b ¼ 31500Ωbh2
�
TCMB

2.7

�
−4
: ð52Þ

The comoving distance and the comoving sound horizon
are evaluated at the photon-decoupling redshift z�, calcu-
lated in Appendix E of [53] with

z� ¼ 1048½1þ 0.00124ðΩbh2Þ−0.738�½1þ g1ðΩmh2Þg2 �;

where

g1 ¼ 0.0783ðΩbh2Þ−0.238½1þ 39.5ðΩbh2Þ−0.763�−1;
g2 ¼ 0.560½1þ 21.1ðΩbh2Þ1.81�−1:

Let us recall that the shift parameters depend on the
position of the CMB acoustic peaks, which are functions of
the geometry of the model considered. For that reason, they
can be used to discriminate between different models or
different values of the free parameters x, which includesΩb
in this case. A complete and detailed description of these
parameters and those that follow can be found in [52,54].

D. Baryon acoustic oscillations data

The last set of data addresses BAOs, which are fluctua-
tions in the density of visible baryonic matter as a
consequence of acoustic density waves in the primordial
plasma. Accordingly, there is a distance associated with the
maximum distance that acoustic waves can travel through
this media until the plasma cooled at the recombination
moment, where it became a soup of neutral atoms and the
expansion of plasma density waves stopped and they got
frozen. That being so, the mentioned distance can be used
as a standard ruler.
We will use five sets of data, collected by different

observational missions. Let us give now relevant details.
(i) WiggleZ: These are data coming from the WiggleZ

Dark Energy survey [55], which are evaluated at
redshifts zw ¼ ð0.44; 0.66; 0.73Þ as shown in Table 1
of [56]. Following that work, we will consider two
quantities: the acoustic parameter given by

Aðz;xÞ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffi
Ωmh2

q
DVðz;xÞ

cz
ð53Þ

and the Alcock-Paczynski distortion parameter

Fðz;xÞ ¼ ð1þ zÞDAðz;xÞHðz;xÞ
c

; ð54Þ

where DA is the angular diameter distance,

DAðzÞ ¼
1

1þ z

Z
z

0

cdz0

H0Eðz0;xÞ
; ð55Þ

and DV is the geometric mean of the longitudinal
(DA) and radial (c=HðzÞÞ BAO modes, defined as
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DVðz;xÞ ¼
�
ð1þ zÞ2D2

Aðz;xÞ
cz

Hðz;xÞ
�
1=3

: ð56Þ

Consequently, we have two observational parame-
ters, that is, AðzwÞ and FðzwÞ which can be com-
pared with the theoretical value drawn from the
model under study with a specific x, and allowing
us to construct a new ΔFw. In these cases, we define
χ2w as

χ2w ¼ ðΔFwÞT · C−1
w · ΔFw; ð57Þ

where C−1
w is a matrix given in Table 2 of [56].

(ii) BOSS: In this case, we consider the data from the
SDSS-III Baryon Oscillation Spectroscopy Survey
(BOSS) DR12 described in [57]. We proceed analo-
gously to the WiggleZ case but now we have
zB ¼ ð0.38; 0.51; 0.61Þ, whereas the fundamental
parameters are

DMðz;xÞ
rfids ðzdÞ
rsðzd;xÞ

; Hðz;xÞ rsðzd;xÞ
rfids ðzdÞ

; ð58Þ

where DMðzÞ ¼ rðzÞ is the comoving distance,
rsðzd;xÞ denotes the sound horizon defined as
Eq. (50) but evaluated at the dragging redshift zd,
and rfids ðzdÞ is the same parameter but calculated for
a given fiducial cosmological model which in this
specific case is equal to 147.78 Mpc. Clearly, the
first step involves calculating the redshift of the drag
epoch zd, which can be done considering the
approximation [58]

zd ¼
1925ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
½1þ b1ðΩbh2Þb2 �; ð59Þ

where b1 and b2 are factors calculated as follows:

b1 ¼ 0.313ðΩmh2Þ−0.419
× ½1þ 0.607ðΩmh2Þ0.6748�; ð60Þ

b2 ¼ 0.238ðΩmh2Þ0.223: ð61Þ

Once more, we will define

χ2B ¼ ðΔFBÞT · C−1
B · ΔFB; ð62Þ

where ΔFB is the difference between the observa-
tional data and the resulting value for x, and C−1

B is
the inverse of the covariance matrix given in Table 8
of [57].

