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Since their serendipitous discovery, fast radio bursts (FRBs) have garnered a great deal of attention from
both observers and theorists. A new class of radio telescopes with wide fields of view have enabled a rapid
accumulation of FRB observations, confirming that FRBs originate from cosmological distances. The high
occurrence rate of FRBs and the development of new instruments to observe them create opportunities for
FRBs to be utilized for a host of astrophysical and cosmological studies. We focus on the rare, and as yet
undetected, subset of FRBs that undergo repeated bursts and are strongly gravitationally lensed by
intervening structure. An extremely precise timing of burst arrival times is possible for strongly lensed
repeating FRBs, and we show how this timing precision enables the search for long-wavelength
gravitational waves, including those sourced by supermassive black hole binary systems. The timing
of burst arrival for strongly lensed repeating FRBs is sensitive to gravitational-wave sources near the FRB
host galaxy, which may lie at cosmological distances and would therefore be extremely challenging to
detect by other means. Timing of strongly lensed FRBs can also be combined with pulsar timing array data
to search for correlated time delays characteristic of gravitational waves passing through the Earth.
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I. INTRODUCTION

Fast radios bursts (FRBs) are a recently discovered class
of astrophysical phenomena consisting of radio-wave
pulses of roughly millisecond duration, similar in some
respects to those from pulsars [1]. Unlike pulsars, however,
their large dispersion measures suggest most FRBs are
sourced far outside our own Galaxy and thus have much
higher luminosity than pulsars. The astrophysical origin of
FRBs is currently uncertain [2], though there is some
evidence that there is a connection with magnetars; see
Ref. [3], for example. Astronomers have discovered more
than 100 FRBs, and observations from several radio tele-
scopes are being used to add to the rapidly growing catalog
[4].1 The list of confirmed FRBs includes a subpopulation
of FRB sources which have been observed to emit repeated
bursts [5–7].
Many of the current known FRBs have been discovered

by existing telescopes that are utilized to search for pulsars
and are suitable for detecting FRBs as well, including the
Parkes telescope [8], Arecibo Observatory [9], and the
Green Bank Telescope [10]. However, a new generation of
radio telescopes with much wider fields of view, such as the
Canadian Hydrogen Intensity Mapping Experiment
(CHIME) [11], have begun to detect FRBs at a much
higher rate and will rapidly increase the known population
of sources.

CHIME observations have already been very useful
for finding FRBs, with a detection rate of 2–42 FRBs
sky−1 day−1 [11]. The majority of known repeating FRBs
have been found in CHIME data [7]. Planned surveys with
large fields of view are predicted to be similarly useful or
even better at finding FRBs. For example, the Hydrogen
Intensity and Real-time Analysis eXperiment could poten-
tially be used to discover dozens of new FRBs per day, and
it will also be capable of measuring the pulse arrival times
and their spatial distribution [12]. The Tianlai experiment
is similarly suited to finding FRBs [13]. The Square
Kilometre Array (SKA) [14] with an extremely wide field
of view of several hundred square degrees (at 1000 MHz) is
also expected to be very efficient at finding FRBs [15,16].
SKAwill cover a lower range of frequencies (∼1000 MHz)
compared to most instruments which have been used to find
FRBs to date. Most FRBs have been found at 1400 MHz,
with the exception of FRB110523 discovered by the Green
Bank Telescope at 800 MHz [10]. A future experiment like
PUMA could detect thousands of FRBs each day [17,18].
These upcoming searches will provide an expanded

population of observed FRBs, which will be very useful
in pursuing the open question of the mechanism generating
the bursts. It is worth considering all the additional ways in
which this class of phenomena can be further utilized, for
both astrophysical and cosmological applications [19]. For
example, the conditions in FRB host galaxies and in the
intervening medium may impact the observed pulses,
thereby revealing properties of distant galaxies [20] and1http://www.frbcat.org/.
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of the intergalactic medium [21]. Repeating FRBs are likely
to be particularly useful, since repeated bursts allow for
improved sky localization and can be subjected to detailed
follow-up studies [7]. With an increase in the number of
observed FRBs, there is also the possibility that some
observed FRBs will be strongly lensed, resulting in
multiple observed images from which we can extract
additional information [22–28].
We focus in this work on multiply imaged repeating

FRBs. While no such systems have yet been found, a
detection in the future is likely to happen. Continued and
expanded FRB searches, development of future surveys
well matched to FRB detection, and increased attention
from the astrophysical community are all likely to con-
tribute to many more FRB discoveries in the coming years.
The likelihood that some of these systems will be strongly
lensed repeaters is bolstered by the apparent isotropic
distribution of detected FRBs [12], magnification bias of
lensed systems [22], and significant fraction of FRBs that
have been observed to repeat [4]. Recent estimates for the
FRB all-sky rate give a range of 29 − 3200 sky−1 day−1

