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We propose a new model of Bayesian neural networks to not only detect the events of compact binary
coalescence in the observational data of gravitational waves (GW) but also identify the full length of the
event duration including the inspiral stage. This is achieved by incorporating the Bayesian approach into the
convolutional, long short-term memory, fully connected deep neural network classifier, which integrates
together the convolutional neural network (CNN) and the long short-term memory recurrent neural network
(LSTM). Our model successfully detect all seven binary black hole events in the LIGO Livingston O2 data,
with the periods of their GW waveforms correctly labeled. The ability of a Bayesian approach for
uncertainty estimation enables a newly defined ‘awareness’ state for recognizing the possible presence of
signals of unknown types, which is otherwise rejected in a non-Bayesian model. Such data chunks labeled
with the awareness state can then be further investigated rather than overlooked. Performance tests with
40,960 training samples against 512 chunks of 8-second real noise mixed with mock signals of various
optimal signal-to-noise ratio 0 ≤ ρopt ≤ 18 show that our model recognizes 90% of the events when
ρopt > 7 (100% when ρopt > 8.5) and successfully labels more than 95% of the waveform periods when
ρopt > 8. The latency between the arrival of peak signal and generating an alert with the associated
waveform period labeled is only about 20 seconds for an unoptimized code on a moderate GPU-equipped
personal computer. This makes our model possible for nearly real-time detection and for forecasting the
coalescence events when assisted with deeper training on a larger dataset using the state-of-art HPCs.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs) on
September 14th, 2015 [1], the Advanced Laser Inter-
ferometer Gravitational Wave Observatory (aLIGO) [2],
later joined by the Advanced Virgo [3] in 2017, has
detected thirteen coalescence events for binary black
holes (BBHs) [1,4–12] and two for binary neutron stars
[13,14] during its O1, O2 and ongoing O3 observation
runs. The triumph also comes with a remarkable milestone
where the electromagnetic (EM) counterparts of the
binary neutron star coalescence event GW170817 [13]
was discovered [15–17]. The success of LIGO and Virgo
has opened a new era of multi-messenger astronomy,
allowing for independent measurement of Hubble con-
stant [18] and constraints on theoretical models such as
cosmic strings [19]. In addition, KAGRA [20], a GW
observatory in Japan, started observation in February
2020 and another GW detector located in India [21] is
also about to join the network in order to increase both the
overall sensitivity and the precision in sky source loca-
tions. While more detectors join the network, the need
for techniques of real-time detection has become more

pressing not only for accurate determination of sky
source locations but also for the counterpart observations
such as those for EM signals [22]. For example, the
searches for EM counterparts such as the kilonovae
and short-gamma-ray bursts [23] can improve the accu-
racy of source parameter estimation while increasing
the confidence for GW detections [24,25], and help break
the modeling degeneracy of binary properties [24,26] so
as to understand better the nature of binary systems and
their host galaxies [27]. However, the commonly used
match-filtering techniques [28–33] are computationally
expensive, making it a great challenge for real-time
detection.
Recently the deep learning technique based on artificial

neural networks [34] is considered as a promising alter-
native to the matched-filtering method. Various types of
deep neural networks (DNNs) such as the convolutional
neural network (CNN) [35] and the long short-term
memory recurrent neural network (LSTM) [36–38] have
shown great potential in the framework of GW research,
especially for real-time detection [39–45], parameter esti-
mation [39,40,43,46], glitch recognition [47–50] and data
denoising [51–54]. However, despite their potential pros-
pect, the DNN models usually suffer from overfitting and
thus are difficult to be generalized for making reliable*jhpw@phys.ntu.edu.tw
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predictions in face of the data that are out of distribution.
In addition, most DNN models are deterministic in a
way that they offer only one rigid prediction for each
given set of input. A deterministic model can hardly
provide information about the uncertainty in its predic-
tions. Therefore the problems of overfitting and lack of
uncertainty estimation make the DNN models unreliable,
sometimes giving overconfident predictions on out-of-
distribution data [55].
In order to deliver the uncertainty information, we need

to convert the traditional deterministic model into a
probabilistic model. In the field of deep learning, the
Bayesian neural network (BNN) [56,57], which updates
its weights via Bayes’ rule, is a potential choice for this
purpose. The BNN technique is not only capable of
providing uncertainty estimation but also resistant to over-
fitting. In addition, it can be trained with a rather small
dataset. The uncertainty estimation is particularly useful
in face of the out-of-distribution data and could assist
further training for data augmentation. Although the BNN
is more computationally expensive than the deterministic
DNN, it is totally feasible when assisted with the recent-
year advances in both the hardware and the approximation
algorithms [58–63].
In this paper we use the variational inference (VI)

approximation [59–61,64] to construct a convolutional,
long short-term memory, fully connected deep neural
network (CLDNN) model [65]. The incorporation of the
sliding-window search scheme enables us to identify the
time period of the GW waveform in a coalescence event.
This feature distinguishes our model from other CNN
models for GW detection in literature. The combination
of a Bayesian approach and the CLDNN is also a unique
feature of our model. Based on the model prediction and its
estimated uncertainty, our Bayesian model can rapidly flag
each of the sequential time windows with a trigger state, a
noise state, or a state that needs further attention. The
estimated uncertainty can also serve as a reference for the
significance level of a prediction. Our model is not to
replace the matched-filtering search or other models of
parameter estimation but to serve as a prior process for
efficiently identifying the time windows of signals and
those which may contain new-type signals. Our model also
enables the possibility for nearly real-time detection, which
is unlikely to be feasible for the usually time-consuming
matched-filtering search.
We organize this paper as follows. In Sec. II, we

introduce our BNN-based method, including the model
architecture, data preparation, training procedure, and the
flagging strategy. In Sec. III, we demonstrate with uncer-
tainty estimation the capability of our model in detecting
gravitational waves, first with benchmarking tests and then
against the real data from LIGO. In Sec. IV we discuss
several critical issues in our model and its potential for
event prediction. Finally we conclude our work in Sec. V.