(iii) eBOSS: The extended Baryon Oscillation Spectros-
copy Survey (eBOSS) gives us one more data
point [59],

DVðz ¼ 1.52Þ ¼ 3843� 147
rsðzdÞ
rfids ðzdÞ

Mpc: ð63Þ

Our function χ2eB gets a simpler expression that in
other cases, as the matrix notation is not necessary,
and we simply have

χ2eB ¼ ΔF 2
eB

σ2eB
; ð64Þ

where σ2eB is the error in the datum.
(iv) BOSS-Lyman α: Another set of data is Quasar-

Lyman α Forest from SDSS-III BOSS DR11 [60]
which contributes two new data points to the
analysis,

DMðz ¼ 2.34;xÞ
rsðzd;xÞ

¼ 36.98þ1.26
−1.18 ; ð65Þ

c
Hðz ¼ 2.34;xÞrsðzd;xÞ

¼ 9.00þ0.22
−0.22 ; ð66Þ

and its χ2 is defined as usual.
(v) Finally, we consider the voids-galaxy cross-correla-

tion data from [61]. This set gives us two new data
points at z ¼ 0.57 which are

DAðz ¼ 0.57;xÞ
rsðzd;xÞ

¼ 9.383� 0.077; ð67Þ

Hðz ¼ 0.57;xÞrsðzd;xÞ ¼ ð14.05� 0.14Þ 10
3 km
s

;

ð68Þ

and the same usual definition applies to its χ2.

VI. RESULTS

After having set forth our statistical procedure along with
a detailed outline of the astrophysical probes chosen, we
can now present the results of our research.
We stress once more that a key aspect is the comparison

of the novel fðQÞ scenario under consideration with the
ΛCDM standard. To this end, we simply perform all the
tests on this scenario as well.
From a very wide perspective, we could also wonder

about the peculiar case of our fðQÞmodel that follows from
setting ΩΛ ¼ 0. In principle, this scenario would be of
interest as to avoid the problems associated with the
cosmological constant. Although some insight into this
particular setting can be easily drawn from the more general
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fðQÞ one, we treat it in full so that our conclusions are more
complete and precise.
The best fits of (the three) models we analyze are shown

in Table I. Let us emphasize that ΩQ is a characteristic
parameter of the fðQÞ scenario, a signature of it that does
not appear at all in the ΛCDM setting.
For additional discernment, we present the marginalized

confidence contours directly as drawn from the MCMC
procedure providing our best fits. This supplies visual hints
of the complementarity of different data sets, their con-
straining power, and correlation among parameters. The
comparison of the contour plots for ΛCDM and fðQÞ with
ΩΛ ≠ 0 can be found in Fig. 1, while specific results of the
fðQÞ model are presented separately in Fig. 2. Finally,
results for fðQÞ with ΩΛ ¼ 0 are shown in Fig. 3. For each
individual data set or data set combination, we draw the
contours by choosing two shades of a single color, and we
let the dark and light hues represent the 1σ and 2σ regions,
respectively.
One of the main conclusions of the MCMC analysis is

that in the case of fðQÞ with ΩΛ ≠ 0 the combination of
data sets yields a tiny negative value of ΩQ. Specifically, it
lies in a significantly wide uncertainty range that makes it

compatible with a null value at the 1σ level (see Table I and
the black contour in Fig. 2). This compatibility with a
vanishingΩQ applies for all the separate data sets except for
BAO, which not only bet on a larger negative value only
compatible with ΩQ ¼ 0 at the 2σ level, but also exhibit
much lower errors (at least twice smaller) than other probes.
The large uncertainty in ΩQ can undoubtedly be associated
to that in ΩΛ. It is visually manifest that the two parameters
are mutually quite (anti)correlated for all data sets, as the
inclination of the contours is very close to −45°. This
significant negative correlation, expected from Eq. (29),
makes the large degree of uncertainty in the ΩΛ induce the
same behavior on ΩQ. Interestingly, the negative best fit
value of ΩQ hints at the interest of exploring and character-
izing sudden future singularities in these models.
A second outcome is that, independently of the values of