[1]. The probability that a randomly chosen galaxy on the
sky is strongly lensed lies in the range 10−4 − 10−3 [26].
These estimates suggest that several lensed repeaters may
be observed within the coming decades.
Several applications of strongly lensed repeating FRBs

have been proposed [27]. These include measuring the
motion of the FRB source [22], measuring the Hubble
constant [23], constraining dark energy [26], and measur-
ing the matter density of the Universe [28].
In this paper we describe another application of strongly

lensed repeating FRBs: the search for long-wavelength
gravitational waves. It is expected that we will be able to
measure the time delay between the arrival of images
of strongly lensed FRBs with extreme precision [28].
Monitoring a strongly lensed repeating FRB offers the
possibility to observe how the time delay changes from one
burst to the next, thus allowing for the measurement of even
tiny perturbations to the time delay. Strongly lensed
repeating FRBs thereby act as extremely precise clocks
that reside at cosmological distances. Just as the time of
arrival of pulses from pulsars in our own Galaxy can be
used to search for gravitational waves, we can utilize the
time delay between the arrival of images of strongly lensed
FRBs to search for gravitational waves that pass through
the Milky Way or the FRB host galaxy.
In Sec. II, we review how pulsar timing can be used to

search for gravitational waves, which provides a useful
analogue for the case of interest in this paper. In Sec. III,
we provide details of how monitoring strongly lensed
repeating FRBs could be used to search for gravitational
waves. We compare to the use of Galactic pulsars and show
that there are gravitational-wave sources to which FRBs are
much more sensitive. We discuss some of the practical
issues which could complicate the use of strongly lensed

repeating FRBs for gravitational-wave searches in Sec. IV.
We conclude in Sec. VI.

II. PULSARS AND GRAVITATIONAL-WAVE
SEARCHES

The use of pulsar timing to search for gravitational waves
provides a close analogy to our proposal to use strongly
lensed repeating FRBs for the same purpose, and so we
briefly review how pulsar observations may be used to
detect gravitational waves. Radio pulsars are rapidly rotat-
ing neutron stars that emit beamed radiation which is
observed on Earth as a regular series of pulses [29].
Observed pulse arrival times are compared to models for
the emission and propagation of the pulses, and the
difference between the observations and the model pro-
vides a set of timing residuals. Millisecond pulsars are a
particularly stable subset of pulsars whose very regular
rotational period allows for very precise timing measure-
ments over long periods of repeated observation [30].
The influence of gravitational waves on the propagation

of electromagnetic radiation can advance or delay the
arrival time of pulsed radiation compared to expectations,
thereby generating timing residuals in pulsar timing data
[31–33]. For a single pulsar, it is impossible to uniquely
determine the cause of an observed timing residual.
However, regular measurements of multiple pulsars

allow one to search for correlated timing residuals which
cannot result from the conditions unique to individual
pulsars. Gravitational waves passing through the Earth
are expected to produce a particular pattern of correlated
timing residuals [34]. This motivates the simultaneous
and regular monitoring of pulse arrival times from many
pulsars across the sky: a pulsar timing array [35–37]. The
International Pulsar Timing Array [38], which consists of
the Parkes Pulsar Timing Array [39], the European Pulsar
Timing Array [40], and the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [41],
comprises timing data for 65 millisecond pulsars observed
for periods ranging from about 2 to more than 20 years.
Based on the observing cadence and span of observations,
pulsar timing arrays are sensitive to gravitational waves in
the nHz to μHz frequency range.
Sources of gravitational waves can be broadly divided

into continuous sources, burst sources, and stochastic
backgrounds. Gravitational-wave sources of cosmological
origin include inflation, cosmological phase transitions,
and cosmic strings [42]. One of the main targets for pulsar
timing arrays is the detection of long-wavelength gravita-
tional waves from supermassive black hole binary systems
(see Ref. [43] for a review). These binaries form frommajor
mergers of galaxies that each contain a supermassive black
hole at their center. The gravitational waves from super-
massive binary black holes can produce two kinds of
signals: a stochastic background, which results from the
superposition of a large number of unresolved binaries, and
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a continuous signal from a single binary that may be close
enough or massive enough to be resolved above the
background.
The timing residual expected in a pulsar timing array due

to a massive black hole binary gravitational-wave source is
given (up to geometric factors) by

Δτ ∼ 10 ns

�
1 Gpc
dBBH

��
M

109 M⊙

�
5=3

�
10−7 Hz

f

�
1=3

; ð1Þ

where dBBH is the luminosity distance to the binary, M is
the total mass of the binary, and f is the observed frequency
of the gravitational-wave radiation [44].
Pulsar timing array data has been used to place a 95%

upper limit of 1.0 × 10−15 on the strain amplitude of a
stochastic background of gravitational waves at a frequency
of 1 yr−1 ≃ 32 nHz [45–48]. Analysis of more recent data
from NANOGrav shows evidence for a common-spectrum
process with equivalent strain amplitude of 1.92 × 10−15 at
32 nHz, though there is not yet sufficient evidence of
quadrupolar spatial correlation to conclude that this repre-
sents a detection of a stochastic gravitational-wave back-
ground [49]. Estimates of supermassive binary black hole
merger rates and the evolution of pulsar timing data suggest
that a first detection of long-wavelength gravitational
waves using pulsar timing arrays will likely occur within
the next few years [50].

III. STRONGLY LENSED FRBs AND
GRAVITATIONAL WAVES

If an FRB is strongly lensed, we will observe multiple
images of the same burst on Earth. In the absence of
gravitational waves and other complicating factors such as
dispersion, the time delay between images is determined by
the lensing geometry. This time delay can be measured very
precisely [28], and repeated measurements allow us to
detect even small variations to this quantity; any change
over time may indicate the passing of gravitational waves.
For this reason, our method requires measurements of
FRBs which are strongly lensed, so that we may use the
strong lensing time delay as a precise clock. Measuring the
time delay corresponding to only a single burst, however,
only gives information about a single point in time and
therefore cannot be used to search for gravitational waves.
Thus, we require the strongly lensed FRB to be repeating as
well; then, we hope to precisely measure the time delay
between images for subsequent bursts and look for evo-
lution of the observed time delay. Multiple repetitions
would allow for more measurements of the time delay with
which to look for any variation. An observation of such a
change could indicate the passing of a long-wavelength
gravitational wave, while the absence of such a detection
can be used to set limits on the stochastic gravitational-
wave background.

