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We propose a simple model based on the assumption that the varying fine structure constant α is an effect
of the cosmological expansion to investigate the relation between the varying α and the cosmological
components. For a spatially flat, homogeneous, and isotropic universe, the current proportion of
cosmological components and age of the universe predicted by the model are consistent with the
cosmological observations. Furthermore, the predicted current variation rate of α is also close to the atomic
clock measurements. For the early universe, we predict a very strict constraint, which is compatible with the
upper limit given by the investigations of cosmic microwave background and big bang nucleosynthesis.
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I. INTRODUCTION

Fundamental constants in physics reflect the essential
properties of nature and some are used to define the units of
measurement. However, the constancy of some fundamen-
tal constants has been controversial ever since Dirac
proposed the “large numbers hypothesis" [1]. There is
no point in discussing the constancy of dimensional
constants because only their ratios to some units can be
measured. The change of dimensional constants can be
eliminated by redefining the units so that it has no
substantial effect on the laws of physics. Therefore, only
changes of dimensionless constants are meaningful and can
be measured directly in experiments [2].
The fine structure constant α, which determines the

strength of the electromagnetic interaction, is one of the
most important dimensionless number in physics. In the last
decades, the varying α has been investigated via various
observations including the atomic clock measurements [3],
the isotope ratio studies [4,5], the astronomical observations
of white dwarfs [6,7] and galaxy clusters [8–11], and so on.
In particular, Webb et al. found an evidence for a cosmo-
logical evolution of α by analyzing absorption lines in
quasar spectra [12–15]. As the observational data accumu-
lated, they further revealed a spatial variation of α [16–20].
In addition, the investigations of cosmic microwave back-
ground (CMB) at z ≈ 103 and big bang nucleosynthesis
(BBN) at 108 ≤ z ≤ 1010 both give an upper limit jΔα=αj <
10−2 for the early universe [21–23]. These investigations
show a preference for variations of α. Avarying α is likely to

involve underlying dynamics and associate new physics.
Therefore, the research of varying α has a profound impact
on the understanding of natural laws.
The fine structure constant can be expressed as a

combination of several fundamental dimensional constants
α≡ e2=ℏc in cgs units with the elementary charge e, the
reduced Planck’s constant ℏ, and the speed of light c.
Although the varying α could be interpreted by postulating
that either the speed of light or the elementary charge varies
with time, these nonstandard cosmological models are still
highly controversial and facing many challenges [24–29].
More recently, some work investigated the varying α driven
by the interaction of a scalar field and the electromagnetic
field [30–33]. The modified gravity theories [34,35] and the
ΛðαÞ cold dark matter models [36–38] are also employed to
explain the varying α.
In this paper, we do not intend to discuss which

fundamental dimensional constants are responsible for a
varying α, but rather to take it as the quantity associated
with the properties of space-time of that point. The
observations of Type Ia supernovae (SNe Ia) in distant
galaxies imply an accelerated expansion of the universe. It
motivates us to consider that the varying α may be an effect
of the varying expansion rate of space-time. Based on this
assumption, we will propose a simple model to establish a
relation between the varying α and the evolution of the
various cosmological components. Then, we can obtain the
proportions of matter and dark energy in the current
universe by fitting the experimental data and further
estimate the current age of the universe. In addition, the
model will give the variation rate of α to compare with
the experimental measurements and place a constraint on
the variation of α in the early universe.
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II. MODEL

The expansion rate of the universe is determined by the
total density of the universe, which is related to the specific
proportion of the various cosmological components. Since
the spatial curvature of the universe has been constrained to
a very small value by the experiments of the SNe Ia, CMB,
baryon acoustic oscillations (BAOs), and the measurement
of the Hubble constant (H0), the discussion of time varying
α is in a flat universe [39–42]. In addition, the relativistic
component decreases rapidly with the cosmological expan-
sion and is negligible compared with the nonrelativistic
component in the current universe. Therefore, the
Friedmann equation, which describes the evolution of a
spatially flat, homogeneous, and isotropic universe, can be
simplified to

H̃2 ¼ ΩMa−3 þΩΛ; ð1Þ
where the dimensionless Hubble parameter H̃ is defined as
the expansion rate of the universe scaled by its current
value, H̃ ≡H=H0. The Hubble parameter is defined as
H ≡ _a=a, a is scale factor, and the overdot denotes a
derivative with respect to proper time. The relation between
scale factor a and redshift z is a ¼ 1=ð1þ zÞ. The ΩM ¼
1 − ΩΛ and ΩΛ are the matter and dark energy densities of
the universe with respect to the current critical density,
respectively.
According to Eq. (1), the first and second derivatives of