II. BAYESIAN NEURAL NETWORK FOR
GRAVITATIONAL WAVE DETECTION

A. Bayesian neural network

The Bayesian neural network [56,57] is the deep neural
network in which its hidden units use probability distri-
butions, instead of point values, as weights and biases. The
BNN can provide uncertainty estimation about its predic-
tion and handle overfitting. The parameters in a BNN
model are initialized with prior distributions pðWÞ, where
W represents the model weight. When trained with a given
dataset D, these prior distributions are updated to posterior
distributions pðWjDÞ via the Bayes’ rule:

pðWjDÞ ¼ pðDjWÞpðWÞ
pðDÞ ; ð1Þ

where pðDjWÞ is the likelihood and pðDÞ is the model
evidence. One can then obtain the predictive distribution,
pðy�jx�;DÞ, for a new input x� as

pðy�jx�;DÞ ¼
Z

pðy�jx�;WÞpðWjDÞdW: ð2Þ

However, for most of the modern neural networks the
posterior pðWjDÞ cannot be analytically calculated or
efficiently sampled due to the enormous number of
parameters in the model. To tackle this problem we
employ the variational inference (VI) [59,66], which
approximates the true posterior pðWjDÞ with some trac-
table distributions qθðWÞ that can be fully parametrized by
θ. For example, the commonly used Gaussian distribution
can be parametrized by the mean μ and standard deviation
σ. The training goal is to minimize the negative evidence
lower bound (ELBO): [59,60]

F ðθÞ ¼ − E
W∼qθ

½logpðDjWÞ� þ DKLðqθjjpÞ; ð3Þ

where the first term is the expectation value of negative log
likelihood and the second term is the Kullback-Leibler
divergence [67,68] between distributions qθ and p. In
classification tasks, the first term is equivalent to the
cross-entropy loss.
Within the framework of currently available machine

learning tools, the VI estimator used in BNNs is usually
achieved by perturbing the weights and biases [59–62]. At
each forward pass, the model weights and biases are
randomly sampled from the distributions qθðWÞ. If the
distributions are independent Gaussian distributions, the
gradients can be computed using back propagation [62].
Thus the predictive distributions can be approximated by
propagating the input x� through the model multiple times
and then taking the average:
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pðy�jx�;DÞ ≈
Z
W
pðy�jx�;WÞqθðWÞdW

≈
1

N

XN
i¼1

pðy�jx�;WiÞ;Wi ∼
i:i:d:

qθðWÞ; ð4Þ

where N is the number of Monte-Carlo samples. However,
for a minibatch training the samples in a batch usually share
the same weight perturbation for computational efficiency,
and this will induce correlation between the gradients and
thus make the model hard to converge due to the high
variance in the gradient estimation [61]. In addition, it is
hard to conduct inference for unknown samples of shared
weight perturbations because we are forced to propagate
one sample through the model at a time in renewing the
weight perturbation. To cope with this, Ref. [61] proposed a
flipout estimator that applies a random sign matrix on the
weight perturbation matrix for each sample, so as to
achieve a pseudo-independent weight sampling for each
sample in a mini batch. The flipout estimator does not limit
the variance reduction effect during training when trained
with a large batch, and it also enables the Monte-Carlo
(MC) sampling with minibatch prediction and thus speeds
up the prediction process. In this work we use the Bayes
by backprop (BBB) VI method proposed in Ref. [60]
in combination with this flipout estimator [61] to train
our model.
Uncertainty estimation is an important feature of the

BNN, making it more robust for unknown input than the
deterministic neural networks. For a softmax classifier,
the predictive uncertainty can be defined as the covariance
of the predictive distribution [69,70]:

U ¼ 1

N

XN
i¼1

ðdiagðpiÞ − p⊗2
i Þ þ 1

N

XN
i¼1

ðpi − p̄Þ⊗2; ð5Þ

where pi is the predictive vector of the ith MC sample, p̄ is
the mean predictive vector, and for a given vector v we
define the notations v⊗2 ¼ vvT and diagðvÞ being a
diagonal matrix with elements from v. The first term in
Eq. (5) is called the aleatoric uncertainty, which captures
inherent randomness of the prediction pi. The second
term is called the epistemic uncertainty, which originates
from the variability of W given the dataset D. In binary
classification the off-diagonal elements in U normally
provide no useful information so we focus only on the
diagonal elements, which are the variances of the predic-
tions in each class. Therefore the uncertainty of a prediction
on the kth class can be simplified as [71]:

uk ¼
1

N

XN
i¼1

ðpk;i − p2
k;iÞ þ

1

N

XN
i¼1

ðpk;i − p̄kÞ2: ð6Þ

Because empirically we have uk < 0.25, we intuitively
define a confidence score for the kth class as [71]:

ck ¼ 1 − 2
ffiffiffiffiffi
uk

p
; ð7Þ

which indicates how confident the model is in its
prediction.

B. Architecture of our model

It would be extremely useful if a neural network model
for GW detection could also provide information about the
duration of a coalescence event, which normally lies
between less than a second and tens of seconds depending
on the component masses. With the duration information,
we would be able to dramatically reduce the search space
for component masses and thus speed up the match filtering
process. Recent work in Ref. [72] and Ref. [41] proposed
fully convolutional neural networks based on the structure
of WaveNet [73] that accepts input data of various lengths
but their model only triggers the alarm around the GW
signal peak while providing no information about the signal
duration. Here we propose a model that could provide the
duration information.
Our approach is a CLDNN model [65], which takes

