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Equation of state (EOS) insensitive relations, so-called universal relations, between the neutron star (NS)
compactness, its multipolar tidal deformability coefficients, and between the tidal parameters for binary
systems are essential to break degeneracies in gravitational wave data analysis. Here, we validate and
recalibrate these universal relations using a large set of almost 2 million phenomenological EOSs that are
consistent with current observations. In doing so, we extend universal relations to a larger region of the
EOS parameter space, most notably to softer EOSs and larger compactnesses. We show that waveform
models that neglect higher-than-leading-order tidal deformations of the NSs accumulate as much as
3.5 radians of dephasing from 20 Hz to merger. We also perform a full Bayesian parameter estimation of the
GW170817 data, and we compare the NS radius constraints produced using universal relations from the
literature and the updated fits we propose here. We find that the new fits yield a NS radius that is smaller by
about 500 meters. This difference is less than the statistical uncertainty on the radius at the signal-to-noise
ratio of GW170817, but it is significantly larger than the precision anticipated for next-generation detectors.
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I. INTRODUCTION

There is still great uncertainty in the equation of state
(EOS) that describes the incredibly dense nuclear matter of
neutron stars (NSs) in the regime above nuclear saturation
density (ρnuc ≃ 2.7 × 1014 g=cm3) due to the highly non-
perturbative nature of nuclear matter in this regime.
Consequently, there is great uncertainty in the properties
of NSs predicted by theory that are highly dependent on the
EOS, such as the maximum stable mass for a nonrotating
NS (Mmax), as well as the relation between the mass of an
NS and its radius (also known as the mass-radius curve).
The collection of current NS mass measurements shows
that the lower bound on the value ofMmax lies firmly within
the range 1.9–2.0 M⊙ [1,2], and the discovery of pulsar
J0740þ 6620 (M ≃ 2.14 M⊙) strongly indicates that the
lower bound could be constrained even higher [3].
Constraints on Mmax and measurements of NS radii have
been combined to place constraints on the EOS using both
Bayesian/weighted [4–10] and unweighted [11–15] tech-
niques. Upcoming precision NICER measurements of

millisecond pulsar radii will likely constrain the EOS even
further through these techniques [1,11].
However, certain relations between bulk properties of

NSs exhibit universality, meaning they are largely inde-
pendent of the EOS. In the age of gravitational wave (GW)
astronomy, some particularly important relations are those
between the tidal deformability parameters (or, simply, tidal
deformabilities) of NSs, which are related to the tidal Love
numbers. During a binary neutron star (BNS) inspiral, the
gravitational field of each star causes a deformation on the
other star through tidal forces. These deformations, which
are described by the tidal deformability parameters, alter
the trajectory of each star, which becomes imprinted in the
resultant GW signal. Yagi [16] has demonstrated that a
robust relation between several lth order dimensionless
electric tidal deformabilities, Λl, of nonrotating NSs exists
across a variety of theoretical neutron star equations of state
(EOSs). Yagi and Yunes [17,18] have also shown that a
similar relation exists for BNSs between the symmetric and
antisymmetric combinations of each NS’s electric quad-
rupolar tidal deformability, Λ2.
A universal relation reduces a group of parameters to a

single parameter family; that is, the measurement of one
parameter yields all others through the relation, breaking
the degeneracy between them. In this analysis, we are
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concerned with a set of universal relations that are
important for GW astronomy and LIGO/VIRGO observa-
tions (and have notably been used in the LIGO/VIRGO
analysis of GW170817 [19,20]).
First, there are universal relations between various

multipole tidal deformabilities Λl, the so-called “multipole
Love relations.” Tidal deformabilities enter into the wave-
form of GW signals of BNS inspirals at different post-
Newtonian (PN) orders. (The lth order electric tidal
deformability enters into the GW signal at 2lþ 1 PN
orders [16].) The dominant order is the quadrupole (Λ2)
term, followed by the much smaller octupole (Λ3) and
hexadecapole (Λ4) terms. The Λ3 and Λ4 terms are difficult
to measure accurately in the GW signal due to their small
magnitudes and are often dropped to compute the leading
order effect. However, the measurement of these quantities
as well as the bias introduced by dropping them from
calculations can be avoided entirely using universal rela-
tions. With the multipole relations, Λ3 and Λ4 can be
computed directly using the more easily measurable Λ2,
leading to a manifold increase in measurement accuracy of
Λ2 [16,21]. These multipole relations, then, will be critical
tools for the analysis of GW signals with upcoming third-
generation GW detectors such as LIGO III and the Einstein
Telescope [16,22].
Next, there is a universal relation between Λ2 and the

compactness of a NS, C≡M=R, where M and R are the
mass and radius of the NS respectively (we take
G ¼ c ¼ 1). This relation essentially falls out of the
definition for Λ2. The lth order dimensionless electric tidal
deformabiliy Λl can be defined in terms of C and the lth
order electric tidal Love number kl as [16,23]

