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Merging neutron stars are expected to produce hot, metastable remnants in rapid differential rotation,
which subsequently cool and evolve into rigidly rotating neutron stars or collapse to black holes. Studying
this metastable phase and its further evolution is essential for the prediction and interpretation of the
electromagnetic, neutrino, and gravitational signals from such a merger. In this work, we model binary
neutron star merger remnants and propose new rotation and thermal laws that describe postmerger
remnants. Our framework is capable to reproduce quasiequilibrium configurations for generic equations of
state, rotation and temperature profiles, including nonbarotropic ones. We demonstrate that our results are
in agreement with numerical relativity simulations concerning bulk remnant properties like the mass,
angular momentum, and the formation of a massive accretion disk. Because of the low computational cost
for our axisymmetric code compared to full 3þ 1-dimensional simulations, we can perform an extensive
exploration of the binary neutron star remnant parameter space studying several hundred thousand
configurations for different equations of state.
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I. INTRODUCTION

With densities substantially exceeding those in atomic
nuclei, neutron stars (NSs) provide an interesting “astro-
physical laboratory” to probe matter under the most
extreme conditions and they can deliver physical informa-
tion that complements other ongoing efforts to understand
nuclear matter [1,2]. NSs originate in supernova explosions
or binary neutron star (BNS) mergers [3]. In either case,
they are hot and differentially rotating in the first minute of
their lives [4,5]. Because of the growing possibilities of
detecting them via gravitational wave interferometers and
in the whole electromagnetic spectrum (from radio to
gamma rays [6]), and because they involve nuclear matter
at densities and temperatures that cannot be probed in
terrestrial experiments, BNS remnants have been carefully
investigated in a number of recent studies, e.g., [7–12].
The physical realism of 3þ 1 numerical relativity

simulations has enormously increased over recent years,
but realistic simulations come at the price of several
hundred thousand core hours on supercomputers per

physical millisecond, which makes an efficient exploration
of the remnant parameters impossible. Moreover, studies
that focus on the exploration of the microphysics, such as
the effects of neutrino oscillations [13–15], need physically
motivated background models but usually cannot afford at
the same time a 3þ 1 numerical relativity approach. For
these reasons very fast, yet still physically reliable, axi-
symmetric models of newly formed merger remnants are
needed.
The vast majority of NS studies neglect differential

rotation and assume rigid rotation. The first model of a
NS in differential rotation made use of the so-called
j-constant rotation law1 [16,17], which is a good qualitative
description of the protoneutron star formed in a core-
collapse supernova, where the core rotates faster than the
envelope. In order to improve on these approximations,
Uryū et al. [18] proposed a new model for the rotation
profile of a BNS merger remnant that mimics the output of
dynamical simulations [5,19–21], where the angular veloc-
ity reaches a maximum in the envelope and approaches
Keplerian rotation at large radii. Since then, other authors
used Uryū and collaborators’ model [22–24]. However, a
proper inclusion of the thermal profile of the BNS merger
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1Note that with this differential rotation law the specific
angular momentum is not constant in general, but only in a
particular limit and in Newtonian gravity.
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remnant, which can reach temperatures up to a hundred
MeV, has not been done yet. Moreover, until recently, hot
NS models had been obtained through the so-called
effectively barotropic approximation, where all thermody-
namical quantities were put in a one-to-one relation [25].
This is a strong assumption for a remnant that is expected to
be baroclinic, i.e., not effectively barotropic [4]. Recently,
Camelio et al. [26] developed a technique to obtain a
stationary, hot, differentially rotating, baroclinic NS model,
opening the way to a larger class of thermal and rotational
profiles.
Modeling BNS merger remnants with stationary codes is

an important complementary approach to full hydrodynam-
ical simulations, since it allows for a much faster and wider
exploration of the possible parameter space. In addition,
stationary configurations can be used as initial profiles for
dynamical simulations. Last but not least, the study of
stationary configurations provides important indications
on stellar stability [25,27–32]. This is important because
unstable stars are more likely to be observed through
gravitational, neutrino, and electrodynamic radiation, e.g.,
[3,6,33,34], allowing for an in-depth study of the involved
physics.
In this work, we first develop a model for the stationary

remnant of a BNS system at∼10–50 ms after merger, which
is differentially rotating, hot, and baroclinic (Sec. II). In
particular, we propose new rotation and thermal laws for the
remnant and apply the baroclinic formalism developed by
Camelio et al. [26]. We then explore the model parameter
space and discuss the remnant stabilitywith simple heuristics
(Sec. III). We conclude in Sec. IV. In the Appendix, we
provide details of our numerical implementation. The
parameter space exploration results and the profiles of
the most realistic stellar models found are available to the
community on Zenodo [35].
Unless otherwise specified, we set c ¼ G ¼ M⊙ ¼ kB ¼