advantage of the complementarity of CNNs, LSTMs and
DNNs by combining them into one unified architecture
(see Sec. I for full names). The LSTM [36,38] is a type of
recurrent neural networks (RNNs) [74]. A RNN layer
consists of several cells, where the hidden units in the
current time step have additional recurrent connections to
those in next time step [75]. The output of these recurrent
connections is called the “hidden state,” which enables the
cell to keep the memories from the previous time step. The
main function of the LSTM layer is to use an additional
“cell state” to further track the long-term memories. This
characteristic of the LSTM enables us to detect not only
the peak signal of a coalescence event but also the earlier
signals from the inspiral stage. We also incorporate the
advantage addressed in Ref. [41] that when one chooses the
half-length of the CNN time window to be the stride size in
a sliding-window approach, one could always capture the
main part of the waveform in the following time windows
even if it lies only partially within the current time window,
and in turn the LSTM structure can correlate these windows
to make meaningful predictions.
As a first step to deliver the above, we choose the input

format of our model to be the strain data sliced into time
windows (time steps) of fixed length, each of which is 50%
overlapped with its neighbors. The details of data gener-
ation will be described in Sec. II C. There is essentially no
limit on the number of windows so our model is suitable for
data of any length. Nevertheless in each operation the size
of windows needs to be fixed due to the structural require-
ment of the LSTM and the fully connected layers.
Our model is composed of three main sequential sectors:

the CNN, LSTM, and fully connected (FC). Fig. 1 shows
the structure. The CNN sector has four convolutional
blocks, each with four layers: Bayesian convolution,
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max pooling [76], batch normalization [77], and rectified
linear unit (ReLU) activation [78]. The Bayesian convo-
lution layer uses several filters to extract different features
from the input, and each filter has a small set of shared

weight distributions called “kernel” to perform the con-
volution (or cross correlation) [35]. Different dilation rates
are used to determine the separation of kernel weights in the
space. The four Bayesian convolution layers here have 8,
16, 32, and 64 filters, each with the kernel size of 16, 8, 8,
and 8 and the dilation rate of 1, 2, 2, and 2, respectively.
The stride size of the kernels in all Bayesian convolution
layers is fixed to 1. The max pooling layer helps us down-
sample the data by picking up the maximum value in the
pooling window. All the pooling layers have a window size
of 4, sliding with a stride size of 4. After the convolution the
data are flattened and then passed into the LSTM sector.
The LSTM sector has two bidirectional Bayesian LSTM

layers, each with 128 hidden units (weights) in each
direction. Finally, the FC sector contains two Bayesian
FC layers, with 32 and 2 hidden units respectively. The first
Bayesian FC layer is followed by an ReLU activation layer,
and the second by a softmax activation layer in order to
confine the output values between 0 and 1. All Bayesian
layers employ both the VI [59,60,64] and the flipout
technique [61] to generate pseudo-independent weight
and bias perturbations in the hidden layers.
Our model has a total of around 4.65 million parameters.

Its outputs are the class results (class 0 for noise and class 1
for signal), each attached with a confidence score between
0 and 1 as a reference to judge on the existence of the GW
signals from coalescence events in the corresponding time
windows.

C. Data preparation

1. Real noise data

In this work we use the LIGO Livingston O2 data
segments provided by the Gravitational Wave Open
Science Center [79] (GWOSC) as our background noise
of GW injection. We randomly select 15 data segment files
from the first few days of the observation for training,1

5 files from the final day for validation,2 and 8 files from the
middle for testing the model.3 All data segment files are
4096 seconds in length and have a quality of at least
CBC CAT3 ¼ 100. They do not contain any of the events
or marginal triggers published by LIGO [9]. We down-
sample the sample rate of the strain data from 16384 to
8192 Hz in order to save memory.

2. Simulated templates of GW signals

We use the software packages PyCBC [29,30] and LALSuite

[80] to generate GW signals of quasicircular, nonspinning
BBH coalescence with the effective-one-body model
SEOBNRv4T [81]. The signals are simulated with a sample
rate of 8192 Hz and a cut-off frequency of 20 Hz.

FIG. 1. The structure of our Bayesian CLDNN model. The
dimensions of the outputs from each block are indicated at the
bottom of each block.

1December 1st to 3rd, 2016.
2August 25th, 2017.
3April 9th and 10th, 2017.
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The choice of component masses is similar to those in
Ref. [39,40]. For the training dataset the BBH component
masses range between 5 M⊙ and 75 M⊙ in steps of 1 M⊙,
with a mass ratio of q ¼ M1=M2 ≤ 10. For the validation
dataset the masses are offset by 0.5 M⊙ with respect to
those in the training dataset. This offset helps ensure that
the network is not overfitting by memorizing only the
inputs shown to it without learning to generalize to new
inputs [39,40]. For the testing dataset the masses are the
collection of those values used in the above two datasets. In
order to make our simulated samples more realistic, we also
incorporate the GPS time stamps (of the associated real
noise; see below) and a set of randomly generated right
ascensions and declinations (for the signal part) into the
samples following the convention of LIGO L1 detector.
This in turn means that every simulated waveform in our
dataset is different.

3. Data generation

In generating various datasets for training, validation,
and testing, we use the real noise randomly picked up from
the LIGO dataset (Sec. II C 1) for every sample, and inject
the simulated signals (Sec. II C 2) into half of the samples
for each dataset. To manipulate the signal-to-noise ratio
(SNR) for the samples that contain signals, we precalculate
the power spectral density (PSD) of the noise SnðfÞ and
tune the strength of the GW signal h so that the optimal
SNR, ρopt, defined by [82]

ρ2opt ¼ 4

Z∞

0

df
jh̃ðfÞj2
SnðfÞ

; ð8Þ

lies within the desired range (see below). Here h̃ðfÞ is the
Fourier transform of h. After the injection we then whiten
the data using the PSD re-estimated including the injected
signal. The length of the data in this process is 16 seconds
and we keep only the central 8 seconds to avoid FFT
artifacts. We also purposely arrange for the signals to peak
within the last 2 seconds of this final 8 seconds, in a hope
that our model could detect the coalescence event as soon
as it comes into the analyzed data. The 2-second diversity
in the signal position is expected to lead to a better
sensitivity of our model in event position. Our tests did
show that such arrangement for signals (to peak within the
last 2 seconds) for training helped largely not only for a
higher sensitivity of early detections but also for a more
complete mapping of the waveform.
We then slice and standardize the whitened data into 15

time windows of 1 second, each with 0.5-second overlaps
with its neighbors. Finally, we mark a time window with 1
if it contains a GW signal of longer than 0.25 seconds, or
longer than half of the signal duration when the duration is
shorter than 0.5 second. All other windows are marked with
0. An example of the simulated data sample is shown
in Fig. 2.

