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One of the uncertainties in nuclear physics is whether a phase transition between hadronic matter to
quark matter exists in supranuclear equations of state. Such a feature can be probed via gravitational-wave
signals from binary neutron star inspirals that contain information of the induced tides. The dynamical part
of the tides is caused by the resonance of pulsation modes of stars, which causes a shift in the gravitational-
wave phase. In this paper, we investigate the dynamical tides of the interfacial mode (i-mode) of spherical
degree l ¼ 2, a nonradial mode caused by an interface associated with a quark-hadron phase transition
inside a hybrid star. In particular, we focus on hybrid stars with a crystalline quark matter core and a fluid
hadronic envelope. We employ a hybrid method which consists of a general relativistic calculation of the
stellar structure, together with Newtonian formulations of tidal couplings and mode excitations. We find
that the resonant frequency of such i-modes typically ranges from 300 Hz to 1500 Hz, and the frequency
increases as the shear modulus of the quark core increases. We next estimate the detectability of such a
mode with existing and future gravitational-wave events from the inspiral waveform with a Fisher analysis.
We find that GW170817 and GW190425 have the potential to detect the i-mode if the quark-hadron phase
transition occurs at a sufficiently low pressure and the shear modulus of the quark matter phase is large
enough. We also find that the third-generation gravitational-wave detectors can further probe the i-mode
with intermediate transition pressure. Finally, we check our hybrid method against a fully-Newtonian
analysis and find that the two results can be off by a factor of a few. Thus, the results presented here should
be valid as an order-of-magnitude estimate and provide a new, interesting direction for probing the
existence of quark core inside a neutron star using the i-mode. A full general relativistic formalism,
however, needs to be pursued for further analysis.

DOI: 10.1103/PhysRevD.103.063015

I. INTRODUCTION

The equation of state (EOS) of matter in the high-density,
low-temperature regime remains uncertain until now.
Although quantum chromodynamics (QCD) allows us to
theoretically predict the properties of matter, it can be
solved perturbatively only at asymptotic densities [1].
At densities below the nuclear saturation density, chiral
effective field theory (CFT) is useful for obtaining the
EOSs to a good precision ([2–4], see [5] for a review).
However, at intermediate densities, around 1-10 times the
nuclear saturation density, the nonperturbative nature of
QCD makes it difficult to constrain the microscopic theory
of matter, while CFT calculations fail to converge at these
energy scales. Meanwhile, neutron star (NS) cores, where
densities lie within this range, serve as natural laboratories
that allow us to probe the properties of cold dense matter.
QCD predicts that matter undergoes a phase transition

from hadronic matter to quark matter at high density. The
possibility of the existence of deconfined quark matter

inside NS cores has been of interest for decades. Recently,
Annala et al. [6] showed some evidence supporting
deconfinement within massive NSs. This particular class
of NSs containing quark matter cores, known as hybrid
stars (HSs) [7], may show unique signatures in their
observables due to the existence of a phase transition
between hadronic and quark matter. For instance, a strong
phase transition can lead to the existence of twin stars
([8–10]), i.e., a HS and a NS with the same mass but
different radii.
It is expected that within a low-temperature, high-density

environment like the HS core, the quarks form Cooper
pairs and exist in a color superconducting phase due to the
attractive channels of the strong interaction. At asymptoti-
cally high densities where the up, down, and strange quarks
have negligible mass, it is well-established that the nine
quarks of different flavors and colors pair up equally to
form Cooper pairs through the BCS mechanism and exist in
the color-flavor-locked (CFL) phase [11]. For the relatively
lower density region where the strange quark mass
becomes more significant, other color superconducting
phases are proposed. One possibility is the crystalline
color superconducting (CCS) phase [12,13]. This phase
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is formed from the pairing of quarks with unequal magni-
tudes of momenta through a non-BCS mechanism, causing
the spontaneous breaking of translational invariance. Its
crystalline properties are studied in [14], which predicts
that its shear modulus can be as high as 1000 times that of a
NS crust.1

The EOS has been constrained by measuring the macro-
scopic NS parameters (e.g., mass, radius). The majority of
the observed pulsars through electromagnetic (EM) signals
have masses between 1–2 M⊙ [23], with the most massive
one measured to be 2.14þ0.10

−0.09 M⊙ [24]. The mass and
radius measurement from thermonuclear bursts and quies-
cent low-mass x-ray binaries have been used to probe the
EOS [25–29]. Recently, Neutron star Interior Composition
Explorer (NICER) measured the mass and radius of PSR
J0030þ 0451 [30,31], which has also been used to con-
strain the EOS further [32].
The features in the EOS can also be inferred from

gravitational-wave (GW) observations through tides.
During the late inspiral stage, the equilibrium part of tides
leaves an imprint on the GW phase characterized by the
tidal deformability [33–35], which is the quasistatic linear
response coefficient. Such tidal deformability can be used
to probe HSs [6,10,36–42]. Close to merger, dynamical part
of tides becomes important [43]. One can also use post-
merger signals to probe HSs [44–46].
The GW events GW170817 [47] and GW190425 [48]

have placed constraints on the weighted-averaged tidal
deformability parameter, Λ̄. Moreover, the normalized tidal
deformability of a 1.4 M⊙ NS is found to have an upper
bound of 800 within a 90% confidence level for the low
spin scenario in GW170817 [47]. One can further constrain
the tidal deformability [49,50] by using theoretical knowl-
edge of certain quasiuniversal relations [51–55]. These tidal
deformability measurements of NSs can be mapped to
bounds on the NS radius [56–59] and constrain the EOS
(see e.g., [47,60–66]). Moreover, one can combine various
multimessenger observations of NSs. For example, Dietrich
et al. [67] combined the GW signal from GW170817, the
NICER observation of PSR J0030þ 0451 and radio
observations of PSR J0740þ 6620, PSR J0348þ 4032,
PSR J1614-2230 to find a new constraint on the radius
of a 1.4 M⊙ NS as 11.74þ0.98

−0.79 km within 90% confidence
level (see also, e.g., [68–74] for other constraints on the NS
tidal deformability, radius and EOS with multimessenger
observations).
The dynamical tides are the resonance of the quasinor-

mal modes of the NSs, which can cause a phase shift in the
GW signal as the orbital frequency sweeps through the
resonant frequency of each mode [75]. The dominant non-
radial pulsation mode is the fundamental mode (f-mode).
This mode has a relatively high resonant frequency of

>1500 Hz and is excited at a very late stage of inspiral or in
the post-merger phase in which the two NSs merge and
form a massive NS. The frequency is beyond the sensitive
region of the current ground-based detectors, making its
detection from the GW signal very challenging.
On the other hand, there are modes with lower resonant

frequencies, such as the gravity modes (g-modes),
which fall within the most sensitive part of the detectors’
spectral noise curve. These modes depend on the internal
properties like composition gradient or temperature (see,
e.g., [76–80]). The discontinuity g-mode is a special type of
g-mode caused by the existence of a discontinuity in
density, which can occur at the interface between the
hadronic and quark phase inside a HS [81,82].2 This mode
is sometimes referred to as the interfacial mode (i-mode) in
certain literature studying NSs with a crust [83–85] and it
can be caused by discontinuities in either the density or the
shear modulus. In particular, McDermott et al. [83] studied
NSs with a solid crust and surface ocean and showed that
there is one i-mode associated with each of the core-crust
interface and crust-ocean interface at a fixed spherical
harmonic order l. In this paper, we use the terminology
“i-mode” instead of “discontinuity g-mode” for the mode
associated with the quark-hadron interface inside a HS to
avoid confusion with other g-modes associated with factors
like composition gradient.
Recent studies have shown the potential detectability

of g-modes in various NS models with different compo-
sitions using third-generation GW detectors by stacking
multiple events [86]. It is known that the properties of
the non-radial mode spectrum in HSs with a first-order
phase transition can be quite different from those of NSs
[87–89]. Whether these modes in a HS are detectable
by the current detectors is certainly of interest. Since the
i-mode (or the discontinuity g-mode) depends strongly on
the properties of the quark-hadronic matter interface,
detection of such a mode would provide strong evidence
of deconfinement within the HSs. The goal of this paper
is to study the detectability of the i-mode of various HS
EOSs with a first-order phase transition from the GW
signal of a HS-HS merger, assuming the quark matter
core is in the CCS phase.
In this paper, we first calculate the i-modes of a set of

HS models with a first-order phase transition between the
hadronic phase and the CCS quark phase. We then analyze
the detectability of the i-mode resonance from an inspiral-
ling HS binary using Fisher analysis. We assume the HS
core to be in the CCS phase to incorporate the effect of
shear modulus on the i-mode to investigate not only the
effect of density discontinuity, but also that of the solid-
fluid transition on the detectability with GW observations.

1The astrophysical properties of systems having such a rigid
phase are investigated in [15–22].

2An analogy to this mode is the deep water gravity waves at the
water-air interface on Earth.
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We find that the detectability depends on the transition
pressure (Pt) of the EOSs. For low Pt models, the i-mode of
some models is detectable with Advanced LIGO (aLIGO)
at its design sensitivity. As Pt increases, the effect of
i-mode on the GW phase decreases and becomes less
detectable even with the next-generation detectors. Besides,
we consider the effect of the shear modulus of the CCS
quark matter core on the i-mode detectability. We find that
the i-mode resonant frequency and phase shift magnitude
both increase with the shear modulus. While the increased
phase shift makes the mode easier to detect for models with
low Pt EOSs, the increased resonant frequency reduces its
detectability for models with higher Pt if the frequency
exceeds the inspiral cutoff frequency. Using gravitational
waveform parameters corresponding to GW170817 and
GW190425, we also find that the i-mode can potentially be
detected for low Pt EOSs if the quark matter shear modulus
is high enough. Among the two events, the i-mode is less
detectable with GW190425 than GW170817 due to its
larger luminosity distance.
This paper is organized as follows: In Sec. II, we

describe the method to calculate the background HS
models with the general relativistic equations and the
nonradial pulsation modes within Newtonian theory. We
then consider the dynamical tides within the inspiralling
HSs which leads to the excitation of the i-modes. In
Sec. III, we describe the method for parameter estimation
with the Fisher information matrix, which allows us to
quantify the detectability of the i-mode parameters. In
Sec. IV, we describe the HS EOSs to be considered in this
study. In Sec. V, we calculate the detectability of i-modes
with the method described in the previous sections. In
Sec. VI, we check the consistency of our method, which
combines the relativistic calculation for the background
model with the Newtonian calculation of the pulsation
modes and the tidal coupling, with another approach purely
within the Newtonian formalism. We conclude in Sec. VII
and present possible future directions.