Λl ≡ 2

ð2l − 1Þ!!
kl

C2lþ1
: ð1Þ

We see also that the previous multipole relations follow
from and have their physical origins in Eq. (1). It can be
shown that k2 goes roughly as C−1, independent of the
EOS, over the range of C values observed in nature. Thus,
overall, Λ2 goes roughly as C−6 for all EOSs [14,24]. There
is a clear physical intuition for this relation. For a given NS
mass M, the less compact the NS is (that is, the larger its
radius R), the more easily it is deformed by a tidal potential,
and thus the larger the value of Λ2. This relation, then,
allows one to convert constraints on Λ2 from GW obser-
vations to constraints on the radius of the NS (or even to
compute the radius directly from Λ2) as has been done in
the LIGO/VIRGO analysis of GW170817 [14,20].
Finally, there is a universal relation for BNSs between

the symmetric and antisymmetric combinations of Λ2 for
each star, the so-called “binary Love relation.” Consider a
NS binary with primary and secondary masses m1 and m2

(m1 ≥ m2) and respective quadrupolar tidal deformabilities
Λ2;1 and Λ2;2. The symmetric and antisymmetric combi-
nations of Λ2;1 and Λ2;2 are

Λs ≡ Λ2;1 þ Λ2;2

2
; Λa ≡ Λ2;2 − Λ2;1

2
: ð2Þ

The individual tidal deformabilities, Λ2;1 and Λ2;2, are
degenerate in the GW phase information. What is actually
measured in the GW signal is really a combination of Λ2;1

and Λ2;2 [18,21]. Just as with the multipole relations, the
relation between Λs and Λa (which also involves a third
parameter, the binary mass ratio q≡m2=m1) reduces the
analysis to the estimation and measurement of a single
parameter,Λs, from which Λa (and, thus, Λ2;1 and Λ2;2) can
then be computed. Currently, this is the method by which
Advanced LIGO is able to extract individual tidal deform-
ability information from GW signals of BNSs [18,20,21].
The approximate universality of the relation between Λa
and Λs follows from the approximate no-hair relations for
compact objects, arising from the approximate symmetry of
isodensity self-similarity [21].
In their original analysis, Yagi [16] and Yagi and Yunes

[17] validated these universal relations against a set of a few
very diverse theoretical EOS models, but not over the entire
space of EOSs allowed by astronomical observation and
theoretical calculations. The motivation for the work in this
paper, then, is to validate these relations over a much
broader extent of the space of all possible EOSs.
In this paper, we update and recalibrate the fits to these

universal relations using a large set of randomly generated
phenomenological EOSs that satisfy astronomical obser-
vation and theoretical calculations. The structure of this
paper is as follows. In Sec. II we will describe the
parametrization of the four-piece polytrope EOS model
and the algorithm by which the phenomenological EOSs
are generated. In Sec. III, we analyze the universal Λ3-Λ2,
Λ4-Λ2, and C-Λ2 relations from the collection of phenom-
enological EOSs. We present the fitting parameters of these
relations and compare them to previous fits. In Sec. IV, we
analyze the Λa-Λs relation and compare the fitting param-
eters to previous fits, including the fit currently used by the
LIGO/VIRGO collaboration. In Sec. V, we discuss the
applications of the updated fits to GW modeling and
parameter estimation. A concluding summary is given
in Sec. VI.

II. METHODS

A. EOS parametrization

In order to explore the space of all possible EOSs that
satisfy known observational constraints and theoretical
calculations (known as the EOS band), we employ a
Markov chain Monte Carlo (MCMC) algorithm that gen-
erates random piecewise polytropic EOSs. We use a
variation of the piecewise polytropic interpolation scheme
developed by Read et al. [25]. The scheme models the EOS
as a continuous piecewise function of four polytropes:
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pðρÞ ¼

8>>><
>>>:

K0ρ
Γ0 ρ ≤ ρ0

K1ρ
Γ1 ρ0 < ρ ≤ ρ1

K2ρ
Γ2 ρ1 < ρ ≤ ρ2

K3ρ
Γ3 ρ > ρ2:

ð3Þ

A four-piece model allows for a great diversity of EOSs (for
example, hard/soft EOSs, EOSs with/without phase tran-
sitions, etc.) and ensures that the most extreme regions of
the EOS band will be reached by the MCMC algorithm.
The specific choice of a piecewise polytropic ansatz for the
EOS, as opposed to known alternative schemes, does not
significantly bias the resultant shape of the computed EOS
band [13].
The first polytrope piece of the model corresponds to the

presumed known EOS of the outer and inner crust up to
around nuclear density, where K0 ¼ 3.59389 × 1013 [cgs]
and Γ0 ¼ 1.35692 [26]. Here, nuclear density is taken to be
ρnuc ¼ 2.7 × 1014 g=cm3. This piece is fixed for all ran-
domly generated EOSs. The specific choice of the low-
density crust EOS does not significantly determine the bulk
physical properties of the NS [7,25,27].
The Ki are determined by continuity; thus, the last three

polytrope pieces of the EOS are specified by six parameters:
three transition densities (ρ0, ρ1, and ρ2) and three adiabatic
indices (Γ1, Γ2, and Γ3). The authors of [25] reduce this to
four parameters by fixing the values of ρ1 and ρ2, as an EOS
with a smaller number of parameters can be reasonably
constrained by only a few astronomical observations.
However, this imposes a prior assumption on the form of
the EOS and narrows the parameter space to a much smaller
region of the EOS band. Thus, to probe the entire EOS band
(including extreme EOSs not ruled out by observation)
without imposing assumptions about the true form of the
EOS, we allow ρ1 and ρ2 to be free parameters as well.
Therefore, each EOS is specified by the full set of six
parameters: ρ0 ∈ ½0.15ρnuc; 1.2ρnuc�, ρ1 ∈ ½1.5ρnuc; 8ρnuc�,
ρ2 ∈ ðρ1; 8.5ρnuc�, Γ1 ∈ ½1.4; 5�, Γ2 ∈ ½0; 8�, Γ3 ∈ ½0.5; 8�.
Though continuity is imposed on each EOS, the speed of