To carry out this work, we generate 40960 and 4096
samples for the training dataset and the validation dataset
respectively, each with half of the samples containing
signals of SNRs randomly drawn between 5 and 15 in
steps of 0.5. Similarly, for the testing dataset (used in
Sec. III A to quantify the performance of our model), we
generate 512 samples, half of which contain signals to
cover an SNR range from 2 to 18 in steps of 0.5. For this
testing performed in Sec. III A, we did not go for a larger
dataset beyond the size of 512 because it took us about five
days while already giving good quantitative results.

D. Training procedure

To deliver our model, we employ the tools provided by
the software packages TensorFlow [83] and the TensorFlow

Probability [84]. For the Bayesian LSTM layers we build
a customized Bayesian LSTM cell that applies the weight
perturbation and the flipout estimator on the hidden kernel,
recurrent kernel and bias. The LSTM cell is then wrapped
by the ordinary RNN layer functionality provided in
TensorFlow. For updating the model weights during training,
we use the ADAM [85] optimizer with a scheduled learning
rate of

lrðeÞ ¼
�
0.005; if e ≤ 15;

0.005 � expð0.05 � ð15 − eÞÞ; otherwise;
ð9Þ

where e is the number of training epoch. We use a
combination of the sparse categorical cross entropy and
the KL divergence as our loss function. Because in our
training scheme the KL divergences of each layer and cell
are accumulated into the regularization loss whenever
passing through the data, we have to weigh the KL
divergence in each layer and cell with the value of 1

CN
[64], whereC is the number of time steps in a sample andN
is the total number of samples for training, so that it is
applied only once per epoch. Otherwise the accumulated
large KL divergence will overregularize the model and
eventually stop the model from learning.
About the hardware, we train our model of 150 epochs

and a batch size of 256 on a computer with Intel® Core™ i5
6500 CPU and AMD™ RX 480 GPU. Even with such

FIG. 2. Simulated LIGO L1 strain data (blue curve) that contain
a GW signal (white curve) with m1 ¼ 45.0, m2 ¼ 38.5, ρopt ¼ 8,
right ascension π=4 and declination π=4. The green stars are the
marks (0 or 1) of the time windows centered at each window.
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moderate computational power and a code of Bayesian
LSTM cell unoptimized for GPU, the whole training
process normally takes only about 50 hours. This is a
critical feature of our work. After the last epoch we save
only the model parameters because we want to minimize
the KL loss, which keeps decreasing during the training.

E. Flagging strategy

Our model performs tasks of binary classification, with
a predictive value of p1 indicating the identification for GW
signals and a value of p0 for noise, where p0 þ p1 ¼ 1.
Thus we need to keep only p1 for subsequent analysis.
We also calculate the average predictive value p̄1 and
the confidence score c1 for p̄1 using Eqs. (4) and (7)
respectively.
Considering the issue of confidence level in statistics, we

weigh the p̄1 with its confidence score c1. This is to avoid
our model from accepting or rejecting a time window for
signals when the confidence score c1 is low. Thus we flag
all the time windows with three distinct states: trigger,
noise, and awareness. A time window t is flagged with a
trigger state when the trigger score defined as

st ¼ p̄1;t × c1;t; ð10Þ

is larger than 0.5, where p̄1;t and c1;t are the p̄1 and c1 of the
time window t respectively. Such st can be regarded as the
significance level of a detection.
Similarly a time window t is flagged with a noise state

when the noise score defined as

nt ¼ p̄0;t × c0;t;

¼ ð1 − p̄1;tÞ × c1;t; ð11Þ

is larger than 0.5. We note that in a system of binary classi-
fication, c0;t equals c1;t. We also note that st þ nt ¼ c1;t.
Those time windows that are not flagged with a trigger

state nor a noise state will be flagged with an awareness
state. The role of such a state can be illustrated in a
Bayesian dog-null classifier for images when we feed it
with an image of cat. It is likely that the classifier will give a
reasonable p1 but low c1. In such a case we can only say
that the model “notices” something though not sure what
it is.
As a demonstration we apply the above flagging strategy

to the data presented in Fig. 2 and the results are shown in
Fig. 3. Because the flipout estimator enables batch pre-
diction, we use a batch size of 32 to dramatically accelerate
the MC sampling process (see Sec. IV B). As shown in
Fig. 3, among the three time windows that are marked with
1 (green stars) for indicating the GW singles, our model
flag two with trigger states (cyan stars) and one with an
awareness state (cyan triangle) likely due to the much
weaker signal within this time window. This demonstrates

the usefulness of the awareness state in practice, which has
actually incorporated the sliding-window search. In Fig. 3
we also show the confidence score c1;t (orange dots), the
averaged predictive probability for being a signal p̄1;t (red
dots), the distribution of p1;t (pink areas), and the 90%
intervals of p1;t (red error bars), all obtained from a set of
data sampled for 4096 times.
It is obvious that the awareness state is associated with a

low confidence score c1;t, which indicates a large uncer-
tainty in a prediction. It suggests the need for further
investigations on this particular time window. In practice,
we could ignore these awareness states if we have had
trigger states next to them because the purpose of our model
is to detect signal events. However if the awareness states
do not come with any neighboring trigger states, we could
pursue further investigations in order not to miss any
detection opportunities for signals of even unknown types.
In a training process, on the other hand, these awareness
states together with their known markers can be further
incorporated into a retraining process, so that the retrained
model could become more capable in discriminating
between the signals and the noise rather than putting either
into the awareness state.