II. MODE CONTRIBUTION TO WAVEFORMS

In this section, we first explain how to compute the
i-mode oscillations of HSs via a hybrid method. We next
describe how such oscillation modes affect the GW wave-
forms from binary HS inspiral.

A. Nonradial pulsation modes in a hybrid formalism

To calculate the effects of the i-modes on the GW signal,
we need to first solve for the i-mode frequencies and
eigenfunctions for a given EOS and use this to find the
tidal coupling coefficient which will be introduced in
Sec II B. The formulation within the Newtonian frame-
work is described in [75], which requires one to use the
Newtonian equations to construct the background solution
and the perturbed, pulsating solution. In this paper, we take

a different approach called a hybrid formulation (see, e.g.,
[86,90]), where we include fully relativistic effects for the
background but keep the perturbation to a Newtonian level.
For the background nonrotating, radially symmetric solu-

tion, we solve the Tolman-Oppenheimer-Volkoff (TOV)
equations given by3

dPðrÞ
dr

¼ −
ðρþ PÞðmþ 4πr3PÞ

r2ð1 − 2m=rÞ ; ð1Þ

dmðrÞ
dr

¼ 4πρr2; ð2Þ

wheremðrÞ is the mass enclosed within a sphere of radius r
from the stellar center. Integrating the above equations
together with the EOS and requiring that the pressure
vanishes at the stellar surface, we obtain the static profile
of the HS.
The formulas governing the pulsation in Newtonian

theory can be found in various literature. We employ the
formulation in [83], without taking the Cowling approxi-
mation, i.e., without omitting the gravitational perturba-
tions. The formulation and the corresponding derivation
are briefly discussed in Appendix A. By numerically
solving the set of pulsation equations, we can obtain the
eigenfrequencies and eigenfunctions of a set of non-radial
modes for each spherical degree l.

B. Tidal coupling and phase shift in the waveform

During a HS-HS inspiral, the i-modes resonates as the
orbital frequency sweeps through the resonant frequency
and causes a phase shift in the GW waveform. Following
Lai [75], the overall phase shift for an l ¼ 2 mode is given
by the equation

δϕα ¼ −
5π2

4096

�
R
M

�
5 2q
ð1þ qÞ

1

Ω2
n2m

jQn2mj2; ð3Þ

whereM and R are the stellar mass and radius, q is the ratio
of the companion mass to that of the pulsating HS, Ωn2m is
the normalized resonant frequency for the l ¼ 2 mode
defined by

Ω2
nlm ¼ R3ω2

nlm

M
; ð4Þ

with ωnlm representing the mode angular frequency.Qnlm is
the tidal coupling coefficient defined by

3Note that we do not need to solve for the ðt; tÞ component of
the background metric since we apply the Newtonian pulsation
equations and the unperturbed Newtonian potential is simply
given by −m=r.
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Qα ¼ Qnlm ¼ 1

MRl

Z
d3xρξ⃗�nlm · ∇ðrlYlmÞ: ð5Þ

Here we use the set of subscripts α ¼ ðn; l; mÞ to specify an
eigenmode with a radial quantum number n, spherical
harmonics degree l and order m. The quantum number n is
an index that labels all the nonradial modes with the same l
and m, ranked in ascending order of resonant frequencies.
For a typical NS with a solid crust, this includes the
fundamental (f) mode, the interfacial (i) mode and the
gravity (g1; g2;…) modes, etc.4 [83]. The eigenvectors are
normalized by

Z
d3xρjξ⃗nlmj2 ¼ MR2: ð6Þ

We investigate only the fl; mg ¼ f2;�2g i-mode con-
tribution on the GW phase, which dominates the phase
shift. From Eq. (5), we can easily see that Qn22 ¼ Qn2−2.
Hence, we have the i-mode overall phase shift given by

δϕαi ¼ −
5π2

2048

�
R
M

�
5 2q
ð1þ qÞ

1

Ω2
ni22

jQni22j2; ð7Þ

where ni is the radial quantum number corresponding to
the i-mode, and αi is the index representing the combined
contributions from the l ¼ 2 i-modes, i.e., the sum of
fni; 2; 2g and fni; 2;−2g modes.
The contribution from a pulsation mode on a binary

inspiral waveform appears as a shift in the phase and time
when the binary sweeps through the resonant frequency.
The resulting correction to the phase in the frequency
domain is given by [86,91,92]

ΔΨαiðfÞ ¼ −
X
A¼1;2

δϕðAÞ
αi

�
1 −

f

fðAÞαi

�
θ
�
f − fðAÞαi

�
; ð8Þ

where ΔΨαiðfÞ is the phase correction in frequency

domain, δϕðAÞ
αi and fðAÞαi are the overall phase shift and

the resonant frequency due to the i-mode of the Ath body,
and f is the GW frequency from the inspiral. θðf − fαiÞ is
the Heaviside step function. To reduce the number of
parameters, we follow [93] and rewrite the above phase
shift as

ΔΨαiðfÞ ≈ −δϕ̄αi

�
1 −

f

f̄αi

�
θðf − f̄αiÞ; ð9Þ

where the total phase shift δϕ̄αi and the weight-averaged
mode frequency f̄αi are given by

δϕ̄αi ¼ δϕð1Þ
αi þ δϕð2Þ

αi ; ð10Þ

f̄αi ¼ δϕ̄αi

�
δϕð1Þ

αi

fð1Þαi

þ δϕð2Þ
αi

fð2Þαi

�−1

: ð11Þ

In the following, we drop the subscript αi on the mode
frequency and phase shift to simplify the expressions.

III. FISHER ANALYSIS

For a signal with a high signal-to-noise ratio (SNR), we
use the Fisher information matrix to approximate the
posterior distribution of the GW signal parameters [94].
Given a GW signal hðtÞ that depends on a set of parameters
contained in the vector θa, the Fisher matrix is defined by

Γab ¼
� ∂h
∂θa

���� ∂h∂θb
�
; ð12Þ

where the inner product between aðtÞ and bðtÞ is defined by

ðajbÞ ¼ 2

Z
∞

0

ã�b̃þ ãb̃�

SnðfÞ
df: ð13Þ

Here, the overhead tilde represents the Fourier transform
while � represents a complex conjugate. SnðfÞ is the
spectral noise density of the detector. For simplicity, we
follow [94,95] and assume the prior of θa to be a Gaussian
function with a root-mean-square σa. The effective Fisher
matrix taking into account this information is given by

Γ̃ab ¼
� ∂h
∂θa

���� ∂h∂θb
�
þ 1

σ2a
δab: ð14Þ

The root-mean-square uncertainty in the measurement of θa

is given by

Δθa ¼
ffiffiffiffiffiffiffi
Σaa

p
; Σab ≡ ðΓ̃−1Þab: ð15Þ

If the uncertainty is smaller than the measured value in
magnitude, it is considered detectable. It is also convenient
to define the correlation coefficients to quantify the
correlations between different parameters:

Cab ¼
Σabffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣaaΣbb

p : ð16Þ

The diagonal element of Cab is normalized to unity while
the off-diagonal elements quantify the amount of correla-
tion between two different parameters, ranging from 0
(no correlation) to �1 (strong correlation).
The frequency domain waveform has the form

hðfÞ ¼ AðfÞe−iΨðfÞ: ð17Þ
4f and i do not have any subscripts since for each (l,m) there is

only one f-mode and one i-mode per interface.
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The functional forms of the amplitude AðfÞ and phaseΨðfÞ
depend on the waveform templates. In this paper, we use
the sky-averaged IMRPhenomD GW waveform template
[96,97] for point particles, with the addition of the 5PN and
6PN tidal contributions to the phase in [34,98], as well as
the effect of mode resonance given in Eq. (9). The elements
of the parameter set θa are given by

θa ¼ ðlnA;ϕc; tc; lnMz; ln η; χs; χa; Λ̄; δΛ̄; f̄; δϕ̄Þ: ð18Þ

The meaning of each element is as follows: the sky-
averaged normalized amplitude

A ¼ M5=6
zffiffiffiffiffi

30
p

π2=3DL

; ð19Þ

with the luminosity distance from the source DL; the
redshifted chirp mass Mz ¼ Mð1þ zÞ, where

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

ð20Þ

is the chirp mass; the symmetric mass ratio

η ¼ m1m2

ðm1 þm2Þ2
; ð21Þ

the symmetric and asymmetric spin parameters χs;a ¼
ðχ1 � χ2Þ=2, where χ1;2 are the dimensionless spins of
the individual stars; the reparametrization of the mass
weighted tidal deformabilities (see, e.g., [98])

Λ̄ ¼ 8

13

h
ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ

i
; ð22Þ

δΛ̄ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1 −

13272

1319
ηþ 8944

1319
η2
�
ðΛ1 þ Λ2Þ;

þ
�
1 −

15910

1319
ηþ 32850

1319
η2 þ 3380

1319
η3
�
ðΛ1 − Λ2Þ

	
;

ð23Þ

where Λ1;2 are the individual tidal deformabilities normal-
ized by m5

1;2; the phase-shift-weighted i-mode frequency f̄
and the overall phase shift due to the i-mode δϕ̄. Note
that if we consider binaries of identical stars, we have
Λ̄ ¼ Λ1 ¼ Λ2 and δΛ̄ ¼ 0.
At high frequencies, the tidal part of the waveform

that we use becomes less accurate as the HSs will
eventually come to contact. Following [94], we only
consider the inspiral waveform, which terminates at a
separation of 6ðm1 þm2Þ, which is equivalent to the
radius of the innermost stable circular orbit (ISCO) of

an object orbiting around a non-spinning central object
with mass ðm1 þm2Þ. This corresponds to a cutoff fre-
quency fISCO¼½63=2πðm1þm2Þ�−1 in the Fisher estimate.5

In the following analysis, we pick the fiducial values for
(ϕc, tc, χs, χa) to be (0, 0, 0, 0). The tidal deformability
parameters (Λ̄, δΛ̄) are set as (800, 0) for identical HS
binaries6 and are specified otherwise in asymmetric cases.
We use the spin priors of jχs;aj < 1 and tidal priors of
0 < Λ̄ < 3000 and jδΛ̄j < 500 [98]. The values of f̄ and δϕ̄
depend on the HS models and are calculated with the
method described in Sec. II.

IV. EQUATION OF STATE

Let us now describe how we construct the EOSs used in
our analysis.