ΩΛ and ΩQ, the fits of the other two parameters, Ωm and h,
are very similar in the fðQÞ and ΛCDM scenarios. This
makes sense considering previous arguments, because
shifts in ΩΛ are reabsorbed into ΩQ and vice versa,
affecting quite little the rest of parameters. A reflection
of this fact are the very similar χ2 values displayed by both
models in Table I.

TABLE I. MCMC best fits and errors. Quantities in italic correspond to secondary parameters.

Pantheon Hubble CMB BAO Total

Ωm ΛCDM 0.298þ0.022
−0.021 0.327þ0.066

−0.056 0.316þ0.007
−0.007 0.320þ0.016

−0.015 0.323þ0.005
−0.005

fðQÞΩΛ≠0 0.337þ0.075
−0.073 0.341þ0.070

−0.060 0.346þ0.092
−0.080 0.323þ0.020

−0.017 0.325þ0.007
−0.007

fðQÞΩΛ¼0 0.400þ0.024
−0.024 0.350þ0.057

−0.049 0.238þ0.006
−0.006 0.348þ0.016

−0.016 0.285þ0.004
−0.004

Ωb ΛCDM � � � � � � 0.0491þ0.0006
−0.0006 0.063þ0.012

−0.031 0.0496þ0.0004
−0.0004

fðQÞΩΛ≠0 � � � � � � 0.057þ0.014
−0.012 0.081þ0.019

−0.036 0.0501þ0.0010
−0.0010

fðQÞΩΛ¼0 � � � � � � 0.0371þ0.0005
−0.0005 0.042þ0.011

−0.021 0.0407þ0.0004
−0.0004

h ΛCDM � � � 0.678þ0.031
−0.031 0.675þ0.005

−0.005 >0.65 0.670þ0.003
−0.003

fðQÞΩΛ≠0 � � � 0.674þ0.039
−0.054 0.645þ0.090

−0.071 >0.62 0.667þ0.007
−0.007

fðQÞΩΛ¼0 � � � 0.703þ0.029
−0.030 0.777þ0.007

−0.007 >0.70 0.730þ0.004
−0.004

ΩΛ ΛCDM 0.701þ0.021
−0.022 0.673þ0.056

−0.066 0.684þ0.007
−0.007 0.680þ0.015

−0.016 0.677þ0.005
−0.005

fðQÞΩΛ≠0 0.43þ0.47
−0.49 0.64þ0.59

−0.60 0.87þ0.43
−0.57 1.11þ0.21

−0.18 0.701þ0.054
−0.053

fðQÞΩΛ¼0 � � � � � � � � � � � � � � �
ΩQ ΛCDM � � � � � � � � � � � � � � �

fðQÞΩΛ≠0 0.23þ0.42
−0.40 0.03þ0.58

−0.61 −0.22þ0.65
−0.52 −0.43þ0.18

−0.22 −0.027þ0.057
−0.058

fðQÞΩΛ¼0 0.599þ0.023
−0.024 0.650þ0.049

−0.057 0.762þ0.006
−0.006 0.651þ0.016

−0.016 0.715þ0.004
−0.004

χ2 ΛCDM 1035.77 14.49 0.001 16.55 1072.19
fðQÞΩΛ≠0 1035.72 14.40 0.005 11.34 1072.01
fðQÞΩΛ¼0 1036.48 14.53 0.003 51.34 1207.96

