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The data from ground-based gravitational-wave detectors such as Advanced LIGO and Virgo must be
calibrated to convert the digital output of photodetectors into a relative displacement of the test masses in
the detectors, producing the quantity of interest for inference of astrophysical gravitational-wave sources.
Both statistical uncertainties and systematic errors are associated with the calibration process, which would
in turn affect the analysis of detected sources, if not accounted for. Currently, source characterization
algorithms either entirely neglect the possibility of calibration uncertainties or account for them in a way
that does not use knowledge of the calibration process itself. We present physiCal, a new approach to
account for calibration errors during the source characterization step, which directly uses all the
information available about the instrument calibration process. Rather than modeling the overall detector’s
response function, we consider the individual components that contribute to the response. We implement
this method and apply it to the compact binaries detected by LIGO and Virgo during the second observation
run, as well as to simulated binary neutron stars for which the sky position and distance are known exactly.
We find that the physiCal model performs as well as the method currently used within the LIGO-Virgo
Collaboration, but additionally it enables improving the measurement of specific components of the
instrument control through astrophysical calibration.
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I. INTRODUCTION

The advanced gravitational-wave (GW) detectors LIGO
[1,2] and Virgo [3] have concluded their third observation
run as of March 2020, reporting the detection of 56
candidate GW sources [4], most of which, if confirmed,
are binary black holes (BBHs). Owing to planned increases
in sensitivity for LIGO and Virgo, and the addition of the
Japanese detector KAGRA [5] to the global network, the
detection rate will be even higher in the next few years [6].
Having access to a large number of GW sources will allow
for unprecedented measurements of the mass and spin
distribution of compact objects, as well as their formation
channels [7]. The potential of detecting many binary

neutron star mergers (BNSs) together with electromagnetic
(EM) counterparts opens the way to precise measurements
of the Hubble constant [8–12]. Some of the detected
sources will have a high signal-to-noise ratio (SNR), which
would enable precise tests of general relativity and of the
nature of individual objects.
For gravitational-wave astrophysics to fulfill its poten-

tial, one must control all of the (known) sources of
systematics. In this work we focus on instrumental cali-
bration uncertainties. The complex function that relates the
voltage measured at the output of LIGO and Virgo photo-
detectors to the strain needed for astrophysical inference is
the response function, RðfÞ. In the Fourier domain, the
relation between these quantities is simply

dðfÞ≡ ΔL
L

¼ RðfÞvðfÞ; ð1Þ*salvo@mit.edu
†haster@mit.edu
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where vðfÞ is the photodetector readout, dðfÞ is the
gravitational-wave strain, ΔL is the differential arm
(DARM) displacement of the mirrors, and L is the nominal
length of the interferometer arms [13]. The calibration
process includes collecting a set of measurements per-
formed on the detectors to inform a reference model of the
response function, RðmodelÞ [14]. This includes tracking the
slow time dependence of the detector response with respect
to that model [15]; using that model to create a near-real-
time data stream as an estimate of dðfÞ at any time [16];
and characterizing the systematic error and statistical
uncertainty in the model, or equivalently in the data stream
used for astrophysical analysis [17]. The fundamental
reference fiducials for the calibration process are indepen-
dent laser systems, called photon calibrators (Pcal), to
calibrate LIGO and Virgo by applying a known radiation
pressure directly into the test masses [14,18,19]. Errors,
bias, or uncertainty in any part of this calibration process to
develop the estimated strain (including that in the Pcal
systems) directly affect the strain, and hence if unaccounted
for, bias the estimation of the source parameters.
Reference [20] has shown how the parameters that would
suffer the largest biases are those mostly related to the
amplitude of GW signals. For compact binaries coalescen-
ces (CBCs), those would be luminosity distance (DL),
orbital inclination (ι), and sky position. In turn, those
parameters are related to some of the key science goals
mentioned above: identification of an EM counterpart and
cosmology.
Statistical uncertainties and systematic errors in the

measurement of the response function result in both
amplitude and phase offsets, so that the model response
function at a specific time and frequency is related to the
true response function by