A. Quark matter EOS: Modified bag model

The quark matter EOS is described by the bag model [7]:

Ω ¼ −P ¼ −
3

4π2
a4μ4q þ

3

4π2
a2μ2q þ Beff ; ð24Þ

where Ω is the grand potential density, P is the pressure,
μq is the quark chemical potential, and ða4; a2; BeffÞ are
phenomenological parameters. The physical meaning and
the ranges of the parameters are discussed in [7]. The
parameter a4 accounts for the QCD coupling constant and
takes a value between 0 and 1. a2 is the contributions from
both the pairing gap of the color-superconducting phase
and the strange quark mass. Beff is the effective bag
constant that models confinement. The value of a2 is
expected to be of order 104ðMeVÞ2. In the case of the
simplest MIT bag model consisting only of free massless
quarks, the bag constant, BMIT, lies within the range of
145 MeV < B1=4

MIT < 160 MeV (see, e.g., [99] and refer-
ences therein). In the modified bag model, it is instead
treated as an arbitrary parameter.
The other thermodynamic variables is determined using

Eq. (24) and thermodynamic relations. In particular, the
energy density ρ is given by

5For stiff EOSs, the HSs may come to contact before reaching
the separation of 6ðm1 þm2Þ, i.e., R1 þ R2 > 6ðm1 þm2Þ,
where R1 and R2 are the radii of the HSs. In these cases, the
actual cutoff frequency should be set lower than fISCO. However,
since the spectral noise density increases quickly in the high-
density region, the uncertainty estimates using the Fisher matrix
is not significantly affected as long as the actual cutoff frequency
does not differ too much from fISCO and the i-mode resonant
frequencies are not too close to the cutoff frequency.

6In reality, Λ̄ varies for different EOSs. However, we have
checked that Δδϕ̄ is insensitive to the choice of Λ̄ and thus in this
study, we fix its value to be 800 for simplicity. Same applies to δΛ̄
with its value fixed to be 0.
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ρ ¼ 9

4π2
a4μ4q −

3

4π2
a2μ2q þ Beff : ð25Þ

We assume the quark matter core to be in the CCS phase,
a non-BCS color superconducting phase existing as an
extremely rigid solid. The shear modulus is given by the
formula [14]

μ ¼ ν0

�
Δ

10 MeV

�
2
�

μq
400 MeV

�
2

; ð26Þ

where the constant ν0 has a value of 2.47 MeV=fm3. Δ is
the gap parameter of the CCS phase with a range between
5 MeV and 25 MeV [14].

B. Hadronic matter EOS

Next, we explain hadronic EOSs (HEOSs) for construct-
ing HSs. It is expected that the EOS gets softened as quark
matter appears inside the core. To ensure that the HS EOSs
have the maximum stable mass beyond the 2 M⊙ constraint
from observations, we do not consider HEOSs that are too
soft. The models we classify as intermediate in terms of
stiffness are: MPa1 [100], DDHδ [101], Hebeler2; and
those with high stiffness are MS1 [102], NL3 [103], TM1
[104], Hebeler3. The models Hebeler2 and Hebeler3
are taken from the subtables labeled as “intermediate”
and “stiff” respectively in Table 5 of [105]. They are the
representative HEOSs with the low-density part satisfying
the results derived from CFT. The sub- and supranuclear
density parts satisfy the constraints from massive pulsars.
For simplicity, we do not include detailed crust models
containing additional phase transitions and possible
density gaps in the outer crust region that can give rise
to additional i-modes or g-modes in the low-frequency
region (10–100 Hz) [84].

C. Hybrid star models

We now use the quark and hadronic matter EOSs
explained in the previous subsections to construct HS
models. The first-order phase transition from hadronic
matter to quark matter is modeled with Maxwell con-
struction, which requires the continuity of pressure and
the baryon chemical potential, assuming local charge
neutrality. The density is discontinuous at the transition
point. The procedure of the construction is presented in
Appendix B.
We construct HS models with different combinations

of a4, a2, Beff , Δ and nuclear matter EOSs, requiring
the HS EOSs to satisfy the observational constraints
on the maximum mass (MTOV > 2 M⊙), radius (R1.4 M⊙

∈
½8.9; 13.5� km from various multimessenger observations;
see Table 1 of [67]) and tidal deformability (Λ̄ < 800).
The EOS parameters of the HS models constructed are
listed in Table I.
In Fig. 1, we show the mass-radius relations of the HS

models and the HEOSs. We classify the EOSs into
“intermediate” and “stiff” EOSs based on their radius
within the mass range between 1–2 M⊙. We do not
consider HEOSs that are too soft, since the appearance
of quark matter softens the EOSs further for densities
beyond the quark-hadron transition point compared to the
corresponding HEOSs, which leads to a maximum stable
mass below the current bound of 2 M⊙. The quark matter
EOS parameters are also restricted within a certain range
due to this maximum mass constraint.
Putting the observational constraints into considera-

tion, we expect that the transition pressure Pt of the HS
EOSs in Table I is loosely correlated with the stiffness
of the HEOSs in order to produce models that are stiff
enough to support 2 M⊙, but cannot be too stiff not to
exceed the upper bound set on the tidal deformability and
radius measurements. Roughly speaking, the maximum
mass observations constrain the EOS stiffness from
below while the upper bound set on radius and tidal

TABLE I. HS EOSs with the quark matter EOS parameters, the HEOSs and Pt for the envelope listed. The EOSs are divided into
3 sections characterized by the transition pressures: low Pt (top), intermediate Pt (middle), high Pt (bottom). The transition densities (ρt)
are also shown, with superscripts “QM” denoting the quark matter phase and “HM” denoting hadronic phase.

EOS a4 a1=22 (MeV) B1=4
eff (MeV) HEOS Pt ðdyn cmÞ−2 ρQMt ðg cm−3Þ ρHMt ðg cm−3Þ

MS1-QM 0.52 108 135 MS1 6.21E33 3.73E14 2.26E14
Heb3-QM-1 0.5 102 134 Hebeler3 1.14E34 3.78E14 3.52E14
NL3-QM 0.53 90 140 NL3 1.04E34 4.23E14 2.86E14
TM1-QM 0.55 105 140 TM1 1.32E34 4.45E14 3.18E14

Heb3-QM-2 0.53 143 128 Hebeler3 5.02E34 5.13E14 4.78E14
Heb3-QM-3 0.53 156 123 Hebeler3 4.75E34 4.84E14 4.83E14
DD2-QM 0.55 100 140 DD2 4.32E34 5.46E14 5.29E14

MPa1-QM 0.57 90 140 MPa1 1.23E35 8.13E14 7.94E14
Heb2-QM 0.55 70 140 Hebeler2 1.26E35 8.04E14 7.78E14
DDHδ-QM 0.57 87 142 DDHδ 1.53E35 9.22E14 9.17E14
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deformability measurements constrain from above.
Since the appearance of quark matter softens the EOSs
and generally lowers the maximum mass, soft HEOSs
that barely meet the constraints on maximum mass
cannot be used to construct valid HS EOSs. Also, an
HS EOS with a hadronic part of intermediate stiffness
must have a high Pt, which in turn gives a transition
point at relatively high mass on the M − R curve (see
the left panel of Fig. 1), to satisfy the 2 M⊙ lower bound
on the maximum mass. Meanwhile, those with a stiff
HEOS cannot have a high Pt, or else it would exceed the
13.5 km upper bound on the radius (see the right panel
of Fig. 1).
In the following analysis, we classify the HS EOSs

according to Pt. The models with HEOSs of intermediate
stiffness will have a high Pt in order to meet the
observational constraints. For those with a stiff HEOS,
we can construct a wider range of Pt covering intermediate
Pt and low Pt as indicated in Table I, while the HS models
still satisfy the observation bounds.

V. RESULTS

Let us now present all the numerical results. We first
show how the i-mode frequency and phase shift depend
on the quark parameters, in particular Δ. We next present
the detectability of such modes with current and future
GW observations, including the existing GW events of
GW170817 and GW190425.

A. i-mode dependence on the properties
of the phase transition

The frequency and phase shift of the i-mode depend
strongly on both the density gap and shear modulus gap at
the interface. Each EOS listed in Table I has a specific value
of density gap, while the shear modulus for each model can
still vary with Δ according to Eq. (26). To get an idea of
how the elastic properties affect the i-mode, we consider
HSs with quark matter in the CCS phase with different Δs.
In Fig. 2, we show the i-mode frequency and phase shift

against Δ of two representative HS models with 1.4 M⊙.
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FIG. 1. M − R relations of the HS models (dashed lines) and hadronic matter models (solid lines) constructed with intermediate (left)
and stiff (right) HEOSs.
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FIG. 2. (Left) The weight-averaged i-mode frequency of (1.4, 1.4) M⊙ HS binary models against Δ. A low Pt EOS (MS1-QM; in
black squares) and an intermediate Pt EOS (Heb3-QM-3; in orange dots) are chosen to construct the models. (Right) Similar to the left
panel but for the total overall phase shift. The phase shift of Heb3-QM-3 near Δ ¼ 10 MeV exceeds over 10 due to the avoided crossing
between the i-mode and the f-mode (not shown in this figure). Near this region, the phase shift of the two modes comes close to each
other and the resonant frequencies repel to avoid a degeneracy.
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MS1-QM, denoted by the black squares, is a HS model
with a low Pt, while Heb3-QM-3, denoted by orange dots,
is a model with intermediate Pt.
The Δ dependence of f̄ and δϕ̄ are found to be much

stronger for the intermediate Pt model. Besides, the Δ
dependence for δϕ̄ for this model is not monotonic in
contrast to the low Pt models. This is because δϕ̄ varies as
the square of the tidal coupling coefficient, Qnlm, and
inversely with the square of the mode frequency [see
Eq. (7)]. For small Δ, the rate of increase in jQnlmj
outweighs that of the mode frequency, while the opposite
happens at large Δ. This causes δϕ̄ to increase initially and
fall off for large Δ.
The peak of jδϕ̄j with a value of ∼40 near Δ ¼ 10 MeV

is a consequence of mode repulsion. When the frequency of
the i-mode is close to another mode, such as a spheroidal
shear mode, the mode frequencies repel with each other
without crossing while the phase shift of the two modes
comes close to each other. This phenomenon is the
avoided crossing and is commonly observed in stellar
pulsation problems (see, e.g., Ch.17 of [78]) as well as
other eigenvalue problems. The avoided crossing near
Δ ¼ 10 MeV in Fig. 2 happens between the i-mode and
the f-mode. To further demonstrate this phenomenon, we
show in Fig. 3 both the i-mode and f-mode forΔ between 7
and 11 MeV with the EOS Heb3-QM-3. Observe that there
is a repulsion in mode frequencies around Δ ¼ 9.5 MeV,
while jδϕ̄j of the two modes cross each other.
Before we discuss the detectability of the i-mode of HSs,

it is worth pointing out its difference from the typical
i-modes associated with the interface(s) inside a NS (such
as the one between the hadronic fluid envelope and the
solid crust or phase transitions inside the crust). The i-mode
frequency of HSs typically ranges between 300 and
1500 Hz, while that of a NS is generally lower. Krüger
et al. [84] computed the l ¼ 2 i-modes of a NS with the
SLy4 EOS and a crust model with multiple first-order phase
transitions using a general relativistic formalism. All of the

i-modes have frequencies below 121 Hz. From the differ-
ence in mode frequencies, the i-mode of a HS can be clearly
distinguished from that of a NS.

