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The principal aim of the space-based gravitational wave detectors is to explore the gravitational waves in
the 0.1 mHz-1 Hz frequency band. To maximize the potential capability of the experimental apparatus
regarding the instrument performance, one needs to acquire accurate information on its sensitivity limit.
The sensitivity curve in question, by definition, depends on the amplitudes of signal and noise involved in
the measurement. In this work, we explicitly derive, under rather universal assumptions irrelevant to the
detailed form of the time-delay interferometry combination, general results of the sensitivity functions. The
key feature of the present approach is that both the all-sky and polarization average can be factorized and
henceforth evaluated analytically. The resultant expressions are then applied to a variety of time-delay
interferometry combinations, inclusively for the optimal channels. In particular, the asymptotical forms of
the sensitivity functions are obtained at the high and low frequency limits, and the subsequential
implications are analyzed. When compared with the approaches in terms of numerical integration, the
obtained formulism furnishes a more straightforward as well as efficient access to the relevant signal noise
ratios for the spaceborne gravitational wave detectors.
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I. INTRODUCTION

As first predicted by general relativity, the gravitational
waves (GWs) are ripples in the fabric of spacetime,
triggered by accelerated masses. The resultant disturbances
propagate in the waveform at the speed of light while
transporting energy, referred to as gravitational radiation.
Preceded by various indirect detections, the first direct
evidence for the existence of GW was reported by the
LIGO Scientific Collaboration and the Virgo Collaboration
through a series of measurements initiated in 2015 [1–7].
Such an experimental triumph unfolds a novel possibility,
besides those in terms of electromagnetic radiations, for
observing the Universe. In particular, it serves to attest to
the validity of other candidate theories of gravity, particu-
larly in the strong-field regime. Inspired by the achieve-
ment, and motivated by its significant further potential, a
variety of related ground-based as well as spaceborne
projects, also based on the laser interferometers, have been
subsequently carried out [8–18]. The ground-based detec-
tors, such as Advanced LIGO [8], Advanced Virgo [9], and

KAGRA [15], are largely aimed at the high-frequency band
(10–104 Hz). On the other hand, the spaceborne ones,
which consists of LISA [11], TianQin [13] and TaiJi [14],
probe GWs in the frequency band of millihertz meanwhile,
DECIGO [10] operates in the frequency band of 0.1
to 10 Hz.
To determine whether the detector is capable to observe

GWs emanated from a particular source, it is crucial to
acquire the sensitivity limit of the instrument [19–22].
Typically, the sensitivity of the detector can be quantified
by the ratio of the source strength to the instrument noise.
This is referred to in the literature as the signal-noise ratio
(SNR), often presented in the frequency domain. On the
one hand, in order to improve the SNR, one strives to
suppress various types of noises, encountered in the laser
interferometric measurements. For instance, the noise due
to the laser frequency fluctuations, subjected to an
unknown temporal form, is usually more significant than
those of other origins by several orders of magnitude [23].
For the ground-based interferometers, it is feasible to tune
the two armlengths to be precisely identical so that its
cancelation can be implemented more straightforwardly.
For space-based GW detectors, however, the spatial
layout of the experimental setup is more extensive, and
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furthermore, the movements of the spacecrafts are gov-
erned by the revolution orbits. As a result, it becomes
impossible for space-based detectors to maintain constant
armlengths. Consequently, the laser phase noises through
different arms may experience different time-delays, and
cannot be canceled out intuitively. In this regard, the time-
delay interferometry (TDI) technique introduces virtual
equal arm interferometric measurements in order for the
laser frequency fluctuations to be canceled out [23,24]. In
the literature, various TDI combinations have been pro-
posed and extensively investigated [25–27]. Those combi-
nations have been shown to efficiently cancel out the laser
noise and some particular combinations might be preferable
for specific merger systems. Nonetheless, several other
minor sources remain inevitable and consequently con-
stitute the setup noise floor. For LISA and TianQin, the
latter largely consists of contributions from the acceleration
and shot noises. In the present study, we will consider
various TDI combinations that suppress the noise down to
the level governed by the above inevitable noise sources.
On the other hand, the sensitivity curve of a detector also

depends on the properties of the physical system from
which the GWs are emanated. To be specific, the response
function is governed by the information regarding the
specific merger process, the polarization states of the
GW, the orientation of the source to the detector, and
the relevant layout of the detector. Here, the strength of the
source can be expressed in terms of the strain spectral
density. For unspecified GW sources, the orientation of the
binary merger in terms of the all-sky solid angle as well as
all possible polarization states are usually averaged out by
the end of the calculations. Technically, it is not trivial to
perform the above angular average analytically, and much
effort has been developed to this topic. For spaceborne GW
interferometers, semianalytic calculations were presented
for the averaged response functions, and the results had
been simplified to expressions containing unsolved definite
integrals [19]. For the Michelson TDI combinations [28], a
similar approach gave rise to resultant expressions involv-
ing the sum of definite integrals, and the results are then
extended to and all six TDI combinations [29]. By employ-
ing the Monte Carlo simulation, the average regarding
the source orientations and polarization angles were carried
out [30,31]. Nonetheless, fully analytical expressions for
the Michelson TDI combinations were successfully
obtained in [32]. The purpose of the present work is to
further generalize the above study by deriving full ana-
lytical expressions for all existing TDI combinations. In
particular, as demonstrated below, for arbitrary TDI com-
bination, the angular average of the all-sky solid angle as
well as the polarization states can be factorized.
Subsequently, the relevant integrations are well-defined
and can be performed analytically. Based on the obtained
results, we proceed to investigate the asymptotical proper-
ties of the averaged response function for specific TDI

combinations. Moreover, the optimal expressions for par-
ticular TDI combinations are derived.
The paper is organized as follows. In Sec. II, we first give

a brief review of the TDI algorithm for the cancelation of
the laser phase noises and then discuss the antenna response
function. By employing the detector frame, in Sec. III, the
formulae for sensitivity functions are derived for any given
TDI combination. The asymptotic behaviors of a few
relevant TDI combinations are further analyzed and dis-
cussed in Sec. IV. The concluding remarks are given In
Sec. V. A detailed account of derivations is delegated to the
Appendixes. In Appendix A, we list the polynomials of
delay operators of all TDI combinations included in the
present study. The calculations, inclusively the integration
regarding all-sky angle and polarization average, are
presented in Appendix B.

II. NOISE SOURCES AND RESPONSE FUNCTION
FOR TIME-DELAY INTERFEROMETRY

COMBINATIONS

The spaceborne GW detection is realized through laser
interferometry. In order to maximize the observable effect,
a laser beam emanated from a remote spacecraft (SC) is
directed to interfere with that from the local SC. The
spacetime distortion owing to the presence of GW is
expected to introduce an additional phase shift. Such a
signal is added up to the background ones inclusively amid
various types of noises. The latter might even be orders of
magnitude larger than the primary signal of interest. In
practice, the measurements are recorded in terms of the
fractional Doppler shift. As mentioned above, the noises
also inevitably play a significant part in the above-men-
tioned Doppler shift and have to be suppressed at least
below the magnitude of GW signals. In this section, we will
focus on the estimation of the noise terms for TDI
combinations and the derivation of the general form of

FIG. 1. The experimental layout of the space-based laser
interferometry consists of laser sources and links.
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the GW response function for spaceborne detectors. The
experimental setup of a spaceborne detector is illustrated
in Fig. 1. It consists of three identical SC approximately
forming a triangle. Consequently, the effective armlength of
the interferometer extends over 105–106 kilometers.
Although the armlengths are inevitably time-varying, the
chosen orbits are aimed to maintain the constellation as
“rigid” as possible. The resultant configuration keeps a
small variation within 1% for each detector armlength.
In the present work, we follow the notations utilized in