We do not require that the images of the strongly lensed
FRB be spatially resolved, nor do we require an accurate
lens model in order for the proposed method to be useful.
Furthermore, our method does not rely on regularity of
bursts from repeating FRBs, which is important since
observed repeaters do not appear to be particularly regular
[5,7,51,52], despite the periodic activity of one FRB
observed by CHIME [53]. Once the lensing time delay
is empirically determined from measurements of one or
more lensed bursts, observations of subsequent bursts can
be used to search for variations to the time delay. Of course,
gravitational waves are only one potential source of a
variation in the time delay. We focus in this section on the
time delay due to gravitational waves, and we return to
some complicating factors and their mitigation in Sec. IV.
To this end, we consider the geometry illustrated in

Fig. 1. The FRB source sits at some cosmological distance
away from Earth, indicated by DS. The burst is strongly
lensed by an object (such as a galaxy) located at a distance
DL away from Earth, and a gravitational-wave source (such
as a binary black hole system) is located at a distance a
perpendicular to the line of sight to the lens, and a distance
w parallel to the line of sight. The lensing results in two or
more images of the FRB, observed on Earth at different
times and coming from nearby apparent positions in the
sky. At some later time the FRB may repeat, and we once
again observe multiple images, but with different time
delays between them, with the magnitude of the time delays

FIG. 1. Sketch of the geometry of a strongly lensed FRB and
gravitational-wave source. The (unobservable) angle between the
lens and the true FRB position is denoted by β, the angles
between the lens and the apparent position of the images of the
FRB are θ1 and θ2, and the deflection angles near the lens are α1
and α2. The angular diameter distances from Earth to the lens and
source are DL and DS, respectively, and the angular diameter
distance between the lens and source is DLS. The coordinates of
the gravitational-wave source parallel to and perpendicular to the
line of sight to the lens are w and a, respectively.

SEARCHING FOR GRAVITATIONAL WAVES WITH STRONGLY … PHYS. REV. D 103, 063017 (2021)

063017-3



being determined by the gravitational-wave amplitude and
geometric factors.
A simplified geometry is presented and compared

to the analogous situation using pulsar timing in Fig. 2.
The quantities w and a still indicate the position of the
gravitational-wave source relative to Earth, while the
distance from Earth to the FRB is given by D. To include
a pulsar timing array, we consider an idealized case where
we have enough pulsars, isotropically distributed about the
Earth, so that we can always choose one whose line of sight
relative to us is perpendicular to the line of sight from Earth
to the gravitational-wave source. This would give the
maximal effect to the timing residuals of this pulsar and
therefore provides the most optimistic numerical value for
comparing with our FRB method.
In this section, we present the calculations necessary to

arrive at the change in the time delay over subsequent
bursts, due to the influence of gravitational waves. We
provide numerical results using a continuous gravitational-
wave source of constant frequency, and we compare this to
the performance of pulsar timing given the same source.

A. Strong gravitational lensing

Gravitational lensing is the deflection of light by
inhomogeneities in gravitational potential. Whenever light
is deflected by a sufficiently large mass (such as near
a galaxy or galaxy cluster) and multiple images are
produced as a result, this is referred to as strong gravita-
tional lensing.

We can make several approximations in describing
strong gravitational lensing. In the thin lens approximation,
one assumes that the thickness of the lens is very small in
comparison to the distances involved between source, lens,
and observer. Furthermore, if the deflection angle is small,
one can also apply the weak-field approximation for the
gravitational field.
We define two-dimensional vectors β, indicating the

position on the sky of the source as it would be seen if there
were no lensing (which is unobservable); θ, indicating the
position of the image; and α, denoting the deflection angle
experienced by a light ray near the lens as seen by the lens.
These quantities are related by the lens equation,

β ¼ θ −∇ψ ¼ θ − α; ð2Þ

where ψ is the two-dimensional lensing potential. It satis-
fies the two-dimensional Poisson equation ∇2ψ ¼ 2κ,
where κ is the surface-projected mass density of the
deflecting lens, normalized to the critical density Σc ¼
c2DS=ð4πGDLDLSÞ, where DL and DS are the angular
diameter distances to the lens and the source, respectively
and DLS is the angular diameter distance between the lens
and the source [54]. When multiple values of θ satisfy the
lens equation, multiple images are produced, with common
configurations including two images, four images, and a
partial or complete Einstein ring. Galaxies and galaxy
clusters are sufficiently massive that when they act as
gravitational lenses, the images can be separated by more
than an arcsecond and are thus individually resolvable [27].
Since multiple images travel along different paths to the

observer, they also have different arrival times. The time
delay of an image, compared to the unperturbed path it
would take in the absence of lensing, is given by

Δt ¼ ð1þ zLÞ
c

DLDS

DLS

�
1

2
jθ − βj2 − ψðθÞ

�
; ð3Þ

where zL is the redshift of the lens [54]. This time delay on
its own is not observable; however, we can observe the time
delay between pairs of images, as Δtij ¼ Δti − Δtj, with i
and j denoting two images. Note that in order to observe
this difference in time delay, some manner of time variation
is required from the source. Otherwise, if the signal from
the source is constant in time, we cannot find any dis-
cernible time delay between its images. For strong lensing
by an intervening galaxy, we expect typical time delays
ranging from several days to months [22].