Bi
ΛCDM ΛCDM � � � � � � � � � � � � 1

fðQÞΩΛ≠0 � � � � � � � � � � � � 0.76
fðQÞΩΛ¼0 � � � � � � � � � � � � 3 × 10−30

lnBi
ΛCDM ΛCDM � � � � � � � � � � � � 0

fðQÞΩΛ≠0 � � � � � � � � � � � � −0.27
fðQÞΩΛ¼0 � � � � � � � � � � � � −68
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FIG. 1. Contour plots for the ΛCDM model (left column) and the fðQÞ model with ΩΛ ≠ 0 (right column) with the following color
scheme: green, SNeIa; yellow, Hubble data; orange, Planck 2018 CMB; blue, BAO data; black, all sets of data. As SNeIa are (of course)
unable to fix the value h, their contours are missing from those plots where constraints on h are shown; for the same rationality, both
SNeIa and Hubble contours are absent from plots showing constraints on Ωb.
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But we may also note that, although the ΛCDM and
fðQÞ with ΩΛ ≠ 0 models yield similar best fits of Ωm and
ΩΛ, the distinctive feature encoded in ΩQ changes quite
significantly the correlations between those two parameters
(see the bottom row of Fig. 1).
However, the behavior of Ωm and h is approximately

similar in both models (see the top row of Fig. 1) in a broad
sense and in particular in what concerns the correlation
among the two parameters. Still there is a noticeable
difference, which is the quite larger uncertainty on Ωm
as associated with CMB data in the case of fðQÞ with
ΩΛ ≠ 0. We infer accordingly that the roles of Ωm and h
seem to be quite similar at low redshifts, but the same does
not apply at high redshifts for what Ωm is concerned.
Recalling theBayes factors, the conclusion is (again) that,

within the current data sets, we are not able to distinguish
onemodel from the other. This reasoning is obviously drawn
from a background examination, a perturbative one might
propound more refined pieces of information (some results
along this route were sketched in [21]).
We now may come back the possibility of imposing

ΩΛ ¼ 0. Figure 2 provides insight on this matter, as it
shows that ΩΛ is enormously correlated with ΩQ; for that
reason, that parameter could in principle take the role of the
cosmological constant and thus give the same evolution,
but then the model would then be irreducible to ΛCDM, as
it can be seen by looking at Eq. (31). However, a look at the
locus on the contours of Fig. 2 which corresponds to
ΩΛ ¼ 0 suggest that this value is clearly disfavored.
Nevertheless, we have decided to perform a direct
MCMC analysis to confirm such concerns (see Table II).
The strong tension among all single data sets in this

restricted scenario becomesmanifest in Fig. 3. Paradoxically,
theCMBconstraints aremuchbetter than those derived in the
fðQÞ case with ΩΛ ≠ 0, but they require an abnormally low

value for Ωm which is not consistent with any of the other
probes considered. Moreover, although the single χ2 is
comparable with those from other frameworks, we must
note that BAOs are produce very poor constraints, and that
the best fit χ2 coming from the joint use of all the probes is
much larger. If we finally look at the values of the Bayes
factors, we can see how this scenario is frankly statistically
disfavored with respect to the other cases.
In addition to these results, we can compute the cosmo-

graphic parameters deceleration q0, jerk j0, and snap s0 to
add more elements to the comparison between the kin-
ematics of the two models. Table II summarizes our
findings: best fits all share an uncertainty which is much
larger in the fðQÞ case than in the ΛCDM case, and with
the latter estimations which fall completely within their
respective counterparts in the former ones.
Finally, and to close this section, we confront once again

our modified gravity scenario with ΛCDM by rewriting it
as a model fueled by dark matter, radiation and dark energy
following, for instance [62–65], by setting

peff ¼ weffρeff ð69Þ
and

H2 ¼ H2
0½Ωmð1þ zÞ3 þ Ωrð1þ zÞ4� þ 8πG

3
ρeff : ð70Þ

If we combine the last two expressions with the continuity
equation, Eq. (25), we finally write