Ref. [24]. For each SC, two optical benches (OBs) are
installed, each of which houses a test mass (TM) acting as
an inertial sensor. The two OBs aboard the ith SC are
labeled by i, i0. As shown in Fig. 1, the optical path linking
the other two SC on the opposite side of the ith SC is

denoted by LiðLi0 Þ. Here, one adopts the convention that
the light paths L1 → L2 → L3 (L10 → L20 → L30) form a
counterclockwise (clockwise) circulation. The optical
paths connecting the six OBs give rise to a total of six
laser links, through which the interferometric measure-
ments are performed between the local and remote laser
beams. To be more specific, there are four types of data
streams, namely, the science interferometric measure-
ments, test mass measurements, reference measurements,
and sideband measurements. Among other minor sources
of noises, for simplicity, we will only consider explicitly
those due to the laser phase fluctuations, test mass
mechanical vibrations, and shot noises. It is convenient
to introduce intermediate variables, ηi; ηi0 as follows [33]:

ηiðtÞ ¼ hiðtÞ þDi−1piþ1ðtÞ − piðtÞ þ n⃗i−1½Di−1δ⃗ðiþ1Þ0 ðtÞ − δ⃗iðtÞ� þ Nopt
i ðtÞ;

ηi0 ðtÞ ¼ hi0 ðtÞ þDðiþ1Þ0pi−1ðtÞ − piðtÞ þ n⃗iþ1 · ½δ⃗i0 ðtÞ −Dðiþ1Þ0 δ⃗i−1ðtÞ� þ Nopt
i0 ðtÞ: ð1Þ

These observables are directly related to the photon paths.
To be more specific, ηi (or ηi0 ) indicates the measured
Doppler shift involving the photon propagation along the
detector arm Li−1 (Lðiþ1Þ0 ) in the counterclockwise (clock-
wise) direction. The GW signals hiðtÞ and hi0 ðtÞ are
incorporated into the optical path length, which will be
discussed in detail below in Sec. II B. The time delay

operations, Di,Di0 , are defined as DjfðtÞ ¼ fðt − LjðtÞ
c Þ

with c being the speed of light. These quantities are
associated with the corresponding detector arms Li,Li0 ,
owing to the time consumed during which the photon
traverses the detector arm. The laser phase noises in ith OB
are denoted by piðtÞ, and δ⃗i is the mechanical fluctuations
induced by the random velocity noises of the TM. Nopt

i and
Nopt

i0 are the fluctuations due to shot noises. In order to
reduce the noises piðtÞ, one further introduces linear
combinations of ηi, as will be discussed in the following
subsection.

A. Time-delay interferometry and noise cancellation

The TDI algorithm makes use of linear combinations of
the intermediate observables ηi; ηi0 defined in Eq. (1). The
aim of the approach is that the resultant quantities will be
laser noise free. Such combinations are expressed in terms
of polynomials of the delay operators [34], namely,

TDI ¼
X3
i¼1

ðPiηi þ Pi0ηi0 Þ: ð2Þ

To encounter the proper coefficients of the polynomials, one
may transfer the problem into that of finding the module of
syzygies. The latter, in turn, can be resolved by evaluating the
Grobner basis for the ideal generated by the coefficients
appearing in the constraint, and then use it to construct the
generating set for the module. The detail of the above
procedure can be found in [24]. By employing the combi-
nations, the resultant power spectral densities (PSDs) of the
remaining noises, namely, the TM and shot noises, read

STDIaðΩÞ ¼ SpfðΩÞ
X3
i¼1

½jP̃iðΩÞ þ P̃ðiþ1Þ0 ðΩÞD̃ði−1Þ0 ðΩÞj2 þ jP̃iðΩÞD̃i−1ðΩÞ þ P̃ðiþ1Þ0 ðΩÞj2�; ð3Þ

and

STDIshotðΩÞ ¼ SoptðΩÞ
X3
i¼1

½jP̃iðΩÞj2 þ jP̃i0 ðΩÞj2�; ð4Þ

where Ω is the observed frequency, and D̃i is the Fourier
transform of the time-delay operator. The dimensionless

Spf ¼ s2a
ðΩcÞ2 and Sopt ¼ Ω2s2x

c2 measure the relative PSD of TM

and shot noises, where sa, sx are the respective amplitude
spectral densities (ASDs).
As the TM and shot noises originate from dif-

ferent physical natures, they are treated as independent
variables [35,36]. The total noise PSD thus can be
written as
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NðuÞ ¼ STDIaðuÞ þ STDIshotðuÞ
¼ C1½P̃iðuÞ�n1ðuÞ þ 4C2½P̃iðuÞ�n2ðuÞ; ð5Þ

where coefficients

C1½P̃iðuÞ� ¼
X3
i¼1

Re½jP̃ij2 þ jP̃i0 j2�;

C2½P̃iðuÞ� ¼
X3
i¼1

Re½P̃iP̃�
ðiþ1Þ0 �; ð6Þ

and

n1ðuÞ ¼ 2Spf þ Sopt;

n2ðuÞ ¼ Spf cos u; ð7Þ

where one assumes that all of the armlengths are equal,
the Fourier transform of the delay operator possess the
form D̃i ¼ ei ΩLc , and defines u ¼ ΩL

c as a dimensionless
quantity.
For the spaceborne GW detection, different data combi-

nations may produce different link configurations. In
practice, there are a variety of TDI combinations, in terms
of eight-link observables: unequal-arm Michelson X, Relay
U, beacon P and monitor E of first-generation TDI, and
six-link observables: Sagnac α, fully symmetrized Sagnac ζ
of first-generation TDI [26]. In Appendix A, we enumerate
the coefficients of the polynomials Pi,Pi0 of these combi-
nations, while most of the following derivations are based
on rather general footing.
For illustration purpose, in the remainder of the manu-

script, when referring to an explicit example, we will
always consider the first-generation TDI Michelson com-
bination X1. To be specific, the coefficients of the X1 are
given by

P1 ¼ ðD202 − 1Þ; P2 ¼ 0; P3 ¼ ðD20 −D33020 Þ;
P10 ¼ ð1 −D330 Þ; P20 ¼ ðD2023 −D3Þ; P30 ¼ 0: ð8Þ

By combining Eqs. (5) and (8), the PSD for total noises
(TM acceleration noises and shot noises) for the first-
generation Michelson combination is given by

NX1
ðuÞ ¼ s2aL2

u2c4
ð8 sin2 2uþ 32 sin2 uÞ þ 16

u2s2x
L2

sin2 u:

ð9Þ

B. Gravitational wave response function

As the GWs traverse through the vicinity of the space-
borne detector, the subsequential distortions of the

spacetime curvature will be recorded as Doppler shifts in
the laser frequency. Subsequently, the optical path length of
a photon emitted by one SC and received by another is
modified. It can be estimated by evaluating the photon’s
geodesic. Let us consider a laser beam emanated at t ¼ t1
from the position r⃗A ¼ r⃗ðt1Þ, which is eventually received
at r⃗B ¼ r⃗ðt2Þ at t ¼ t2. The corresponding optical path
length is L ¼ cðt2 − t1Þ. From the viewpoint of an observer
located in the background flat spacetime, the position
vector of the beam at moment t can be expressed as
r⃗ðtÞ≡ r⃗A þ cðt − t1Þn̂, where n̂ indicates the direction of
the photon propagation. To the first-order approximation,
one may estimate the small variation of the time interval
due to the metric perturbation introduced by the GW.
The world line of a photon has a null line element