RðtrueÞðf; tÞ ¼ ð1þ δAðf; tÞÞeiδϕðf;tÞRðmodelÞðf; tÞ; ð2Þ

where δA is the relative amplitude error and δϕ the phase
error. In turn, this affects the GW data strain as

dðtrueÞ ¼ dðmodelÞð1þ δAðf; tÞÞeiδϕðf;tÞ; ð3Þ

where dðmodelÞ is the calibrated data strain produced using
the model response function.
Here we are explicitly reporting a time dependence to

stress that the behavior of GW detectors, and hence their
transfer functions, varies over timescales of minutes [15].
Therefore, while it is generally a good approximation to
treat the response function as a constant in time (not in
frequency) when analyzing a single CBC event, since its
duration will usually be shorter than 2 minutes (for a BNS
detected by advanced detectors), one should not assume
that the response function is the same throughout an
observing run. In fact, the response function of the
LIGO and Virgo detectors is characterized continuously

in a few small frequency bins throughout the run, and
across all frequencies weekly, as a precaution against
unexpected changes [17,21].
Currently, the results presented by the LIGO-Virgo

Collaboration (LVC) obtained with the LALInference [22]
or BILBY [23,24] source characterization algorithms mar-
ginalize over calibration errors with a spline interpolant
informed by the frequency-dependent 68% credible interval
contours of the systematic error and uncertainty in each
response function [25] (henceforth splineCal method).
While that approach has the advantage of accounting for
calibration uncertainties, it also has some limitations. First,
it introduces a significant number of nuisance parameters
that must be marginalized over numerically: roughly 20
parameters per interferometer. Second, the frequencies at
which the spline points are anchored do not use any infor-
mation about characteristic physical correlation lengths in
the instrument (they are simply chosen uniformly in log
space). Third, the spline marginalization method treats the
uncertainties in the phase and amplitude of the response
function as independent and uncorrelated. Fourth, should
any constraints be placed on the response function through
a so-called astrophysical calibration (see below) it would be
hard or impossible to relate those constraints to specific
components of the detector.
In this paper we propose a new approach to account for

uncertainties in the response function, which builds upon
recent progress in measurement and modeling of the
response function, and does not suffer from the same
limitations of the spline approach. We implement the
new method, called “physical calibration” (henceforth,
physiCal) in the LALInference software and apply it to the
CBCs detected by LIGO and Virgo in their second
observing run, as well as on simulated binary neutron
star sources.
The rest of this paper is organized as follows: in Sec. II A

we summarize the measurements and algorithms used to
calibrate the LIGO instruments; in Sec. II B we present the
implementation of the physiCal method; in Sec. III A and
Sec. III B we report results from the analysis of LIGO-
Virgo sources and simulated signals, respectively; finally in
Sec. IV we summarize the main conclusions.

II. METHOD

A. Calibration physical model

While a full description of systematic error and uncer-
tainty in the calibration of the LIGO detectors is beyond the
scope of this paper, we will review the main points and refer
the interested reader to Ref. [17] for more details.
In the frequency domain, the complex-valued detector

response can be written as

RðfÞ ¼ 1

CðfÞ þ AðfÞDðfÞ: ð4Þ
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The sensing function C converts the suppressed DARM
residual displacement1 to digitized photodetector output
signals. The actuation function A converts the requested
digital control signal to the force applied to the test masses,
producing a control displacement meant to suppress the
DARM displacement. The total A function consists
of three actuation stages, the upper intermediate (U),
penultimate (P), and test mass (T) stages in the quadruple
suspension [26]. The function D represents a set of digital,
feedback control filters, which can be assumed as perfectly
known. The DARM strain, and thus the calibrated data in
Eq. (1), are reconstructed using the modeled sensing and
actuation functions, CðmodelÞ and AðmodelÞ, in the detector
calibration pipeline. Here AðmodelÞ denotes the model of the
total A function, in which each stage Aa is modeled
independently (a ¼ U, P, T). The time-dependent, fre-
quency-dependent systematic errors on our model of the
response function are written as

ηR ¼ RðtrueÞ

RðmodelÞ ; ð5Þ

where RðtrueÞ is the true detector response and RðmodelÞ ¼
1=CðmodelÞ þ AðmodelÞD is the modeled response [17]. The
relative amplitude error and phase error in Eq. (3) can thus
be written as

δA ¼ jηRj − 1;

δϕ ¼ ∠ηR: ð6Þ

where ∠z indicates the phase of the complex number z.
Throughout the observing run, ηR and its associated
uncertainty is evaluated at a 1 hour cadence.
The models CðmodelÞ and AðmodelÞ contain many param-

eters representing the entire DARM control loop, from the
basic properties of signal processing electronics to complex
actuator dynamics. Most parameters can be measured
independently to high precision and do not dominantly
contribute to the systematic error and/or uncertainty in
RðmodelÞ. However, a set of physical parameters related to
specific properties of the instrument must be determined
from interferometric measurements taken while the detec-
tors are in the most sensitive, nominal operational state
[17]. These parameters, discussed as follows, highly
depend on the loosely controlled alignment and thermal
state of the detector and may vary slowly over time. Hence
they are difficult to measure and are likely to introduce
systematic errors in the calibration model. For the sensing
function, we write the physical parameter vector as