B. Timing precision

As will be discussed in the next section, the time delay
caused by gravitational waves is expected to be on the order
of microseconds or smaller. In order that strongly lensed
repeating FRBs may be used to search for gravitational

FIG. 2. Schematic representation of the geometry used for
gravitational-wave time delay calculations. We fix the distance to
the FRB D to 100 Mpc and the distance to typical pulsars in a
pulsar timing array d to 1 kpc. The gravitational-wave source is
taken to be at a point with spatial coordinates w parallel to the line
of sight to the FRB and a perpendicular to the FRB line of sight.
We consider an idealized pulsar timing array such that for every
gravitational-wave source position, there exists a pulsar in a
direction perpendicular to the line of sight to the gravitational-
wave source.
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waves, it must be possible to very precisely determine the
arrival time of the images.
Since bursts from observed FRBs have a duration on the

order of milliseconds, it should be expected that burst
arrival times can be measured with an uncertainty that is
no worse than about a millisecond. This is impressive
precision, but it would require an exceptionally loud
gravitational-wave source to cause a time delay of this
magnitude. It is fortunate that even better measurements
of the time delay between images of a strongly lensed FRB
are possible.
More precise time delay measurements are enabled by

the fact that gravitationally lensed images of a common
source are mutually coherent [55]. Such coherence allows
for the possibility of utilizing the information contained in
the full electromagnetic waves of the arriving images,
rather than just the intensity. Measuring the group delay
between the wave images leads to a timing uncertainty
which scales as the inverse bandwidth of the observations,
while using the phase delay could in principle allow for
uncertainties as small as the inverse of the signal frequency
of the burst [28].
According to Ref. [28], a conservative estimate of the

precision with which we can measure the time delay
between the arrival of two images of a strongly lensed
FRB is 10−6 s, with uncertainties smaller than a nanosec-
ond being achievable. Achieving this precision requires
measurements of strongly lensed FRBs with high signal-to-
noise ratios, and there are a number of complicating factors
which need to be very precisely accounted for, some of
which are discussed in Sec. IV. Nevertheless, the possibility
for such exquisite timing precision makes strongly lensed
FRBs powerful tools for a range of cosmological and
astrophysical applications [22–28] including the search for
gravitational waves.

C. Gravitational-wave time delay

We now calculate the time delay between images of a
strongly lensed system due to gravitational waves. In
general, the geometry is complicated since we want to
calculate the effect of gravitational waves on at least two
distinct geodesics which may not be coplanar and which are
necessarily short compared to the curvature of the gravi-
tational-wave fronts. However, as long as the gravitational
wave is a small perturbation to the metric, the time delay
splits into two terms which account for the impact of the
gravitational wave on the two end points of the photon’s
path; these terms are usually called the “pulsar term” and
the “Earth term” of the gravitational-wave time delay when
applied to pulsar timing searches for gravitational waves
[33,56]. This splitting allows for a simplification to the
treatment of the geometry.
Rather than calculating the effect of the gravitational

wave on two geodesics of the FRB photons, we instead
calculate the gravitational time delay by treating the two

strongly lensed images as if they were two subsequent
bursts from a single unlensed source. This treatment is
easily justified for the contribution from the Earth term,
where the two images of the FRB are well separated in time
and arrive with an angular separation on the order of an
arcsecond. The “pulsar term” requires a bit more consid-
eration for strongly lensed FRBs. When measuring timing
residuals with pulsars, one measures the time delay
between separate pulses, meaning that the pulses at the
source are well separated in time and therefore subject to
different phases of the incoming gravitational wave. For
strongly lensed FRBs, it is the same burst that produces
both images, and therefore the photons that make up each
image are subject to the same gravitational wave at the
source. However, as these geodesics of the images separate,
they are subject to independent phases of the gravitational
wave. For example, for arcsecond separation of strongly
lensed images, the geodesics of the images will be
separated by more than the wavelength of a nHz gravita-
tional wave after traveling about a Mpc from the source. We
therefore expect a contribution to the gravitational-wave
time delay due to something very much like the ordinary
pulsar term, though it will arise due to the differing effects
of the gravitational wave on the two photon paths nearby,
rather than directly at, the source of the strongly lensed
images. We have verified this heuristic explanation by
explicit calculation on a set of simple lensing geometries
and have found good agreement with the subsequent pulse
approximation.2

We now briefly describe the calculation of the gravita-
tional-wave time delay following that of Ref. [32]. In the
presence of gravitational waves, described by a perturba-
tion to the metric hðt; xÞ, null geodesics (i.e., photon paths)
are defined as

cdt ¼
�
1þ 1

2
hðt; xÞ

�
dx: ð4Þ

Fixing the coordinate positions of the source and observer,
the difference in travel time for two subsequent light pulses
in the presence of gravitational waves is then

cdðδtÞ ¼ 1

2
½hðt1; xÞ − hðt2; xÞ�dx: ð5Þ

Following Ref. [32], we model a binary black hole with
constant angular frequency ω, and the gravitational waves
in the plane of the binary are then

2We also found numerical evidence for a third contribution to
the gravitational-wave timing delay in the strong lensing geom-
etry which could be called a “lens term” arising from the effect of
the gravitational wave near the lens. This may have resulted from
our simplified treatment of the geometry as a set of straight
segments, or due to our simple accounting of Shapiro delay which
was added by hand at the closest approach to the lens. We do not
include this lens term in our analysis, and the main conclusions
are not affected by gravitational-wave effects near the lens.
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hðt; xÞ ¼ −
α

2

a4 − a2x2

ða2 þ x2Þ5=2 cos
�
2ω

�
t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p

c

��
; ð6Þ

where a is the distance between the binary and the line of
sight to the FRB, and

α ¼ 3 · 210=3π4=3ω2=3G5=3M5=3

c4
; ð7Þ

where M≡ ðM1M2Þ3=5
ðM1þM2Þ1=5 is the chirp mass of the binary.