H̃ with respect to proper time are, respectively,

_̃H ¼ −
3

2
H0ðH̃2 −ΩΛÞ; ð2Þ

̈H̃ ¼ −3H0H̃
_̃H : ð3Þ

It is easy to see that the derivative of the expansion rate
above first order with respect to proper time can be re-
expressed as a function of H̃ and _̃H. So only the four
quantities, ΩΛ, H̃, H0, and

_̃H, appear in the equations and
only two of them are independent.
If the varying α is indeed an effect of the cosmological

expansion, the general form of the variation rate of α should
be able to be expressed as any combination of the four
quantities,

_α

α0
¼

X
r;p;q;s

Cr;p;q;sΩr
ΛH̃

pHq
0ð _̃HÞs; ð4Þ

where the powers r, p, q, s are arbitrary integers andCr;p;q;s
is the coefficient of the corresponding term. Although the
general form is extremely complex, dimensional analysis
allows for strict constraints on the possible forms. First of
all, ΩΛ is a dimensionless constant which can be absorbed
into the coefficient Cr;p;q;s. In addition, H̃ is a dimension-
less function and the dimensions of H0 and _̃H are both

½T−1�. So, the dimension of _α=α0 is ½T−1� which requires
qþ s ¼ 1 and Eq. (4) can be expressed as

_α

α0
¼

X
p;q

Cp;qH̃pHq
0ð _̃HÞ1−q ¼

X
p;q

Cp;qH̃p _̃H

� _̃H
H0

�−q

:

ð5Þ

The _̃H=H0 can be reexpressed as polynomials of ΩΛ and H̃
by using Eq. (2). After expanding and combining the
polynomials, Eq. (5) will be simplified to

_α

α0
¼

X
p

CpH̃p _̃H; ð6Þ

where the power p is an arbitrary integer and Cp is the
coefficient of the corresponding term. Only H̃ and _̃H
survive in Eq. (6) in the end because only two quantities
are independent in the cosmological model.
In principle, each term may have a contribute to the

variation of α. But following the principle of simplicity of
physical laws, we consider that only one term plays the
most important role and the contribution of other terms can
be absorbed by adjusting the corresponding coefficient.
Therefore, Eq. (6) can be further simplified to

_α

α0
∝ H̃p _̃H ∝ _ðH̃IÞ: ð7Þ

The second proportional relation is representing the former
as a total derivative with respect to proper time, where
I ¼ pþ 1 is an undetermined integer parameter.
After integrating Eq. (7) and using the current values

as boundary condition, the relative variation of α is
expressed as

Δα
α

≡ αz − α0
α0

¼ AðH̃I − 1Þ; ð8Þ

where αz and α0 are the values of the fine structure constant
at redshift z and present, respectively, A is also an
undetermined parameter. By using the Friedmann equation,
Eq. (8) can be replaced by

Δα
α

¼ A½ðΩMa−3 þΩΛÞI2 − 1�: ð9Þ

A relation is established between the varying α and the
cosmological components in Eq. (9). Then, the proportion
of matter and dark energy in the current universe could be
obtained with the experimental measurements of varying α.
The age of the universe at the scale factor a can be

obtained by solving the Friedmann equation
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t ¼ 2

3H0

1ffiffiffiffiffiffiffi
ΩΛ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛa3 þ ΩM

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
ΩΛa3

p
ffiffiffiffiffiffiffi
ΩM

p
�
: ð10Þ

The current age of the universe is corresponding to the scale
factor a ¼ 1 in Eq. (10),

t0 ¼
2

3H0

1ffiffiffiffiffiffiffi
ΩΛ

p ln

�
1þ ffiffiffiffiffiffiffi

ΩΛ
p
ffiffiffiffiffiffiffi
ΩM

p
�
: ð11Þ

It can be estimated with the predicted proportion of
cosmological components.
In order to get the variation rate of α with respect to

proper time, Δα=α should be represented as a function of
proper time. The inverse solution of Eq. (10) gives the scale
factor a varying with proper time,