λC ¼ ½HC; fcc; fs; Q; δτC�; ð7Þ

where HC is the overall gain of the sensing function, fcc is
the differential coupled-cavity pole frequency, fs and Q
are, respectively, the pole frequency and quality factor of an
optical springlike response of any detuning between the
coupled Fabry-Pérot arm cavities and signal recycling
cavity [27], and δτC is the residual time delay in C. For
the ath stage of the actuation function (a ¼ U, P, T), the
physical parameter vector is

λAa ¼ ½Ha; δτa�; ð8Þ

where Ha is the overall gain for the ath stage actuator and
δτa is the residual time delay in that stage. Some parameters
in C and A vary slowly over time, on a timescale of minutes
to days, due to various physical mechanisms [28]. The
overall gain variation of HC is tracked by a real-valued
scalar factor κCðtÞ. Parameters fcc, fs, andQ in the sensing
function are also time varying. The variation ofHa (a ¼ U,
P, T) is tracked by scalar factors κUðtÞ, κPðtÞ, and κTðtÞ for
each corresponding actuation stage. A full description of C
and A, as well as all the time-independent and time-
dependent factors therein is given in Ref. [17].
While RðmodelÞ does an excellent job at reproducing

RðtrueÞ, the residual systematic error ηR and its uncertainty
need to be quantified through the frequency-dependent,
time-independent residuals ηC ¼ CðtrueÞ=CðmodelÞ and

ηAa
¼ AðtrueÞ

a =AðmodelÞ
a , where CðtrueÞ and AðtrueÞ are the true

sensing and actuation functions inferred from large col-
lections of interferometric measurements, and the subscript
a indexes the actuation stages (a ¼ U, P, T). This set of
residuals is computed via Gaussian process regression
(GPR) [29,30], by taking into account potential model-
agnostic but physically motivated frequency-dependent
correlations. The posterior results from the GPR indicate
the residual errors and uncertainties in the sensing and
actuation models. In a perfect calibration model, ηC, ηAa

,
and hence ηR are at unity in magnitude and zero in phase.
At any given time t, measurements of the various

physical quantities that we have just described and that
affect the response function (which we will collectively
refer to as physiCal parameters from now on) are used to
assess the complex-valued, frequency-dependent system-
atic error in the detector response and its associated
uncertainty. Using interferometric measurements, we apply
Markov chain Monte Carlo (MCMC) methods to obtain the
posterior probability density functions (PDFs) of λC and λAa
(a ¼ U, P, T). The physiCal parameters are estimated
jointly within each vector, i.e., the posterior probability
density can be written as

pðλC; λAU; λAP; λATÞ ¼ pðλCÞ
Y

a∈fU;P;Tg
pðλAaÞ: ð9Þ

1That is, the residual differential displacement of the mirrors
after the control signal has been applied; see, e.g., Fig. 3 of
Ref. [17].
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The maximum a posteriori values of λC and λAa are used to
form the model functions CðmodelÞ and AðmodelÞ, and thus
RðmodelÞ. Since λC and λAa are time varying, the time-
dependent corrections are taken into consideration when
constructing RðmodelÞ for any given analysis time. We use
104 fair draws from the posterior PDFs of λC and λAa to
create a distribution of draws from R as described below.
These R samples, once divided by RðmodelÞ, yield a posterior
distribution for ηRðf; tÞ. The generic ith sample for the
inferred response function posterior reads [17]

Riðf; tÞ ¼ ηPcali

�
1

ηCi
ðfÞCðλCi ; f; tÞ

þ ηAi
ðfÞAðλAi ; f; tÞDðfÞ

�
: ð10Þ

The samples for the sensing and actuation functions
CðλCi ; f; tÞ and AðλAi ; f; tÞ are derived from the MCMC
posterior distributions of λC and λAa (a ¼ U, P, T). The
samples ηCi