B. i-mode detectability with gravitational waves

Upon the observation of a GW signal, one can estimate
the parameters that “best fit” the waveform to the measured
signal buried inside the noise. Due to this, the estimated
parameters always come with uncertainties. In Sec. III, we
have briefly discussed how the parameter estimation errors
can be found using the Fisher matrix for a large SNR. In
particular, the statistical uncertainties of f̄ and δϕ̄ in the
parameter estimation determine whether they are measur-
able from the signal. As our numerical result shows that
the relative uncertainty in δϕ̄ is always larger than that of f̄,
the detection criterion of the i-mode can therefore be set
as Δðδϕ̄Þ < jδϕ̄j.

1. Equal-mass systems

Let us first analyze the detectability of the phase shift
due to the excitation of the i-mode during the inspiral of a
symmetric (equal-mass, non-spinning) HS-HS merger,
which consists of identical HSs. With this assumption, f̄
is identical to the i-mode resonant frequency, and δϕ̄ is
twice the phase shift of the individual HS. If we fix the
mass of our models and assume no spin, there are 4
parameters that depend on the EOSs: the tidal deformability
parameters Λ̄ and δΛ̄, the (weighted-averaged) i-mode
resonant frequency f̄, and the overall orbital phase shift δϕ̄.
One might expect the detectability of the i-mode to depend
on all of the parameters. However, we found that the
correlation between the tidal deformability parameters
and the i-mode parameters is small. For example, the
correlation coefficient CΛ̄δϕ̄ defined in Eq. (16) is about
0.001–0.03 and similar for other combinations between the
tidal deformability and i-mode parameters, which is much
lower than that for the correlation between f̄ and δϕ̄
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FIG. 3. The avoided crossing of the i-mode and f-mode as Δ changes from 7 to 11 MeVof a 1.4 M⊙ HS model with the EOS Heb3-
QM-3. The left panel shows the repulsion of the frequencies of the higher frequency mode and the lower frequency mode. The right
panel shows the exchange in jδϕj between the two modes.
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ðCf̄δϕ̄ ∼ 0.3–0.8Þ. Hence, we can estimate the detectability
by varying fiducial values of f̄ and δϕ̄ only, keeping those
of Λ̄ and δΛ̄ fixed.
In the left panel of Fig. 4, we show jδϕ̄j and the

corresponding f̄ for each of the HS models from Table I
with mass fixed at 1.4 M⊙, together with the minimum jδϕ̄j
required for detection based on the Fisher analysis using the
Advanced LIGO (aLIGO) [106] with its design sensitivity
and the Cosmic Explorer (CE) [107]. As discussed above,
we set the minimum required jδϕ̄j to be its root-mean-
square error Δðδϕ̄Þ, obtained from Eq. (15). We have
assumed the luminosity distance, DL, to be 100 Mpc. This
corresponds to a signal-to-noise (SNR) ratio of 20 for
aLIGO and 620 for CE. To account for the number of
interferometers, we set N ¼ 2 for aLIGO and N ¼ 1 for
CE.7 The detection threshold for jδϕ̄j increases with f̄
because the detector sensitivity deteriorates at higher f
and the i-mode contributes to the phase only for f ≥ f̄ (see
Eq. (9) and thus its contribution becomes smaller for
higher f̄.
Based on our results, the i-mode of some of the low Pt

models with large Δ causes a large jδϕ̄j (∼10) in the
waveform, making its phase shift above the minimal
threshold required for detection with aLIGO. Models with
lower Δ are still above the detectability threshold of CE
except for those with zero or very small Δ. As for the
intermediate Pt EOSs, the i-mode of all the models cannot
be detected with the aLIGO detector. With CE, the i-mode
of a few models within a narrow range of Δ are detectable.

The cutoff frequency, fISCO (see Sec. III), is also indicated
in the figure with a vertical dashed line. The i-modes with
resonant frequency above this limit cannot be detected from
the inspiral signal alone. Since the i-mode frequency of the
intermediate Pt models depends strongly onΔ as illustrated
in Fig. 2, models withΔ larger than 15MeVare beyond this
cutoff frequency. Hence, only a few models withΔ between
5 to 15 MeV have the i-mode detectable with CE. For high
Pt EOSs, since the central pressure is below Pt for models
with 1.4 M⊙, there is no i-mode being excited and there-
fore are not present in the figure.
We also consider the HS binaries consisting of two

1.8 M⊙ HSs with the results shown in the right panel of
Fig. 4. Compared to the 1.4 M⊙ case, the low Pt models
have lower jδϕ̄j in general, while that of the intermediate Pt
models are within the same order of magnitude. Most of the
HS models are below the detectability threshold of the
aLIGO detectors except for a few low Pt models with large
Δ, while there is still a considerable portion of the lowPt and
intermediate Pt models within the detectable region of CE.
The 1.8 M⊙ models with high Pt EOSs have a phase

transition at the core, unlike the 1.4 M⊙ models. These
models, represented by magenta symbols in the right panel
of Fig. 4, have low jδϕ̄j and are below the detectability
threshold of both detectors. The points of the intermediate
Pt models are less scattered than the 1.4 M⊙ case,
indicating a weaker dependence of f̄ and jδϕ̄j on Δ. In
contrast, the high Pt models show a widespread along f̄,
which is similar to the case with the 1.4 M⊙ intermediate Pt
models.
From the above discussion, we see that Δ affects the

detectability in different ways depending on Pt. As Δ
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FIG. 4. (Left) The magnitude of the i-mode’s total overall phase shift jδϕ̄j and the corresponding weight-averaged resonant frequency
f̄ for each HS EOS from Table I, together with the detectability threshold with aLIGO (green solid) and CE (red dashed). If a point is
above these curves, such an effect is detectable with the corresponding detector. Here we have assumed an equal-mass HS system with
an individual mass of 1.4 M⊙. We consider intermediate Pt models (Heb3-QM-3, Heb3-QM-2, DD2-QM in blue) and low Pt models
(MS1-QM, Heb3-QM-1, NL3-QM, TM1-QM in black). The i-mode becomes undetectable if the frequency f̄ is higher than the inspiral
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7The amplitude of GWs is effectively enhanced by
ffiffiffiffi
N

p
.
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increases, the models in Fig. 4 shift toward larger values of
f̄ and jδϕ̄j in general. For the low Pt models, the i-mode
frequency is generally below fISCO for the range of Δ
corresponding to the CCS phase. Hence, the large Δ
models would be more detectable due to their larger phase
shift magnitude. On the other hand, the i-mode frequency
of the high Pt models is more sensitive to Δ. Some models
with large Δ have the i-mode frequency higher than fISCO,
which means the mode is not excited during the inspiral
stage. As a result, the models with large Δ have a higher
chance of being detected for the low Pt EOSs, while those
with intermediate Δ are the most detectable ones for the
intermediate Pt EOSs. This is similar to the case with
1.4 M⊙ HSs.

2. GW170817 and GW190425

Let us now study the GWevents that have been detected,
in particular GW170817 and GW190425 that are consid-
ered as binary NS mergers. If at least one of the stars in
these events has a quark-hadron phase transition, the
excitation of the i-mode will be encoded in the phase of
the inspiral signal. We can apply the method from the
previous subsection to analyze its detectability with the
corresponding aLIGO run. In our Fisher analysis which
gives us the threshold values of jδϕ̄j, the parameters of the
signal (m1, m2, DL) are taken to be (1.46 M⊙, 1.27 M⊙,
40 Mpc) for GW170817 and (1.60 M⊙, 1.75 M⊙,
159 Mpc) for GW190425. The tidal deformability param-
eters Λ̄ and δΛ̄ are also adjusted accordingly. We take (Λ̄,
δΛ̄) to be (588, 94) for GW170817 and (160, −20) for
GW190425, which are computed with the formulation
described in [108], assuming the Heb3-QM-1 EOS with a
fluid core. Nevertheless, due to their negligible correlations
with the i-mode parameters, fiducial values of the tidal

parameters should not have any significant impact on the
numerical results. The noise spectral density data corre-
sponding to the aLIGO second Observing run (O2) for
GW170817 and the third Observing run (O3) for
GW190425 respectively are obtained from [109]. We select
the high Pt model MPa1-QM, intermediate Pt model Heb3-
QM-3 and low Pt models M09m, Heb3-QM-1 from Table I
for the analysis.
The left panel of Fig. 5 presents the detectability of HS

models for GW170817 with the i-mode excitation during
the inspiral. Part of the low Pt models with large Δ have
jδϕ̄j above the detectability threshold. Certain models, even
having a large Δ, are below the threshold due to the high
resonant frequency. It is worth noting that the values of jδϕ̄j
can go as high as ∼100 for large Δ, which is comparable to
that of the f-mode (see, e.g., [75,110], for values of jQnlmj).
The large value of the phase shift mainly comes from the
secondary (1.27 M⊙) HS in the binary. The intermediate Pt
models have a smaller i-mode phase shift in general, and
are below the threshold. The strong Δ dependence of the i-
mode frequency for the intermediate Pt models makes the
frequency go beyond fISCO when Δ is larger than 15 MeV.
Meanwhile, the models with the high Pt EOSs do not

excite an i-mode during inspiral as they consist only of
hadronic matter. These findings mean that if GW170817
consists of HSs with a low Pt EOS, it might be possible
detect such a feature by performing a data analysis on the
GW170817 data similar to that in [93,111–113], given that
the CCS Δ has a value larger than 10 MeV. On the other
hand, if such an effect is absent, one should be able to
constrain the parameter space of Pt and Δ of the HS EOSs
provided we have reasonably good knowledge on the other
EOS parameters.
In comparison, the right panel of Fig. 5 presents the

results for GW190425. Observe that the detection threshold
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FIG. 5. Left: similar to Fig. 4 but for parameters consistent with GW170817. The detection threshold curve is computed with the noise
curve of aLIGO O2 run. We present the intermediate Pt models (Heb3-QM-3 in blue) and low Pt models (MS1-QM, Heb3-QM-1 in
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curve for this case is higher due to the increased luminosity
distance (and smaller SNR). The low Pt models also have
smaller jδϕ̄j, and some of the models are only marginally
above the threshold. The intermediate Pt models and high
Pt models are both below the threshold curve. This agrees
with our finding in the previous subsection, that jδϕ̄j
decreases for larger Pt in general. Besides, the secondary
star with 1.60 M⊙ with the high Pt EOS have a central
pressure lower than Pt and therefore does not have a quark
matter core. Therefore, only the primary star with a higher
mass (1.75 M⊙) in the binary contributes to the i-mode
phase shift. This further lowers the value of jδϕ̄j of the high
Pt models. Moreover, the higher mass of HSs in the binary
leads to a smaller fISCO, which makes the detection of the
i-mode challenging for high resonant frequencies.