1. Our code unit for lengths approximately corresponds to
1.477 km, that for angular velocity to 32.31 kHz 2π rad,
that for energy to 1.115 × 1060 MeV, and that for time to
4.925 μs. Moreover, the saturation density is ρn ¼ 4.339 ×
10−4 and the neutron mass is mn ¼ 8.423 × 10−58.

II. MODEL

A. Equation of state

The equations of state (EOSs) adopted in this work are
piecewise polytropes with a crust [36] and a thermal
component [26]:

ϵðρ; sÞ ¼ ð1þ aiÞρþ kiρΓi þ kths2ρΓth ; ð1Þ

where ϵ, ρ, s are respectively the total energy density, the
rest mass density, and the entropy per baryon, ai, ki, Γi are
cold piecewise polytropic parameters valid in a given
density range ρi−1 < ρ < ρi and are obtained by fits

[36], Γth ¼ 1.75 is the thermal exponent and we set its
value so that it is in the range expected for the high-density
part of the EOS [37,38], and kth is the thermal constant and
its value is determined for each EOS so that the thermal
pressure at ρ ¼ 2ρn and s ¼ 2 kB is 30% of the cold
pressure. This value has been chosen after inspecting
tabulated EOSs and could be easily adjusted for further
studies, if needed. We consider a subset of EOSs from Read
et al. [36] that fulfill the most recent radius and maximum
mass constraints obtained from nuclear physics and astro-
physical observations [39]: ALF2 [40], SLy [41], APR4
[42], and ENG [43], see Appendix A 1.

B. Euler equation

We determine the NS configuration with our version
[26,32] of the eXtended conformal flatness Neutron Star
(XNS) code [44,45]. The code assumes stationarity (and
hence axisymmetry), circularity (and hence the absence of
meridional currents), and conformal flatness [46,47]. The
conformal flatness assumption does not change the theory of
the modeling of the neutron star and its stability described in
this section; however, the exact values of the total stellar
quantities like mass and angular momentum may vary at
most up to a fewpercentwith respect to thevalues obtained in
full general relativity [24,48]. This level of precision is
acceptable for this initial study.
It is possible [26] to cast the Euler equation in a form that

is reminiscent of thermodynamical equations,

dQðp;FÞ ¼ dp
h

−ΩdF; ð2Þ

by defining the potential

Qðp; FÞ ¼ − ln
αðr; θÞ

Γðr; θ; FÞ − Ωðr; θ; FÞF; ð3Þ

where p is the pressure, h ¼ ϵþ p the total enthalpy
density, r, θ are respectively the quasi-isotropic radius and
polar angle coordinates, Ω ¼ uϕ=ut is the fluid angular
velocity seen from infinity (u is the fluid four-velocity),
F ¼ utuϕ is the redshifted angular momentum per unit
enthalpy and unit rest mass [24], α is the lapse function, and
Γ ¼ αut is the Lorentz factor with respect to the zero
angular momentum observer. From Eqs. (2) and (3) it
follows that the angular velocityΩ and the enthalpy density
h can be obtained by differentiation:

Ω ¼ −
∂Qðp;FÞ

∂F
����
p
; ð4Þ

1

h
¼ ∂Qðp;FÞ

∂p
����
F
: ð5Þ

The advantage of using the potential Q to define the stellar
model is that in this way we can obtain “baroclinic”
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configurations [26] that allow for a more realistic represen-
tation of merger remnants [4] than the commonly used
“effectively barotropic” approximation. In an effectively
barotropic model, one thermodynamical variable fixes all
the other ones, while this is not true in a baroclinic model.
Note that we choose a version of the potentialQ that depends
on F instead ofΩ since in a BNSmerger remnant the profile
of the angular velocity is not monotonic [18,21,26].
Our model for a BNS merger remnant is defined by the

following potential:

Qðp;FÞ ¼ HðpÞ þ GðFÞ þ bHðpÞGðFÞ; ð6Þ

HðpÞ ¼
Z

ρ̃ðpÞ

ρ0

p0

hðρ̃; s̃ðρ̃ÞÞ dρ̃; ð7Þ

where b is the baroclinic parameter, HðpÞ is the “heat
function,” GðFÞ is the “rotation law,”2 ρ0 is a parameter

equivalent to the central density,3 s̃ðρÞ is (one version of)
the “thermal law,” namely a one-to-one relationship
between the thermodynamical quantities, and p0 and
ρðpÞ the total derivative of p̃ðρÞ ¼ pðρ; s̃ðρÞÞ and its
inverse, respectively. To solve the Euler equation in a
point, one has to solve Eqs. (3) and (4) in order to obtain the
pressure p and angular velocity Ω in that point, get the
enthalpy density h from Eq. (5), and then (optionally)
invert the EOS to obtain the other thermodynamical
quantities ρ, s, T. The quantities s̃; ρ̃; h̃ ¼ hðρ̃; s̃ðρ̃ÞÞ that
appear in Eq. (7) are equivalent to the physical thermody-
namical quantities s, ρ, h only when the star is effectively
barotropic (i.e., b ¼ 0), in which case h depends only on
the pressure p and the angular speed Ω depends only on F
[cf. Eqs. (4) and (5)] [49].
To complete the definition of our model, we must choose

the rotation and thermal laws. For the rotation law, we
propose

GðFÞ ¼
8<
:

F < F0∶ G0 − Ω0F − ðΩM − Ω0ÞF ·
��

F
F0

�
2
− 1

2

�
F
F0

�
3
�

F > F0∶ G0 −
Ω0þΩM

2
F0 þ ΩM

σ

�
1þ2σðF−F0Þ
ð1þσðF−F0ÞÞ3 − 1

�
;

ð8Þ

where G0Ω0, ΩM, F0, and σ are free parameters. This
rotation law is smooth (its second derivative is continuous),
it has an easy analytical form, a minimum (respectively
maximum) at the center (respectively at F0), and it is
Keplerian at large radii.4 When the star is effectively
barotropic (b ¼ 0), the derivative Ω̃ ¼ −G0ðFÞ is equal
to the angular velocity profile, see Fig. 1(a) and cf. Eqs. (4)
and (6). In this case,Ω0 andΩM are the axial and maximum
angular velocities, the latter reached of axis exactly at F0.
F0 (respectively σ−1) is the scale of the variation for the low
(respectively high) angular momentum part of the rotation
law. To reduce the number of free parameters, we assume
that G0 ¼ 0, which implies that ρ0 and Ω0 are the central
density and axial angular velocity5 also in the baroclinic
case [26], and that G000 is continuous in F0, which
leads to

F0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩM −Ω0

2ΩM

s
σ−1: ð9Þ

During the first tens of milliseconds after the merger, the
remnant is not isentropic [4]: temperature and entropy
increase for decreasing density up to a critical value where
the temperature peaks. At lower densities the temperature
decreases adiabatically, while the entropy per baryon keeps
increasing, but with a lower rate. This behavior can be
reproduced with our EOS assuming the following thermal
law [see Figs. 1(b) and 1(c)]:

s̃ðρÞ ¼ ks
ρ1−ΓthþΓT

1þ expðρ−ρMρL
Þ ; ð10Þ

with Γth − 1 > ΓT > 0, which implies

T̃ðρÞ ¼ 2mnkthks
ρΓT

1þ expðρ−ρMρL
Þ ; ð11Þ

where ρM is approximately the peak density for the
temperature and ρL is a density scale, ks is a multiplicative
constant that sets the scale of the entropy, and ΓT is the
temperature polytropic index at lower density. Following
the description of Perego et al. [4] of the BNS merger
remnant at ∼10 ms after the merger, we set ρm ¼ ρL ¼ ρn

2Note that Uryū et al. [18] call rotation law the quantity −G0,
which in the nonbarotropic case they consider (b ¼ 0) is
equivalent to the angular velocity Ω.

