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Cosmic-ray (CR) propagation in the interstellar medium (ISM) of the Galaxy might be a super-
diffusion process, rather than the commonly adopted normal diffusion. The spatial distribution of CRs
around a pointlike source can be adopted to test the real picture that describes the CR propagation. The
TeV γ-ray halo around the Geminga pulsar is an ideal target, where the spatial distribution of the escaped
electrons and positrons can be derived from the morphology of the halo. In this work, we test the
superdiffusion model in the ISM around the Geminga pulsar by fitting it to the surface brightness profile
of the Geminga halo measured by HAWC. Our results show that the chi-square statistic monotonously
increases as α decreases from 2 to 1, where α is the characteristic index of superdiffusion describing the
degree of fractality of the ISM and α ¼ 2 corresponds to the normal diffusion model. We find that a
model with α < 1.32 (using the data within 4° around the pulsar) or α < 1.4 (using the data within 6°
around the pulsar) is disfavored at 95% confidence level. A superdiffusion model with α close to 2
can well explain the morphology of the Geminga halo, while it predicts much higher positron flux at
Earth than the normal diffusion model. This has important implication for the interpretation of the
CR positron excess.
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I. INTRODUCTION

Several middle-aged pulsars, such as the Geminga
pulsar, are reported to be surrounded by TeV γ-ray halos
with scales larger than 20 pc [1,2]. These γ-ray halos are
generated by free electrons and positrons1 diffusing out
from the corresponding pulsar wind nebulae (PWNe),
rather than being interpreted by γ-ray PWNe [3].
According to the evolution model of the PWN, the
original PWNe of the middle-aged pulsars were broken
a long time ago [4]. These pulsars are currently traveling
in the interstellar medium2 (ISM) and driving bow-shock
PWNe with scales ≲1 pc. This is consistent with the
observations of the x-ray PWN of the Geminga pulsar
[6–8]. These TeV γ-ray halos are generated mainly
through the inverse Compton scattering (ICS) of the
homogeneous cosmic microwave background, so the
morphologies of the halos unambiguously indicate how
electrons propagate in the ISM.
Cosmic-ray (CR) propagation in the ISM is usually

modeled by the diffusion process considering the turbulent

nature of the ISM [9]. The diffusion approximation is based
on the assumption that the inhomogeneity of the chaotic
magnetic field has small-scale character and is negligible
in terms of the scale of interest. However, multiscale
inhomogeneities could exist in the ISM. The ISM is more
likely to be a fractal type and the normal diffusion can be
generalized to superdiffusion [10–13], where the CR
propagation is simulated by Lévy flights instead of the
Brownian motion. This model has been applied in the
Galactic-scale propagation of CRs to explain features of
the CR energy spectra [10,14], and also in the mechanism
of shock acceleration [15,16]. In this work, we test the
superdiffusion model in a localized region of the Galaxy by
explaining the morphology of the Geminga halo. As the
diffusion packets are different for the normal diffusion and
superdiffusion models, the γ-ray morphologies predicted
by them could also be distinct.
This paper is organized as follows. In Sec. II, we

introduce the superdiffusion model and the solution of
the propagation equation. Then we briefly introduce the
information of Geminga in Sec. III. We fit the γ-ray surface
brightness profile (SBP) of the Geminga halo measured by
HAWC with different propagation models and discuss the
fitting results in Sec. IV. In Sec. V we discuss the impact on
the interpretation of the positron excess according to the
results of Sec. IV. Finally, we conclude in Sec. VI.