ðfÞ and ηAi
ðfÞ are, respectively, drawn from the

GPR posterior distributions. Here in Eq. (10), we do not
explicitly split out the three stages in A, and use i to denote
the sample in total A for simplicity. In practice, the samples
in each stage of A are drawn independently. The 1σ
uncertainties of the time-dependent factors applied in C
and A at time t are taken into account. The real-valued scale
factor ηPcal accounts for the systematic error and uncertainty
of the photon calibrator, common to all interferometric
measurements in a detector.
The median frequency-dependent value of the 104

samples from the distribution of ηRðf; tÞ represents our
best estimate for the systematic difference between RðtrueÞ

and RðmodelÞ at time t, and thus the systematic error in the
calibrated data dðf; tÞ. Meanwhile, the 16th and 84th
percentiles represent the bounds of systematic error and
1σ statistical uncertainty in the modeled detector response,
and thus dðf; tÞ.
For each of the LIGO detectors, we perform the above

procedure and store to file the 104 posterior samples from
the posteriors of the physiCal parameters, together with the
resulting posterior samples for the frequency-dependent
response function, Eq. (10). The Virgo detector does not
have as sophisticated an infrastructure, but the detector
response can be modeled in the same way [31]. The next
section describes how these are used in the source char-
acterization algorithm.

B. Implementation in source characterization code

Given a stretch of interferometric data d containing a
CBC signal, one wants to estimate the posterior distribution
of the unknown source parameters θ (masses, spins, sky
position, etc. See, e.g., Ref. [22]). Bayes theorem allows us
to write the posterior probability density as

pðθjdÞ ¼ pðdjθÞπðθÞ
pðdÞ ; ð11Þ

where πðθÞ is the prior distribution of the CBC parameters
(in what follows we will use the standard priors used by the
LVC [32]) and pðdÞ is the evidence of the data, which will
not play a role in parameter estimation [22]. The remaining
term is the likelihood of the data given θ. If one assumes
that the interferometric noise is stationary and Gaussian,
then the likelihood in the Fourier domain reads

pðdjθÞ ∝ e−hdðfÞ−hðf;θÞjdðfÞ−hðf;θÞi; ð12Þ

where we have defined the noise-weighted inner product

hajbi≡ 2

Z
df

ab� þ a�b
SðfÞ ð13Þ

and hðf; θÞ is the gravitational-wave template calculated at
θ. The likelihood weights the difference between data and
GW template (i.e., the data residuals) by the noise power
spectral density (PSD) SðfÞ [33,34], i.e., the noise auto-
correlation. These expressions are written for a generic
interferometer, and since noise is expected to be uncorre-
lated between detectors, it is extended to a network by
taking the product of likelihoods calculated for each
interferometer [22].
If one wants to explicitly account for statistical uncer-

tainties and systematic errors in the response function, the
likelihood in Eq. (12) needs to be modified by correcting
the data, Eq. (3), or—which is equivalent [25]—by
modifying the GW template hðf; θÞ:

hðf; θÞ → hðf; θÞð1þ δAðλA; λC; fÞÞeiδϕðλA;λC;fÞ: ð14Þ

As mentioned in Sec. II A, the calibration pipelines
produce draws from the posterior distribution of the
response function errors, which can be used to obtain
frequency-dependent medians and standard deviations for
amplitude and phase errors, δA and δϕ. Current LVC results
are produced by only using these medians and 1-sigma
uncertainties to inform the position and width of the
Gaussian priors of the calibration spline points [32,35].
Instead, we wish to augment LALInference so that it can

directly use individual draws from RðfÞ, i.e., for δA and δϕ
as defined by Eq. (6). In addition to the interferometer-
dependent amplitude errors, we include the possibility of a
common offset in the amplitude of the response functions of
both LIGO detectors introduced by the calibration of
LIGO’s Pcal lasers against the same reference from the
National Institute of Standards [18]. We will use the
variable ηNIST to indicate this common offset.
We will thus work with the following template for the

likelihood of LIGO’s data:
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hIðf; θÞ → ηNISThIðf; θÞ½1þ δAIðλA; λC; fÞ�
× eiδϕ

IðλA;λC;fÞ; ð15Þ

where an index I ¼ H (Hanford) or L (Livingston) is used
to label quantities which are instrument dependent.
To run a source characterization analysis on a CBC event

detected at some time t we thus proceed in two steps. First,
we build the distribution of frequency dependent systematic
error, ηR, described in Sec. II A for each of the LIGO
detectors at time t. As described above, this produces a file
with 104 samples from the posteriors of the physiCal
parameters and their corresponding response function,
which, given RðtrueÞ;I at time t, can be recast into posteriors
for δAI and δϕI following Eqs. (5) and (6). We then deploy
a modified version of LALInference to generate posterior
PDFs for both the CBC parameters θ and the physiCal
parameters.
More specifically we modify the likelihood function,

priors, and the sampler of LALInference so that it can use the
files containing ηIR and RI;ðmodelÞ directly. For each of the
LIGO detectors:

(i) We load to memory the corresponding physiCal file.
We label each of the samples produced by the
calibration pipeline with an integer from 1 to 104.