III. RESULTS

A. Quantitative tests for performance

To quantify the performance of our model, we take four
different measures, namely the TPR, TER, FPR, and FER
as defined below, against the dataset generated in Sec. II C,
which contains real noise and simulated signals. The MC
sample size in obtaining p̄1 and c1 is 4096. Because our
model classifier gives three states instead of two, we cannot
apply the commonly used confusion matrix to obtain the
sensitivity or the false positive rate for our results.
The first measure is the “true positive rate” (TPR), which

is the ratio of the trigger states plus the awareness states
among all the time windows marked with “1” (with GW
signals). To be precise, among all the time windows marked

FIG. 3. The prediction with flagging results from our model for
the input data presented in Fig. 2. The three cyan markers indicate
the trigger scores st [Eq. (10)], where two trigger states are shown
as stars and one awareness state as a triangle. We also show the
confidence score c1;t (orange dots), averaged probability for
being a signal p̄1;t (red dots), distribution of p1;t (pink areas), and
the 90% intervals of p1;t (red error bars), all based on a Monte-
Carlo process with a sampling size of 4096.
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with 1, if the numbers of states for trigger, awareness, and
noise are Ntrg, Naw, and Nnoi respectively, then the TPR is
defined as

TPR ¼ Ntrg þ Naw

Ntrg þ Naw þ Nnoi
: ð12Þ

Such TPR can be regarded as the “waveform sensitivity,”
which indicates how well the model can capture the
waveform structure. Figure 4 shows the results. It is clear
that for GW signals with an SNR of ρopt > 8, our model
detects or is aware of more than 90% of the time windows
in the GW waveforms. The persistent awareness rate of
about 20% at high ρopt is due to the obscuration from the
noise at the beginning parts of the waveforms, which are
always weaker then the noise. In principle this rate of 20%
could be reduced if we retrain the model with these marked
awareness states.
The second measure is the “true event rate” (TER),

which is the ratio of the events with at least one trigger or
awareness among all the events with GW signals. Among
all the signal events, if the numbers of events with “at
least one trigger,” with “awareness only,” and with “noise
only” are Etrg, Eaw, and Enoi respectively, then the TER is
defined as

TER ¼ Etrg þ Eaw

Etrg þ Eaw þ Enoi
: ð13Þ

Such TER can be regarded as the “event sensitivity,” which
indicates how well our model can pick up the true events.
Fig. 5 shows the results. Our model achieves a TER of 90%
when ρopt > 7 and 100% when ρopt > 8.5. For ρopt > 11

we still see few cases with awareness only and our

investigation shows that this is due to some outliers in
the noise leading to low confidence.
In evaluating the TER and TPR results, it is quite

encouraging to see the capability of our model in not only
detecting the GWevents (TER) but also identifying the full
lengths of waveform durations in the events (TPR),
although the latter demonstrates a slightly lower sensitivity.
We also note that our model trained for the non-spinning
BBHs successfully detected the spinning BBHs in similar
statistics.
On the other hand, we could define two similar measures

for false detections. Thus the third measure is the “false
positive rate” (FPR), which is the ratio of the trigger states
plus the awareness states among all the time windows
marked with ‘0’ (without GW signals). In other words,
among all the time windows marked with 0, if the numbers
of states for trigger, awareness, and noise are N0

trg, N0
aw, and

N0
noi respectively, then the FPR is defined as

FPR ¼ N0
trg þ N0

aw

N0
trg þ N0

aw þ N0
noi

; ð14Þ

which is the sum of the false trigger rate N0
trg=ðN0

trg þ
N0

aw þ N0
noiÞ and the false awareness rate N0

aw=ðN0
trg þ

N0
aw þ N0

noiÞ. This FPR indicates how likely our model
will falsely capture the waveform signals. Because the false
detections are measured in a background of pure noise,
the FPR is not a function of the SNR. Our model shows a
false trigger rate of 0.067% and a false awareness rate of
19.6%, summed up to an FPR of about 19.7%. The false
trigger rate is unnoticeably small and they are mainly due
to the glitches in the noise. On the other hand, although
the current false awareness rate of 19.6% is unignorable,
we find that when conducting the same test using noise

FIG. 4. The true positive rate (TPR) as a function of the SNR
ρopt in the performance test of our model. The TPR reaches 90%
when ρopt > 8.

FIG. 5. The True Event Rate (TER) as a function of the SNR
ρopt in the performance test of our model. The TER reaches 90%
when ρopt > 7.
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FIG. 6. Successful flagging results of our model for the LIGO Livingston O2 data that contain GW signals from BBH coalescence
events. The green vertical lines indicate the event times. Other symbols and colors in these plots follow the same definitions as in Fig. 2
and Fig. 3.
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datasets of different sizes for training, the false awareness
rate decreases monotonically with the size of noise dataset
for training. Therefore the current 19.6% is expected be
further reduced by a larger noise training dataset, which
would contain more variability in the background noise. In
addition, we should be able to further reject false triggers or
awareness when performing the coincidence test (see
Sec. IVA).
The last measure is the “false event rate” (FER), which is

the ratio of the events with at least one trigger or awareness
among all the null events without GW signals. Among all
the null events, if the numbers of events with at least one
trigger, with awareness only, and with noise only are E0

trg,
E0
aw, and E0

noi respectively, then the FER is defined as

FER ¼ E0
trg þ E0

aw

E0
trg þ E0

aw þ E0
noi

; ð15Þ

which is the sum of the false event trigger rate
E0
trg=ðE0

trg þ E0
aw þ E0

noiÞ and the false event awareness rate
E0
aw=ðE0

trg þ E0
aw þ E0

noiÞ. Our model shows a false event
trigger rate of 0.485% and a false event awareness rate of
47.2%, summed up to an FER of about 47.7%. This shows
that while our model is capable of detecting the true events
as previously seen, it falsely overpredicts the signal events.
Again this is simply due to the smallness of our noise
dataset for training and can be improved by enlarging the
noise training dataset as well as going deeper in the
training.