*fangkun@ihep.ac.cn
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1Electrons will denote both electrons and positrons hereafter.
2The pulsars could also be inside their old host SNRs if the

SNRs are large enough [5].
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II. THE SUPERDIFFUSION MODEL

After escaping from the source, CRs are continuously
scattered by the chaotic magnetic field in the ISM. If the
chaotic magnetic field is uniformly distributed, the particle
transport can be simulated by the Brownian motion [9].
However, the realistic magnetic field in the ISM may
consist of turbulent and relatively regular components,
where very long jumps for CRs are permitted. Lévy flight,
which is characterized by occasionally very long steps,
should be the more proper description in this case [10–13].
For one-dimensional Lévy flight, the probability density
function (PDF) of the individual step length x has the
heavy-tailed form of PðxÞ ∝ jxj−1−α for x → ∞, where
0 < α < 2. Obviously, the variance of the step length is
infinite, which is different from that of the Brownian
motion. The widening of the diffusion packet with time
is also faster for Lévy flight (∝ t1=α) than the normal
diffusion case (∝ t1=2), so this scenario is named after
superdiffusion or accelerated diffusion [12].
As the PDF of Lévy flight can be described by the

fractional Laplacian equation, the propagation equation of
CR electrons should be

∂NðE; r; tÞ
∂t ¼ −DðE; αÞð−ΔÞ−α

2NðE; r; tÞ

þ ∂½bðEÞNðE; r; tÞ�
∂E þQðE; r; tÞ; ð1Þ

whereN is the differential number density of electrons,D is
the diffusion coefficient, and Q is the source function for
which we will present the details in Sec. III. The index α
represents the degree of fractality of the ISM and for α ¼ 2
the equation degenerates to the normal diffusion case. The
radiative energy-loss rate bðEÞ ¼ b0E2 induced by syn-
chrotron radiation and ICS must be considered for high-
energy electrons. The magnetic field strength is assumed to
be 3 μG in the synchrotron term. For the ICS process, we
adopt the seed photon field in Ref. [1] and the para-
metrization given by Ref. [17] to calculate the energy-loss

rate, where the Klein-Nishina correction is accurately
considered.
We solve Eq. (1) with the Green’s function method. The

Green’s function takes the form of

GðE; r; t;E0; r0; t0Þ ¼
ρðαÞ3 ðjr − r0jλ−1=αÞ

bðEÞλ3=α δðt − t0 − τÞHðτÞ;

ð2Þ

where

τ ¼
Z

E0

E

dE0

bðE0Þ ; λ ¼
Z

E0

E

Dðα; E0Þ
bðE0Þ dE0; ð3Þ

and H is the Heaviside step function. In Eq. (2) ρðαÞ3 ðrÞ is
the PDF of a three-dimensional spherically symmetrical
stable distribution with index α. The exact expression of

ρðαÞ3 ðrÞ is

ρðαÞ3 ðrÞ ¼ 1

2π2r

Z
∞

0

ek
α
sinðkrÞkdk; ð4Þ

while in practice it can be expressed with convergent and
asymptotic series [18]:

ρðαÞ3 ðrÞ ¼ 1

2π2α

X∞
n¼0

ð−1Þn
ð2nþ 1Þ!Γ

�
2nþ 3

α

�
r2n; ð5Þ

ρðαÞ3 ðrÞ ¼ 1

2π2r

X∞
n¼1

ð−1Þn−1
n!

Γðnαþ 2Þ sin
�
nαπ
2

�
r−nα−2:

ð6Þ

We show ρðαÞ3 ðrÞ in Fig. 1, where we can clearly see the
differences between the heavy-tailed distributions for α < 2
and the Gaussian distribution for α ¼ 2. The solution of
Eq. (1) can then be expressed as

NðE; r; tÞ ¼
Z
R3

d3r0

Z
t

−∞
dt0

Z þ∞

−∞
dE0GðE; r; t;E0; r0; t0ÞQðE0; r0; t0Þ

¼
Z
R3

d3r0

Z
t

t−1=ðb0EÞ
dt0

bðE⋆Þ
bðEÞ

ρðαÞ3 ðjr − r0jλ−1=αÞ
λ3=α

QðE⋆; r0; t0Þ; ð7Þ

where E⋆ ≃ E=½1 − b0Eðt − t0Þ�.
From Eq. (7), we can get the electron number density at

an arbitrary distance from a pulsar. To calculate the γ-ray
SBP around the pulsar, we integrate the electron number
density along the line of sight from the Earth to the vicinity
of the pulsar and get the electron surface density at an
arbitrary angular distance θ from the pulsar:

FðθÞ ¼
Z þ∞

0

NðlθÞdlθ; ð8Þ

where lθ is the length in that line of sight, and NðlθÞ
is the electron number density at a distance offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2θ − 2dlθ cos θ

q
from the pulsar, where d is the
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distance between the pulsar and the Earth. With FðθÞ and
the standard calculation of ICS [19], we can finally obtain
the γ-ray SBP around the pulsar.