Taking the unperturbed separation in the arrival times of
the two images to be Δ and integrating Eq. (5) along the
path from the FRB to Earth, we find the time delay due to
gravitational waves to be

δðtÞ ¼ α

2c
sin ðωΔÞ

Z
−w

−D−w
dx

a4 − a2x2

ða2 þ x2Þ5=2

× sin

�
2ωtþ 2

ω

c
ðx −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
Þ
�
: ð8Þ

As to be expected, the time delay oscillates with the
observation time. We calculate the root mean square of
the time delay in order to give an estimate of its amplitude
independent of the unknown phase.

D. Results

We now present the time delay between images of a
strongly lensed FRB expected due to gravitational waves,
and we compare those results to the timing residuals
expected in a pulsar timing array. A sketch of the geometry
we consider is shown in Fig. 2. We fix the distance to the
FRB to be D ¼ 100 Mpc, though there is nothing special
about this distance, and qualitative conclusions would be

unchanged for more distant FRBs. We consider an ideal-
ized pulsar timing array, always assuming that there is a
pulsar along a line of sight perpendicular to the line of sight
to the gravitational-wave source. We take the distance to the
pulsars in the pulsar timing array to be d ¼ 1 kpc, which is
typical for currently monitored pulsars [57–59]. To calcu-
late the time delay expected for pulsars, we replace a withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ w2

p
and change the limits of integration to ½−d; 0�

in Eq. (8).
We take the unperturbed time between arrival of strongly

lensed FRB images and pulsar pulses to be Δ ¼ 0.25 yr.
We focus on the case of gravitational waves sourced by a
binary system of supermassive black holes with M1 ¼
M2 ¼ 1010 M⊙ and a gravitational-wave period of 1 yr. In
Fig. 3 we show the root-mean-square time delay due to
gravitational waves for the images of a strongly lensed FRB
for a range of gravitational-wave source positions (defined
as shown in Fig. 2 where w and a are the coordinate
positions of the gravitational-wave source parallel to and
perpendicular to the FRB line of sight, respectively). We
show the analogous time delay for an ideally positioned
pulsar in Fig. 4; the time delay for pulsars not situated
perpendicular to the line of sight to the gravitational-wave
source would be reduced by geometric factors compared to
the values shown in Fig. 4.
One can clearly see the effects of the “pulsar term” and

the Earth term in Fig. 3, each of which provides sensitivity
to gravitational-wave sources in a different region of space.
The sensitivity to gravitational-wave sources near the host
galaxies of strongly lensed repeating FRBs is unique since
FRBs lie at cosmological distances, and these systems are
therefore sensitive to gravitational-wave sources that are
difficult or impossible to observe by other means. The time
delays generated by such sources would not be expected to

FIG. 3. Characteristic time delay between the arrival of the images of a strongly lensed FRB at a distance of 100 Mpc from Earth
caused by the gravitational waves from a supermassive binary black hole system. We plot the root-mean-square time delay induced by a
pair of 1010 M⊙ black holes producing gravitational waves with a period of 1 year, assuming that the strong lensing time delay between
the arrival of FRB images is 0.25 years. Notice that significant time delay is caused by gravitational-wave sources both near the Earth
and near the FRB.
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correlate with timing residuals of pulsars in the Milky Way.
Gravitational waves sourced near the Earth, however,
would be expected to produce time delays which are
correlated across pulsar and FRB timing. One could
therefore effectively treat strongly lensed repeating FRBs
as part of the data set when analyzing pulsar timing arrays.
Since pulsars and FRBs have a different nature and are
subject to a different set of observational systematic
uncertainties, it would be a very useful cross-check to
observe a potential gravitational-wave signal that produces
a time delay for both types of systems.
While we have focused here on a single continuous

source of gravitational waves, the same principles should
apply equally well to burst sources or a stochastic back-
ground of gravitational waves. For example, observations
that do not indicate a time delay from gravitational waves
could be used to place an upper bound on the stochastic
gravitational-wave background near Earth in the present
epoch and also near the FRB at the time the burst was
emitted (which could be a much earlier epoch for high-
redshift FRBs).