B. Performance against real events

In this section we test our model with the LIGO
Livingston O2 data that contain confidence detections of
BBH coalescence events [6–9,86].
We downloaded the 32-second strain data from

GWOSC, down-sampled them to 8192 Hz, calculated
the PSD, whitened the data, and then took the 8-second
chunks that contain the events in their last seconds. As in
the training process, each chunk of the real data here was
also sliced into 15 one-second windows with a stride of
0.5 second. For each chunk of the event data, we performed
an MC sampling of size 4096, with a batch size of 32.

When operated on a moderate GPU-equipped PC, the
whole process of flagging took only about 20 seconds for
each chunk. Thus our model should be able to achieve
nearly real-time detection if we employ better hardware and
optimize the Bayesian LSTM layer in gaining the full GPU
support. Shorter data chunks and a smaller size of the MC
sampling should also help on this.
The results for the BBH coalescence events are shown in

Fig. 6. The symbols and colors in these plots follow the
same definitions as in Fig. 2 and Fig. 3. For reference
purpose, we also plot the whitened GW waveforms (white
curves) reconstructed from the values of component
masses, luminosity distances, right ascensions and decli-
nations provided in Ref. [9] using the SEOBNRv4T model.
It is clear that our model successfully detected all the

events. It is also important to note that our model
successfully triggered all the time windows that contained
the GW170608 signal, which spanned a period of nearly
7 seconds. This demonstrates the capability of our model in
capturing the full length of a long-duration GW signal.
While in literature the matched-filtering search detected
GW170729 with rather high false alarm rate [9,86], our
detection of GW170729 also comes with a relatively lower
confidence score. This is likely due to the noise fluctuation
in the background and could be improved by deepening the
model or increasing the size of the training dataset.
Although our model was trained with only the BBH

coalescence events, we experimentally tested our model
against a binary-neutron-star (BNS) coalescence event, the
GW170817 [13], which has masses of 1.27 M⊙ and
1.46 M⊙. Figure 7 shows the result. For this particular
set of Livingston O2 data where there was a large glitch
about 1.1 seconds before the event [13], we employed a
method used for the rapid reanalysis in Ref. [13,87] to
mitigate this large glitch. The method applies an inverse
Tukey window to zero out the data around the glitch. For
reference purpose we also plotted the reconstructed BNS
GW waveform (white curve) using the TaylorT4 model [88].
As shown in Fig. 7, our model was aware (with no triggers)
of the time windows that contained the waveform of the
BNS event.
To quantify how much our result had been affected by

the Tukey window, which actually deformed the strain data

FIG. 7. The flagging results of the LIGO Livingston O2 data set GW170817, which contains a BNS coalescence event. Here we have
applied an inverse Tukey window [13,87] to mitigate the glitch that occurred about 1.1 second before the event. The white curve is the
reconstructed signal of the related BNS waveform.
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and can be thought as an adversarial example [89,90], we
performed the following three runs for cross validation (see
Fig. 8). With the same normal noise background (without
glitches) from the LIGO Livingston O2 data, the first run
contained a BNS waveform same as shown in Fig. 7 to
mimic the GW170817, without any window treatment (top
panel in Fig. 8); the second run contained no waveform but
applied with an inverse Tukey window (middle panel in
Fig. 8); the third contained a BBH waveform to mimic a
loud BBH event (m1 ¼ 8.5 M⊙, m2 ¼ 6.0 M⊙, and
ρopt ¼ 12), with an inverse Tukey window (bottom panel
in Fig. 8). It is evident that our model rejected the
GW170817-like signal in the top panel, raised awareness
for the Tukey window in the middle panel, and raised
triggers for the BBH event in the bottom panel without
being affected by the Tukey window. We also note that the
p̄1 in the middle panel exhibits a behavior similar to the one
shown in Fig. 7. Therefore it is likely that the awareness
seen in the GW170817 (Fig. 7) is due to the treatment
involving the Tukey window.
We further investigated the sensitivity of our model for

the BNS events. Figure 9 shows an example where the BNS
signal is as loud as ρopt ¼ 40, considered as a nearby event
closer to the observer. In this case our model was aware of
most time windows containing the waveform and gave low
p̄1 with significant confidence scores near the coalescence
event. This means that our model that was trained with the
BBH events (of total component mass larger than 10 M⊙)

is insensitive to the BNS events. This is not too surprising
because the BNS events involve a much smaller mass range
and could have quite different features in their GW wave-
forms as compared with the BBH events. Therefore to
possess sensitivity for the BNS events, we would need to
add the BNS waveform templates into our training dataset
so that our model could recognize it as a separate BNS
class. Although this process is straightforward in our
framework (see Sec. IV D), we did not include the BNS
training in this demonstrative work due to its large variation
in waveform templates thus requiring much more compu-
tation power than we had.
In summary, our model is capable of detecting the BBH

events, unaffected by the treatment involving the Tukey
windowing. Our current model trained with only the BBH
events will not falsely detect the BNS events but could
potentially raise awareness for them. In the near future a
multiclass classifier will be needed for the forthcoming new
GW data. We have more discussions on this in Sec. IV D.

IV. DISCUSSION

In this section we discuss various critical issues in
our model, further demonstrating its strengths and future
potentials.

A. Extensibility for multidetector network

In contemporary GW searches, multidetector network is
becoming crucial so the coincidence test [30,31,33,91,92]
has become critical for declaring detections. The coinci-
dence test is based on the fact that all detectors should
have observed the same event at the same time so that
the triggers due to artifacts can be minimized by cross-
correlating the data from different detectors. Our model is
readily extensible for this as described below.
To make a neural network model capable of performing

coincidence test, we need to find a way to feed the
multidetector data into the model so that the convolutional
layers can perform the cross-correlation to extract useful
information from the data [93]. Fortunately our model can
readily do that by simply stacking the multidetector data to
form a multichannel array as its input. Although this
process is rather straightforward for our current setup,
the size of training dataset will grow in proportion to the
number of detectors, thus requiring proportionally more
computation power.