3This is true if b ¼ 0 or Gð0Þ ¼ 0 , as done in this paper.
4That is, Ω ∝ F−3 as r → ∞. Note however that, in general, it

is not guaranteed that it reaches Keplerian frequency at large
radii. This is true also for the rotation law of Uryū et al. [see
Eq. (8) of [18] ].

5Note that G0 ≠ 0 would be necessary to reproduce shellular
rotation, which however is not relevant for the BNS merger
remnant.
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and ΓT ¼ 2=3 (i.e., adiabatic expansion in the envelope).
At later times (20–30 ms) and in the low-density region
ρ < 10−4ρn, this value is expected to decrease to ΓT ¼
1=3 [4].

III. RESULTS

A. Search

For each EOS, we run about 100,000 simulations in
order to explore the parameter space, varying the following
six parameters with a uniform distribution:

(i) central density ρ0 ¼ ½2; 10�ρn,
(ii) axial angular velocity Ω0 ¼ ½0; 3� kHz,
(iii) entropy scale ks ¼ ½1; 9�,
(iv) maximal-to-axial angular velocity ratio ΩM=Ω0 ¼

½1; 2�,
(v) rotation law scale σ−1 ¼ ½1.5; 10� km (we report it in

km because it can be interpreted, approximately, as
the radial scale of the rotation distribution at large
distance from the rotation axis),

(vi) baroclinic constant b ¼ ½−2; 0�.
As already discussed, see Sec. II B, the other parameters are
set as follows:G0 ¼ 0, F0 from Eq. (9), ρM ¼ ρL ¼ ρn, and
ΓT ¼ 2=3. The values and ranges of the parameters are
chosen to approximately reproduce the models evolved by
Hanauske et al. [5] and Perego et al. [4] (see Sec. III D for a
comparison). In particular, we set b < 0 so that there is a
hot ring in the equatorial plane instead of two hot caps in
the polar regions and its range is set to resemble the models
of Perego et al. [4] and Kastaun et al. [21], and to include
the effectively barotropic model as special case (b → 0).
The numerical details of how we find our solutions with a
modified version of the XNS code are reported in
Appendix A 2.
We remark that time evolution of the BNS remnant can

be mimicked by varying the free input parameters of our
model, once the remnant becomes stationary after a
∼10 ms timescale. In fact, shortly after merger, b → 0
on a t ≃ 50 ms timescale [4] and at later times, if the
remnant does not collapse to a black hole, ks → 0 on a
t ≃ 10 s timescale due to the loss of entropy caused by
neutrino emission. On this timescale the central density ρ0
increases due to cooling and ΩM=Ω0 → 1 and σ → 0 as the
star approaches rigid rotation due to neutrino diffusion and
magnetic viscosity (both of which we do not include).
Whether the axial angular velocity Ω0 increases or
decreases on a longer timescale depends on the total
angular momentum loss by neutrino emission and magnetic
braking [33,34], on that gained by accretion, and by the
evolution of the stellar moment of inertia. However, it is
plausible to assume that the BNS merger remnant spins up
as it happens for a protoneutron star [50].

FIG. 1. Dependence on the parameters of the rotation and
thermal laws. Ω̃ ¼ −G0ðFÞ (top) is minus the derivative of the
rotation law and s̃ (center) and T̃ (bottom) are two equivalent
versions of the thermal law. If the star is effectively barotropic
(b ¼ 0), then Ω ¼ Ω̃, s ¼ s̃, T ¼ T̃. The vertical blue dotted line
marks the saturation density.
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Before discussing the results, we remark that only
∼7%–8% of the parameter combinations in the searches
gives a valid solution of the Einstein and Euler equations.
The failure of a particular parameter combination may be
due to the physics (e.g., the mass shedding limit has been
exceeded) or to numerical issues (i.e., the code is not stable
enough; a “false negative”). We increased the stability of
the code by choosing physically motivated parameters and
by slowly increasing the rotational and thermal content of
the star at the beginning of the iterative process (see
Appendix A 2). However, it is unavoidable that a fraction

of the unsuccessful runs might consist of false negatives.
On the other hand, the successful configurations are
physical in the sense that they are solutions of the
Einstein and Euler equations, but despite our efforts of
realistic modeling we cannot be sure that they all approxi-
mate the result of dynamical evolution of mergers. For
example, a small number of successful parameter combi-
nations (of the order 10) results in stellar models with
gravitational mass M > 4. Considering BNS population
scenarios, such high masses are astrophysically unlikely
(but not impossible for rapidly rotating models with