sound within the NS (cs) as a function of density for each
EOS is not necessarily continuous at the transition den-
sities, nor is it necessarily monotonic as a result of these
jump discontinuities [11]. O’Boyle et al. [28] have recently
developed a modified version of the piecewise polytropic
scheme by Read et al. [25] used in this analysis which
imposes continuity on cs. We do not use this modified
scheme, as it was published after our analysis. However,
Kanakis-Pegios et al. [29] have shown that the effects of
discontinuities in cs on the bulk properties of a NS are
negligible.

B. MCMC algorithm

To probe the EOS band in a way that is both thorough
and computationally efficient, we use a MCMC algorithm
in the form of a random walk through the parameter space.

The constraints of the EOS band define a path-connected
region of the six-dimensional parameter space. A path
between any two points in this region, then, corresponds to
a smooth deformation of the EOS at one point to the EOS at
the second point. Therefore, a series of small, random
deformations of the parametrized EOS model would
correspond to a random walk through the parameter space.
This is the basic idea behind the algorithm.
Taking the logarithm of Eq. (3) converts the EOS to a

piecewise linear function. A deformation can then be
performed very easily by shifting the positions of just four
points: the three transition points r0 ¼ flogðρ0Þ; logðp0Þg,
r1 ¼ flogðρ1Þ; logðp1Þg, and r2 ¼ flogðρ2Þ; logðp2Þg; and
an end point r3 ¼ f15.5; logðp3Þg. The density value of the
end point is kept fixed at ρ ¼ 1015.5 g=cm3, but this choice is
arbitrary, as the only purpose of the end point is to define the
slope of the last linear piece, Γ3. Both r0 and r3 are restricted
to move one dimensionally (r0 can only shift along the crust
EOS line and r3 can only shift vertically up or down), while
r1 and r2 have the full 2 degrees of freedom. Thus, thewhole
EOS still has 6 degrees of freedom.
A single step of theMCMCalgorithm proceeds as follows

and is illustrated in Fig. 1. The current EOS is defined by the
four points ri and corresponds to the current position of the
algorithm in parameter space. For each ri, a displacement
vector Δri is independently generated from a uniform
distribution with a random direction (respecting the point’s
degrees of freedom) and a random magnitude (up to a

FIG. 1. A single step of the MCMC algorithm. Each of the four
points used to define the current EOS (solid line) is independently
shifted by a displacement vector of random magnitude (shown in
red), creating a trial EOS (dashed line). Trial EOSs are repeatedly
generated from the current EOS until one is found that satisfies
observational constraints. When this occurs, the current EOS is
updated to the trial EOS and the process repeats.
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maximum size kΔrik ≤ 0.05). A trial EOS is then defined by
the four new points, r0i ¼ ri þ Δri. The transition densities
and adiabatic indices of this trial EOS are then checked to see
if they are within the bounds given in Sec. II A.
The physical properties of the trial EOS are then found

by computing a sequence of solutions to the Tolman-
Oppenheimer-Volkoff (TOV) equation. We utilize the
publicly available TOVL code described in Bernuzzi and
Nagar [30] and Damour and Nagar [23] to solve the TOV
equation. The trial EOS is accepted if it satisfies three weak
physical constraints that define the EOS band:
(1) causality of the maximum mass NS (i.e., the sound

speed is subluminal, cs < c, below the maximum
stable central density);

(2) Mmax > 1.97 M⊙;
(3) Λ2 < 800 for the 1.4 M⊙ NS.

The upper limit on Λ2 is the 90%-credible upper bound
derived in the LIGO/VIRGO analysis of GW170817 [19]
and was chosen to place a minimally weak constraint on
Λ2. If the trial EOS is accepted, its parameters and physical
properties are then recorded, and the current EOS is
updated to the new EOS, ri → r0i.
The initial EOS is randomly selected from a set of EOSs

that satisfy the constraints computed via a standard
Monte Carlo analysis of the parameter space. The algo-
rithm is then allowed to proceed until a specified number of
steps have been completed.

III. MULTIPOLE AND COMPACTNESS
RELATIONS

Using the MCMC algorithm, we generate a set of
1,966,225 phenomenological EOSs. The complete set of

EOSs is plotted in Fig. 2 along with the associated mass-
radius curve for each EOS. The plot reveals the approxi-
mate shape of the full EOS band defined by the three weak
constraints in Sec. II B. The edges of the band are populated
by the most extreme EOSs where cs ¼ 1. The upper limit
for the value of Mmax correlates strongly with Λ2 for the
1.4 M⊙ NS [11]; consequently, the constraint that Λ2 <
800 for the 1.4 M⊙ NS effectively functions as an upper
constraint on the value of Mmax. The largest value of Mmax
in our dataset is 2.9096 M⊙, below the theoretical upper
limit from GR of 3.2 M⊙ [27], which can be seen in the
mass-radius band in Fig. 2. Similarly, and quite under-
standably, the upper limit for the radius of the 1.4 M⊙ NS,
R1.4, also correlates strongly with Λ2 for the 1.4 M⊙ NS
[11]. The Λ2 < 800 constraint then also functions as an
upper limit for R1.4. This explains why a kink can be seen
on the right side of the mass-radius band atM ∼ 1.4 M⊙ in
Fig. 2. The largest value of R1.4 in our dataset is 13.9 km.
The universal Λ3-Λ2, Λ4-Λ2, and C-Λ2 relations are the