aðtÞ ¼
�
ΩM

ΩΛ

�1
3

�
sinh

�
3

2
H0

ffiffiffiffiffiffiffi
ΩΛ

p
t

��2
3

: ð12Þ

Equation (9) can be expressed as a function of proper time
with Eq. (12),

Δα
α

¼ A

�� ffiffiffiffiffiffiffi
ΩΛ

p
coth

�
3

2
H0

ffiffiffiffiffiffiffi
ΩΛ

p
t

��
I
− 1

�
: ð13Þ

Then, the variation rate of α with proper time is given by

_α

α0
¼ −

3

2
AIH0Ω

Iþ1
2

Λ
coshðI−1Þ ð3

2
H0

ffiffiffiffiffiffiffi
ΩΛ

p
tÞ

sinhðIþ1Þ ð3
2
H0

ffiffiffiffiffiffiffi
ΩΛ

p
tÞ ; ð14Þ

_α

α0

				
t¼t0

¼ −
3

2
AIH0ΩM: ð15Þ

The _α=α in the condition t ¼ t0 corresponds to the current
variation rate of α. It can be estimated after determining the
parameters A, I and the current matter density ΩM.

III. RESULTS

In this section,wewill use themodel and the experimental
data of varying α to get the proportion of cosmological
components and the current age of the universe, and estimate
the variation rate ofα and the constraint in the early universe.
We take the experimental data of the absorption lines in

quasar spectra to fit the parameters in themodel. The data set
contains the 293 samples published in Ref. [17] (the two
outliers have been removed), the 20 samples published in
Ref. [18] (14 of themwere remeasurements of points already
in Ref. [17] and were taken priority), the 21 samples
published in the Ref. [43], and the 4 new high-redshift
samples published in Ref. [19]. Most of the measurements
are observed at the Keck telescope and VLT (Very Large
Telescope). The Keck telescope is situated in the northern
hemisphere (at ∼20°N) and mainly observes the northern
sky, while the VLT is situated in the southern hemisphere (at

∼25°S) and mainly observes the southern sky. Since the
statistical significance of the dipole of the Keck samples is
much lower than that of the VLT samples, the Keck samples
are less affected by the spatial anisotropy than the VLT
samples [17]. Therefore, we intend to get a preliminary
verification of the model with the Keck samples and then
obtain the final results by combing all the samples.

A. The prediction of cosmological components

In order to avoid that results are overly sensitive to an
extreme sample, we follow the weighted mean method to
divide all the Keck samples into 12 bins and approximately
12 points contribute to each bin [17]. Meanwhile, to make
the predictions as reliable as possible, we intend to fix the
power I to further simplify the parameter space. By
comparing the different values, the model has a simple
form and a relatively optimal fitting result when the power I
is equal to −2. It means that the term which provides the
greatest contribution to the variation rate of α is H̃−3 _̃H in
Eq. (6). Equation (7) can be expressed as

_α

α0
∝ H̃−3 _̃H ∝ _ðH̃−2Þ ∝ _ðρ−1Þ; ð16Þ

where ρ is the total density of the universe. The variation
rate of α is proportional to the variation rate of the inverse of
ρ. After substituting ΩM with 1 − ΩΛ, Eq. (9) is simplified
to

Δα
α

¼ A½ðð1 −ΩΛÞð1þ zÞ3 þ ΩΛÞ−1 − 1�: ð17Þ

There are only two undetermined parameters A and ΩΛ in
the model. The best fit of the parameters in Eq. (9) is
determined by minimizing

χ2 ¼
X
i

½ðΔαα Þpre;i − ðΔαα Þexp;i�2
σ2exp;i

; ð18Þ

where ðΔαα Þpre;i and ðΔαα Þexp;i are the predicted value and the
experimental value, respectively. σexp;i is the associated 1σ
error of the experimental data, where σ2exp;i ¼ σ2stat;iþ
σ2rand;i. σstat;i is the uncertainty estimate of each Δα=α
value. σrand;i is an estimate of the aggregation of any errors
which average to zero over a large number of systems and is
in quadrature with σstat;i [17].
Figure 1 shows that the scatter plot Δα=α versus the

quasar absorption redshift and our fitting results. The dark
blue squares are the weighted mean values of the binned
Keck samples and the black bars are the associated 1σ
errors. We fit the experimental data by using Eq. (17). The
minimal χ2 of the fitting is 4.99, when the parameters ΩΛ
and A take the value 0.765 and 8.3 × 10−6, respectively.
The red curve is the optimal fitting. The light blue, yellow,
and gray hatched region are the confidence intervals of
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Δα=α for 1σ, 2σ, and 3σ, respectively. Figure 2 shows the
χ2 within 0.5 of its minimal value (χ2 ¼ 4.99) in the (ΩΛ,
A) plane. There is a relatively obvious optimal region in the
parameter space that points to ΩΛ in the range [0.65, 0.85]
and A in the range ½7.5; 9.0� × 10−6. The optimal parameter
point is unique in the whole space. We can see that the
current proportion of dark energy obtained by the optimal
fitting is bigger than the Planck 2018 results ΩΛ ¼
0.6889� 0.0056 [44], but it is still roughly in the accept-
able range. It suggests that the relation established in
Eq. (17) is reasonable and the varying α could indeed be
an effect of the cosmological expansion.
After getting the preliminary verification of the model