0 ¼ ds2 ¼ −c2dt2 þ dx2 þ dy2 þ dz2 þ hijdxidxj: ð10Þ

Here, the indices i, j run over spatial ones only, and
dxi ¼ nidλ, λ measures the Euclidean length. The compo-
nents of the metric perturbation are denoted by hij. We
introduce the scalar function

hðtÞ≡ hijninj ¼ hþðtÞξþ þ h×ðtÞξ×; ð11Þ

where hþ and h× are the amplitudes of two GW porlariza-
tion states, determined by the specific merger system. ξþ
and ξ× are known as the direction functions, defined by the
contractions between the tensorial basis (for the plus or
cross modes) and n̂ n̂. The tensorial basis is conveniently
expressed in terms of the unit vectors determined by the
orientation of the GW source. Moreover, the polar angles
on the celestial sphere, ðθ̂; ϕ̂Þ, are chosen so that they form
a set of orthonormal basis vectors, when complemented by
ŵ, the direction of wave propagation. Therefore, the
direction functions can be expressed using the above
angular variables as

ξþ ¼ ðθ̂ · n̂Þ2 − ðϕ̂ · n̂Þ2;
ξ× ¼ 2ðθ̂ · n̂Þðϕ̂ · n̂Þ: ð12Þ

Based on above notation, one can show [37] that the
relative Doppler shift of the laser beam along one arm in the
time domain.

δνðtÞ
ν0

¼ −1
2ð1 − k̂ · n̂Þ

�
h

�
t − k̂ ·

r⃗B
c

�
− h

�
t − k̂ ·

r⃗A
c
−
L
c

��
:

ð13Þ

By performing the Fourier transform, one can rewrite the
above result in the frequency domain as follows
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δνðΩÞ
ν0

¼ hðΩÞ
2ð1 − k̂ · n̂Þ e

iΩLþk̂·r⃗A
c ½1 − e−i

ΩL
c ð1−k̂·n̂Þ�; ð14Þ

It is convenient to seperate the plus and cross modes by
substituting Eq. (11) into Eq. (14), one finds

δνðΩÞ
ν0

¼ FþðΩÞhþðΩÞ þ F×ðΩÞh×ðΩÞ ð15Þ

where Fþ and F× are governed by the specific detector
layout regarding the two polarization states and are known
as the response functions.

For instance, the response functions for the observables
η1; η10 associated with the arm L3; L20 are written as

Fη1;þ;×ðΩÞ ¼
eiΩL3ð1þŵ·n̂3Þ=c

2ð1þ ŵ · n̂3Þ
½1 − e−iΩL3ð1þŵ·n̂3Þ=c�ξ3;þ;×;

Fη10 ;þ;×ðΩÞ ¼
eiΩL2ð1−ŵ·n̂2Þ=c

2ð1 − ŵ · n̂2Þ
½1 − e−iΩL2ð1−ŵ·n̂2Þ=c�ξ2;þ;×:

ð16Þ
Subsequently, for an arbitrary TDI combination given by
Eq. (2), the corresponding response function should be
evaluated according to the specific light route and combi-
nation which gives

Fþ;× ¼
X3
i¼1

P̃iFηi;þ;× þ P̃i0Fηi0 ;þ;×

¼ P̃1

eiΩL3ð1þŵ·n̂3Þ=c

2ð1þ ŵ · n̂3Þ
½1 − e−iΩL3ð1þŵ·n̂3Þ=c�ξ3;þ;× þ P̃2

eiΩL1ð1−ŵ·n̂2Þ=c

2ð1þ ŵ · n̂1Þ
½1 − e−iΩL1ð1þŵ·n̂1Þ=c�ξ1;þ;×

þ P̃3

eiΩL2=c

2ð1þ ŵ · n̂2Þ
½1 − e−iΩL2ð1þŵ·n̂2Þ=c�ξ2;þ;× þ P̃10

eiΩL2ð1−ŵ·n̂2Þ=c

2ð1 − ŵ · n̂2Þ
½1 − e−iΩL2ð1−ŵ·n̂2Þ=c�ξ2;þ;×

þ P̃20
eiΩL3=c

2ð1 − ŵ · n̂3Þ
½1 − e−iΩL3ð1−ŵ·n̂3Þ=c�ξ3;þ;× þ P̃30

eiΩL1ð1þŵ·n⃗3Þ=c

2ð1 − ŵ · n̂1Þ
½1 − e−iΩL1ð1−ŵ·n̂1Þ=c�ξ1;þ;×: ð17Þ

In practice, both the orientation of the GW source and the
polarization angle are largely unknown to us ahead of any
detection. These angular degrees of freedom will be
averaged out in the calculation of the response function.
In the following section, we will deal with specific detector
layout and derive the desired analytical expressions for the
averaged response functions.

III. THE AVERAGED RESPONSE FUNCTION
OF SPACEBORNE GRAVITATIONAL

WAVE DETECTORS

A. The detector frame

To calculate the averaged response function, we consider
the detector Cartesian coordinate system in terms of
ðêx; êy; êzÞ. One places the coordinate origin at the location
of SC1. The x–y plane is chosen to coincidewith the triangle
detector plane, where êx equally divide the angle formed by
the rays SC1-SC2 and SC1-SC3 as illustrated in Fig. 2.
The position vectors and unit vectors of the three SC can

be written as

r⃗1 ¼ ð0; 0; 0Þ;
n̂1 ¼ ð0; 1; 0Þ;
r⃗2 ¼ −Ln̂3 ¼ L

�
cos

γ

2
; sin

γ

2
; 0
�
;

r⃗3 ¼ Ln̂2 ¼ L
�
cos

γ

2
;− sin

γ

2
; 0
�
: ð18Þ

In practical calculations, another two coordinate systems
[39–41] are often involved: the observational reference frame
(ORF) ðθ̂; ϕ̂; ŵÞ (already defined above) and the canonical
reference frame (CRF)ðp̂; q̂; ŵÞ. The ORF frame measures
the orientation of the source in terms of the polar angles on
the celestial sphere. We choose the sign of ŵ so that

ŵ≡ −k̂ ¼ sin θ cosϕêx þ sin θ sinϕêy þ cos θêz: ð19Þ

FIG. 2. The detector frame [38] defined in terms of ðêx; êy; êzÞ.
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Thus the coordinate system is right-hand oriented as ŵ ¼
θ̂ × ϕ̂ and

θ̂≡ ∂ŵ=∂θ ¼ cos θ cosϕêx þ cos θ sinϕêy − sin θêz;

ϕ̂≡ ∂ŵ=ðsin θ∂ϕÞ ¼ − sinϕêx þ cosϕêy: ð20Þ
The CRF frame is more appropriate to describe the polari-
zation state, which can be obtained by simply rotating ORF
about the ŵ axis by an angle ψ clockwise. The two resultant
unit vectors p̂ and q̂ are

p̂ ¼ cosψθ̂ − sinψϕ̂

q̂ ¼ sinψθ̂ þ cosψϕ̂: ð21Þ
Apparently, a GW signal propagating along k̂ can be

equivalently written in ORF and CRF as

h
↔
ðtÞ≡ hCRFþðtÞεþ þ hCRF×ðtÞε× ¼ hþðtÞeþ þ h×ðtÞe×:

ð22Þ
Here the tensorial bases in the two reference frames are εþ≡
p̂ ⊗ p̂ − q̂ ⊗ q̂; ε× ≡ p̂ ⊗ q̂þ p̂ ⊗ q̂, and eþ ¼ θ̂ ⊗ θ̂ −
ϕ̂ ⊗ ϕ̂; e× ¼ θ̂ ⊗ ϕ̂þ ϕ̂ ⊗ θ̂. They are related to each other
due to Eq. (21). The coefficients hCRFþðtÞ; hCRF×ðtÞ;
hþðtÞ; h×ðtÞ are the corresponding GW amplitudes.
In the frequency domain, the amplitudes for a mono-

chromatical GW source can be written as [42]

hþðΩÞ ¼ H

�
1þ cos2 ι

2
cos 2ψ þ i cos ι sin 2ψ

�
;

h×ðΩÞ ¼ H

�
−
1þ cos2 ι

2
sin 2ψ þ i cos ι cos 2ψ

�
; ð23Þ

where ι is the inclination angle of source orbital plane with
respect to the p̂ − q̂ plane. H is known as the GW strain,
determined by the specific merger system.
In the detector frame, one may write down the explicit

forms of the direction functions Eq. (12) as follows

ξ1;þ ¼ cos2 θ sin2 ϕ − cos2 ϕ;

ξ2;þ ¼ cos2 θ cos2 ϕ̃ − sin2 ϕ̃;

ξ3;þ ¼ cos2 θ cos2 ϕ̃ − sin2 ϕ
˜
; ð24Þ

and

ξ1;× ¼ cos θ sin 2ϕ;

ξ2;× ¼ − cos θ sin 2ϕ̃;

ξ3;× ¼ − cos θ sin 2ϕ
˜
: ð25Þ

Also, we have

ŵ · n̂1 ¼ sin θ sinϕ;

ŵ · n̂2 ¼ sin θ cos ϕ̃;

ŵ · n̂3 ¼ − sin θ cosϕ
˜

ð26Þ

with ϕ
˜
¼ ϕ − γ

2
; ϕ̃ ¼ ϕþ γ

2
, and in this paper we take

γ ¼ π
3
.

To evaluate the PSD of the GW signal, one proceeds to
calculate the square of Eq. (17), which gives

4jFþ;×j2 ¼ jaj2ðξ3;þ;×Þ2 þ jbj2ðξ1;þ;×Þ2 þ jcj2ðξ2;þ;×Þ2 þ 2Reðab�Þξ3;þ;×ξ1;þ;× þ 2Reðac�Þξ3;þ;×ξ2;þ;×

þ 2Reðbc�Þξ1;þ;×ξ2;þ;×; ð27Þ
where

a ¼ P̃1e
−iu sin θ cosϕ

˜
1 − e

−iuð1−sin θ cosϕ
˜
Þ

1 − sin θ cosϕ
˜

þ P̃20
1 − e

−iuð1þsin θ cosϕ
˜
Þ

1þ sin θ cosϕ
˜

;

b ¼ P̃2e−iu sin θ cos ϕ̃
1 − e−iuð1þsin θ sinϕÞ

1þ sin θ sinϕ
þ P̃30e

−iu sin θ cosϕ
˜
1 − e−iuð1−sin θ sinϕÞ

1 − sin θ sinϕ
;

c ¼ P̃3

1 − e−iuð1þsin θ cos ϕ̃Þ

1þ sin θ cos ϕ̃
þ P̃10e−iu sin θ cos ϕ̃

1 − e−iuð1−sin θ cos ϕ̃Þ

1 − sin θ cos ϕ̃
: ð28Þ

As discussed above, one does not specify the location of
GW sources beforehand. Therefore, we carry out an average
over the source locations and the polarization angles to obtain
the all-sky averaged response function RðuÞ as:

RðuÞ ¼ 1

8π2

Z
π

0

sin θdθ
Z

2π

0

dϕ
Z

2π

0

dψðjFþj2 þ jF×j2Þ:

ð29Þ
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The integration can be performed by first substituting the following relation

ðξ1;þÞ2 þ ðξ1;×Þ2 ¼ ð1 − sin2θsin2ϕÞ2;
ðξ2;þÞ2 þ ðξ2;×Þ2 ¼ ð1 − sin2θcos2ϕ̃Þ2;
ðξ3;þÞ2 þ ðξ3;×Þ2 ¼ ð1 − sin2θcos2 cosϕ

˜
Þ2;

ξ3;þξ1;þ þ ξ3;×ξ1;× ¼
�
ð1 − sin2θcos2ϕ

˜
Þð1 − sin2θsin2ϕÞ − 2cos2θcos2

γ

2

�
;

ξ3;þξ2;þ þ ξ3;×ξ2;× ¼ ½ð1 − sin2θcos2Þð1 − sin2θcos2ϕ̃Þ − 2cos2θsin2γ�;

ξ1;þξ2;þ þ ξ1;×ξ2;× ¼
�
ð1 − sin2θsin2ϕÞð1 − sin2θcos2ϕ̃Þ − 2cos2θcos2

γ

2

�
; ð30Þ

into Eq. (27). It is worth noting that the angular integral in question is factorized from the rest of the expression and can be
carried out analytically. We relegate the detailed calculations to Appendix B, and present here the resultant analytic
expression for the averaged response functions for an arbitrary TDI combination

RðuÞ ¼ 2

4
C1½P̃iðuÞ� × f1ðuÞ þ C2½P̃iðuÞ� × f2ðuÞ þ

3

4
C3½P̃iðuÞ� × f3ðuÞ −

3

4
C4½P̃iðuÞ� × f4ðuÞ þ

1

4
C5½P̃iðuÞ� × f5ðuÞ;

ð31Þ

where

C3½P̃iðuÞ� ¼
X3
i¼1

Re½ðP̃iP̃�
iþ1 þ P̃i0P̃�

ði−1Þ0 Þeiu�;

C4½P̃iðuÞ� ¼
X3
i¼1

Im½ðP̃iP̃�
iþ1 þ P̃i0P̃�

ði−1Þ0 Þeiu�;

C5½P̃iðuÞ� ¼
X3
i¼1

Re½P̃iP̃�
i0 þ P̃iP̃�

ði−1Þ0 �; ð32Þ

and

f1ðuÞ ¼
4

3
−

2

u2
þ sin 2u

u3
;

f2ðuÞ ¼
−u cos uþ sin u

u3
−
cos u
3

;

f3ðuÞ ¼ log
4

3
−

5

18
þ −5 sin uþ 8 sin 2u − 3 sin 3u

8u
−
1

3

�
4þ 9 cos uþ 12 cos 2uþ cos 3u

8u2

�

þ 1

3

�
−5 sin uþ 8 sin 2uþ 5 sin 3u

8u3

�
þ Ci3u − 2Ci2uþ Ciu;

f4ðuÞ ¼
−5 cos uþ 8 cos 2u − 3 cos 3u

8u
þ 1

3

�
9 sin uþ 12 sin 2uþ sin 3u

8u2
−
8þ 5 cos u − 8 cos 2u − 5 cos 3u

8u3

�
þ 2Si2u − Si3u − Siu;

f5ðuÞ ¼ − log 4þ 7

6
þ 11 sin u − 4 sin 2u

4u
−
10þ 5 cos u − 2 cos 2u

4u2
þ 5 sin uþ 4 sin 2u

4u3
þ 2ðCi2u − CiuÞ: ð33Þ

Here, SinIntegral SiðzÞ ¼ R
z
0 sin t=tdt and CosIntegral CiðzÞ ¼ −

R∞
z cos t=tdt. By employing results given by Eq. (33), we

plot j fðuÞu2 j in Fig. 3 which shows the respective magnitudes of each terms contributing to the resultant expression.
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It will also turn out to be useful to derive the asymp-
totical results at the low and high frequency limits. In the
low frequency limit u ≪ 1, we have

Sið2uÞ → 2u −
4u3

9
þ 4u5

75
þ oðu7Þ;