nearly-EOS-independent relations that reduceΛ3,Λ4, andC
to functions of the single parameterΛ2 for any given NS. To
analyze these relations across our set of phenomenological
EOSs, we solve the TOV equation for each EOS at sixteen
evenly spaced central density values in the range 3.09 ×
1014 g=cm3 ≤ ρc ≤ 3.09 × 1015 g=cm3 and then extractΛ2,
Λ3, Λ4, and C from the NS solution at each density. (If the
central density of the maximum mass NS for a given EOS
falls below any of the density values, then the TOVequation
is not solved for those density values.) A total of 30,133,746
NS solutions were computed.
In Fig. 3, we plot (a) Λ3 vs Λ2 and (b) Λ4 vs Λ2 for our

set of NS solutions. The Λ3-Λ2 and Λ4-Λ2 relations are
fitted with the polynomial-like expression

FIG. 2. The collection of 1,966,225 phenomenological EOSs (a) and associated mass-radius curves (b) computed using the MCMC
algorithm. Color here is used to indicate the maximum sound speed cs reached within the maximum mass NS of each EOS [EOSs with
smaller maxðc2sÞ are drawn on top of ones with larger maxðc2sÞ]. The collection reveals the approximate shape of the EOS band. The
most extreme EOSs that reach the edges of the band are those where cs ¼ 1.
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lnΛ3;4 ¼
X6
k¼0

akðlnΛ2Þk: ð4Þ

This is an updated version of the fitting function used by
Yagi [16]. The original fitting function is quartic in lnΛ2.
However, with our larger dataset, a quartic fit is insufficient
to remove trends from the residual of each relation. Thus,
we employ a fit that is sixth order in lnΛ2. The quality of
the fits can be appreciated in Fig. 3, where the residuals of
log10 Λ3 and log10 Λ4 are given with 95% prediction
intervals. The outliers in the peak that can be seen in both
residual plots betweenΛ2 ¼ 1 and Λ2 ¼ 100 are associated

with small values of Γ2, indicating a softening in the EOS.
The most extreme models, those with the largest deviations
from the fit, have Γ2 < 1.5. This can be seen clearly in
Fig. 14 in the Appendix. In Figs. 4 and 5, we compare the
68%, 95%, and 99.7% relative errors of the fits in this work
to those of the original fits by Yagi [16]. At each percentage
error level, our fits demonstrate a general improvement in
accuracy over the original fits.
Over the range of tidal parameters most relevant to LIGO

observations, Λ2, Λ3, Λ4 ∈ ½1; 104�, our Λ3-Λ2 fit holds to a
maximum error of ∼30%, with 95% of the errors below
∼13%. The original fit to this relation holds to a maximum

FIG. 3. Universal (a) Λ3-Λ2 and (b) Λ4-Λ2 relations for NSs from the collection of phenomenological EOSs. Sixteen NSs with central
densities in the range 3.09 × 1014 g=cm3 ≤ ρc ≤ 3.09 × 1015 g=cm3 were computed for each EOS. The relations are fitted with the
polynomial expression in Eq. (4), with the fitting parameters for each relation given in Table I. The log residuals of both fits are shown
with 95% prediction intervals.

FIG. 4. 68%, 95%, and 99.7% relative error of the Λ3-Λ2 fit as a
function of Λ3. The solid lines represent the error of the new fit in
this work, and the dashed lines represent the error of the original
fit by Yagi [16].

FIG. 5. 68%, 95%, and 99.7% relative error of the Λ4-Λ2 fit as
a function of Λ4. The solid lines represent the error of the fit in
this work, and the dashed lines represent the error of the original
fit by Yagi [16].
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error of ∼30%, with 95% of the error below ∼14%. Our
Λ4-Λ2 fit holds to a maximum error of ∼45%, with 95% of
the errors below ∼25%. The original fit to this relation
holds to a maximum error of ∼40%, with 95% of the error
below ∼26%.
The fitting parameters a⃗ ¼ fakg of the new fits and the

original quartic fits by Yagi [16] are given in Table I.
The leading-order terms of the fits are the constant (k ¼ 0)
and linear (k ¼ 1) terms. (This is evident from the near-
linear shape of the distribution of points in each log-log plot
in Fig. 3.) Therefore, a direct comparison can be made
between the leading-order terms of the original fits and our
new fits. The coefficients a0 and a1 for our fits are in good
agreement with those of the original fits. This demonstrates
the validity of the original Λ3-Λ2 and Λ4-Λ2 fits across the
EOS band.
Just like the multipole relations, the universal relation

between C and Λ2 reduces C to a function of Λ2. This
relation essentially falls out of the definition of Λ2 in
Eq. (1). In Fig. 6, we plot C vs Λ2 for our set of NS
solutions. The C-Λ2 relation is fitted with a similar
polynomial-like expression