IV. COMPLICATIONS

In this section, we discuss some of the potential issues
for achieving the precise timing required to utilize strongly
lensed FRBs to search for gravitational waves. We leave
aside the Roemer, Einstein, and Shapiro delays which arise
also in pulsar timing and can be modeled with sufficient
precision so as not to limit the precision of the measure-
ments we discuss [60]. A fuller discussion of some of the
complicating factors presented here as well as some that we
do not address can be found in Refs. [22,24,28].
When an electromagnetic pulse propagates through

space, components of different frequencies will travel at

different speeds due to dispersion experienced by propa-
gation through the interstellar medium (ISM) and to a lesser
extent the intergalactic medium. Dispersion results in pulse
broadening due to the fact that different frequencies have
different arrival times at Earth. Typically, for a cold,
unmagnetized plasma, the time delay scales like the inverse
square of the frequency, tDMðνÞ ¼ Kν−2DM. Here DM is

the dispersion measure DM ¼ R neðr;n̂Þ
1þz dl where ne is the

number density of electrons along the line of sight [61], and
K ¼ cre=2π, where re is the classical electron radius [62].
To determine arrival times as accurately as possible, one
must dedisperse pulses to remove this effect.
There are several commonly used methods for attempt-

ing to determine and remove the delays imposed on FRBs
due to their propagation through the dispersive medium
of the ISM. Dedispersion techniques have long been
developed and used for dedispersing pulsar signals.
Traditionally, dedispersion was performed via algorithms
which can be classified as incoherent dedispersion, in
contrast to more recently developed methods of coherent
dedispersion [1,63].
With incoherent dedispersion, the frequency bandwidth

of the observations is divided into channels, and time
delays are removed from these channels on an individual
basis. The time delay for each subband can be calculated
and subtracted, so the time delays between channels get
removed, while leaving the dispersive delay within the
individual channels. Incoherent dedispersive methods are
the preferred choice for pulses whose dispersion measure is
not already known.
On the other hand, coherent dedispersion removes the

dispersive effect entirely, thus allowing for better timing
and precision. While a pulse is propagating through the
ISM, the dispersion effect changes its phase in a way

FIG. 4. Maximum timing residual for an isotropic pulsar timing array with a typical Earth-pulsar distance of 1 kpc for pulses separated
by 0.25 years induced by gravitational waves from a supermassive binary black hole system, using the same assumptions about the
gravitational-wave source as in Fig. 3. Naturally, pulsar timing arrays are most sensitive to gravitational-wave sources near the
Milky Way.
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that can be modeled by a transfer function, or filter.
This transfer function depends on the dispersion measure
and characterizes the dispersive time delays observed in
the signal. This allows one to take raw voltage data and
convolve it with the inverse of this transfer function, thus
reversing the effect of the dispersion across all frequencies
and recovering the original shape of the pulse with greater
precision. Because coherent dedispersion methods can be
computationally costly, especially for signals with high
dispersion measures (as is true for FRBs), their practicality
in blind searches is limited. Instead, they are better suited
for cases where the dispersion measure of the burst has
already been measured. Repeating FRBs, which are the
primary interest of this paper, should have a well-measured
dispersion measure that can be used as the starting point for
coherent dedispersion of subsequent bursts.
Although we can expect an uncertainty of 10−9 − 10−6 s

in measuring the time delay between the arrival times of
images of a strongly lensed FRB [28], there are many
complicating factors which can affect this precision.

A. Frequency-dependent dispersion measure

So long as the electron density is spatially uniform, the
dispersion measure will be independent of frequency;
however, in the ISM this is not the case, and there are
density variations over scales ranging from kpc to thou-
sands of km [64]. These fluctuations on small scales cause
scattering that results in slight variations in DM along
different propagation paths, and a propagating pulse will
sample the ISM differently via multipath scattering.
Such conditions can lead to effects that can be modeled
as a frequency-dependent dispersion measure [62], and
which can become significant for measurements aiming
for high timing precision. Typical dispersion measures
for FRBs are on the order of hundreds of pc cm−3. The
results of Ref. [62] suggest that bursts subject to DM ∼
300 pc cm−3 and with frequencies of order GHz result in
uncertainties on the time of arrival that could be as large as
ms or higher without mitigation. Characterization of the
frequency dependence is possible with an additional
frequency-dependent term when fitting for arrival times
and would allow for the impact on timing measurements to
be reduced.

B. Dispersion measure variations over time

Since the precision of measuring the time delay between
strongly lensed FRB images depends upon the coherence of
the bursts, one point of concern comes from the possibility
that the dispersion measure along the line of sight to the
FRB may change with time. If the time delay is of order
months, there could be non-negligible evolution of the
dispersion measure between the arrival of the two burst
images. In Ref. [65], the authors studied several effects
which can cause a time-dependent dispersion measure,
including both large-scale and local effects.

Among large-scale effects, the Hubble expansion rate
can change the dispersion measure by a rate of order
−5.6 × 10−8ð1þ zÞ3 pc cm−3 yr−1, which for typical FRB
redshifts is quite small. Other large-scale effects, such as
fluctuations in the gravitational potential of large-scale
structures, result in dispersion measure changes which are
even smaller than the effect from the Hubble expansion,
and therefore negligible.
For the local effects studied, the authors consider an FRB

embedded in a supernova remnant, pulsar wind nebula, and
local HII region in its host galaxy. A supernova remnant
could have an effect as large as −52 pc cm−3 yr−1, which
may cause a noticeable evolution. An FRB near a relatively
young pulsar could have its dispersionmeasure affected by a
pulsarwind nebula by asmuch as−11 pc cm−3 yr−1. Finally,
a youngHII region surrounding the FRB could have an effect
of order 0.78 pc cm−3 yr−1. Effects such as these that are
local to the FRB host galaxy should not cause a large change
in the observed dispersionmeasure for images resulting from
a common burst, but they may cause an evolution of the
dispersion measure for subsequent bursts from the same
system.