FIG. 8. Three runs for cross validation to test the influence of a
Tukey window on the GW170817 result in Fig. 7. With the same
normal noise background from the LIGO data, the first run
contained a BNS waveform same as shown in Fig. 7 to mimic the
GW170817, without any window treatment (top panel); the
second run contained no waveform but applied with an inverse
Tukey window (middle panel); the third contained a BBH
waveform to mimic a loud BBH event, with an inverse Tukey
window (bottom panel).

FIG. 9. The flagging result of a loud BNS event with ρopt ¼ 40.
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We also note that a potential advantage of the coinci-
dence test based on the multidetector data is the manage-
ment of noise glitches. For data from a signal detector we
normally need more thorough feeding of experimental
glitches into the model so that our model could learn to
ignore the glitches when trying to detect signals. This
requires much more computation power than what we have
performed. On the other hand a model including the
coincidence test for multidetector data should be able to
serve the same, without the need for the model to learn all
the characteristics of possible noise. We plan to demon-
strate the coincidence test in our future works.

B. Size of Monte-Carlo sampling

The first is about the trade-off between efficiency and
accuracy in our Bayesian neural network. In theory the
accuracy of BNN increases monotonically with the size of
Monte-Carlo sampling, which is the main determinant of
the required computation time. Thus there is no natural way
for achieving both high accuracy and high efficiency.
For example a smaller sampling size helps speed up the
prediction process while on the other hand inducing larger
uncertainty in the predicted p̄1 and c1. To find a proper
trade-off we quantified the dependence of both the pre-
diction uncertainty and the computation time separately on
the MC sampling size and also on the batch size for the
flipout estimator, which enables parallel predictions
(see Sec. II).
About MC sampling, we considered the sizes of 128,

256, 512, 1024, 2048, 4096, 8192, and 16384, each
conducted for 100 times with the data in Fig. 2 to obtain
the averaged variances in p̄1 and c1 and the average
computation time. The batch size for the flipout estimator
is 32 throughout this test. The left panels in Fig. 10 show
the results. As expected, while both the variances in p̄1 and
c1 decrease with the sampling size, the computation time
increases linearly. Based on these results, we chose 4096 as
a reasonable trade-off size for the MC sampling.
About the batch size for the flipout estimator, we

considered the sizes of 2, 4, 8, 16, 32, 64, 128, 256,
and 512, all with the same total sampling size of 4096 and
conducted for 100 times using the data in Fig. 2. This test is
to understand whether or not a larger batch size does
improve much on the computation time, because a larger
batch size actually comes with a possible price of sampling
bias. The right panels in Fig. 10 show the results. It is clear
that the gain in computation efficiency follows the expected
behavior of linearity but only for batch sizes up to about 32
but then becomes marginal for larger batch sizes.
For the above reasons, we chose to perform all the

predictions in this work (as in Sec. III) with the sampling
size of 4096 and the batch size of 32. In principle, one
should increase the sampling size while keeping the batch
size small whenever practically feasible.

C. Model calibration and reliability

It has been suggested that the confidence of the pre-
dictions from a neural network classifier may be justified
directly via its predictive values. That is to compare its
predictive values with the empirical frequencies of the
input data [94–96]. If they match well, this neural network
classifier is said to have been well-calibrated and thus
possesses confidence in its reliability. To this end, we first
followed the method in Ref. [94] to produce the reliability
curve, and then computed the expected calibration error
(ECE) as defined in Ref. [95], using our validation dataset
generated in Sec. II C 3. Each of the 4096 samples in our
validation dataset possesses 15 time windows, each with a
predictive value p̄1. To construct the reliability curve, all
these 4096 × 15 time windows were sorted in their asso-
ciated p̄1 and then divided into 10 bins of roughly equal
size. Within each bin, the p̄1’s were averaged to become
the horizontal coordinate in the left panel of Fig. 11, while
the actual fraction of real events (the positives) formed the
vertical coordinate. The 10 bins thus generated 10 points in
the plot, linked to form the reliability curve (the red solid
line). Ideally we would like this curve to be as close as
possible to the perfect curve, which has a slope of one

FIG. 10. The left panels show the dependence of averaged
variances in p̄1 and c1 (top) and of the average computation time
(bottom) on the MC sampling size. The black dashed line in the
bottom-left panel represents the linearity of slope 1. The right
panels show the dependence of averaged variances in p̄1 and c1
(top) and of the average computation time (bottom) on the batch
size for the flipout estimator, all with an MC sampling size of
4096. The black dashed line in the bottom-right panel represents
the inverse linearity of slope −1. All results are based on the data
presented in Fig. 2.
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through the origin (the dotted line). It is clear that our
model is fairly well-calibrated with a very small error of
ECE ¼ 0.018. We could thus conclude that the p̄1 gen-
erated by our model is a confident estimate for reality.
However, such confidence may break down in the follow-

ing two cases. The first is when the input data does not follow
the same distribution as the training dataset. The fact that our
model, currently trained with only the BBH events, is
insensitive to the BNS events is one example (see Sec. III
B). This is why we introduced and utilized the confidence
score ck (see Eq. (7)) in our work. The confidence score
would be lowwhenever the input data do not complywith the
underlying distribution of the training data. This out-of-
distribution problem can beminimized by training ourmodel
with datasets of all possible kinds that we may encounter
during the observation.
The second case for the confidence breakdown iswhen the

signal-to-noise radio is not high enough so that the model
fails to detect all the features it is supposed to recognize. To
demonstrate this point, we computed the reliability curve for
a subset of our validation data with ρopt ¼ 2.5. The right
panel of Fig. 11 shows the result. The reliability curve (red
solid) beingwell to the left of the perfect curve (dotted)with a
significant error ofECE ¼ 0.126 indicates under detectionof
real events (the positives). This is simply due to the
obscuration of the GW signals by the noise. Such a problem
can be readily improved by deepening our model training to
gain higher sensitivity.
To sum up, we may train our model deeper to gain higher

sensitivity and also feed it withmore signal types to avoid the
breakdown of confidence. Furthermore, as long as ourmodel
possesses high enough sensitivity through deep training, our
uncertainty estimation based on the confidence score could
serve as a powerful tool for picking up the out-of-distribution
signals that we have never seen before.