Cið2uÞ → Inð2uÞ þ γE − u2 þ u4

6
−
2u6

135
þ oðu8Þ; ð34Þ

where γE is the Euler constant. We therefore have

f1ðuÞ →
4

15
u2 −

8

315
u4 þ oðuÞ6;

f2ðuÞ →
2

15
u2 −

4

315
u4 þ oðuÞ6;

f3ðuÞ → −
1

45
u2 þ 17

1512
u4 þ oðuÞ6;

f4ðuÞ →
1

45
u3 −

1

315
u5 þ oðuÞ6;

f5ðuÞ → −
1

15
u2 þ 1

2520
u4 þ oðuÞ6: ð35Þ

On the other hand, in the high frequency limit u ≫ 1,
one finds

SiðuÞ → π

2
−
cos u
u

þ o

�
1

u2

�
;

CiðuÞ → sin u
u

þ o
�
1

u2

�
: ð36Þ

Subsequently,

f1ðuÞ →
4

3
þ o

�
1

u2

�
;

f2ðuÞ → −
cos u
3

þ o

�
1

u2

�
;

f3ðuÞ → log
4

3
−

5

18
þ 3 sin u

8u
−
sin 3u
24u

þ o

�
1

u2

�
;

f4ðuÞ →
3 cos u
8u

−
cos 3u
24

þ o
�
1

u2

�
;

f5ðuÞ → − log 4þ 7

6
þ sin 2u

2u
þ 3 sin u

4u
þ o

�
1

u2

�
: ð37Þ

The obtained asymptotic expressions will be utilized in the
analysis of the sensitivity curves of specific TDI combi-
nations below in Sec. IV.
Before proceeding to evaluate the SNR, let us revisit the

particular case of the first-generation TDI Michelson
combination X1. By substituting Eq. (8) into Eq. (32),
one finds

C1ðuÞX ¼ 8ð1 − cos 2uÞ;
C2ðuÞX ¼ 4ðcos u − cos 3uÞ;
C3ðuÞX ¼ 2ð2þ 2 cos 4u − 4 cos 2uÞ;
C4ðuÞX ¼ 2ð2 sin 4u − 4 sin 2uÞ;
C5ðuÞX ¼ 8ðcos 2u − 1Þ: ð38Þ

It can be further simplified to give

RðuÞ ¼ 2sin2u

�
3þ 4 log 2 − 6 cos 2u

�
log

4

3
−

5

18

�

−
8cos2u

3
−
7 sin u − 2 sin 2u

u
þ 5 cos u − 8cos2u

u2

−
5 sin u − 4 sin 2u

u3
− 4ðCi2u − CiuÞ

− 6 cos 2uðCi3u − 2Ci2uþ CiuÞ

− 6 sin 2uðSi3u − 2Si2uþ SiuÞ
�
: ð39Þ

B. The signal-to-noise ratio
and sensitivity function

The results obtained in the previous subsections furnish
the necessary ingredients for obtaining the sensitivity
function, which can be readily applied to the spaceborne
detectors, such as LISA and TianQin. To proceed further,
we note that Eq. (17) does not involve ψ . Therefore, for a
monochromatic GW source, one may average out the
inclination of the orbital plane and the polarization angle

FIG. 3. The calculated individual contributions from each terms
given in Eq. (33), j fðuÞu2 j, as functions of u.
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to find the following expression for the PSD of the GW
signal [20,22]

ShðuÞ ¼
2

5
TH2ðjFþj2 þ jF×j2Þ; ð40Þ

where T is the observation time, H is the GW strain.
Subsequently, the SNR for the an arbitrary TDI combina-
tion in the frequency domain is given by

SNR≡
ffiffiffiffiffiffiffiffiffiffiffi
ShðuÞ
NðuÞ

s
: ð41Þ

By further averaging out the orientation and employing the
result presented in the last subsection, one obtains the
desired expression for the sensitivity function

SðuÞ≡ 5

ffiffiffiffiffiffiffiffiffiffi
NðuÞp

ffiffi
2
5

q ffiffiffiffiffiffiffiffiffiffi
RðuÞp

ffiffiffiffi
1

T

r
; ð42Þ

where T ¼ 1 year, 5 represents the SNR in an one-year
observation period.
For the LISA mission, the armlength L ¼ 2.5 × 106 km.

The corresponding ASDs of the TM and shot noises are,
respectively, sLISAa ¼ 3 × 10−15 ms−2=

ffiffiffiffiffiffi
Hz

p
and sLISAx ¼

20 × 10−12 m=
ffiffiffiffiffiffi
Hz

p
. While for TianQin, we have L ¼

1.7 × 105 km, sTQa ¼ 1 × 10−15 ms−2=
ffiffiffiffiffiffi
Hz

p
and sTQx ¼ 1×

10−12 m=
ffiffiffiffiffiffi
Hz

p
. Again, let us apply the above data to the

specific example of Michelson X1 combination. By using
Eqs. (9), (39), and (42), the sensitivity curves of these

two missions are shown in Fig. 4. The analytic results are
shown to be consistent with those obtained numerically
by direct comparing against the latter in the plot. The
figure demonstrates that the LISA mission is more
sensitive to GW signals at the low frequency range,
while TianQin is more involved for the signals with
higher frequencies.

IV. FURTHER DISCUSSIONS

In this section, we analyze the asymptotic properties of
the sensitivity functions for various TDI combinations.
First, we focus on the difference observed between the six-
link and eight-link TDI combination. Then, we explore the
relevant properties of the optimal channel of specific TDI
combinations.

A. Different asymptotic behaviors in the sensitivity
curves between the six-link and eight-link

TDI combination

The asymptotic behaviors of the sensitivity curves for
the six-link and eight-link TDI combination in the low-
frequency domain are known to be different. By taking
the Sagnac combination α1 and the Michelson combination
X1 as an example, this is demonstrated in Figs. 5 and 6.
Although the inclinations of the curves on a logarithmic-
logarithmic scale are the same, the curve for the Sagnac
combination stays above that for Michelson one at small
frequencies.
We show that this property can be readily understood

by exploring the asymptotics of the respective sensi-
tivity functions. For the X1 combination, the analytical

FIG. 4. Sensitivity curves of the spaceborne GW detectors
LISA and TianQin, for the Michelson X1 combination. The
results obtained by analytic and numerical integration are shown
in solid and dashed curves.

FIG. 5. The sensitivity curves of the Michelson and Sagnac
combinations for the LISAmission (SNR ¼ 5). The inset shows a
zoom for the lower frequency region.
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expressions of the sensitivity function are given by Eqs. (9),
(39) and (42). On the other hand, for the Sagnac combi-
nation α1, the noise PSD is

Nα1ðuÞ ¼ 8
s2aL2

u2c4

�
sin2

3

2
uþ 2 sin2 u

�
þ 6

u2s2x
L2

; ð43Þ

while the coefficients of averaged response function read

C1ðuÞα ¼ 6;

C2ðuÞα ¼ −2ð2 cos 2uþ 1Þ;
C3ðuÞα ¼ 8þ 4 cos 3u;

C4ðuÞα ¼ 4 sin 3u;

C5ðuÞα ¼ −4ð2 cos uþ 1Þ: ð44Þ

The averaged response function can be further simplified
to give

RðuÞ ¼ 7

6
þ ð2þ 4 cos uÞ log 2þ ð6þ 3 cos 3uÞ log 4

3

þ −68 sin uþ 49 sin 2u − 10 sin 3u
8u

− cos u −
cos 3u

6

þ −27þ 48 cos u − 27 cos 2uþ 6 cos 3u
8u2

− 4 cos uðCi2u − CiuÞ

þ −36 sin uþ 27 sin 2u − 6 sin 3u
8u3

þ ð6Ci3u − 14Ci2uþ 8CiuÞ
þ 3 cos 3uðCi3u − 2Ci2uþ CiuÞ − 3 sin 3uð2Si2u − Si3u − SiuÞ: ð45Þ

By using the above expressions together with typical parameters for LISA and TianQin enumerated above, the resulting
sensitive curves are shown in Figs. 5 and 6.
It is readily to show that, in the low frequency limit,

SðuÞX ≈
2

u2

ffiffiffiffiffi
10

3

r
;

SðuÞα ≈
1

u2

ffiffiffiffiffi
55

3

r
: ð46Þ

This serves to justify why at low frequencies, the slopes of two curves are identical while the Sagnac combination α1 stays
above that of the Michelson combination X1. In the high frequency limit,

SðuÞX ≈ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 u2s2x

L2

5
3
þ 4 log 2 − ð6 log 4

3
− 1

3
Þ cos 2u

vuut ;

SðuÞα ≈ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 u2s2x

L2

7
6
þ 2 log 2þ 6 log 4

3
þ ð2 log 4 − 1Þ cos uþ ð3 log 4

3
− 1

6
Þ cos 3u

vuut : ð47Þ

The above formulae naturally explain the observed oscillations in these two combinations at the high frequency domain.