VI. CONSISTENCY CHECK
OF THE HYBRID METHOD

In this section, we comment on the validity of the hybrid
method that we employed in our analysis. We solved the
TOV equation to construct accurate HS background mod-
els, while we used Newtonian pulsation theory to compute
the i-modes for simplicity and applied the method in [75] to
compute the tidal coupling. Ideally, one should compare the
results from such an approximate, hybrid method against a
fully consistent analysis that solves relativistic perturbation
equations. However, given that the framework for solving
the latter has not been established yet, we instead follow
Yu et al. [86] and compare the hybrid method against a
fully Newtonian one in which both the background and
perturbation equations are solved within Newtonian
gravity.8 Such a study allows us to estimate the relativistic
effect (in the background solution).
To be more precise, Yu et al. [86] studied the detect-

ability of dynamical tides for hyperon stars. They compared
the deviation in the g-mode tidal coupling coefficient Qnlm
calculated with the hybrid method from that calculated with
a full Newtonian approach and found that Qnlm was off by
less than 5%. Since the normalization of the eigenmodes in
their study contains the mode frequencies, Qnlm also has a
different normalization constant compared to our definition
(see Eq. (5)). We therefore compare the estimate of δϕ in the
two methods, which is independent of the normalization.
Table II compares the oscillation properties (f, jQni22j

and jδϕj) computed with the hybrid and Newtonian
methods. We fix the stellar mass at 1.4 M⊙ and use the

EOS Heb3-QM-19 while varying Δ. Notice that the phase
shift magnitude computed with the hybrid approach is
smaller than that of the full Newtonian approach by a factor
of a few. On the other hand, the difference in the oscillation
frequency between the two methods is about 25%.
Although the discrepancy in δϕ between the two
approaches for the i-mode is larger than that for the g-
modes in [86], it is still within the same order of magnitude.
Meanwhile, the i-mode phase shift changes by orders of
magnitude as we vary the EOSs. Therefore, we expect that
the discrepancy does not significantly affect our conclusion
except for the marginal cases and we consider the hybrid
approach to be a valid order of magnitude estimate of the
phase shift. We leave the consistent analysis in full GR for
future work.

VII. CONCLUSION

In this paper, we considered the i-mode of HSs with a
CCS quark matter core and a hadronic matter envelope,
which features an extremely rigid solid core and a fluid
envelope. The phase transition is assumed to be first order
with a density discontinuity. We studied the resonant
excitation of the i-mode in HS-HS binary mergers during
the inspiral and the corresponding phase shift on the
emitted GWwaveforms. We then estimated its detectability
using a Fisher analysis.
We found that the i-mode resonant frequency and the

phase shift are rather sensitive to change in the shear
modulus of the CCS phase as well as Pt, the pressure
corresponding to the first-order phase transition. We also
found that the chance of detecting the i-mode is higher for
EOSs with low Pt. For such low Pt models, the phase shift
of the i-mode can be above the detection threshold limit if
Δ is large enough, even for GW170817 (Fig. 5).

TABLE II. The comparison of the numerical results of the
1.4 M⊙ models with the EOS Heb3-QM-1 with a full Newtonian
calculation and hybrid approach (TOV equations for background
and Newtonian equations for pulsation and tidal coupling).
Notice that the frequencies differ by about 25% and phase shifts
are off by a factor of a few.

Δ (MeV) Method f (Hz) jQni22j jδϕj
5 Full Newtonian 584.37 0.040 3.167

Hybrid 443.03 0.020 1.136

15 Full Newtonian 1020.3 0.295 55.853
Hybrid 714.86 0.143 21.901

25 Full Newtonian 1128.4 0.399 83.460
Hybrid 863.44 0.248 45.009

8We should also emphasize that the full Newtonian approach,
despite being consistent throughout the background, pulsation
modes and tidal coupling calculations, is not the so-called
“consistent” approach either since the background structure is
not accurately determined. The Newtonian treatment in the
pulsation mode and tidal coupling problem is also expected to
have discrepancies of the size of M=R compared to that of the
fully-GR formalism.

9We choose Heb3-QM-1 out of the four low Pt EOS due to its
lower i-mode frequency. For the other EOSs, there are avoided
crossings as we change Δ between the i-mode and other modes
which distort the wave function.
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For the intermediate Pt EOSs, we showed that the
sensitivity of aLIGO was insufficient to detect the i-mode
due to the smaller magnitude of the phase shift. With the
third-generation detectors like the CE, a portion of the
models with intermediate values of Δ can be detected.
However, those with a large Δ have high i-mode frequen-
cies above the cutoff frequency for inspiral phase and
therefore the mode is not excited. For the high Pt EOSs,
quark matter appears inside the core only when the model
has a high central pressure, namely the low mass models
are simply hadronic NSs without a quark-hadron transition.
Focusing on the high mass HSs with a high Pt phase
transition, we found that the i-mode phase shift of such
models is below the detectability threshold of the CE.
Lastly, we comment on the validity of the method we

used to study the i-mode excitation. We have applied a
hybrid method in calculating the i-mode excitation by tidal
coupling in the binary system by combining a GR back-
ground model with Newtonian pulsation equations and
Newtonian tidal coupling equations. We estimated the
impact of relativistic effects by comparing the results for
our hybrid method against the ones from a fully Newtonian
framework. We found that the i-mode phase shift can be
underestimated by a factor of a few with our method
compared to a full Newtonian approach. Therefore, the
results presented here should be valid as order-of-
magnitude estimates and should not severely affect our
conclusion. We note that the full Newtonian method might
be less accurate in determining the tidal coupling coef-
ficient than the hybrid one due to the discrepancy between
the Newtonian background and the GR background. After
all, a fully consistent GR method is required to accurately
determine the detectability of the i-mode in HSs, which we
leave for future work.
There are other avenues for improving the current study

in the future. For example, it might be interesting to analyze
the actual GW data from binary NS merger events includ-
ing the i-mode contribution in the waveform to place
constraints on the quark-hadron phase transition. We
should also perform a Bayesian analysis for more accurate
analysis as the Fisher method adopted here is only valid for
events with high SNRs. Furthermore, we may need to relax
the adiabatic approximation used for the resonant wave-
form in this paper, as such an approximation may become
invalid if the resonant frequency is too high and the
resonant width becomes too large.
We also expect that similar analysis of the i-mode can

be performed on HS models with a “Gibbs”-like phase
transition instead of the “Maxwell”-like transition studied
here. In such a model, instead of a sharp change in density,
a mixed phase is present between the hadronic phase and
the quark matter phase. The density is continuous between
the interfaces. This phase is highly inhomogeneous and
exists as a rigid solid layer ([114,115]). As a result, there
would be two solid-fluid interfaces between the mixed

phase and the two pure phases (the quark matter and
hadronic matter phases respectively). This is expected to
give rise to two i-modes, each corresponding to one
interface, for each spherical degree l. If the i-modes are
detectable in the GW waveform, this might help further
resolve the “masquerade problem” of the HSs, especially
those with mixed phase [7,116], which states that the
macroscopic parameters (mass, radius, tidal deformability,
etc) of a HS may be indistinguishable from a hadronic NS.
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APPENDIX A: NEWTONIAN PULSATION
EQUATIONS

The equations of motion governing the motion of a
mass element of an elastic solid consist of the momentum
conservation equation, continuity equation and the Poisson
equation:

ρ
∂v⃗
∂t ¼ ∇ · S − ρ∇Φ; ðA1Þ

∂ρ
∂t ¼ −∇ · ðρv⃗Þ; ðA2Þ

∇2Φ ¼ 4πρ: ðA3Þ

Here v⃗ is the velocity vector of the mass element, Φ is the
gravitational potential while S is the stress tensor. For an
isotropic medium, it is given by

Sij ¼ Γ1PTrðϵÞδij þ 2μ

�
ϵij −

1

3
TrðϵÞδij

	
: ðA4Þ

ϵij is the symmetric strain tensor, Γ1 is the adiabatic index
defined by Γ1 ¼ ρ

P ð∂P∂ρÞ for a fixed entropy and μ is the shear
modulus of the isotropic elastic medium. The fluid limit can
be obtained by setting μ → 0 in the equation of motion.
Next, we decompose the displacement vector and per-

turbed scalar quantities as follows. The displacement vector
of a mass element under spheroidal oscillation is given by

ξ⃗ ¼
X
l;m

½ξlrðrÞr̂þ rξl⊥ðrÞ∇�Ylmðθ;ϕÞe−iωt; ðA5Þ
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where ξlrðrÞ and ξl⊥ðrÞ are the radial and tangential
displacement functions of degree l respectively, while
Ylmðθ;ϕÞ are the spherical harmonics and ω is the angular
frequency. The Eulerian perturbation of the scalar quan-
tities ρ and P are also expanded in terms of the spherical
harmonics:

δρðr; θ;ϕÞ ¼
X
l;m

δρlðrÞYlmðθ;ϕÞ; ðA6Þ

δPðr; θ;ϕÞ ¼
X
l;m

δPlðrÞYlmðθ;ϕÞ; ðA7Þ

δΦðr; θ;ϕÞ ¼
X
l;m

δΦlðrÞYlmðθ;ϕÞ: ðA8Þ

From now on, we will suppress the spherical degree l in the
radial components of the perturbed quantities.
Substituting the perturbed quantities into Eqs. (A1)–(A3)

and using v⃗ ¼ _
ξ⃗, we obtain the equation of motion of

spheroidal pulsation modes. For numerical computation,
the radial part of the equations are cast into a system of six
coupled ordinary differential equations:

r
dz1
dr

¼ −
�
1þ 2

α2
α3

�
z1 þ

1

α3
z2 þ lðlþ 1Þ α2

α3
z3; ðA9Þ

r
dz2
dr

¼
�
−c1VΩ2 − 4V þ UV þ 12Γ1

α1
α3

�
z1

þ
�
V − 4

α1
α3

�
z2 þ lðlþ 1Þ

�
V − 6Γ1

α1
α3

�
z3

þ lðlþ 1Þz4 þ Vz6; ðA10Þ

r
dz3
dr

¼ −z1 þ
1

α1
z4; ðA11Þ

r
dz4
dr

¼
�
V − 6Γ1

α1
α3

�
z1 −

α2
α3

z2

þ


−c1VΩ2 þ 2

α3
½ð2lðlþ 1Þ − 1Þα1α2

þ 2ðlðlþ 1Þ − 1Þα21�
�
z3 þ ðV − 3Þz4 þ Vz5;

ðA12Þ

r
dz5
dr

¼ ð1 −UÞz5 þ z6; ðA13Þ

r
dz6
dr

¼ U

�
−Arþ V

Γ1

− 2þ 2
α2
α3

�
z1 −

U
α3

z2

þ lðlþ 1ÞU
�
1 −

α2
α3

�
z3 þ lðlþ 1Þz5 −Uz6;

ðA14Þ

where the dependent variables z1 to z6 are defined as

z1 ¼
ξr
r
; ðA15Þ

z2 ¼ α2

�
1

r2
d
dr

ðr2ξrÞ −
lðlþ 1Þ

r
ξ⊥

	
þ 2α1

dξr
dr

; ðA16Þ

z3 ¼
ξ⊥
r
; ðA17Þ

z4 ¼ α1

�
dξ⊥
dr

−
ξ⊥
r
þ ξr

r

�
; ðA18Þ

z5 ¼
δΦ
gr

; ðA19Þ

z6 ¼
1

g
dδΦ
dr

; ðA20Þ

g is the Newtonian gravitational acceleration given by
m=r2 and the functions Ω, c1, α1, α2, α3, A, U, and V are
defined as

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
R3ω2

M

r
; ðA21Þ

c1 ¼
�
r
R

�
3 M
m

; ðA22Þ

α1 ¼
μ

P
; ðA23Þ

α2 ¼ Γ1 −
2

3

μ

P
; ðA24Þ

α3 ¼ Γ1 þ
1

3

μ

P
; ðA25Þ

A ¼ 1

ρ

dρ
dr

−
1

Γ1P
dP
dr

; ðA26Þ

U ¼ r
m
dm
dr

; ðA27Þ

V ¼ −
r
P
dP
dr

: ðA28Þ

Here M and R are the stellar mass and radius. A is
the Schwarzschild discriminant and it vanishes in cold
compact objects except at the density discontinuities.
Equations (A9)–(A14) describe the linear perturbations
of the HS solid core. Notice that there are no independent
equations for δρ and δP since the variable δρ is related to z2
through Eq. (A16) and the perturbed continuity equation
derived from Eq. (A2):
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1

r2
d
dr

ðr2ξrÞ −
lðlþ 1Þ

r
ξ⊥ ¼ −

Δρ
ρ

; ðA29Þ

whereas the variable δP can be related to δρ through the
linearized thermodynamic identity:

1

ρ
Δρ ¼ 1

Γ1P
ΔP: ðA30Þ

Here Δf represents the Lagrangian perturbation of a
variable f depending on r, which is related to the
Eulerian perturbation δf by

Δf ¼ δf þ ξr
df
dr

: ðA31Þ

To numerically obtain the pulsation modes, we integrate
Eqs. (A9)–(A14) from the center to the stellar radius. At the
solid-fluid interface, we employ continuity conditions of
the pulsation variables z1, z2, z4, and z5. The continuity of
z1 is the direct consequence of the assumption that the
volume element at the interface contains no void if the
phase transition happens slowly compared to the pulsation
motion (see, e.g., [117]). The continuity of z2 and z4 comes
from the continuity of the stress in the radial and tangential
directions. Lastly, the Poisson equation guarantees the
continuity of z5.

10

The above equations for z1–z6 describe the pulsation
problem of the solid core. Although we can in principle
obtain the pulsation equations inside fluid by taking the
μ → 0 limit, it is straightforward to see that Eqs. (A11) and
(A12) become trivial in this limit and we effectively have
only four coupled differential equations. Therefore, it is
often better to introduce another set of dependent variables
for the fluid problem. Inside the fluid envelope, we employ
the formulation by [118] (see also P. 225 of [78]):

r
dy1
dr

¼
�
V
Γ1

− 3

�
y1 þ

�
lðlþ 1Þ
c1Ω2

−
V
Γ1

	
y2 þ

V
Γ1

y3;

ðA32Þ

r
dy2
dr

¼ðc1Ω2þArÞy1þð1−U−ArÞy2þAry3; ðA33Þ

r
dy3
dr

¼ ð1 −UÞy3 þ y4; ðA34Þ

r
dy4
dr

¼ −UAry1 þ
UV
Γ1

y2 þ
�
lðlþ 1Þ − UV

Γ1

	
y3 − Uy4:

ðA35Þ

Here the pulsation variables are given by

y1 ¼ z1 ¼
ξr
r
; ðA36Þ

y2 ¼
1

gr

�
δP
ρ

þ δϕ

�
; ðA37Þ

y3 ¼ z5 ¼
δΦ
gr

; ðA38Þ

y4 ¼ z6 ¼
1

g
dδΦ
dr

: ðA39Þ

y2 is also related to ξ⊥ through

y2 ¼ c1Ω2z3 ¼
ω2

g
ξ⊥: ðA40Þ

Equation (A37) implies that the continuity of radial stress
across the interface is equivalent to

½Vðy1 − y2 þ y3Þ�fluid ¼ ½z2�solid: ðA41Þ
Here the square brackets “[ ]” with the subscripts “fluid” or
“solid” indicates that the expression enclosed is evaluated
at the fluid side or the solid side of the interface
respectively.
To determine y4 at the interface, one last continuity

condition is derived by integrating Eq. (A35) across the
interface, using the fact that the derivative of ρ in A behaves
like a Dirac delta function in r. Doing so, one can find:

½Uy1 þ y4�fluid ¼ ½Uz1 þ z6�solid: ðA42Þ
This equation corresponds to the continuity of the
Newtonian gravitational force at the perturbed interface.
At the surface, we have similar continuity conditions as

Eqs. (A41) and (A42):

y1 − y2 þ y3 ¼ 0; ðA43Þ
Uy1 þ y4 ¼ −ðlþ 1Þy3; ðA44Þ

where all quantities are evaluated at r ¼ R. The second
equation comes from the continuity of y3 and we have
applied the solution to the Poisson equation in vacuum
(i.e., δΦ ∝ r−l−1).
While integrating Eqs. (A9)–(A14) from r ¼ 0 numeri-

cally for the solid core, we consider only the regular
solutions, which can be obtained from a Taylor series
expansion of z1–z6 near r ¼ 0. We modify the expressions
of the regular solutions derived by [119] to fit our definition
of pulsation variables:

z1 ¼ A0rl−2 þ A2rl; ðA45Þ
z2 ¼ B0rl−2 þ B2rl; ðA46Þ
z3 ¼ C0rl−2 þ C2rl; ðA47Þ

10Note that z3 and z6, which are related to the tangential
displacement and the first derivative of the gravitational potential
perturbation respectively, are not required to be continuous. The
former is the consequence of the so-called “free-slipping”
condition and the latter is allowed by the Poisson equation.
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z4 ¼ D0rl−2 þD2rl; ðA48Þ

z5 ¼
E0

gr
rl−2 þ E2

gr
rl; ðA49Þ

z6 ¼
1

g
½F0 þ 3σA0 − ðlþ 1ÞE0�rl−2 ðA50Þ

þ 1

g
½ðlþ 2ÞF2 − 3σA2�rl; ðA51Þ

where the coefficients are related by

A0 ¼ lC0; ðA52Þ
B0 ¼ 2ðl − 1Þα1A0; ðA53Þ

D0 ¼
2α1ðl − 1Þ

l
A0; ðA54Þ

E0 ¼ 3σC0 þ
1

l
F0; ðA55Þ

C2 ¼
β2
β1

D2 þ
ρ

Pβ1
fF0 þ ½ω2 þ ð3 − lÞσ�A0g; ðA56Þ

A2 ¼ −lC2 þ
1

α1
D2; ðA57Þ

B2 ¼ γ1C2 þ γ2D2; ðA58Þ

E2 ¼
3

2
σð2l − 3Þ½ðlþ 3ÞA2 − lðlþ 1ÞC2�; ðA59Þ

F2 ¼ ðlþ 2ÞE2 − 3σA2; ðA60Þ
and σ, β1, β2, γ1, and γ2 are given by

σ ¼ 4π

3
ρ; ðA61Þ

β1 ¼ 2l2ðlþ 2Þα2 þ 2lðl2 þ 2l − 1Þα1; ðA62Þ

β2 ¼ lðlþ 5Þ þ lðlþ 3Þ α2
α1

; ðA63Þ

γ1 ¼ 2lðlþ 2Þα2 þ 2lðlþ 1Þα1; ðA64Þ

γ2 ¼ 2ðlþ 1Þ þ ðlþ 3Þ α2
α1

: ðA65Þ

By choosing arbitrary values of C0, D2, and F0 (or any 3
of the 12 coefficients), we can obtain three independent
regular series solutions about r ¼ 0 for the pulsation
problem in the solid core.
If we consider HS models with a fluid quark matter core

(i.e., the Δ ¼ 0 limit for the CCS phase), we also need
the regular solutions for Eqs. (A32)–(A35) near r ¼ 0.
Following [118], the regular solutions satisfy the following
equations

y2 ¼
c1ω2

l
y1; ðA66Þ

y4 ¼ ly3: ðA67Þ

Hence, there are two independent regular solutions at
the center.