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Parameter space of the BNS merger remnant with the ALF2 EOS. The blue dots are the successful runs withM < 4 and the red
line is the rigidly rotating, cold Keplerian curve, on which we marked the marginally stable configuration. We marked with red crosses
the model described in Sec. III D. ρ0 is the central density,Ω0 the angular velocity on the rotational axis, ks the entropy scale,ΩM=Ω0 the
ratio between the maximum and axial angular velocity in the rotation law, σ−1 the rotation law scale, F0 the critical point of the rotation
law, and b the baroclinic parameter.
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extremely stiff EOSs [51]) for BNS merger remnants and
we will exclude these configurations from the following
analysis.
Unless otherwise stated, we will consider the ALF2 EOS

in this section. The reason is that we can reliably invert the
EOS and obtain the rest mass density ρ and entropy per
baryon s from the pressure p and the enthalpy density h
only for this EOS (see Appendix A 1 for details). We
checked that the other quantities follow the same qualitative
trends of the ALF2 EOS, see for example Fig. 3.
The parameters and stellar quantities of the successful

configurations found in the search can be downloaded from
Zenodo [35].

B. Stellar properties

By exploring several thousand configurations, we find
that some combinations of the model parameters are either
unphysical or not reproducible with our code, see Fig. 2 and
discussion in Sec. III A. In some cases, there is a reasonable
physical motivation for trends observed in Fig. 2: for
example, the maximum of the axial angular velocity Ω0

increases with density ρ0 [Fig. 2(a)], since gravity is

stronger and it is possible to reach faster rotation without
mass shedding, cf. Fig. 4(b). Similarly, the maximum of
the entropy scale ks increases with increasing density ρ0
[Fig. 2(b); the other EOSs reach ks ¼ 9 with a similar trend
of ALF2] and the maximum of the axial angular velocity
Ω0 is greater for smaller rotation ratio ΩM=Ω0 [Fig. 2(c)],
due to the necessity for the equatorial angular velocity to be
lower than the Keplerian frequency in order to avoid mass
shedding. On the other hand, the fact that the maximum of
the rotation scale σ−1 is greater for smaller rotation ratio
ΩM=Ω0 is probably a spurious effect due to numerical
issues, since in simulations [5] the distance of the maxi-
mum of the angular velocity profile is at larger distances
from the rotational axis than what we obtain with our code,
see Figs. 2(d) and 8 and discussion in Sec. III D.
Remarkably, the position of the maximum of the angular
velocity F0 (which also serves as a scale for the inner part
of the rotation law) is correlated with the baroclinic
constant b, while it is not correlated with the central
density ρ0 [Figs. 2(e) and 2(f)] and with ks.
For a given central density, the gravitational mass M of

our BNS merger remnant model is larger than the

FIG. 3. Mass M vs central density ρ0 for each EOS. Plotting conventions are as in Fig. 2; in addition the red dashed line is the
nonrotating curve on which we marked the maximal mass configuration and the vertical dotted line is the critical density ρc for the EOS
inversion, see Appendix A 1. For the ALF2 EOS, we colored each point according to criterion (16): green and orange points are
expected to be stable and unstable, respectively, while we do not known the value of Eq. (16) for blue points (due to numerical issues).
We stress that this stability criterion [Eq. (16)] cannot be applied to our model and we report it here only as an indication, see discussion
in Sec. III C for details.
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nonrotating mass and can even be larger than the cold
rigidly rotating Keplerian one, see Fig. 3. In Fig. 4 we show
some trends of other stellar quantities. These trends are
obvious and expected: the stellar angular momentum J
grows with the axial angular velocity Ω0 [Fig. 4(a)], the
maximum of the Keplerian angular velocity Ωkep grows
with the central density ρ0, and the average entropy per
baryon S=M0 grows with the entropy scale ks. The circum-
ferential radius Rcir grows with entropy scale ks [due to an
increasing thermal pressure, Fig. 4(e)] and when the
equatorial angular velocity Ωeq approaches the Keplerian

one Ωkep [since the configuration approach mass shedding,
Fig. 4(f)]. Assuming that the configuration collapses to a
black hole, one can estimate the mass of the accretion disk
that remains outside of the innermost stable circular orbit
(see discussion in Sec. III D). The disk mass Mdisk also
grows when the equatorial angular velocity approaches the
Keplerian one, as expected. It is worth pointing out that,
when present, the estimated mass of the accretion disk is of
the order of that expected from simulations, e.g.,
Refs. [5,39,52,53], and much larger than the one that is
expected from a single rotating NS [31,32].