B. The optimum channel

All the TDI combinations and the corresponding optimal A, E, and T channels have been shown to possess rather
different sensitivities properties. This is a consequence of their different response functions as well as system noises.

FIG. 6. The sensitivity curves of the Michelson and Sagnac
combinations for the TianQin mission (SNR ¼ 5). The inset
shows a zoom for the lower frequency region.
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Let us take Michelson combination as an example, the
linear combinations of X, Y, Z constitute a group of optimal
TDI channels, namely,

A ¼ Z − Xffiffiffi
2

p ; E ¼ X − 2Y þ Zffiffiffi
6

p ; T ¼ X þ Y þ Zffiffiffi
3

p : ð48Þ

The corresponding coefficients Pi,Pi0 of A, E, T channels
are, respectively,

P1A ¼ ð1 −D202Þ; P10A ¼ ð−1 −D2 þD330 þD1012Þ;
P2A ¼ ðD10 −D22010 Þ; P20A ¼ ðD3 −D2023Þ;
P3A ¼ ð−1 −D20 þD101 þD33020 Þ; P30A ¼ ð1 −D220 Þ;

ð49Þ

P1E ¼ ð−1 − 2D30 þD202 þ 2D11030 Þ;
P10E ¼ ð1 −D2 −D330 þD1012Þ;
P2E ¼ ð2þD10 − 2D303 −D22010 Þ;
P20E ¼ ð−2 −D3 þ 2D110 þD2023Þ;
P3E ¼ ð−1þD20 þD101 −D33020 Þ;
P30E ¼ ð1þ 2D1 −D220 − 2D3031Þ; ð50Þ

and

P1T ¼ ð−1þD30 þD202 −D11030 Þ;
P10T ¼ ð1 −D2 −D330 þD1012Þ;
P2T ¼ ð−1þD10 þD303 −D22010 Þ;
P20T ¼ ð1 −D3 −D110 þD2023Þ;
P3T ¼ ð−1þD20 þD101 −D33020 Þ;
P30T ¼ ð1 −D1 −D220 þD3031Þ: ð51Þ

By employing the results in the previous section, the
corresponding weights fjðuÞ can be obtained as follows:

C1ðuÞA ¼ 8ð1 − cos 2uÞð2þ cos uÞ;
C2ðuÞA ¼ 8ð1 − cos 2uÞð1þ 2 cos uÞ;
C3ðuÞA ¼ 8ð1 − cos 2uÞ½1 − 2ðcos 2uþ cos uÞ�;
C4ðuÞA ¼ 16ðcos 2u − 1Þðsin 2uþ sin uÞ;
C5ðuÞA ¼ 8ðcos 2u − 1Þð2 cos uþ 1Þ; ð52Þ

C1ðuÞE ¼ 24ð1 − cos 2uÞð2þ cos uÞ;
C2ðuÞE ¼ 24ð1 − cos 2uÞð1þ 2 cos uÞ;
C3ðuÞE ¼ 24ð1 − cos 2uÞ½1 − 2ðcos 2uþ cos uÞ�;
C4ðuÞE ¼ 48ðcos 2u − 1Þðsin 2uþ sin uÞ;
C5ðuÞE ¼ 24ðcos 2u − 1Þð2 cos uþ 1Þ; ð53Þ

and

C1ðuÞT ¼ 24ð1 − cos 2uÞð1 − cos uÞ;
C2ðuÞT ¼ 24ð1 − cos 2uÞðcos u − 1Þ;
C3ðuÞT ¼ 48ð1 − cos 2uÞð1 − cos uÞ cos u;
C4ðuÞT ¼ 48ð1 − cos 2uÞð1 − cos uÞ sin u;
C5ðuÞT ¼ 48ð1 − cos 2uÞðcos u − 1Þ: ð54Þ

Subsequently, the analytical expressions of the averaged
response functions and the PSDs of the residual noise are
found to be

3RðuÞA ¼ RðuÞE ¼ 2sin2u

	
10

3
þ ð18 − 12 cos u − 24cos2uÞ log 4

3
þ ð2þ 4 cos uÞ log 4þ 4

3
cos uðcos uþ 1Þ

þ −89 sin uþ 28 sin 2u − sin 3u
4u

þ −28þ 25 cos u − 28 cos 2u − 5 cos 3u
4u2

þ −35 sin uþ 28 sin 2uþ 5 sin 3u
4u3

þ ð18Ci3u − 40Ci2uþ 22CiuÞ − ð12 cos uCi3u − 16 cos uCi2uþ 4 cos uCiuÞ þ 12 sin uð2Si2u − Si3u − SiuÞ

þ 24 cos u½sin uð2Si2u − Si3u − SiuÞ − cos uðCi3u − 2Ci2uþ CiuÞ�


; ð55Þ

3NðuÞA ¼ NðuÞE ¼ 48sin2u

	
½2ð2þ cos uÞ þ 4ð1þ 2 cos uÞ cos u� s

2
aL2

u2c4
þ ð2þ cos uÞ u

2s2x
L2



; ð56Þ
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RðuÞT ¼ 48sin2usin2
u
2

	
1

6
þ 2 log 2 −

cos u
6

þ 3 cos u log
4

3

þ 2 sin u − sin 2u
8u

þ −5þ 10 cos u − 5 cos 2u
8u2

þ 5 sin 2u − 10 sin u
8u3

− 2ðCi2u − CiuÞ þ 3 cos uðCi3u − 2Ci2uþ CiuÞ − 3 sin uð2Si2u − Si3u − SiuÞ


; ð57Þ

and

NðuÞT ¼ 96sin2usin2
u
2

�
2ð1 − 2 cos uÞ s

2
aL2

u2c4
þ u2s2x

L2

�
: ð58Þ

The sensitivity curve for the optimum weighting of the data is given by [24]

SðuÞopt ¼ 5h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

SðuÞA

�
2

þ
�

1

SðuÞE

�
2

þ
�

1

SðuÞT

�
2

s
; ð59Þ

where the sensitivity functions SðuÞ have been computed
for a bandwidth of one cycle per year. It is noted that for the
frequency range where the LISA and TianQin Michelson
combination have the best sensitivity, the improvement in
SNR for the optimal observable is slightly larger than

ffiffiffi
2

p
.