(ii) We introduce a new sampling parameter, an integer
between 1 and 104, and assign it a uniform prior. We
call it the physiCal ID of this interferometer.

The common ηNIST parameter is assigned a uniform prior
in the range ½−0.9914; 1.0086� consistent with the uncer-
tainties on the calibration of the LIGO photon calibrators at
the time of our analysis. With these changes implemented
the parameter estimation algorithm proceeds as usual: at
each iteration of the MCMC chain (or update of a nested
sampling live point [22,36]), we update θ, the calibration
physiCal IDs, ηNIST, calculate the modified waveform
templates for each interferometer, and hence the corre-
sponding likelihood. Our updates allow the user to use a
different calibration marginalization scheme (splineCal,
physiCal, no marginalization) for each detector independ-
ently when running a network analysis. For the runs
described in the remainder of this paper we only use the
physiCal method for the LIGO detectors and the spline
method for Virgo. In total our scheme introduces a single
new parameter for each instrument for which the physiCal
method is used, plus ηNIST. This should be compared with
the ∼20 new parameters used for each instrument if the
spline method is used.

III. RESULTS

A. Analysis of LIGO-Virgo’s sources

In this section we apply the physiCal method to all
of the CBCs found by the LVC during their second
observing run (O2), using the corresponding public data

release [32,35,37].2 LIGO-only data are available for
GW170104, GW170608, and GW170823, whereas LIGO-
Virgo data are available for GW170729, GW170809,
GW170814, GW170817, and GW170818.
The Bayesian priors on the CBC parameters are chosen

to match those used by the LVC, whereas the priors on the
physiCal parameters have been described in the previous
section. We use the IMRPhenomPv2 waveform approx-
imant [38–40] for all BBH analyses, with the reduced order
quadrature (ROQ) likelihood implementation [41], while
we use IMRPhenom_NRTidal [38–40,42,43] for the binary
neutron star merger GW170817.3

For all sources, we find that the posterior distributions of
the astrophysical parameters θ obtained with the physiCal
method are virtually indistinguishable from those reported
by the LVC using the splineCal method. To quantify the
level of similarity, we compute the Jensen-Shannon (JS)
divergence [44], a general symmetrized extension of the
Kullback-Leibler divergence [45], between the two sets of
one-dimensional probability distributions. The JS diver-
gence is defined between 0 bits of information difference
(i.e., the distributions are statistically identical) and 1 bit
(no statistical overlap). The maximum JS divergence for the
astrophysical parameters inferred from the O2 LVC obser-
vations is calculated to be 0.012 bits, with the vast majority
of divergences more than an order of magnitude smaller
than this (cf. Table IVof [46] where a similar conclusion is
reached). Hence, we conclude that the physiCal and
splineCal methods recover posterior distributions that are
similar enough that no astrophysical statement would
depend on the method used. For example, in Fig. 1 we
show the marginal posterior distribution of the luminosity
distance of GW170729, the most distant of the sources in
the GWTC-1 catalog, obtained with physiCal and with the
spline method.
This can be explained by noticing that for both the spline

and the physiCal methods no constraints can be placed on
any of the calibration parameters, and the respective priors
are recovered. Since the priors are informed by the same
underlying calibration model, the two approaches yield
consistent results. The CBC sources LIGO and Virgo
detected in O2 [32] had network SNRs in the range
∼½10; 33�. This suggests that even higher SNRs and/or
some auxiliary information about the sources is needed to
constrain the physiCal parameters (see Sec. III B and
Sec. IV of [46]). The authors of Ref. [47] analyzed the
BNS GW170817 with a different approach, and similarly

2We cannot reanalyze the sources detected in the first observ-
ing run, since the distribution of systematic error and uncertainty,
ηR, was not recorded.

3The ROQ likelihood in LALInference is distinct from the
likelihood that is used for most waveform families. Our imple-
mentation of the physiCal method works for both the ROQ and
the “classic” likelihood.
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found that nothing can be learned about the response
function.
In Fig. 2 we show a comparison of the posteriors for the

response function’s errors when analyzing GW170814.

Amplitude and phase errors are reported—for the two
LIGO detectors individually—in the top and bottom rows,
respectively. The blue lines refer to the spline method and
the orange lines to the physiCal method. In both cases, the
solid lines are the medians and the dashed lines mark the
90% credible intervals. For the physiCal method, we also
show 2048 individual draws from the posteriors (semi-
transparent green curves).