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Stellar properties of the BNS merger remnant with the ALF2 EOS. Plotting conventions are as in Fig. 2. Ω0 is the angular
velocity on the rotational axis, J the angular momentum, ρ0 the central density,Ωkep the Keplerian angular velocity at the equator, ks the
entropy scale parameter, S=M0 the average (per baryon mass) stellar entropy, Ωeq the angular velocity at the equator,Mdisk the expected
baryon mass of the accretion disk, and Rcir the circumferential equatorial radius.
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C. Stability

The solutions that are found for a given EOS are not
necessarily dynamically stable. There are many types of
instabilities that may be present (for a review see e.g., [54]),
and whether or not a particular one is relevant depends on
how its associated timescale compares with the timescale of
the viscous processes at work. In this paper, we will

consider a noncomprehensive set of possible instabilities
that may be present in the remnant.
Low T =jWj-instability.—The dynamical study of differ-

entially rotating configurations allowed the discovery of the
so-called “low-T =jWj instability” [22,55,56]. The low-
T =jWj instability sets in when an oscillation mode coro-
tates with the matter in a point of the star. Since in a BNS
merger remnant the angular velocity is not monotonic with
the radius, it is possible for an oscillation mode to corotate
with the matter in two points [22,23]. Performing the
numerical evolution in general relativity of an initially cold
remnant with a rotation law from Uryū et al. [18], Xie et al.
[23] found that this instability is present for the relatively
low value of T =jWj ¼ 0.16, where T is the kinetic energy
(not to be confused with the temperature) and W ¼ Mp þ
T −M is the gravitational binding energy (Mp is the proper
mass). Similarly, making use of Newtonian gravity, assum-
ing the Cowling approximation, and exploring a larger
number of remnant configurations, Passamonti and
Andersson [22] found that this instability may set in for
T =jWj≳ 0.02 and as T =jWj grows it initially becomes
more relevant until the mode stabilizes to a specific value of
T =jWj. We find that T =jWj grows for increasing axial
angular velocity Ω0 [Fig. 5(a)], and that the maximum of
T =jWj decreases with increasing entropy scale ks [Fig. 5(b)]
and increasing rotational scale σ−1 [Fig. 5(c)]. The anti-
correlation between T =jWj and ks is not mediated through
the central density ρ0 since both Ω0 and ks increase with
increasing ρ0, cf. Figs. 2(a) and 2(b). We interpret the
anticorrelation of ks and T =jWjwith the fact that, increasing
the thermal pressure, the star is less strongly bound. We
conclude that a larger entropy content contributes in stabi-
lizing the star against the low-T =jWj instability.
Convective instability.—The convective instability has a

local character and sets in when a displaced fluid element is
accelerated away from its equilibrium position. In a hot,
rotating star, the forces that are applied on a fluid element
are gravity, buoyancy (due to the pressure gradient), and the
centrifugal force, see e.g., [57].
In a nonrotating and hence spherical star, convective

instability is driven by buoyancy. In this case, necessary
conditions for convective instability are a nonbarotropic
EOS and entropy (or composition) gradients. For non-
rotating NSs, the onset of convective instability is con-
trolled by the Schwarzschild criterion [58], that is, a star is
convectively unstable when the Schwarzschild discriminant
S̄ðr̄Þ is negative,

S̄ðr̄Þ ¼ dp
dr̄

− c2s
dϵ
dr̄

< 0; ð12Þ

where r̄ is the Schwarzschild radius and c2s is the speed of
sound. As pointed out by Camelio et al. [26], for our EOS
this is identical to

(a)

(b)

(c)