By using Eqs. (5), (31), (42), and Eqs. (55)–(59), in
Figs. 7–8, we plot the sensitivity curves of the LISA and
TianQin missions for the optimal Michelson combination.
It is observed that the sensitivity curves of A and E are
identical across the entire band. In the long-wavelength
region, the sensitivity of the channels A and E are more
significant than that of the T model, whose contribution to
the total SNR is negligible. At higher frequencies, however,

the sensitivity of the T channel turns out to be better or
comparable to the other modes, and therefore it is mostly
responsible for the improvement in SNR. We note that
some of the above results have also been obtained
in [24,43].
In Fig. 9 we plot the ratio between the optimal SNR and

that of the Michelson combination for both the LISA and
TianQin detectors. In the long-wavelength limit, the SNR is
improved by a factor of

ffiffiffi
2

p
. For Fourier frequencies equal

to or greater than c=L, the improvement in SNR is in
general appreciable but varies with the frequency. On
average the improvement is about a factor of

ffiffiffi
3

p
. In the

FIG. 7. The sensitivity curve of A, E, T, as well as the optimal
combinations of the Michelson combination for the LISA
detector (SNR ¼ 5). The integration time is one year.

FIG. 8. The sensitivity curve of A, E, T, as well as the optimal
combinations of the Michelson combination for the TianQin
detector (SNR ¼ 5). The integration time is one year.
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experimentally accessible band, for some specific frequen-
cies, the factor may even attain the value of 2.

V. CONCLUDING REMARKS

In this work, we derive the analytical expressions of the
sensitivity functions for the space-based interferometric
GW detectors. The obtained results serve for any arbitrary
TDI combination, which can be readily applied to those
employed by LISA and TianQin missions. The main
feature of our approach is that the angular average of
the GW source can be factored out and the related integral
can be performed analytically. A major advantage of the
analytical formulas is that it offers a more efficient as well
as accurate manner to evaluate the sensitivity curve.
Moreover, it facilitates the investigation of the asymptotic
properties of the relevant physical quantities in the low and
high-frequency limits. In this regard, we discussed the
reason behind the observed difference in the asymptotics of
the sensitivity curves among various TDI combinations.
The present approach is also utilized to derive the analytical
results regarding the optimal channel. We argue that the
results about the sensitivity curve obtained in the present
study in on a rather general footing, which may be readily
applied to any form of TDI combination. Also, it may
potentially facilitate the relevant studies in the related
topics.
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APPENDIX A: THE POLYNOMIAL
COEFFICIENTS FOR VARIOUS TDI

COMBINATIONS

In this section, we list the coefficients of the
polynomials of the form Eq. (2) for various TDI
combinations.

1. Michelson combinations

For the first-generation Michelson combination X1, the
relevant combination coefficients are

P1 ¼ ðD202 − 1Þ; P10 ¼ ð1 −D330 Þ;
P2 ¼ 0; P20 ¼ ðD2023 −D3Þ;
P3 ¼ ðD20 −D33020 Þ;P30 ¼ 0: ðA1Þ

For the second-generation X2, they are given by

P1 ¼ −ð1 −D202 −D202330 þD330202202Þ;
P10 ¼ ð1 −D330 −D330202 þD202330330 Þ;
P2 ¼ 0; P20 ¼ −ð1 −D202 −D202330 þD330202202Þ;
P3 ¼ ð1 −D330 −D330202 þD202330330 ÞD20 ; P30 ¼ 0: ðA2Þ

2. Sagnac combinations

For the first-generation Sagnac combination α1, the
coefficients read

P1 ¼ 1; P10 ¼ −1;

P2 ¼ D3; P20 ¼ −D2010 ;

P3 ¼ D31; P30 ¼ −D20 : ðA3Þ

For the second-generation α2, they are given by

P1 ¼ ð1 −D201030 Þ; P10 ¼ −ð1 −D312Þ;
P2 ¼ ð1 −D201030 ÞD3; P20 ¼ −ð1 −D312ÞD2010 ;

P3 ¼ ð1 −D201030 ÞD31; P30 ¼ −ð1 −D312ÞD20 : ðA4Þ

FIG. 9. The optimal SNR divided by the SNR of Michelson
combination for LISA and TianQin detector, as a function of the
Fourier frequency f. The sensitivity gain in the low-frequency
band is equal to

ffiffiffi
2

p
, while it can get larger than 2 at selected

frequencies in the high-frequency region of the accessible band.
The integration time has been assumed to be one year.
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3. Fully symmetric Sagnac combinations

For the first-generation fully symmetric Sagnac combi-
nation ζ1, the coefficients are

P1 ¼ D1; P10 ¼ −D10 ;

P2 ¼ D2; P20 ¼ −D20 ;

P3 ¼ D3; P30 ¼ −D30 : ðA5Þ
For the second-generation ζ2, they are given by

P1 ¼ D110 −D203010 ; P10 ¼ −ðD101 −D321Þ;
P2 ¼ ðD1020 −D3220 Þ; P20 ¼ −ðD1020 −D3220 Þ;
P3 ¼ ðD13 −D20303Þ; P30 ¼ −ðD13 −D20303Þ: ðA6Þ

4. Beacon combinations

For the first-generation beacon combination B1, the
coefficients read

P1 ¼ 0; P10 ¼ 0;

P2 ¼ −ðD2 −D3010 Þ; P20 ¼ ðD2 −D1102Þ;
P3 ¼ −ðD30 −D11030 Þ; P30 ¼ ðD30 −D21Þ: ðA7Þ

For the second-generation B2, they are given by

P1 ¼ 0; P10 ¼ 0;

P2 ¼ ðD3022 −D2303010 −D3010122 þD2110303010 Þ;
P20 ¼ −ðD3022 −D3022110 −D3010122 þD3010122110 Þ;
P3 ¼ ðD23030 −D23030101 −D21103030 þD21103030101Þ;
P30 ¼ −ðD23030 −D21013030 −D30221 þD30101221Þ: ðA8Þ
It is noted that in the literature, beacon combination is often
denoted by the symbol “Pi”. In order to distinguish them
from the polynomials of the delay operator, namely, Pi
defined in Eq. (2), we have instead utilized “Bi”.

5. Monitor combinations

For the first-generation monitor combination E1, the
coefficients are

P1 ¼ −ð1 −D110 Þ; P10 ¼ ð1 −D110 Þ;
P2 ¼ −ðD3 −D2010 Þ; P20 ¼ 0;

P3 ¼ 0; P30 ¼ ðD20 −D31Þ: ðA9Þ

For the second-generation E2, they are given by

P1 ¼ −ð1 −D110 −D101 þD110101Þ;
P10 ¼ ð1 −D101 −D110 þD101110 Þ;
P2 ¼ −ðD3 −D2010 −D3̄10133 þD2̄0110202010 Þ; P20 ¼ 0;

P3 ¼ 0; P30 ¼ ðD20 −D31 −D2̄01102020 þD3̄101331Þ: ðA10Þ

6. Relay combinations

For the first-generation relay combination U1, the
coefficients are

P1 ¼ 0; P10 ¼ −ðD30 −D11030 Þ;
P2 ¼ ð1 −D302010 Þ; P20 ¼ −ð1 −D110 Þ;
P3 ¼ 0; P30 ¼ ðD1 −D3020 Þ: ðA11Þ

For the second-generation U2, they are given by

P1 ¼ 0; P10 ¼ −ðD130 −D110302030 −D111030 þD302010111030 Þ;
P2 ¼ ðD1 −D1103020 −D1302010 þD1103020302010 Þ;
P20 ¼ −ðD1 −D1110 −D1103020 þD3020101110 Þ;
P3 ¼ 0; P30 ¼ ðD11 −D13020 −D30201011 þD11030203020 Þ:

ðA12Þ

APPENDIX B: ANGULAR AVERAGE IN
THE CALCULATION OF THE RESPONSE

FUNCTION OF THE SIGNAL

This appendix provides a detailed derivation of the
averaged response function of the GW signal. From
Eqs. (27) and (30), we have