with the Keck samples, we will further obtain the final

results by combining all the samples. Intuitively, the trend
of the VLT samples with redshift is different from that of
the Keck samples at the redshift z > 1.5. But they will
show the similar behavior after aligning the Keck and VLT
samples. We analyze the seven samples measured simulta-
neously by the Keck and VLT telescopes and show the
measurement deviations in the panel (a) in Fig. 3. It can be
seen that the samples measured at z < 2.0 by the two
telescopes are approximately consistent while the meas-
urement deviations are large at z > 2.0. We consider that
the Keck and VLT measurements are same at z ¼ 0 and
fit the deviations with a simple proportional function
Δα=αðVLT-KeckÞ ¼ kz. The slope given by the optimal fitting
is k ¼ ð0.52� 0.30Þ × 10−5. In order to further verify the
conclusion with more data, we choose the Keck and VLT
samples measured in the same direction θ ¼ 0° and the
angle of their directions θ < 1° with the difference of
redshift Δz < 0.1, respectively. The deviations are shown
in the panels (b) and (c) in Fig. 3. The slopes given by the
optimal fittings are k ¼ ð0.58� 0.35Þ × 10−5 and k ¼
ð0.57� 0.31Þ × 10−5, respectively. All the analyses sup-
port that the deviations between Keck and VLT samples
have the similar increasing trend with the redshift. After
aligning the Keck and VLT samples with the proportional
function Δα=αðVLT-KeckÞ ¼ ð0.57� 0.31Þ × 10−5z, we can
combine all the samples to obtain the final results.
We divide the four new high-redshift samples into one

bin and then divide the remaining samples approximately
evenly into nine bins. And we adjust the weights of the
Keck and VLT samples in each bin to be equal except for

FIG. 1. Fitting the binned Keck samples with Eq. (17). The dark
blue squares are the weighted mean values of the binned Keck
samples and the black bars are the corresponding errors. The
red curve is the optimal fitting. The minimal χ2 of the fitting
is 4.99, when the parameters ΩΛ and A take the value 0.765
and 8.3 × 10−6, respectively. The light blue, yellow, and gray
hatched region are the confidence intervals for 1σ, 2σ, and 3σ,
respectively.

FIG. 2. The χ2 of fitting the binned Keck samples within 0.5 of
its minimal value (χ2 ¼ 4.99) in the (ΩΛ, A) plane.

FIG. 3. The panel (a), (b), and (c) show the deviations between
Keck and VLT samples measured in the same direction with same
redshift, the same direction θ ¼ 0° with the difference of redshift
Δz < 0.1, and the angle of directions θ < 1° with the difference
of redshift Δz < 0.1, respectively. The red lines are the optimal
fittings with the proportional function Δα=αðVLT-KeckÞ ¼ kz. The
three slopes given by the optimal fittings are k ¼ ð0.52� 0.30Þ×
10−5, k ¼ ð0.58� 0.35Þ × 10−5, and k ¼ ð0.57� 0.31Þ × 10−5.
The light blue, yellow, and gray hatched region are the confidence
intervals for 1σ, 2σ, and 3σ, respectively.
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the high-redshift bin where only VLT samples is available.
By comparing the different values, the model has a simple
form and a relatively optimal fitting result when the power I
is still equal to −2. Similarly, Fig. 4 shows that the scatter
plot Δα=α versus the quasar absorption redshift and our
optimal fitting results by using Eq. (17) for the binned all
the samples. The minimal χ2 of the fitting is 2.50, when the
parameters ΩΛ and A take the value 0.713 and 9.8 × 10−6,
respectively. The red curve is the optimal fitting and the
light blue, yellow, and gray hatched region are the con-
fidence intervals of Δα=α for 1σ, 2σ, and 3σ, respectively.
Figure 5 shows the χ2 within 0.5 of its minimal value
(χ2 ¼ 2.50) in the (ΩΛ, A) plane. There is a relatively
obvious optimal region in the parameter space that points to