B. Simulated events

The results we obtained for the O2 sources show that with
the “typical” CBC source of medium-low SNR for which
most or all of the astrophysical parameters are unknown, no
information can be gained about the physiCal parameters,
and we just recover the priors. This can likely be attributed to
the fact that calibration errors mostly affect the amplitude of
the response function, and hence the signal [20]. On the other
hand, analysis of CBC signals cannot usually constrain
amplitude parameters (mainly distance and orbital inclina-
tion) as precisely as parameters that affect thephase evolution
of the system (e.g., masses and spins) [32]. Furthermore, the
physiCal parameters have Gaussian priors, which are

FIG. 1. Marginal posterior density function for the luminosity
distance of GW170729 inferred using the LVC’s spline margin-
alization of the calibration uncertainty (splineCal [25,35]) and the
physiCal method described in this work. The vertical lines denote
the 90% credible interval for each analysis.

FIG. 2. PDFs for the amplitude (top) and phase (bottom) of the response function’s errors at the time of GW170814 for the LIGO
Hanford (left) and LIGO Livingston (right) detectors. The gray dotted line indicates the ideal case with no systematic error. All PDFs are
represented by their median (solid line) and 90% credible interval (dashed lines). The prior distributions are shown in yellow. The yellow
dots indicate the frequencies where the splineCal variables are defined. The splineCal posteriors are shown in blue and the physiCal
posteriors are shown in orange. For the physiCal method, we also show 2048 individual draws from the posteriors (green
semitransparent curves).
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stronger than the priors of the CBC amplitude parameters
(isotropic of the orbital inclination, uniform in comoving
volume for the distance) [48–50]. This implies that even if the
response function were off, it might be “easier” for a
Bayesian algorithm to compensate for it by biasing distance
and inclination,whichmight come at a smaller prior expense.
We plan to thoroughly explore the topic of biases in a future
publication.
On the other hand, if extra astrophysical information is

obtained that better constrains CBC parameters that are
correlated with calibration parameters (e.g., sky location,
distance), better constraints on the physiCal parameters
could be possible. While the idea of “astrophysical cali-
bration,” i.e., of learning something about the detector
using particularly loud or otherwise exceptional events, is
not new [47,51], we stress that the best one can do using the
spline approach is to verify that something is wrong with
the overall response function. With the physiCal method
instead, we can hope to say something about specific parts
of the sensing and actuation systems, as described in Sec. II
A above and Refs. [16,17,21].
To test this we add 200 simulated BNSs into real LIGO-

Virgo interferometric data from O2 [37] (we only consider
BNSs and not BBHs because we will want to assume the
source extrinsic parameters can be constrained with EM
data; see below). The signals’ merger times are randomly
chosen to be in the 3600 seconds preceding or following the
eight CBC sources detected in LIGO-Virgo’s second
observing run.4 Rather than producing the full distribution
of ηR for each simulated event, we reuse the distributions at
the time of the eight O2 sources. For each of the simulated
signals we thus use the output of the calibration pipeline as
calculated for the nearest of the O2 sources. This implies
that the largest possible time interval between the time a
simulated signal is added into the data and the assigned O2
event time for which its ηR was produced is one hour. The
simulated events are assigned random sky positions and
orbital orientation, and are placed uniformly in comoving
volume. This implies that the resulting SNRs are repre-
sentative of realistic detections in the second and third
observing runs (i.e., with network SNRs in the approximate
range [10, 40] and with most sources having SNR near the
minimum). For these analyses we use the IMRPhenomPv2
waveforms to simulate the signals that are added both into
the data and for parameter estimation. The neutron stars are

assigned randomly oriented spins with (dimensionless)
magnitude uniform in the range [0, 0.2] and component
masses uniform in the range ½1.8–2.4� M⊙.

5 We do not
include tidal effects either in simulating signals or in the
subsequent source characterization analysis.
To mimic a situation where a successful electromagnetic