APPENDIX B: MAXWELL CONSTRUCTION

The quark-hadron matter phase transition can either be
of first or second order depending on the charge screening
effect and the surface tension between the phases. They
can respectively be constructed through a Maxwell con-
struction or a Gibbs construction which results in a mixed
phase [114].
We focus on the Maxwell construction, which gives a

first-order phase transition with a sharp density jump at the
transition pressure Pt inside the HS. The transition point is
determined by the following equations ([8,120]):

Pt ¼ P1ðμB; μeÞ ¼ P2ðμB; μeÞ; ðB1Þ

μB ¼ μB1 ¼ μB2; ðB2Þ

where μB, μe are the baryon chemical potential and electron
chemical potential. The subscripts 1 and 2 of the pressure
indicate the hadronic phase and the quark matter phase
respectively. Average chemical potential of quarks μq is
given by:

μq ¼
μu þ μd þ μs

3
: ðB3Þ

Since three quarks form one baryon, we can relate the
chemical potentials by

3μq ¼ μB: ðB4Þ
For a given NS EOS, μB can be determined with the Euler
equation

μB ¼ ρþ P
nB

; ðB5Þ

where ρ is the energy density and nB is the baryon number
density given by

nB ¼ nn þ np; ðB6Þ
where nn and np are the number density for neutrons and
protons respectively.

PROBING HYBRID STARS WITH GRAVITATIONAL WAVES VIA … PHYS. REV. D 103, 063015 (2021)

063015-15



[1] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D
81, 105021 (2010).

[2] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[3] S. Weinberg, Nucl. Phys. B363, 3 (1991).
[4] S. Bogner, A. Schwenk, R. Furnstahl, and A. Nogga, Nucl.

Phys. A763, 59 (2005).
[5] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev.

Mod. Phys. 81, 1773 (2009).
[6] E. Annala, T. Gorda, A. Kurkela, J. Nttil, and A. Vuorinen,

Nat. Phys. 16, 907 (2020).
[7] M. Alford, M. Braby, M. Paris, and S. Reddy, Astrophys. J.

629, 969 (2005).
[8] U. H. Gerlach, Phys. Rev. 172, 1325 (1968).
[9] K. Schertler, C. Greiner, J. Schaffner-Bielich, and M.

Thoma, Nucl. Phys. A677, 463 (2000).
[10] V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D. B.

Blaschke, and A. Sedrakian, Phys. Rev. D 97, 084038
(2018).

[11] M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.
B537, 443 (1999).

[12] J. Kundu and K. Rajagopal, Phys. Rev. D 65, 094022
(2002).

[13] M. Alford, J. A. Bowers, and K. Rajagopal, Phys. Rev. D
63, 074016 (2001).

[14] M. Mannarelli, K. Rajagopal, and R. Sharma, Phys. Rev. D
76, 074026 (2007).

[15] B. Haskell, N. Andersson, D. I. Jones, and L. Samuelsson,
Phys. Rev. Lett. 99, 231101 (2007).

[16] L.-M. Lin, Phys. Rev. D 76, 081502 (2007).
[17] N. D. Ippolito, M. Ruggieri, D. H. Rischke, A. Sedrakian,

and F. Weber, Phys. Rev. D 77, 023004 (2008).
[18] B. Knippel and A. Sedrakian, Phys. Rev. D 79, 083007

(2009).
[19] L.-M. Lin, Phys. Rev. D 88, 124002 (2013).
[20] M. Mannarelli, G. Pagliaroli, A. Parisi, and L. Pilo, Phys.

Rev. D 89, 103014 (2014).
[21] S. Y. Lau, P. T. Leung, and L.-M. Lin, Phys. Rev. D 95,

101302 (2017).
[22] J. P. Pereira, M. Bejger, L. Tonetto, G. Lugones, P.

Haensel, J. L. Zdunik, and M. Sieniawska, arXiv:2011
.06361.

[23] F. Özel and P. Freire, Annu. Rev. Astron. Astrophys. 54,
401 (2016).

[24] H. T. Cromartie et al., Nat. Astron. 4, 72 (2020).
[25] A.W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys.

J. 722, 33 (2010).
[26] J. M. Lattimer and A.W. Steiner, Astrophys. J. 784, 123

(2014).
[27] J. M. Lattimer and A.W. Steiner, Eur. Phys. J. A 50, 40

(2014).
[28] F. Ozel, D. Psaltis, T. Guver, G. Baym, C. Heinke, and

S. Guillot, Astrophys. J. 820, 28 (2016).
[29] A.W. Steiner, C. O. Heinke, S. Bogdanov, C. Li, W. C. G.

Ho, A. Bahramian, and S. Han, Mon. Not. R. Astron. Soc.
476, 421 (2018).

[30] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).
[31] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019).
[32] G. Raaijmakers et al., Astrophys. J. Lett. 887, L22 (2019).
[33] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502

(2008).

[34] J. Vines, E. E. Flanagan, and T. Hinderer, Phys. Rev. D 83,
084051 (2011).

[35] T. Damour, A. Nagar, and L. Villain, Phys. Rev. D 85,
123007 (2012).

[36] R. Nandi and P. Char, Astrophys. J. 857, 12 (2018).
[37] E.-P. Zhou, X. Zhou, and A. Li, Phys. Rev. D 97, 083015

(2018).
[38] G. Montana, L. Tolos, M. Hanauske, and L. Rezzolla,

Phys. Rev. D 99, 103009 (2019).
[39] G. F. Burgio, A. Drago, G. Pagliara, H. J. Schulze, and

J. B. Wei, Astrophys. J. 860, 139 (2018).
[40] K. Chatziioannou and S. Han, Phys. Rev. D 101, 044019

(2020).
[41] Z. Miao, A. Li, Z. Zhu, and S. Han, Astrophys. J. 904, 103

(2020).
[42] A. Parisi, C. V. Flores, C. H. Lenzi, C.-S. Chen, and G.

Lugones, arXiv:2009.14274.
[43] T. Hinderer et al., Phys. Rev. Lett. 116, 181101 (2016).
[44] E. R. Most, L. J. Papenfort, V. Dexheimer, M. Hanauske, S.

Schramm, H. Stcker, and L. Rezzolla, Phys. Rev. Lett. 122,
061101 (2019).

[45] A. Bauswein, N.-U. F. Bastian, D. B. Blaschke, K.
Chatziioannou, J. A. Clark, T. Fischer, and M. Oertel,
Phys. Rev. Lett. 122, 061102 (2019).

[46] A. Bauswein, S. Blacker, V. Vijayan, N. Stergioulas, K.
Chatziioannou, J. A. Clark, N.-U. F. Bastian, D. B.
Blaschke, M. Cierniak, and T. Fischer, Phys. Rev. Lett.
125, 141103 (2020).

[47] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[48] B. P. Abbott et al., Astrophys. J. 892, L3 (2020).
[49] K. Chatziioannou, C.-J. Haster, and A. Zimmerman, Phys.

Rev. D 97, 104036 (2018).
[50] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. Lett. 121, 161101 (2018).
[51] K. Yagi and N. Yunes, Science 341, 365 (2013).
[52] K. Yagi and N. Yunes, Phys. Rev. D 88, 023009 (2013).
[53] K. Yagi and N. Yunes, Classical Quantum Gravity 33,

13LT01 (2016).
[54] K. Yagi and N. Yunes, Classical Quantum Gravity 34,

015006 (2017).
[55] K. Yagi and N. Yunes, Phys. Rep. 681, 1 (2017).
[56] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen, Phys.

Rev. Lett. 120, 172703 (2018).
[57] A. Bauswein, O. Just, H.-T. Janka, and N. Stergioulas,

Astrophys. J. Lett. 850, L34 (2017).
[58] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,

and C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018);
121, 259902(E) (2018).

[59] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-
Bielich, Phys. Rev. Lett. 120, 261103 (2018).

[60] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 9, 011001 (2019).

[61] N.-B. Zhang and B.-A. Li, Eur. Phys. J. A 55, 39 (2019).
[62] I. Tews, J. Margueron, and S. Reddy, Phys. Rev. C 98,

045804 (2018).
[63] P. Landry and R. Essick, Phys. Rev. D 99, 084049

(2019).
[64] R. Essick, P. Landry, and D. E. Holz, Phys. Rev. D 101,

063007 (2020).

SHU YAN LAU and KENT YAGI PHYS. REV. D 103, 063015 (2021)

063015-16

https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/j.nuclphysa.2005.08.024
https://doi.org/10.1016/j.nuclphysa.2005.08.024
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1086/430902
https://doi.org/10.1086/430902
https://doi.org/10.1103/PhysRev.172.1325
https://doi.org/10.1016/S0375-9474(00)00305-5
https://doi.org/10.1103/PhysRevD.97.084038
https://doi.org/10.1103/PhysRevD.97.084038
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1103/PhysRevD.65.094022
https://doi.org/10.1103/PhysRevD.65.094022
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.76.074026
https://doi.org/10.1103/PhysRevD.76.074026
https://doi.org/10.1103/PhysRevLett.99.231101
https://doi.org/10.1103/PhysRevD.76.081502
https://doi.org/10.1103/PhysRevD.77.023004
https://doi.org/10.1103/PhysRevD.79.083007
https://doi.org/10.1103/PhysRevD.79.083007
https://doi.org/10.1103/PhysRevD.88.124002
https://doi.org/10.1103/PhysRevD.89.103014
https://doi.org/10.1103/PhysRevD.89.103014
https://doi.org/10.1103/PhysRevD.95.101302
https://doi.org/10.1103/PhysRevD.95.101302
https://arXiv.org/abs/2011.06361
https://arXiv.org/abs/2011.06361
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.1088/0004-637X/722/1/33
https://doi.org/10.1088/0004-637X/722/1/33
https://doi.org/10.1088/0004-637X/784/2/123
https://doi.org/10.1088/0004-637X/784/2/123
https://doi.org/10.1140/epja/i2014-14040-y
https://doi.org/10.1140/epja/i2014-14040-y
https://doi.org/10.3847/0004-637X/820/1/28
https://doi.org/10.1093/mnras/sty215
https://doi.org/10.1093/mnras/sty215
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab451a
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.85.123007
https://doi.org/10.1103/PhysRevD.85.123007
https://doi.org/10.3847/1538-4357/aab78c
https://doi.org/10.1103/PhysRevD.97.083015
https://doi.org/10.1103/PhysRevD.97.083015
https://doi.org/10.1103/PhysRevD.99.103009
https://doi.org/10.3847/1538-4357/aac6ee
https://doi.org/10.1103/PhysRevD.101.044019
https://doi.org/10.1103/PhysRevD.101.044019
https://doi.org/10.3847/1538-4357/abbd41
https://doi.org/10.3847/1538-4357/abbd41
https://arXiv.org/abs/2009.14274
https://doi.org/10.1103/PhysRevLett.116.181101
https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1103/PhysRevLett.125.141103
https://doi.org/10.1103/PhysRevLett.125.141103
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1103/PhysRevD.97.104036
https://doi.org/10.1103/PhysRevD.97.104036
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1126/science.1236462
https://doi.org/10.1103/PhysRevD.88.023009
https://doi.org/10.1088/0264-9381/33/13/13LT01
https://doi.org/10.1088/0264-9381/33/13/13LT01
https://doi.org/10.1088/1361-6382/34/1/015006
https://doi.org/10.1088/1361-6382/34/1/015006
https://doi.org/10.1016/j.physrep.2017.03.002
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.3847/2041-8213/aa9994
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.121.259902
https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1140/epja/i2019-12700-0
https://doi.org/10.1103/PhysRevC.98.045804
https://doi.org/10.1103/PhysRevC.98.045804
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.101.063007
https://doi.org/10.1103/PhysRevD.101.063007


[65] Z. Carson, A.W. Steiner, and K. Yagi, Phys. Rev. D 99,
043010 (2019).