ΩΛ in the range [0.6, 0.8] and A in the range ½9.0;
10.5� × 10−6. The optimal parameter point is also unique
in the whole space. It can be seen that the current proportion
of dark energy predicted by using all the samples much
more strongly points to about 70% than that only using the
Keck samples.
After determining the fitting parameter ΩΛ ¼ 0.713, the

current age of the universe estimated by Eq. (11) is about
13.61 billion years with the H0 ¼ 70 km s−1 Mpc−1. These
estimations are consistent with the Planck 2018 results
(ΩΛ¼0.6889�0.0056 and t0 ¼ 13.787� 0.020 Gyr) [44].

B. The variation rate of α

The variation rate of α can also be estimated with the
model. Figure 6 shows that the Δα=α varies as a function of
the Hubble constant times proper time H0t, which is
predicted in the present work with Eq. (13). For the early
universe, Eq. (13) with I ¼ −2 is approximately

Δα
α

				
t→0

¼ −A ¼ −9.8 × 10−6: ð19Þ

This place a very strict constraint on the variation of α in the
early universe and is compatible with the upper limit
jΔα=αj < 10−2 given by the investigations of CMB,
BAO, and BBN [21–23]. Then, α increases with the
increasing of the proportion of dark energy and the
variation rate accelerates first and then slows down.
The blue point denotes the current universe. We estimate
the current variation rate of α is about 6.0 × 10−16 yr−1 by
using Eq. (15) and the growth rate of α is slowing down.
The predicted current variation rate of α is close to the
atomic clock measurements ð−1.6� 2.3Þ × 10−17 yr−1 [3].
In the future, the expansion rate of the universe will tend to
be stable and α will hardly change any more when the
universe is almost entirely composed of dark energy.
Equation (13) with I ¼ −2 is approximately

Δα
α

				
t→þ∞

¼ AðΩ−1
Λ − 1Þ ¼ 3.9 × 10−6: ð20Þ

FIG. 4. Fitting the binned all the samples with Eq. (17). The
dark blue squares are the weighted mean values of the binned
samples and the black bars are the corresponding errors. The red
curve is the optimal fitting. The minimal χ2 of the fitting is
2.50, when the parameters ΩΛ and A take the value 0.713
and 9.8 × 10−6, respectively. The light blue, yellow, and gray
hatched region are the confidence intervals for 1σ, 2σ, and 3σ,
respectively..

FIG. 5. The χ2 of fitting the binned all the samples within 0.5 of
its minimal value (χ2 ¼ 2.50) in the (ΩΛ, A) plane.

FIG. 6. The curve of Δα=α varying with H0t is predicted with
Eq. (13). The blue point denotes the current universe.
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The α, which eventually stabilizes, will be 3.9 × 10−6

bigger than the current value.
All the above discussion is about the evolution of α over

time based on a spatially flat, homogeneous, and isotropic
universe at large scale. However, the universe is inhomo-
geneous at smaller scale and its expansion rate is also a
function of spatial coordinates [45]. Therefore, α will show
the anisotropy of space at a smaller scale. The measurement
of the anisotropy of Hubble parameter could serve as a test
of the anisotropy of α in the future.

IV. CONCLUSIONS

In summary, the observations for the cosmological
evolution of α are believed to have great consequences
for fundamental physics, especially for grand unification
and theories of the early universe. The implications for
cosmology of a varying α are currently examined by
physicists and astronomers. In the present work, we propose
a model based on the assumption that the varying α is an
effect of the cosmological expansion and establish a relation
between the varying α and the cosmological components.
For a spatially flat, homogeneous, and isotropic universe, we
predict that the current proportion of matter and dark energy
are 28.7% and 71.3%, respectively, and further estimate that

the current age of the universe is about 13.61 billion years
with the Hubble constant H0 ¼ 70 km s−1Mpc−1. These
results are consistent with the current cosmological obser-
vations. Furthermore, we predict a strict constraint Δα=α ¼
−9.8 × 10−6 for the early universe, which is compatiblewith
the upper limit given by the investigations of CMB and
BBN. These suggest that the established relation is reason-
able and the varying α could indeed be an effect of the
varying expansion rate of the universe. Then, we further
estimate the current variation rate of α is about 6.0 ×
10−16 yr−1 and predict the growth rate of α is slowing
down. The finally stable αwill be 3.9 × 10−6 bigger than the
current value. The clearer correlations await the accumu-
lation of experimental data in the future.
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