counterpart has been found, which yields the source’s 3D
position, we run the source characterization algorithm by
assuming that the sky position and the luminosity distance
of the sources are perfectly known. This neglects potential
uncertainties introduced by the cosmology used to convert
the source redshift into a luminosity distance; however,
here we are interested in a somewhat optimistic scenario to
show what this method can theoretically do. If, as it is more
realistic, the distance to the source is only known within an
uncertain range, the overall amplitude parameter ηNIST
would not be constrained. While it is possible to also
obtain some constraints about the source’s orbital inclina-
tion by folding in external information about the source
[52,53], that inference would not be very precise and would
depend on detailed modeling of the EM emission.
Therefore, instead of assuming the inclination angle is
perfectly known, we restrict its prior to a �20° interval
symmetric around the truevalue excluding unphysical values
(i.e., ι < 0 rads and ι > π). Having fixed luminosity distance
and sky position to their true values, the inclination angle is
thus the only CBC parameter that significantly affects the
amplitude of the signals in our analysis.6 It is worth stressing
that even for LIGO-only analyses, ηNIST is not perfectly
degeneratewith the (cosine of the) inclination angle, since the
latter affects the twoGWpolarizations each in a differentway
[33], while the former is an overall amplitude offset. This
would be different if the luminosity distance were also a free
parameter, since in that case ηNIST and distance would be
perfectly degenerate in a LIGO-only analysis, and only the
combination ηNIST=DL would be measurable.
We will not report extensively on these simulations

because for the overwhelming majority of them, owing
to the low SNRs, nothing is learned about the physiCal
parameters. Instead, we will just focus on two high-SNR
signals, one in LIGO-Virgo data, and the other in LIGO
data. The true values of some of their parameters are

TABLE I. The true values of some selected parameters for the two BNS sources described in Sec. III B. An index
H, L or V is used to refer to the LIGO Hanford, LIGO Livingston or Virgo detector respectively.

ID m1½M⊙� m2½M⊙� DL [Mpc] t ι [rad] SNRH SNRL SNRV

1 1.98 1.78 58.8 1167560557.32 0.22 21.4 21.9 n=a
2 1.99 1.69 74.4 1187057243.40 0.71 13.5 25.9 3.3

4If the simulated signal precedes the O2 detection, we leave
enough time between them to avoid overlaps.

5This range of mass was not chosen to be representative of a
realistic mass distribution, but rather to optimize the runtime of
LALInference with the ROQ likelihood.

6Intrinsic parameters also affect the GW amplitude. However,
they are usually measured from the GW phase well enough that
they can be thought as known when considering the signal’s
amplitude.
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reported in Table I, together with the ID we will use to refer
to each.
The BNS #1 is added into LIGO-only data, since Virgo

was not operating at the time. While for most of the
physiCal parameters the prior is returned, a handful of
posterior distributions are informative and are shown in
Fig. 3, together with their priors. We see that the posterior
of ηNIST, while still broad and with support in the whole
prior range, does have some support for values larger than
one. Meanwhile, the posterior for ηHPcal, which controls the
overall amplitude of the response function in LIGO
Hanford, is clearly different from its Gaussian prior and
prefers slightly smaller values. For ηLPcal, the corresponding
parameter for LIGO Livingston, the effect is not as
significant. The other parameter that shows a slight
departure from its priors is κHC , a time-dependent parameter
related to the sensing function of LIGO Hanford [17]. We
again use the JS divergence [44] to quantify the statistical
similarity between the prior and posterior distributions. For
the physiCal parameters shown in Fig. 3, the JS divergences
are 0.11 bits (ηHPcal), 0.09 bits (ηNIST), 0.05 bits (κHC ), and
0.05 bits (ηLPcal), respectively. In all these cases, we see that
the offsets are much smaller than the statistical uncertain-
ties. The posteriors of all other physiCal parameters are
either even more similar to or undistinguishable from their
priors.

When considering the BNS #2 we find instead that all of
the physiCal parameters return exactly the prior, except
ηHPcal (shown in Fig. 4), for which the JS divergence is
0.06 bits. Thus, despite a comparable network SNR and the
presence of Virgo, less information is gained about the
physiCal parameters for the BNS #2 than for the BNS #1.
This suggests that the SNR is not the only figure of merit to
predict if and what can be learned with astrophysical
calibration. Instead, this might be suggestive of the fact

FIG. 3. Posterior distributions for the physiCal parameters for which information is gained relative to the priors, for the BNS #1 (see
Table I). The respective priors are shown as solid gray lines. The median of each PDF is shown as a dashed vertical line.

FIG. 4. Posterior distribution of ηHPcal for the BNS #2 (see
Table I). The prior is shown as a solid gray line. The median of
each PDF is shown as a dashed vertical line.
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that the model for the response function was adequate for
the BNS #2, whereas it was not for the BNS #1.
Theoretically, it is possible that even if the model for the
response function is correct, we could beat the statistical
uncertainties on the physiCal parameters, i.e., obtain
posteriors which are centered at the same positions as their
priors, but are narrower. We speculate that a similar
measurement would require even higher SNRs, and we
will explore that possibility in a future publication.
Next, we check if the posteriors for the CBC parameters

of BNS #1 and BNS #2 are consistent with what would be
obtained using the splineCal method (which was summa-
rized in Sec. I). As for the O2 sources, we find a good
consistency between the two methods: the highest value of
the JS entropy for BNS#1 is 0.008 bits (for the arrival time
at the geocenter), whereas for BNS#2 the highest value is
0.012 bits (asymmetric mass ratio and arrival time at the
geocenter). Figure 5 shows a comparison of the asymmetric
mass ratio posterior for the BNS#2: the value of the JS
entropy is driven by the different support that the two
methods find for the secondary peak at q ∼ 0.39. The
presence of secondary peaks in some parameters is not
unusual, even for loud events, when analyzing real data
(e.g., the tidal deformability of GW170817 [54].