C ¼
X6
k¼0

akðlnΛ2;3;4Þk: ð5Þ

This fitting function is an updated version of the function
used by Maselli et al. [31] and presented in [18]. The
original fitting function is quadratic in lnΛ2. Once again,
with our larger dataset, we are required to go to sixth order
in lnΛ2 to remove all trends from the residual of our fit. The
fitting parameters a⃗ ¼ fakg are also given in Table I.
Similar to the residuals in Fig. 3, there is a downwards-
pointing peak between Λ2 ¼ 1 and Λ2 ¼ 100 in the
residual in Fig. 6. These outliers are also associated with
small values of Γ2, with the most extreme having Γ2 < 1.5.
In Fig. 7, we compare the 68%, 95%, and 99.7% relative

errors of the fit in this work to those of the original fit by
Maselli et al. [31]. Our fit demonstrates a significant
improvement in accuracy over the original fit at larger
values of C.
As one can see from Fig. (5), the range ofΛ2 values most

relevant to LIGO observations, Λ2 ∈ ½1; 104�, translates
into a corresponding range C ∈ ½0.1; 0.35�. Over this range,
our fit holds to a maximum error of ∼10%, with 95% of the
errors below ∼5%. The original fit to this relation holds to a
maximum error of ∼15%, with 95% of the error below

TABLE I. Fitting parameters a⃗ ¼ fakg for theΛ3-Λ2 andΛ4-Λ2 relations given in Eq. (5) from the original fits in [16] and from the fits
in this work to the phenomenological EOSs.

Fit Relation a0 a1 a2 a3 a4 a5 a6

Yagi [16] Λ3-Λ2 −1.15 1.18 2.51 × 10−2 −1.31 × 10−3 2.52 × 10−5 � � � � � �
Λ4-Λ2 −2.45 1.43 3.95 × 10−2 −1.81 × 10−3 2.80 × 10−5 � � � � � �

This work Λ3-Λ2 −1.052 1.165 6.369 × 10−3 5.058 × 10−3 −7.268 × 10−4 3.794 × 10−5 −6.803 × 10−7

Λ4-Λ2 −2.262 1.383 1.662 × 10−3 1.225 × 10−2 −1.752 × 10−3 9.667 × 10−5 −1.886 × 10−6

FIG. 6. Universal C-Λ2 relation for NSs from the collection of
phenomenological EOSs. The relation is fitted with the expres-
sion in Eq. (5), with the fitting parameters given in Table II. The
residual of the fit is shown with the 95% prediction interval. The
distribution of Λ2 values roughly goes as C−6.

FIG. 7. 68%, 95%, and 99.7% relative error of the C-Λ2 fit as a
function of C. The solid lines represent the error of the fit in this
work, and the dashed lines represent the error of the original fit by
Maselli et al. [31]. Our fit has a drastically smaller error at larger
values of C than the original fit has.
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∼14%. This is the largest improvement in accuracy out of
all the fits in this work. We are able then to confirm the
concerns raised by Kastaun and Ohme [32] that existing fits
to the C-Λ2 are unreliable at large C.
The fitting parameters of the quadratic fit by Maselli

et al. [31] are given in Table II. The leading-order terms are
once again the constant and linear terms, as can be seen in
the near-linear shape of the distribution of points in Fig. 6.
The coefficients a0 and a1 are in generally good agreement
between the original and updated fits; however, there is a
relatively large difference between the values of a2 as
compared to what is seen with the multipole fits. This is a
consequence of the improvements to the fit made by using
both a higher-order polynomial function and a larger
dataset over a greater extent of the EOS band.
In addition to the our fit to the C-Λ2 relation, we also

present entirely new fits to the C-Λ3 and C-Λ4 relations, the
fitting parameters of which are also given in Table II. While
these two relations can be derived from the multipole and
C-Λ2 fits, these explicit fits have a smaller error, compa-
rable to that of the C-Λ2 fit.

IV. BINARY RELATION

The universal Λa-Λs relation is slightly more compli-
cated than the multipole and compactness relations, as it

reduces Λa to a function of two parameters: Λs and the
binary mass ratio q for any given NS. We analyze theΛa-Λs
relation across the set of phenomenological EOSs by
computing sequences of random BNSs using a random
sample of a quarter of the total number of EOSs. We use the
convention that the primary and secondary masses are given
by m1 and m2 respectively, so m1 ≥ m2. The binary mass
ratio is then defined as q≡m2=m1. For each EOS, twenty
random BNSs were generated. For each BNS, two masses
were selected uniformly from the range ½1 M⊙;Mmax�, where
Mmax is the maximum stable mass for the given EOS. The
larger mass and smaller mass were then set as m1 and m2

respectively. The TOV equation was then solved for both
stars in the binary. The quadrupolar tidal deformability of
each starwas extracted from the solution.HerewedefineΛ2;1

and Λ2;2 as the tidal deformabilities of the primary and
secondary respectively. The symmetric and antisymmetric
combinations ofΛ2;1 andΛ2;2 were then computed using the
definitions in Eq. (2). A total of 5,454,778 BNS solutions
were computed.
In Fig. 8, we plot Λa vs Λs vs q for our set of

BNS solutions. We employed the same fitting function
used in the original analysis by Yagi and Yunes [17,18],
which is a Padé approximant multiplied by a con-
trolling factor:

TABLE II. Fitting parameters a⃗ ¼ fakg for the C-Λ2, C-Λ3, and C-Λ4 relations given in Eq. (5) from the original fit in [31] and from
the fits in this work to the phenomenological EOSs.