FIG. 5. Kinetic-to-gravitational binding energy ratio T =jWj of
the BNS merger remnant with the ALF2 EOS. Plot conventions
are as in Fig. 2.Ω0 is the angular velocity on the rotational axis, ks
the entropy scale parameter, and σ−1 the rotation law scale.
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½ðΓth − 1Þð1þ aiÞρþ ΓikiðΓth − ΓiÞρΓi � ds
dr̄

< 0; ð13Þ

or, equivalently (since in our case Γth < Γi), a star is
unstable against convection if

sgnðρc − ρÞ · sgn
�
ds
dr̄

�
< 0; ð14Þ

where the critical density ρc happens to be the same critical
density for the EOS inversion (see Appendix A 1; the value
of ρc for each EOS is reported in Table II and marked with a
vertical line in Fig. 3). In our case, since the thermal law for
the effective barotropic case is such that ds=dρ > 0 [we set
ΓT ¼ 2=3 in Eq. (10)], Eq. (14) tells us that if the density
decreases monotonically from the center outward, then the
star is stable in the region with ρ < ρc and unstable
for ρ > ρc.
On the other hand, in isentropic stars the driver for

convective instability is the centrifugal force. When the
isentropic star is differentially rotating, a necessary cri-
terion for convective stability is [54,59]

dj2ðr; π=2Þ
dr

> 0; ð15Þ

where the square of the specific (per unit mass) angular
momentum j ¼ huϕ=ρ is differentiated along the equato-
rial plane, θ ¼ π=2. As shown in the top panel of Fig. 7, this
criterion is generally respected with our differential rota-
tion law.
Having a configuration that is differentially rotating,

nonisentropic, and baroclinic (namely non effectively
barotropic) at the same time means that the simple criteria
(12) and (15) are no more valid. This is due to the fact that
not only the gravitational force is no more balanced by the
buoyant force alone, but also to the fact that the three forces
are not necessary parallel. However, due to the qualitative
nature of our discussion, we will still make use of criteria
(14) and (15) to allow for this simple remark on the remnant
stability: that an increase of ρ0 favors a buoyancy-driven
convective instability, because configurations with ρ0 > ρc
(right of the dotted line in Fig. 3) are convectively unstable
(at least in a part of the star), while configurations ρ0 < ρc
(left of the dotted line in Fig. 3) are convectively stable if
the density decreases monotonically with the radius every-
where (and the entropy increases with the radius). Note that
convective instability has been found 30–50 ms after merge
in numerical simulations [60,61], and some of our models
do have negative entropy gradients at intermediate radii.
We remark moreover that this already approximate con-
sideration is valid only for the simplified EOSs we are
considering. In a more realistic EOS, the value of Γth may
be density dependent and the simple nonrotating convective
instability criterion we derived, see Eqs. (13) and (14),
should be revised.

Axisymmetric secular stability.—Another type of insta-
bility is the “secular instability.” It sets in when a configu-
ration evolves to a similar one with lower energy (i.e., a
stabler one) on a timescale longer than the hydrodynamical
one. Here we are concerned with axisymmetric instabilities,
which can be determined simply by studying the stationary
(axisymmetric) configurations. In practice, a configuration
defined by a set of parameters is stable if all configurations
close in the parameter space with the same baryon mass
M0, angular momentum J, and total entropy S, have a
greater gravitational mass M. For rigidly rotating, isen-
tropic NSs, secular stability can be checked with the turning
point criterion [25,27–29], that is, a star becomes secularly
unstable when6

∂M
∂ρ0

����
J;S

¼ 0; ð16Þ

where ρ0 is the central density. In the case of a cold and
nonrotating NS, secular instability implies and is implied
by instability against dynamical perturbations [62], while in
general, for a rigidly rotating and isentropic star, secular
instability is a sufficient but not necessary condition for
instability against dynamical perturbations, e.g., [30].
In the general case we are interested in, namely differ-