D. Multiclass detection

In this work we only trained our model with BBH signals
to perform binary classification. However, as more BNS
signals have been discovered by LIGO and Virgo [13,14], a
classifier that can further distinguish among different types

of signals such as those from BBH, BNS, and BHNS is
needed. For example the deterministic CNN proposed in
Ref. [44] is able to distinguish between the BBH and BNS
signals. A multiclass classifier can not only reduce the
search space of matched-filtering but also improve the
uncertainty estimation in the Bayesian approach that we
propose here. To estimate the uncertainties in signal
predictions for a multiclass Bayesian approach, we need
to employ the covariance matrix defined in Eq. (5), which is
more complicated than Eq. (6) used in this work. In turn the
definition of the confidence score in Eq. (7) also needs to be
updated accordingly. We will leave these to future works.

E. Stride size of sliding window

The architecture of our model combines the CNN model
and the sliding-window searches. Here we illustrate the
effect of the stride size of our sliding windows. In principle,
while keeping the same window size, a smaller stride size
will increase the time resolution in pinning down a GW
event. Figure 12 shows the flagging results of the LIGO
Livingston GW170809 data using stride sizes of 0.25 (top)
and 0.7 (bottom) second, to be compared with our previous
result for using 0.5 second (the fourth panel in Fig. 6). All
time windows have the same size of one second. It is
evident that the 0.25-second result demonstrates the best
accuracy in labeling the temporal location of the GWevent.
The only drawback for a smaller stride size is that the

computation time is inversely increasing with the stride
size, so there is always a trade-off given the available
computation power. Another issue concerning the stride
size is that a stride size larger than half of the window size
will cause an un-uniform coverage of the time domain in
the flagging analysis, leading to possible misses for the GW
events [41]. Therefore it is optimal to choose a stride size of
half the window size in face of the always limited
computation power. In the main work presented in this
paper we have chosen a window size of one second with a
stride size of 0.5 second. When analyzing the forthcoming
new data in future, one can always use our model here to
first efficiently identify a GWevent, hopefully in nearly real
time, and then focus on the identified data chunks with
increased time resolution and deeper search or even further
using the matched-filtering search to pinpoint the coales-
cence time.

F. Forecasting GW events

It is always desirable to be able to detect the GW waves
before a coalescence event so that we could conduct
parallel targeted observations such as the EM observations
to trace the full process including the inspiral, merger and
ringdown phases. A similar desire in the trading market has
actually led to using the RNN model to perform time series
forecasting in detecting the anomaly in time series [97] and
in predicting the stock price [98]. However our techniques
based on deep learning for detecting GW waves rely

FIG. 11. The reliability curves of our model based on the
validation dataset (left) and on only a subset with a low SNR of
ρopt ¼ 2.5 (right).
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strongly on recognizing the features of the GW waveform
around the coalescence time, where the SNR is much
stronger. This in turn implies that our model could detect
the GW signals likely only when a coalescence event has
come into the scene, and then we trace back in time to
identify the data sections that may have contained the GW
waveform before the event.
We verify this here using the Livingston GW170608

data. The results are shown in Fig. 13, where the bottom
panel contains only one extra second where the coalescence
event sits in its middle. The top panel shows no sign of GW
detection even though the event is about to enter our time
domain of analysis, only half a second away. Once the
event enters our time domain (bottom panel), our model
immediately picks up all the time windows containing not
only the event but also the waveform prior to the event. This
is not surprising because for each forward pass our model
uses the zero states as the initial hidden and cell states.

To enable the capability for prior detections, we have to
incorporate the hidden and cell states of the previous
prediction into our model. This would require not only
modifications in our model structure but also the con-
struction of partly correlated samples in the training dataset.
An extra complication is that the Bayesian neural network
would need to have all the previous hidden and cell states in
the form of distributions. Considering these challenges we
will leave the attempts for forecasting to future work.

V. CONCLUSION

We have proposed a new model to demonstrate the
capability of Bayesian neural network in detecting gravi-
tational waves. One critical bonus for using the BNN is the
ability for uncertainty estimation, which is particularly
useful when facing the data that do not follow the
distribution of the training dataset. Our uncertainty esti-
mation is manifested by the newly defined confidence score
c1, which in turn defines the awareness state for collecting
the cases where triggers cannot be accepted nor rejected
with confidence. These cases can then be further inves-
tigated in the follow-up checks. In addition, our Bayesian
CLDNN model integrates the CNN classifier with the
sliding-window search scheme so that we could detect most
of the time windows that contain the GW waveform in a
coalescence event. However due to the limited computation
power of this work, our current model does not outperform
the sensitivity of the existing matched-filtering search but
still successfully detect all the GW events that LIGO
detected in the O2 observation. Nevertheless on a moderate
GPU-equipped personal computer, it takes only about
20 seconds for detecting an event and labeling its waveform
period whenever a coalescence event comes into the time
domain of our analysis. This 20-second latency is expected
to be dramatically improved by a GPU-optimized code with
enhanced computation power and even shorter data chunks,

FIG. 13. The flagging results on the Livingston GW170608
data without the coalescence event (top) and with the event
(bottom). The only difference between these two sub-datasets is
the inclusion of the extra one second (on the right) in the bottom
panel where the event sits in the middle of this second.

FIG. 12. The flagging results of the Livingston GW170809 data using sliding-window search with stride sizes of 0.25 second (top) and
0.7 second (bottom).
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making our model possible for nearly real-time detection.
Such nearly real-time detection is unlikely to be possible
for the matched-filtering search, which is always computa-
tionally expensive. In future we plan to further explore the
discussed potential for a Bayesian CLDNN model in
forecasting the GW coalescence events.
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