Fit Relation a0 a1 a2 a3 a4 a5 a6

Maselli et al. [31] C-Λ2 0.371 −3.91 × 10−2 1.056 × 10−3 � � � � � � � � � � � �
This work C-Λ2 0.3389 −2.293 × 10−2 −5.172 × 10−4 −2.449 × 10−4 5.161 × 10−5 −3.03 × 10−6 5.841 × 10−8

C-Λ3 0.3180 −2.067 × 10−2 −4.713 × 10−4 3.779 × 10−5 3.248 × 10−6 −2.453 × 10−7 4.253 × 10−9

C-Λ4 0.3001 −1.764 × 10−2 −1.518 × 10−4 1.449 × 10−5 2.228 × 10−6 −1.487 × 10−7 2.514 × 10−9

FIG. 8. Approximate universal Λa-Λs relation for NSs from the collection of phenomenological EOSs, shown from two different
angles. Twenty random binaries with 1 M⊙ ≤ m2 ≤ m1 ≤ Mmax were computed for each EOS. The relation was fitted with the
expression in Eq. (6), with the fitting parameters given in Table III.
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: ð6Þ

The controlling factor FnðqÞ is derived from the
Newtonian limit of the Λa-Λs relation where the EOS
is treated as a single Newtonian polytrope with poly-
tropic index n:

FnðqÞ≡ 1 − q10=ð3−nÞ

1þ q10=ð3−nÞ
: ð7Þ

If one computes this limit with an EOS that is not a single
polytrope, n instead represents the effective polytropic
index of the EOS. When considering multiple EOSs in
the context of the universal relation, n is replaced with n̄,
which is the average effective polytropic index across the
set of EOSs. Yagi and Yunes [17] originally analyzed the
Λa-Λs relation using a set of theoretical EOSs with an
average effective polytropic index of n̄ ¼ 0.743.
Chatziioannou et al. [33] reproduced the fit using three

theoretical EOSs with diverse physical properties while
still using n̄ ¼ 0.743. The reproduced fit is the version
that was used in the LIGO/VIRGO analysis of
GW170817 [20]. In this analysis, we also take n̄ ¼
0.743 to allow for a direct comparison between our fit
and the two previous fits. The fitting parameters b⃗ ¼
fbij; cijg for all three fits are given in Table III. We use
the parameters of the fit by Chatziioannou et al. [33] as
the initial parameter values for our fit.
The residual of the fit is shown from two perspectives in

Fig. 9. In Fig. 10, we compare the 68%, 95%, and 99.7%
relative errors of this fit to those of the original fit by Yagi
and Yunes [17,18]. (We verify that the relative error of the
fit by Chatziioannou et al. [33] is identical to that of the
original fit.) Our fit holds to a maximum error of ∼40%,
with 95% of the error below ∼29%. The original fit holds to
a maximum error of ∼43%, with 95% of the error
below ∼31%.
We demonstrate the improvement our updated fits

provide over the original fits to GW analysis by comparing
the accuracy with which the radii of NS can be recovered
from GW signals. The reduced tidal parameter

TABLE III. Fitting parameters b⃗ ¼ fbij; cijg for theΛa-Λs relation given in Eq. (6) from the original fit in [17,18], from the updated fit
in [33] used by LIGO/VIRGO, and from the fit in this work to the phenomenological EOSs. For all three fits, the average effective
polytropic index is taken to be n̄ ¼ 0.743.

Fit b11 b12 b21 b22 b31 b32 c11 c12 c21 c22 c31 c32

Yagi and Yunes [17,18]a −29.60 11.22 138.41 −43.06 −207.95 180.26 −27.13 7.915 105.18 7.494 −97.48 −17.48
Chatziioannou et al. [33] −27.74 8.42 122.69 −19.76 −175.50 133.71 −25.56 5.585 92.03 26.86 −70.25 −56.31
This work −18.32 3.875 28.06 11.08 43.56 17.3 −18.37 1.338 15.99 55.07 98.56 −135.1

aThe parameter a from these papers has been factored out of these parameter values.

FIG. 9. Residual of the Λa-Λs relation fit for Λs < 4000 seen
from two perspectives. The fit becomes increasingly better as
Λs → 0 and as q → 1.

FIG. 10. 68%, 95%, and 99.7% relative error of the Λa-Λs fit as
a function of Λa. The solid lines represent the error of the fit in
this work, and the dashed lines represent the error of the original
fit by Yagi and Yunes [17,18].
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can be recovered from the GW waveform [34–36] and is
used by LIGO to compute the radii of both NSs in a binary
merger. First, we compute the value of Λ̃ for each BNS
solution using Eq. (8). Using the definitions in Eq. (2) and
the Λa-Λs relation, we can reexpress Eq. (8) in terms of Λs
and q. Taking m1 and m2 to be known, we then solve
Eq. (8) numerically forΛs and recover a measurement ofΛs

for each BNS solution. The Λa-Λs relation then yields a
measurement for Λa, allowing us to recover Λ2;1 and Λ2;2.
Finally, we use the C-Λa to compute C for each NS, which
when combined with m1 and m2 gives us the radius of each
NS. In Fig. 11, we compare the 68%, 95%, and 99.7%
relative errors of the radii recovered using the fits in this
work to those recovered using the fits by Chatziioannou
et al. [33] and Maselli et al. [31]. At the 68% and 95% error
levels especially, our recovery shows a definite improve-
ment in accuracy over the original recovery. This is
primarily a result of the drastic improvement in accuracy
afforded by the updated C-Λs fit. Our recovery has a
maximum error of ∼10%, with 95% of the error below
∼6%. The original recovery has a maximum error of ∼8%,
with 95% of the error below ∼6.5%