C. Effects of the lens galaxy

There are several factors which may contribute to a
broadening of the received pulse, including gravitational
microlensing by stars located in the galaxy which acts as the
gravitational lens and also scattering by the interstellar
medium of the lensing galaxy. If the pulse image is located
such that at most one star is causing microlensing, the
resulting micro-images have a typical time delay of 7 ×
10−3 ms [22]. On the other hand, if the image propagates
close to within the center of the lens galaxy, one may get
multiple strongly coupled microlenses and micro-images.
These result in a temporal broadening of the FRB which,
though not expected to occur very often, can be as large asms.
Another complication arises from scattering by the ISM

of the lens galaxy, which can cause broadening due to the
turbulent electron density fluctuations in the ISM. This
effect is especially significant at lower frequencies. At
frequencies of order 1 GHz, the temporal broadening can
be greater than 30 ms, while at 3 GHz, it decreases to about
0.25 ms for the same choice of parameters [22]. Particularly
at lower frequencies, precision in the timing accuracy could
suffer, and it is also possible that some images become too
temporally spread out to be detectable. One must also
consider scattering of the pulse in the host galaxy, which
can cause additional temporal broadening, but this effect
will contribute in the same manner to all images resulting
from a common burst, and it becomes negligible at
frequencies ≳3 GHz [22].

D. Plasma lensing

In addition to the effects of the ISM on the dispersion
measure, one should also consider the consequences of
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plasma lensing, caused by scattering from overdensities (or
underdensities) of electrons with respect to the mean
density of the ISM [66]. This lensing can occur as the
pulse propagates in both the host galaxy of the FRB and in
the Milky Way galaxy, with the effects determined by the
density and shape of the plasma lens, and the geometry
between source, lens, and observer. Any plasma lensing
that occurs in the host galaxy, prior to the FRB getting
gravitationally lensed, would not affect the precision of
time delay measurements between images of a single burst.
However, plasma lensing that occurs as bursts propagate
through the ISM of the Milky Way can potentially affect
images of the same burst differently, thus limiting how
precisely their relative time delay can be determined.
One effect of plasma lensing is the potential to result in

multiple subimages of the original pulse, arriving with
slightly perturbed arrival times and with slight variation in
their observed dispersion measures. In particular, if the time
delays between these subimages are very small, one may
observe interference between the images. Furthermore,
regardless of whether or not the burst is multiply imaged
by the plasma lens, it will also experience perturbations to
arrival time and dispersion measure which are dependent on
frequency, further complicating the processes of coherently
dedispersing the bursts and measuring their time delay.
Because plasma lensing is most likely to occur along

lines of sight with large Galactic dispersion measure, the
optimal circumstance for observing an FRBwould be along
a line of sight that is perpendicular to the plane of the
Milky Way. This provides the greatest likelihood that a
gravitationally lensed FRB would not experience signifi-
cant plasma lensing, allowing the time delay between
images of the burst to be determined with greater precision.

E. Relative velocities

For a repeating, strongly lensed FRB, relative motion
between the FRB source, the lens, and the Earth will induce
a variation in the time delay between pairs of images
[22,24,28]. Any motions that are uniform over the obser-
vational period of interest will result in linear drifts in the
time delay. A line-of-sight velocity of the source or lens
induces a change in the time delay of order 0.01 ms, while a
transverse velocity induces a time delay change of order
seconds. In addition to this, the motion of the Earth’s orbit
around the Sun generates a sinusoidal perturbation in the
time delay, which can be as large as 103 s. However, it was
shown in Ref. [22] that multiple images, resolved with
very-long-baseline interferometry, would allow for this
effect to be subtracted with ms accuracy. The rotation of
the Earth around its axis also induces a variation in the time
delay, which can be as large as 40 ms, and would need to be
accounted for as well. At worst, these effects of the Earth’s
motion will limit the sensitivity of strongly lensed FRBs to
gravitational waves with periods closely matching the
annual and daily motions of the Earth.

There are additional effects, including sources of non-
uniform motion and the passing of gravitational waves,
which will cause a nontrivial, nonlinear change in the time
delay between repetitions. With only two repetitions of a
strongly lensed FRB, one cannot determine whether any
apparent change in the time delay is linear. Continuous
monitoring of a strongly lensed system to observe several
bursts is therefore desirable to help distinguish a linear drift
from a nonlinear perturbation.

V. SIGNAL TO NOISE

We now present an estimate of the signal-to-noise ratio
with which the effects of a continuous gravitational-wave
source on the arrival times of images of a strongly lensed
repeating FRB could be observed. In principle, any pair of
images resulting from a common burst can be used to
search for the effects of gravitational waves on the observed
time delay. At least one burst must be measured to
determine a baseline time delay between the arrival of
the images to which subsequent burst timings can be
compared. Furthermore, as discussed above, relative veloc-
ities between the source, lens, and observer are expected to
induce a drift in the observed time delays, even in the
absence of gravitational waves. We therefore require at
least one additional burst to measure linear changes to the
time delays, and only subsequent bursts can be used to
measure the nonlinear changes to the time delays that are
expected from passing gravitational waves.
We will assume that Nbursts distinct burst events are

observed and that we see n images of each burst due to
gravitational lensing. We treat the occurrence of bursts as a
stochastic process, such that the arrival times of images
from different bursts are random and independent. We can
then estimate the signal-to-noise ratio with which we
observe the effect of gravitational waves to be