IV. CONCLUSIONS AND OUTLOOK

In this paper we have proposed a different and more
physical approach to marginalizing over possible system-
atic error associated with the calibration of ground-based
gravitational-wave detectors, called physiCal. We account
for departures from the nominal value of the instruments’
response functions using directly the output of the cali-
bration pipeline of LIGO’s instruments (the method can be
extended to other detectors, even though we have not done
it for this study). This method improves the existing

approach, which relies on a spline-based phenomenological
model of calibration errors, hence discarding some of the
available information about the detectors and their response
functions.
We have augmented the LALInference source characteriza-

tion algorithm with the physiCal method, and used it to
analyze the eight CBC signals in the public data from the
second observing run of the LVC.We find that the posteriors
for the CBC parameters obtained with physiCal are
extremely similar to those produced by the LVC with the
existing spline method. This is not surprising since, at the
expected SNRs of detections given the current detectors’
sensitivities, the data are not informative enough to constrain
the parameters of either calibration model better than the
well-informedpriors that are the result of the extensive efforts
to calibrate the advanced LIGO andVirgo detectors.We then
looked at the possibility of astrophysical calibration, i.e., the
idea that a high SNRCBCobservation, with perfectly known
extrinsic parameters derived from an accompanying electro-
magnetic characterization, can be used to learn something
about systematic error in each detector’s calibration. We
created a set of simulatedBNS signals and added them to real
public data from the LVC’s second observing run. For all
analyses, we assumed that the sources’ sky positions and
luminosity distances are perfectly known,whereas the orbital
inclination angles are known towithin 20°, mimicking a very
successful EM campaign which provides information about
position and orientation of the binaries.We find that for most
of the simulations nothing can be learned about the physiCal
parameters, and the posteriors are very similar to their priors.
Only for the loudest BNSs we considered, with network
SNRs around 30, were the posteriors for some of the
physiCal parameters clearly, though not dramatically, differ-
ent from their priors. Furthermore, we found that the SNR is
not the only relevant parameter to forecast how informative
any given sourcewill be, and we showed that two BNSs with
virtually the same SNRs can yield quite different posteriors
for the physiCal parameters. Ultimately, both a highSNRand
an imperfect model for the response function at the time of
the simulated event are necessary for the data to be
informative, as shown in Fig. 1 of [46]. In the representative
system we chose, the parameters that were most different
from their priors were the overall amplitude and two of the
parameters associated with the sensing function in the LIGO
Hanford detector. We argue that this is one of the main
advantages of the physiCal method over the spline-based
method: astrophysical calibration can potentially yield
information about specific components involved with the
calibrationprocess, rather than about the response function as
a whole. While we observed some departure from the
modeled response function for some of the loudest BNSs
we considered, the uncertainty in the physiCal parameters
was not narrower than the prior uncertainty established by the
calibration pipeline. That is, some of the posteriors shifted
relative to their priors, but maintained the same shape. It is

FIG. 5. Posterior distribution of q for the BNS #2 (see Table I)
obtained with the physiCal (solid orange curve) and splineCal
(dot-dashed blue curve) methods. Vertical dotted lines denote the
90% credible interval, whereas the solid vertical line indicates the
true value.
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possible that with even louder signals one could decrease
the prior statistical uncertainty in the physiCal parameters.
A large scale studywill be necessary to explore the parameter
space more systematically to fully understand which sources
would yield the best astrophysical calibration, and which of
the physiCal parameters are more likely to be constrained.
Another possible avenue to improve our understanding of the
response function is combining multiple detections. In fact,
even though for most of the weaker sources very little is
learned about the instrument, one can potentially combine all
detected signals andbuild joint posteriors for the subset of the
physiCal parameters that do not depend on time, and are thus
expected to have the same value throughout a science run.
Both of these prospects will be explored in a future
publication.
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eters [46]. As we have indicated in this paper, the two
methods yield consistent results.
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