weffðzÞ ¼
2ð1þ zÞ d lnEðzÞdz − E−2ðzÞΩrð1þ zÞ4 − 3

3ð1 − E−2ðzÞ½Ωmð1þ zÞ3 þ Ωrð1þ zÞ4�Þ : ð71Þ

The explicit expression of weff for our modified gravity
model is too complicated for it to convey readily usable
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FIG. 2. Contour plots for the fðQÞ model with ΩΛ ≠ 0 with the following color scheme: green, SNeIa; yellow, Hubble data; orange,
Planck 2018 CMB; blue, BAO data; black, all sets of data.
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information, so we regard it sufficient to plot it as a function
of a in Fig. 4 using the best fit values coming from the
MCMC. In addition, and once more with the results of the
MCMC analysis, we are able to calculate the value ofweff at
the present day for the fðQÞ model,

weff jz¼0 ¼ −0.987þ0.032
−0.027 : ð72Þ

Once again, we find an indication that the best fit values of
the parameters of our model are very similar to those of
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FIG. 3. Contour plots for the fðQÞ model with ΩΛ ¼ 0 using the following color scheme: green, SNeIa; yellow, Hubble data; orange,
Planck 2018 CMB; blue, BAO data; black, all sets of data.

TABLE II. Best fits of the cosmographic parameters.

q0 j0 s0

ΛCDM −0.515þ0.007
−0.007 1.000186þ2×10−6

−2×10−6
−0.454þ0.021

−0.021

fðQÞΩΛ≠0 −0.499þ0.040
−0.035 0.973þ0.053

−0.081 −0.453þ0.029
−0.039
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FIG. 4. Evolution of weff as function of a. The solid line is the
value as drawn from the best fit, while the dashed lines mark the
boundaries of the confidence interval.
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ΛCDM; in fact, weff ¼ −1 is perfectly inside the 1σ
interval.

VII. SUMMARY AND CONCLUSIONS

Recent works in the field have been inspired by the
realization that, in the symmetric teleparallel framework,
the GR Lagrangian density can be written by basically
replacing the scalar of curvature built from the Levi-Civita
connection with the nonmetricity Q (up to small details
which are not really relevant for a summary level of
discussion).
The former framework can be generalized upon replace-

ment of Q with a specific fðQÞ given by Eq. (21) which
reproduces the ΛCDM background behavior. Interestingly,
the fact that this new setup is not exactly a GR one might
have implications at the perturbative level, which is (also)
beyond our specific concerns. The particular action con-
sidered at this intermediate test allows us to make progress
toward yet another form of fðQÞ, which becomes the core
of the present work; we present it in Eq. (22) and it lets
draw an exact expression for the Hubble parameter under
some parameter specifications. The grand picture of this
choice is that it resembles standard evolutions and is
therefore worth testing observationally. To that end, we
resort to the MCMC method as to constraint the free
parameters in the theory and compare the values obtained
with those of the ΛCDM scenario.
Our main conclusion is that the parameter which encodes

the difference between the two evolutions at the back-
ground level is very close to zero when all data sets are
combined. This parameter, which we have dubbedΩQ, gets
positive best fit values for some data sets while it is negative
for others, but in all cases the errors make the best fit
perfectly compatible with a null value; thus, an overall

smaller best fit (almost zero value) is a most admissible
consequence. The same conclusion follows from the
Bayesian evidence: according to Jeffreys’ scale, no model
is preferred over the other.
A complementary study of the cosmographic parameters

yields values which again only reflect the striking similarity
of the best fits between ΛCDM and our fðQÞ. Note in this
respect that, for the modified gravity model, these param-
eters are more poorly constrained as their complexity
penalizes error propagation. Finally, and for the sake of
further interpretation of the kind of evolution our best fit
scenario depicts, we have computed the corresponding weff .
As expected, the value is very close to −1.
For all these reasons, we have seen that a yet another

(promising/intriguing) cosmological candidate to become
an alternative to ΛCDM cannot be considered a real
challenger, at least at the background level.
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