V. APPLICATION TO WAVEFORM
MODELING AND PE

We now discuss the impact of the new quasiuniversal
relations in GW modeling and PE using the state-of-art
effective-one-body model TEOBResumS, which provides us
with multipolar tidal waveforms for the full inspiral-
merger regime [39–41]. Specifically, the tidal sector of
TEOBResumS includes the l ¼ 2, 3, 4 gravitoelectric and
the l ¼ 2 gravitomagnetic tidal terms in the binary inter-
action potential at the highest known post-Newtonian order,
and additionally implements a resummation for the l ¼ 2,
3 (l ¼ 2) gravitoelectric (magnetic) terms based on gravi-
tational-self-force results [41–43]. The quasiuniversal rela-
tions among the tidal polarizability parameters with
different l are employed to obtain the octupolar and
hexadecapolar from the quadrupolar parameters.

FIG. 11. 68%, 95%, and 99.7% relative error of NS radii
recovered using the fits to the Λa-Λs and C-Λ2 relations as a
function of the radius. The solid lines represent the error of the fits
in this work, and the dashed lines represent the error of the fits by
Chatziioannou et al. [33] and Maselli et al. [31].

FIG. 12. Left: impact on the GW phase of the l ¼ 3, 4 corrections in the binary interaction potential. The plot shows the phase
contribution of these corrections for different binaries, identified by different values of the symmetric mass ratio and the reduced tidal
parameter ðν; Λ̃Þ, evolving from a GW frequency of 20 Hz to merger. Right: GW phase differences given by the fitting relations Λ̄2ðΛ̄3;4Þ
and those given by [37].
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The importance of including the l ¼ 3, 4 corrections in
the waveform model is highlighted in the left panel of
Fig. 12. The figure shows the contribution of the octupolar
and hexadecapolar gravitoelectric terms for 103 binaries
that are identified by different values of the symmetric mass
ratio and the reduced tidal parameter Λ̃. These tidal terms
accelerate the inspiral and give an overall contribution of
0.5 radians to one cycle for a starting GW frequency of
20 Hz, cf. [44]. The smallest phase differences are found for
smaller reduced tidal parameters and equal masses binaries.
The phase differences are accumulated from GW frequen-
cies ≳500 Hz (cf. [45]), corresponding to the last orbits
before merger. We remark that current differences between
TEOBResumS and numerical-relativity waveforms are pre-
cisely of order 0.5–1 rad and are comparable to the
numerical-relativity error [39–41]. Thus, this analysis
indicates that an accurate modeling of higher multipoles
in the binary interaction potential can be relevant to capture
the merger waveform.
The accuracy of the fitting formulas for the Λ3-Λ2 and

Λ4-Λ2 relations can impact significantly the GW phase.
The GW phase differences induced by the use of the new
fits of Eq. (4) and those of [37] is shown in the right panel
of Fig. 12. Differences of order 10% in the fitting formulas
result in differences up to one radian in the GW (again we

use an initial frequency of 20 Hz). These differences are
relevant for GW observations at signal-to-noise ratio ≳80,
at which the universal relations can, among other modeling
choices, make a difference towards obtaining faithful
waveform models [46].
Finally, we perform Bayesian parameter estimation of

GW170817 using TEOBResumS and the PBILBY [38,47]
infrastructure with the DYNESTY [48] sampler. Strain data is
downloaded from the Gravitational Waves Open Science
Center (GWOSC) [49], and the noise curves used are those
provided in [50]. Our analysis is identical to the one
performed in [46], to which we refer for all the technical
details, except for the use of the quasiuniversal relations
developed here. We just recall that we use a sampling rate
of 2048 Hz, which implies a cutoff maximum frequency of
1024 Hz for the analysis. This conservative choice ensures
that no high-frequency systematic effect will affect our
estimates [46], and distinguishes our analysis from that of
e.g., [38,50]. In Fig. 13 we report the marginalized one-
dimensional posteriors for the reduced tidal parameter and
the NS radius for the original run of [46] that used the Yagi
relations (red inline) and for the one performed here with
the new quasiuniversal relations (black inline). The two Λ̃
distributions are largely compatible, with the newly com-
puted posteriors displaying slightly more support for low

FIG. 13. Left panel: the marginalized one-dimensional posterior distributions of Λ̃, recovered with the TEOBResumS approximant and
the fits of Yagi (red) or those presented in this paper (black). We additionally compare our results with those obtained in [38] (shaded
gray area). Although statistical fluctuations are larger than any systematic effect due to the choice of quasiuniversal relation, the use of
the new phenomenological relations slightly increases the support at values of Λ̃ ≲ 300. Right panel: the radius of the lighter component
of the binary, estimated through quasiuniversal relations from the reduced tidal parameter and mass distributions. The shaded
distributions correspond to the values obtained when mapping the BILBY catalog Λ̃ posteriors into radii values with either the new fits
(gray) or the Yagi formulas. We find that the newly fitted coefficients for Eq. (5) lead to lower radii values than those predicted by Yagi
and Yunes.