4ðjFþj2 þ jF×j2Þ ¼ n1ðu; θ;ϕ; γÞ þ n2ðu; θ;ϕ; γÞ þ n3ðu; θ;ϕ; γÞ þ n4ðu; θ;ϕ; γÞ þ n5ðu; θ;ϕ; γÞ þ n6ðu; θ;ϕ; γÞ; ðB1Þ

where

n1ðu; θ;ϕ; γÞ ¼ jaj2ð1 − sin2θcos2ϕ
˜
Þ2;

n2ðu; θ;ϕ; γÞ ¼ jbj2ð1 − sin2θsin2ϕÞ2;
n3ðu; θ;ϕ; γÞ ¼ jcj2ð1 − sin2θcos2ϕ̃Þ2;
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n4ðu; θ;ϕ; γÞ ¼ 2Reðab�Þ ×
h
ð1 − sin2θcos2ϕ

˜
Þð1 − sin2θsin2ϕÞ − 2cos2θcos2

γ

2

i
;

n5ðu; θ;ϕ; γÞ ¼ 2Reðac�Þ × ½ð1 − sin2θcos2ϕ
˜
Þð1 − sin2θcos2ϕ̃Þ − 2cos2θsin2γ�;

n6ðu; θ;ϕ; γÞ ¼ 2Reðbc�Þ ×
h
ð1 − sin2θsin2ϕÞð1 − sin2θcos2ϕ̃Þ − 2cos2θcos2

γ

2

i
: ðB2Þ

The integration with respect to the angles ðθ;ϕÞ for the entire solid angle, as given by Eq. (29), leads to

1

4π

Z
π

0

sin θdθ
Z

2π

0

dϕðjFþj2 þ jF×j2Þ

¼ 2

4
C1½P̃iðuÞ� × f1ðuÞ þ C2½P̃iðuÞ� × f2ðuÞ þ

3

4
C3½P̃iðuÞ� × f3ðuÞ −

3

4
C4½P̃iðuÞ� × f4ðuÞ þ

1

4
C5½P̃iðuÞ� × f5ðuÞ; ðB3Þ

where

f1ðuÞ ¼
1

4π

Z
π

0

sin θdθ
Z

2π

0

dϕ

	
4

3
− cos u cosðu sin θ cosϕÞ

�
1þ sin2θ

2
ð1þ cos 2ϕÞ

�

− 2 sin u sinðu sin θ cosϕÞ sin θ cosϕ


;

f2ðuÞ ¼
1

4π

Z
π

0

sin θdθ
Z

2π

0

dϕ

	
cosðu sin θ cosϕÞ

�
1 −

sin2θ
2

ð1þ cos 2ϕÞ
�
− cos u

2

3



;

f3ðuÞ − if4ðuÞ ¼
1

4π

Z
π

0

sin θdθ
Z

2π

0

dϕ

×

2
664

3
2
eiu−2e

−iu sin θ cosϕ
˜þe

−iuð1þsin θðcosϕ
˜
−cos ϕ̃ÞÞ

ð1þsin θ cosϕ
˜
Þð1−sin θ cos ϕ̃Þ × cos2θ

þ 1
3

h
eiu − 2e

iu sin θ cosϕ
˜ þ e

−iuð1−sin θðcosϕ
˜
−cos ϕ̃ÞÞið1þ sin θ cosϕ

˜
Þð1 − sin θ cos ϕ̃Þ

3
775;

f5ðuÞ ¼
1

4π

Z
π

0

sin θdθ
Z

2π

0

dϕ

×

2
664

3
2

1−2 cos½uð1þsin θ cosϕ
˜
Þ�þe

iu sin θðcosϕ
˜
−cos ϕ̃Þ

ð1þsin θ cosϕ
˜
Þð1þsin θ cos ϕ̃Þ × cos2θ

− 1
3

�
1 − 2 cos½uð1 − sin θ cosÞ� þ e

−iu sin θðcosϕ
˜
−cos ϕ̃Þ�ð1þ sin θ cosϕ

˜
Þð1þ sin θ cos ϕ̃Þ

3
775: ðB4Þ

First, f1ðuÞ and f2ðuÞ only involve the ordinary integrals
of trigonometric functions and thus can be evaluated
straightforwardly to give

f1ðuÞ ¼
�
4

3
−

2

u2
þ sin 2u

u3

�
;

f2ðuÞ ¼
�
−u cos uþ sin u

u3
−
cos u
3

�
: ðB5Þ

The integral in f3ðuÞ, f4ðuÞ and f5ðuÞ can be simplified by
appropriately introducing a change of variables. To be
specific, one adapts

x ¼ sin θ cosϕ ¼ ðx̃þ ỹÞffiffiffi
3

p ;

y ¼ sin θ sinϕ ¼ x̃ − ỹ: ðB6Þ
The above definitions can be viewed as transforming from
region of a unit hemispherical surface ½θ ∈ ð0; π=2Þ;
ϕ ∈ ð0; 2πÞ� to that of a circular surface x2 þ y2 ≤ 1.
Then one further stretches the circle into an ellipse, namely,

x̃ ¼ sin θ cosϕ
˜
¼ x

ffiffiffi
3

p

2
þ y

1

2
;

ỹ ¼ sin θ cos ϕ̃ ¼ x

ffiffiffi
3

p

2
− y

1

2
: ðB7Þ

As a result, the initial integration on the unit hemispherical
surface becomes an elliptic one, bounded by the equation
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4
3
ðx̃2 þ ỹ2 − x̃ ỹÞ ≤ 1. It is also noted the Jacobian deter-

minant of the transformation reads

dx̃dỹ ¼
ffiffiffi
3

p

2
sin θ cos θdθdϕ: ðB8Þ

Subsequently, the integration gives

1

4π

Z
π

0

sin θdθ
Z

π

−π
dϕ

cosðu sin θ cosϕ
˜
Þ cos2 θ

ð1þ sin θ cosϕ
˜
Þð1þ sin θ cos ϕ̃Þ

¼ 2

3π

Z
1

−1
dx̃

cosðux̃Þ
1þ x̃

Zx̃
2
þ
ffiffi
3

p
2

ffiffiffiffiffiffiffiffi
1−x̃2

p

x̃
2
−
ffiffi
3

p
2

ffiffiffiffiffiffiffiffi
1−x̃2

p
dỹ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
ð1 − x̃2Þ − ðỹ − x̃

2
Þ2

q
1þ ỹ

ðB9Þ

¼ 1

u

�
sin u − sin

u
2

�
−
1

3

1

u

�
sin uþ sin

u
2

�
þ 2

3

h
cos u

�
Ci2u − Ci

u
2

�
þ sin u

�
Si2u − Si

u
2

�i
:

ðB10Þ

Alternatively, if one assumes x̃ ¼ xþyffiffi
2

p ; ỹ ¼ x−yffiffi
2

p , the

oblique ellipse plane equation x̃2 þ ỹ2 − x̃ ỹ− 3
4
¼ 0

becomes x2
3
2

þ y2
1
2

¼ 1. In this case, one has

1

4π

Z
π

0

sin θdθ
Z

π

−π
dϕ

cosðu sin θðcosϕ
˜
− cos ϕ̃ÞÞ cos2 θ

ð1þ sin θ cosϕ
˜
Þð1þ sin θ cos ϕ̃Þ

¼ 2

3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
− x̃2 − ỹ2 þ x̃ ỹ

q
cos½uðx̃ − ỹÞ�

ð1þ x̃Þð1þ ỹÞ

¼ 2

3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
− x2

2
− 3y2

2

q
cosð ffiffiffi

2
p

uyÞ
1þ ffiffiffi

2
p

xþ x2−y2
2

¼ −
4 sin u
3u

þ 4

3u
2 sin

u
2
þ 4

3

�
Ciu − Ci

u
2

�
: ðB11Þ

The above results can be utilized to obtain the desired
expressions of fjðuÞ given in Eq. (33).
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