III. THE SOURCE GEMINGA

The Geminga halo is so far the best-studied TeV halo.
The γ-ray SBP is precisely measured by HAWC [1] and is
an ideal target to investigate the propagation of CR
electrons. In the normal diffusion scenario, the derived
diffusion coefficient around the Geminga pulsar is more
than 2 orders of magnitude smaller than the average value
in the Galaxy indicated by the boron-to-carbon ratio [20].
The origin of the slow diffusion has been discussed in
recent works [5,21,22].
The parameters of the Geminga pulsar can be obtained

from the Australia Telescope National Facility catalog [23].
The age of the pulsar is ts ¼ 342 kyr and the current spin-
down luminosity is L¼3.25×1034 ergs−1. The latest version
of the catalog gives the pulsar distance as d ¼ 190 pc and
provides the reference,Ref. [24],where thedistance is derived
with the optical measurement of the trigonometric parallax.

However, the distance given byRef. [24] is 157 pc rather than
190 pc. Here we adopt d ¼ 250 pc which is determined by
the latest parallax measurement [25].
Electrons are accelerated to very high energy inside the

Geminga PWN. As the scale of the Geminga PWN is
significantly smaller than the TeV halo, it is reasonable to
assume it to be a point source. The time dependency of the
electron injection is assumed to be proportional to the spin-
down luminosity of the pulsar as ∝ ð1þ t=tsdÞ−2, where tsd
is the spin-down time scale of pulsar. We set a typical value
of tsd ¼ 10 kyr. As the cooling time of 100 TeVelectrons is
about 10 kyr, the parent electrons of the present TeV γ-ray
halo are generated in the very recent age of Geminga. So
the value of tsd impacts little on the time profile as
t=tsd ≫ 1. The injection energy spectrum can be described
by a power law within the energy range of interest as
∝ E−p. We adopt p ¼ 2.24 which is measured by the
HAWC work [1]. Thus, the source term can be written as

QðE; r; tÞ ¼
�
Q0ðE=E100Þ−pδðr − rsÞ½ðts þ tsdÞ=ðtþ tsdÞ�2; t > 0

0; t < 0;
ð9Þ

where rs is the position of the pulsar and we set the birth
time of the pulsar to be the zero point of time. The constant
Q0 is the current-time normalization at the energy of
E100 ¼ 100 TeV.

IV. FIT TO THE HAWC DATA

We test the superdiffusion propagation in the regime of

1 ≤ α ≤ 2 by fitting it to the γ-ray SBP of HAWC [1]. For

each α, we seek the best-fit model by minimizing the
chi-square statistic χ2 between the model and the data
points. The NLopt

3 package and the optimization algorithm
BOBYQA [26] are adopted for the fitting procedures. The
free parameters are the anomalous diffusion coefficient D
and the constant factor of the source termQ0. Since HAWC
provides the SBP in a single energy bin of 8–40 TeV which
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3http://github.com/stevengj/nlopt

TEST OF THE SUPERDIFFUSION MODEL IN THE … PHYS. REV. D 103, 063035 (2021)

063035-3

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt


is not very broad, we assume an energy-independent D in
the calculations.
HAWC measures the SBP within 10° around the