GODZIEBA, GAMBA, RADICE, and BERNUZZI PHYS. REV. D 103, 063036 (2021)

063036-10



values (Λ̃≲ 300). This difference is negligible with respect
to statistical fluctuations, but can nonetheless be under-
stood by observing that the new fits predict stronger tidal
effects than the ones of Yagi and Yunes. The reduced tidal
parameter distributions can then, together with the mass
ratio and component mass posteriors [51], be mapped into
estimates of the radii of the stars. By combining Eq. (6)
with the definition of the reduced tidal parameter and
Eq. (5) we estimate the distribution of the radius of the
lighter star R2. Using the coefficients collected in Tables II
and III we obtain RGodziebaþ

2 ¼ 11.9þ1.2
−2.1 and RYagiþ

2 ¼
12.4þ1.2

−1.7 . While the two results lie well within the
statistical uncertainty of the other, their difference
(RGodzieba;median

2 − RYagi;median
2 ∼ 0.5 km) can be fully attrib-

uted to quasiuniversal relations, in particular the C-Λ2 fit.
The discrepancy found, negligible for current events, will
become very relevant when analyzing GW data from loud
BNS events detected by advanced and third generation
detectors. The source parameters recovered for such sys-
tems will be affected by small statistical fluctuations. A
simple error propagation, applied to the fit of R1.4 M⊙

of
[14], gives

σR1.4 M⊙
¼ ð11.2� 0.2Þ M

4800

�
Λ̃
800

�
−5=6

σΛ̃; ð9Þ

where we assumed that the error on the chirp mass M is
negligible. Therefore, σΛ̃ ∼ 20 (value expected for SNRs
∼300) translates into σR1.4 M⊙

∼ 50 m for a ðM; Λ̃ ¼
1.18; 800Þ BNS system. This value amounts to approx-
imately one tenth of the difference found above due to
universal relations.

VI. CONCLUSION

We present updated fits to several universal relations
between bulk properties of NSs relevant to current and
future GW astronomy. The original fits can be found in
[16–18,31]. The updated fits are produced by sampling
from a larger volume of the space of all possible NS EOSs
not yet excluded by astronomical observation than had
been done in the original fits. We sample the space of
possible EOSs using an MCMC algorithm, which has a
transition rate determined by three general physical con-
straints. Our results confirm and extend previously iden-
tified universal relations to a much larger set of EOSs.
First, we update fits to relations among three of the lth

order electric tidal deformabilities, Λ2, Λ3, and Λ4. On the
whole, the update decreases the relative errors of the fits by
∼1% compared to those of the original fits.
Next, we update the fit to the relation between the

compactness C and Λ2. For small C (C < 0.25), our fit has

a relative error comparable to that of the original fit.
However, for large C (C > 0.25), the error of our fit is
as much as ∼10% smaller than that of the original fit. We
can attribute this increase in accuracy at least in part to
better sampling of EOSs that admit NSs with C > 0.3. This
is the largest improvement in accuracy among our
updated fits.
Finally, we update the fit to the relation between the

symmetric (Λs) and antisymmetric (Λ2) combinations ofΛ2

for each star in a BNS. On the whole, the update decreases
the relative error of the fit by ∼1% compared to that of the
original fit. To demonstrate the improvements updating
these fits make to GWanalysis, we use the C-Λ2 and Λa-Λs
relations to recover the radii of BNSs. We get ∼0.5%
decreased relative error in the recovered radii using our
updated fits versus using the original fits. This is due almost
entirely to the drastic improvement in the accuracy of the
C-Λ2 fit.
We also discuss the implications of universal relations

and the updated fits for GW waveform modeling and
parameter estimation. Higher-order (l > 2) multipole cor-
rections in the waveform model are important for determin-
ing the GW phase of a merger. The l ¼ 3, 4 corrections in
particular contribute as much as 3.5 radians of accumulated
dephasing at merger for a starting GW frequency of 20 Hz.
Thus, accurate modeling of l > 2 multipoles is relevant for
capturing the merger waveform faithfully. When using the
original and updated multipole fits to recover Λ3 and Λ4 in
waveform modeling, we find that the phase difference
between the merger waveforms computed from each fit is
of about 0.5 radians from 20 Hz to merger.
We perform a Bayesian parameter estimation of

GW170817 using both the original and updated C-Λ2

and Λa-Λs fits, and we compare the distributions for the
radius of the secondary in the merger yielded by each set of
fits. The results from the updated fits are consistent with
those of the original fits; however, the updated fits slightly
favor a smaller radius, with the difference in the medians of
the two distributions being ∼0.5 km. This is due almost
entirely to the increased accuracy of the updated C-Λ2 fit.
Advanced and third generation GW detectors will be
sensitive enough to measure NS radii to comparable
accuracy. Thus, with increased sensitivity, the accuracy
of fitting formulas for universal relations will become very
relevant.
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APPENDIX: DEVIATIONS FROM UNIVERSAL
RELATIONS

The largest deviations from the Λ3-Λ2, Λ4-Λ2, and C-Λ2

relations are observed for NS solutions between Λ2 ¼ 1
and Λ2 ¼ 100, which can be seen in Figs. 3 and 6. We find
that these solution correspond to softer EOSs, those with

smaller values of the third adiabatic index Γ2. As seen in
Fig. 14 for the Λ3-Λ2 relation, the softer the EOS, the
greater the deviation from the relation.
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