�
S
N

�
2

¼ ðNbursts − 2Þ
X
i<j≤n

�
δðtijÞ
σΔ

�
2

;

where i; j ¼ f1;…; ng label the individual images result-
ing from a single burst, δðtijÞ is the perturbation to the time
delay between the arrival of images i and j due to the
passing of a gravitational wave as given by Eq. (8), and σΔ
is the precision with which the time delay between images
of a single burst can be measured. Equation (1) shows the
dependence of the expected time delay on the mass of
the binary that acts as the source of gravitational waves, the
gravitational-wave frequency, and the distance between the
binary and either the FRB or the Earth. Figure 3 shows how
the relative position of the binary, the FRB, and the Earth
affects the amplitude of the time delay.
The unperturbed time delay between the arrival of

images compared to the frequency of the gravitational
wave plays an important role in determining the amplitude
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of the perturbation to the time delay, and therefore the
detectability of gravitational waves. Specifically, Eq. (8)
contains a factor sinðωΔÞ, where ω is the angular frequency
of the gravitational wave and Δ is the difference in the
arrival time between two images of the same burst. This
factor implies that images whose unperturbed arrival times
are separated by much less than the period of a gravitational
wave do not experience a large relative time delay due to
the gravitational wave. A strongly lensed repeating FRB for
which there are several observed images with arrival times
separated by intervals comparable to about one quarter of
the gravitational-wave period would be ideal, since the
amplitude of the time delay would be maximized, and the
oscillating behavior of the time delay could be observed.
This simplified treatment of the signal-to-noise ratio is

designed to show how the detectability of gravitational
waves using strongly lensed repeating FRBs scales with the
various quantities that determine the physical situation.
However, as discussed in Sec. IV, there are various
complicating effects that are more easily mitigated with
continued observations. Long-term monitoring of such
systems is likely to be required in order to achieve the
timing precision necessary to isolate the small effect of
gravitational waves.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have shown the potential of using
strongly lensed repeating FRBs to detect long-wavelength
gravitational waves. The time delay between images of
strongly lensed FRBs can be measured with very high
precision, and therefore observations of strongly lensed
repeating FRBs offer the possibility of measuring the time
evolution of the lensing time delay. This exquisite timing
precision enables the search for the effects of long-wave-
length gravitational waves, such as those produced by the
merger of two supermassive black holes.
The passage of such gravitational waves through the

Earth and through the FRB host galaxy causes a change in
the observed time delay between burst images. For the
parameter space of the illustrative case considered in this
paper, the resulting time delay variation can be upwards of
15 μs, large enough to be observable given current exper-
imental sensitivity. Unlike pulsars, which are most sensitive
to gravitational-wave sources near the Earth, strongly
lensed repeating FRB systems are sensitive to gravitational
waves passing through Earth and through the FRB source,
which may reside at cosmological distances. Additionally,
observing a strongly lensed repeating FRB and monitoring
it over repeated bursts creates the possibility of correlating
this timing data with the timing residuals measured in
pulsar timing arrays. This could improve the sensitivity to
detection of gravitational waves near Earth, or it could also
further improve constraints derived from nondetection via
either method.

We have discussed several factors which may affect the
timing precision of these time delay measurements.
However, it is still plausible that we may get measurements
with sufficient precision to detect the presence of gravita-
tional waves, since it is possible that these effects may be
mitigated or avoided. For example, if the line of sight to an
FRB is perpendicular to the plane of the Milky Way, this
reduces the presence of intervening plasma responsible for
plasma lensing. Additionally, the conditions responsible for
these timing affects are interesting in and of themselves.
The effects of microlensing on the timing measurements,
for example, are useful in revealing information about the
substructure which is responsible for the lensing; monitor-
ing a repeating FRB over time and identifying the effect of
source velocity would allow one to follow its orbit and
perhaps learn something about its environment and ori-
gins [22].
We described how strongly lensed repeating FRBs can

be used to search for signals from long-wavelength
gravitational waves. For this purpose, a change in the time
delay could indicate a potential detection. However, the
time delay caused by the passing of gravitational waves
would be a source of noise in other proposed applications
of strongly lensed repeating FRBs where very high timing
precision is desired. Detecting gravitational waves via the
method proposed here or with pulsar timing array mea-
surements could perhaps help characterize the effective
noise from gravitational waves that could hinder other
applications and experiments.
Certain effects pertaining to the propagation of gravita-

tional waves, whose potential detection has been considered
in the case of pulsar timing array observations, would also
affect the gravitational waves that can be detected by
observing strongly lensed repeating FRBs. These include
the effects of certain cosmological parameters on gravita-
tional-wave propagation, such as the cosmological constant
Λ, the density of nonrelativistic matterΩc, and the expansion
history more generally [67,68]. The effects of these param-
eters on timing residuals allow for local measurements of the
relevant cosmological parameters, and the high timing
precision possible with FRB measurements could be lever-
aged, in tandem with pulsar timing array measurements, to
improve the detection prospects of these effects.
FRBs have already proven to be an exciting new target

for the astrophysical community. The situation is likely to
improve significantly in the coming years as current and
planned experiments will vastly expand the catalog of
observed FRBs, a catalog which may contain several FRBs
which are both repeating and strongly lensed. Strongly
lensed repeating FRBs would be valuable for a range of
astrophysical and cosmological applications [22–28]. The
search for gravitational waves described in this work
provides additional motivation to seek out and monitor
these systems to take advantage of the unique opportunities
they offer.
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