Geminga pulsar. However, we do not use all the SBP data
in the fitting procedures as the data at large angular
distances could be affected by other potential γ-ray sources.
As indicated by Fig. 1, the differences of particle distri-
bution between the propagation models are still significant
at large distances from the source. If we include the data at
large angular distances, the χ2 test may be disturbed by the
inhomogeneous γ-ray background. We use the data within
θmax ¼ 4° (≈17 pc) around the pulsar as a benchmark and
test the case of θmax ¼ 6° (≈26 pc) for comparison.
The fitting results are presented in Fig. 2 and the best-fit

parameters are listed in Table I. Superdiffusion models with
α≲ 1.5 yield too steep inner profiles of the γ-ray halo as
can be seen in Fig. 2. Due to the nature of Lévy flight, the
superdiffusion models predict steeper profiles close to
the source and flatter profiles far from the source in
comparison with the normal diffusion case. If the inner
fluxes are forced to fit the data for the superdiffusion
models, the outer fluxes will be much higher than the data.
The reduced χ2 (χ2 divided by degrees of freedom)
monotonously increases as α decreases from 2 to 1, which
is shown in the left panel of Fig. 3. The results indicate that
the normal diffusion model is still the best depiction among
the diffusion scenarios in terms of the current measurement.
We then provide a quantitative constraint on α by

assuming it as a variable parameter and deriving its

one-dimensional distribution. According to the Bayesian
inference, we have PðαÞ ∝ LðαÞ ∝ exp½−χ2ðαÞ=2�, where
PðαÞ is the posterior PDF and LðαÞ is the likelihood
function. The relative probability densities can be then
derived at the knots where χ2ðαÞ are available. We create a
PDF with the form of

PðαÞ ¼ c0

�
exp

�
−
ðα − c1Þ2

2c22

�
− exp

�
−

c21
2c22

��
ð10Þ

to fit the relative probability densities, where c0, c1, and c2
are free parameters. The expression ensures Pð0Þ ¼ 0 since
the domain of α is (0,2] [27]. We determine the free
parameters by the least square method and then rescale c0
to satisfy the normalization condition

R
2
0 PðαÞdα ¼ 1. The

obtained PDFs are shown in the right panel of Fig. 3
with solid lines. The points in the figure are the relative
probability densities used for the fits, which are rescaled
after normalizing PðαÞ. The best-fit parameters are
c0 ¼ 2.69, c1 ¼ 2.11, and c2 ¼ 0.383 for the case of
θmax ¼ 4° and c0 ¼ 3.13, c1 ¼ 2.12, and c2 ¼ 0.349 for
the case of θmax ¼ 6°. Finally, we exclude α < 1.32 for the
former case and α < 1.40 for the latter at 95% confidence
level (C.L.).

V. IMPACT ON THE POSITRON EXCESS

The Geminga pulsar was considered as one of the best
candidate sources of the CR positron excess [28–30].
However, if the slow diffusion measured by HAWC
pervades the ISM between Geminga and the solar system,
Geminga can hardly contribute to the positron flux at Earth
as the positrons do not have enough time to reach the Earth
[1]. This problem will be alleviated if the slow diffusion
only happens in the nearby ISM of the Geminga pulsar
[31–34]. On the other hand, it is possible that the diffusion

FIG. 3. Left: reduced χ2 of the fitting procedures for different assumptions of α. The red filled squares correspond to the results in
Fig. 2 where the HAWC data within 4° around the pulsar are used. The case using the data within 6° is shown with the green empty
circles. Right: the corresponding probability density functions of α derived with χ2ðαÞ. The shaded areas show the intervals at 5% C.L.

TABLE I. Best-fit parameters for the HAWC data (using the
data within 4° around the Geminga pulsar).

α 2.0 1.8 1.6 1.4 1.2 1.0

log10½Dðcmα s−1Þ� 27.4 23.6 19.9 16.3 12.7 9.1

Q0ð1028 TeV−1 s−1Þ 2.5 2.9 3.5 4.8 9.2 15.6
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coefficient in the Galactic disk is generally much smaller
than the average value in the Galaxy [35,36].
The discussion in the above paragraph is based on the