[66] C. A. Raithel and F. Ozel, Astrophys. J. 885, 121 (2019).
[67] T. Dietrich, M.W. Coughlin, P. T. H. Pang, M. Bulla, J.

Heinzel, L. Issa, I. Tews, and S. Antier, Science 370, 1450
(2020).

[68] D. Radice, A. Perego, F. Zappa, and S. Bernuzzi, As-
trophys. J. Lett. 852, L29 (2018).

[69] D. Radice and L. Dai, Eur. Phys. J. A 55, 50 (2019).
[70] R. Nandi, P. Char, and S. Pal, Phys. Rev. C 99, 052802

(2019).
[71] K. Kiuchi, K. Kyutoku, M. Shibata, and K. Taniguchi,

Astrophys. J. Lett. 876, L31 (2019).
[72] G. Raaijmakers, S. K. Greif, T. E. Riley, T. Hinderer, K.

Hebeler, A. Schwenk, A. L. Watts, S. Nissanke, S. Guillot,
J. M. Lattimer et al., Astrophys. J. 893, L21 (2020).

[73] J. Zimmerman, Z. Carson, K. Schumacher, A. W. Steiner,
and K. Yagi, arXiv:2002.03210.

[74] R. Essick, I. Tews, P. Landry, S. Reddy, and D. E. Holz,
Phys. Rev. C 102, 055803 (2020).

[75] D. Lai, Mon. Not. R. Astron. Soc. 270, 611 (1994).
[76] A. Reisenegger and P. Goldreich, Astrophys. J. 395, 240

(1992).
[77] A. Reisenegger and P. Goldreich, Astrophys. J. 426, 688

(1994).
[78] J. P. Cox, Theory of Stellar Pulsation (Princeton University

Press, Princeton, NJ, 1980).
[79] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity

2, 2 (1999).
[80] W. Wei, M. Barry, T. Klhn, and P. Jaikumar, Astrophys. J.

904, 187 (2020).
[81] L. S. Finn, Mon. Not. R. Astron. Soc. 227, 265 (1987).
[82] L. Tonetto and G. Lugones, Phys. Rev. D 101, 123029

(2020).
[83] P. N. McDermott, H. M. van Horn, and C. J. Hansen,

Astrophys. J. 325, 725 (1988).
[84] C. J. Krüger, W. C. G. Ho, and N. Andersson, Phys. Rev. D

92, 063009 (2015).
[85] A. Passamonti, N. Andersson, and P. Pnigouras, arXiv:

2012.09637.
[86] H. Yu and N. N. Weinberg, Mon. Not. R. Astron. Soc. 470,

350 (2017).
[87] H. Sotani, K. Tominaga, and K.-i. Maeda, Phys. Rev. D 65,

024010 (2001).
[88] I. F. Ranea-Sandoval, O. M. Guilera, M. Mariani, and

M. G. Orsaria, J. Cosmol. Astropart. Phys. 12 (2018) 031.
[89] M. G. Orsaria, G. Malfatti, M. Mariani, I. F. Ranea-

Sandoval, F. García, W.M. Spinella, G. A. Contrera, G.
Lugones, and F. Weber, J. Phys. G 46, 073002 (2019).

[90] D. Tsang, J. S. Read, T. Hinderer, A. L. Piro, and R.
Bondarescu, Phys. Rev. Lett. 108, 011102 (2012).

[91] E. E. Flanagan and E. Racine, Phys. Rev. D 75, 044001
(2007).

[92] H. Yu and N. N. Weinberg, Mon. Not. R. Astron. Soc. 464,
2622 (2017).

[93] Z. Pan, Z. Lyu, B. Bonga, N. Ortiz, and H. Yang, Phys.
Rev. Lett. 125, 201102 (2020).

[94] C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658
(1994).

[95] E. Berti, A. Buonanno, and C. M. Will, Phys. Rev. D 71,
084025 (2005).

[96] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J.
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X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044007
(2016).

[98] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B.
F. Farr, T. B. Littenberg, and V. Raymond, Phys. Rev. D 89,
103012 (2014).

[99] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron
Stars 1: Equation of State and Structure (Springer-Verlag,
New York, 2007).

[100] H. Mther, M. Prakash, and T. Ainsworth, Phys. Lett. B
199, 469 (1987).

[101] T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V.
Greco, and H. Wolter, Nucl. Phys. A732, 24 (2004).

[102] H. Mller and B. D. Serot, Nucl. Phys. A606, 508 (1996).
[103] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55,

540 (1997).
[104] Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994).
[105] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[106] J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy,

K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari
et al., Classical Quantum Gravity 32, 115012 (2015).

[107] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy,
K. Ackley, C. Adams, P. Addesso, R. X. Adhikari, V. B.
Adya, C. Affeldt et al., Classical Quantum Gravity 34,
044001 (2017).

[108] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[109] noise, https://dcc.ligo.org/LIGO-P1900011/public.
[110] K. D. Kokkotas and G. Schfer, Mon. Not. R. Astron. Soc.

275, 301 (1995).
[111] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. Lett. 122, 061104 (2019).
[112] R. Essick and N. N. Weinberg, arXiv:1809.00264.
[113] S. Reyes and D. A. Brown, Astrophys. J. 894, 41 (2020).
[114] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[115] H. Sotani, T. Maruyama, and T. Tatsumi, Nucl. Phys.

A906, 37 (2013).
[116] M. Alford, D. Blaschke, A. Drago, T. Klähn, G. Pagliara,

and J. Schaffner-Bielich, Nature (London) 445, E7
(2007).

[117] J. P. Pereira, C. V. Flores, and G. Lugones, Astrophys. J.
860, 12 (2018).

[118] W. A. Dziembowski, Acta Astron. 21, 289 (1971).
[119] D. J. Crossley, Geophys. J. Int. 41, 153 (1975).
[120] A. Bhattacharyya, I. N. Mishustin, and W. Greiner, J. Phys.

G 37, 025201 (2010).

PROBING HYBRID STARS WITH GRAVITATIONAL WAVES VIA … PHYS. REV. D 103, 063015 (2021)

063015-17

https://doi.org/10.1103/PhysRevD.99.043010
https://doi.org/10.1103/PhysRevD.99.043010
https://doi.org/10.3847/1538-4357/ab48e6
https://doi.org/10.1126/science.abb4317
https://doi.org/10.1126/science.abb4317
https://doi.org/10.3847/2041-8213/aaa402
https://doi.org/10.3847/2041-8213/aaa402
https://doi.org/10.1140/epja/i2019-12716-4
https://doi.org/10.1103/PhysRevC.99.052802
https://doi.org/10.1103/PhysRevC.99.052802
https://doi.org/10.3847/2041-8213/ab1e45
https://doi.org/10.3847/2041-8213/ab822f
https://arXiv.org/abs/2002.03210
https://doi.org/10.1103/PhysRevC.102.055803
https://doi.org/10.1093/mnras/270.3.611
https://doi.org/10.1086/171645
https://doi.org/10.1086/171645
https://doi.org/10.1086/174105
https://doi.org/10.1086/174105
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.3847/1538-4357/abbe02
https://doi.org/10.3847/1538-4357/abbe02
https://doi.org/10.1093/mnras/227.2.265
https://doi.org/10.1103/PhysRevD.101.123029
https://doi.org/10.1103/PhysRevD.101.123029
https://doi.org/10.1086/166044
https://doi.org/10.1103/PhysRevD.92.063009
https://doi.org/10.1103/PhysRevD.92.063009
https://arXiv.org/abs/2012.09637
https://arXiv.org/abs/2012.09637
https://doi.org/10.1093/mnras/stx1188
https://doi.org/10.1093/mnras/stx1188
https://doi.org/10.1103/PhysRevD.65.024010
https://doi.org/10.1103/PhysRevD.65.024010
https://doi.org/10.1088/1475-7516/2018/12/031
https://doi.org/10.1088/1361-6471/ab1d81
https://doi.org/10.1103/PhysRevLett.108.011102
https://doi.org/10.1103/PhysRevD.75.044001
https://doi.org/10.1103/PhysRevD.75.044001
https://doi.org/10.1093/mnras/stw2552
https://doi.org/10.1093/mnras/stw2552
https://doi.org/10.1103/PhysRevLett.125.201102
https://doi.org/10.1103/PhysRevLett.125.201102
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.71.084025
https://doi.org/10.1103/PhysRevD.71.084025
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.89.103012
https://doi.org/10.1103/PhysRevD.89.103012
https://doi.org/10.1016/0370-2693(87)91611-X
https://doi.org/10.1016/0370-2693(87)91611-X
https://doi.org/10.1016/j.nuclphysa.2003.12.001
https://doi.org/10.1016/0375-9474(96)00187-X
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1086/533487
https://dcc.ligo.org/LIGO-P1900011/public
https://dcc.ligo.org/LIGO-P1900011/public
https://dcc.ligo.org/LIGO-P1900011/public
https://doi.org/10.1093/mnras/275.2.301
https://doi.org/10.1093/mnras/275.2.301
https://doi.org/10.1103/PhysRevLett.122.061104
https://arXiv.org/abs/1809.00264
https://doi.org/10.3847/1538-4357/ab64e8
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.1016/j.nuclphysa.2013.03.011
https://doi.org/10.1016/j.nuclphysa.2013.03.011
https://doi.org/10.1038/nature05582
https://doi.org/10.1038/nature05582
https://doi.org/10.3847/1538-4357/aabfbf
https://doi.org/10.3847/1538-4357/aabfbf
https://doi.org/10.1111/j.1365-246X.1975.tb04145.x
https://doi.org/10.1088/0954-3899/37/2/025201
https://doi.org/10.1088/0954-3899/37/2/025201