normal diffusion model. The results in Sec. IV indicate that
a superdiffusion model with α > 1.4 is permitted by the
current measurement. As can be seen in Fig. 1, super-
diffusion models yield much higher fluxes at a large
distance from the source than the normal diffusion due
to the heavy-tailed distribution. We assume a one-zone
superdiffusion scenario to calculate the positron flux from
Geminga. The left panel of Fig. 4 shows the positron
spectra in the cases of α ¼ 2.0, α ¼ 1.8, and α ¼ 1.6
adopting the parameters in Table I. The diffusion coef-
ficient is extrapolated from the value in the HAWC energy
range with the relation of D ∝ E1=3, which is predicted by
Kolmogorov’s theory. As expected, Geminga can contrib-
ute significant positron flux in comparison with the AMS-
02 data [37] in the superdiffusion models, without the
assumption of two-zone propagation mentioned above.
More intuitively, we show the positron fluxes from
Geminga at 300 GeV as functions of the pulsar age in
the right panel of Fig. 4. Positrons come much faster to the
Earth in the superdiffusion models with power-law-like
time dependencies, rather than the steep time dependency
of ∼ exp½−r2=ð4DtÞ� in the normal diffusion model. The
flux cutoff above 106 yr is due to the radiative cooling of
300 GeV positrons.
Note we still adopt p ¼ 2.24 in the above calculations,

which are derived with the TeVobservation of HAWC. As
the AMS-02 positron spectrum is in the GeV range, it is
more reasonable to use the Fermi-LAT observation of
Geminga to constrain the injection spectrum and diffusion
coefficient in the same energy range [38,39]. However, the
constraint from Fermi-LAT is model dependent and the
analysis is beyond the scope of this work.

VI. CONCLUSION

In this work, we test the superdiffusion model in the
ISM around the Geminga pulsar by fitting it to the SBP
measured by HAWC. This model depicts particle propa-
gation in a fractal medium with Lévy flight, which could be
a more appropriate model to describe the intricate magnetic
field in the ISM than the normal diffusion model. The Lévy
flight superdiffusion is expressed by the fractional
Laplacian in the propagation equation with the order of
α=2, where α ∈ ð0; 2Þ. Through the χ2 test, we find that the
normal diffusion (α ¼ 2) still gives the best fit to the
HAWC data. The reduced χ2 monotonously increases with
the decrease of α and a model with α < 1.32 (θmax ¼ 4°) or
α < 1.4 (θmax ¼ 6°) is disfavored at 95% C.L. A model
with small α gives poor fit to the γ-ray fluxes close to the
pulsar. With more TeV halos being accurately measured in
the coming future, particle propagation in localized regions
of the Galaxy can be further constrained.
A superdiffusion model with α > 1.4 is still permitted by

the current measurement of the Geminga halo. Models with
α close to 2 can give comparable fitting results to that of
the normal diffusion model, however, they predict distinct
positron spectra at Earth. Due to the nature of the heavy-
tailed distribution of the superdiffusion model, part of the
positrons come much faster to the Earth and the positron
flux from Geminga is much higher than that predicted by
the normal diffusion model. In contrast to the conclusion in
Ref. [1], Geminga could have a significant contribution to
the observed high-energy positron spectrum in the super-
diffusion scenario even if the small diffusion coefficient
measured around the Geminga pulsar is applied in the
whole region between Geminga and the Earth.
The test may also provide information on the origin

of the inefficient particle propagation in TeV halos. For
example, it has been proposed that the slow-diffusion zone

FIG. 4. Left: positron spectra at Earth contributed by Geminga with both the normal diffusion model and superdiffusion models. The
parameters are adopted from Table I, which are derived from the HAWC measurement of the Geminga halo. The AMS-02 positron
spectrum is also shown for comparison [37]. Right: positron fluxes from Geminga at 300 GeV as functions of the pulsar age,
corresponding to the models in the left panel.
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around the Geminga pulsar may be due to its crushed relic
PWN [33,34]. Considering the filamentary structures in the
relic PWN due to Rayleigh-Taylor instabilities [40], this
scenario may be described by the superdiffusion model
with α significantly smaller than 2, which can then be tested
by the method depicted in this work. However, more efforts
in theory or simulation are needed to bridge the gap
between the superdiffusion model and a certain physical
process such as the particle transport in relic PWNe.
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