entially rotating, nonisentropic, and baroclinic NSs, the
turning point criterion [Eq. (16)] cannot be applied because
the number of free parameters is greater than the number of
conserved quantities (i.e.,M0, S, J [28]). As an exercise, we
applied anyway criterion (16) for the ALF2 EOS (for which
we can compute J and S) and showed the result in Fig. 3.
We stress that this should be taken as an indication for
stability, since we know that the turning point criterion
cannot be applied to our case (see also footnote 6). In any
case, we can draw a couple of simple conclusions from this
exercise: (i) we cannot draw a clear stable/unstable line in
the ρ0 −M diagram, since it is a two-dimensional projec-
tion of the six-dimensional parameter space, and (ii) the
marginally stable, cold, nonrotating and the cold, rigidly
rotating, Keplerian configurations are in the region of the
ρ0 −M diagram where the transition from stability to
instability for our model is expected.
Apart for the turning point criterion, one can try to

determine the stability of a configuration directly from the
definition (namely thatM is a minimum for constantM0, J,
S). A problem of this approach is that two configurations
close in the parameter space may not be connected by any
dynamical evolution, and therefore it would not make sense
to compare their gravitational mass. In the case of the ALF2

6We remark that Eq. (16) is not the only condition required by
the turning point criterion; an additional condition on the second
order variation of the quantities should be considered (see
Refs. [27,29] for additional details). For simplicity, and because
we do not advocate the use of the turning point criterion for our
model, we will not consider this additional condition.
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EOS, for which we can compute M0 and S, we tried
anyway to look at the variation of M with respect to the
parameters, keeping M0, J, S constant. Unfortunately, we
were not able to draw clear conclusions from this analysis
and further work is required.7

D. Selected models

In this section we show the stellar profiles for three
selected models, chosen according to the following criteria:
(A) a model that is a plausible outcome of a BNSmerger,
(B) the model withM < 4 that is closest to an effectively

barotropic configuration, namely that with the bar-
oclinic parameter b closest to zero, to be compared
with model A,

(C) the model with the greatest disk mass and M < 4.
The specific model parameters and properties are summa-
rized in Table I and their rest mass density, temperature, and
angular velocity distribution are shown in Figs. 6–9.

Model A is a realistic BNS merger remnant. Its mass M,
angular momentum J, and central density ρ0 are in the
expected range, e.g., [63,64]. Its shape is qualitatively
similar to that obtained in simulations (cf. Fig. 13 in Perego
et al. [4]). The temperature forms a hot ring in the
equatorial plane (cf. Fig. 7 of Perego et al. [4]); the
temperature profile is continuous but not smooth due to
the fact that the EOS is piecewise defined. The angular
velocity curve peaks 3–4 km from the rotational axis
(cf. Fig. 5 of Hanauske et al. [5], where the peak is
expected at 7–10 km).
Baroclinicity is fundamental in order to obtain the right

thermal distribution. This can be realized comparing the
profiles of models A and B (the latter being almost
effectively barotropic): in model A the density and temper-
ature isocontours are not parallel and this permits the
existence of the hot equatorial ring, while in model B they
are parallel and as a consequence the temperature profile
has an onionlike shape. This is a consequence of barocli-
nicity [26].
Between the three chosen models, model C has the

biggest circumferential radius and its equatorial angular
velocity is the closest to the Keplerian one. Unsurprisingly,
a significant amount of matter with large specific angular
momentum is present. In case of black hole formation, this
matter could form a disk. We followed the approach of
Margalit et al. [31] (see also Shapiro et al. [65] and
Camelio et al. [32]), namely we computed the baryon
mass of thematter whose angular momentum per unit mass j
is larger than that of the innermost stable circular orbit of a
black holewith the samemass and angular momentumof the
original system.8 This is equivalent to assuming that there is
no angular momentum transfer or loss during the collapse
and that dynamical effects like shocks play no role, which is
clearly not true, e.g., [33,34], but at the same time it is a first
order approximation that allows us to make a semiquanti-
tative estimation of the expected diskmassMdisk.We found it
to beMdisk ≈ 0.4 M⊙, which is substantially larger than that
expected from the collapse of a marginally stable, Keplerian,
rigidly rotating, cold NS [31,32]. The disk mass is in the
range of what is expected from dynamical simulations
(actually at theupper end of the expectations) [5,12,39,52,53,
66,67]. With a large potential energy reservoir of
3.6 × 1052 ergðϵ=0.05ÞðMdisk=0.4 M⊙Þ, this configuration
is a good candidate for launching a powerful short Gamma
Ray Burst (GRB), provided that the energy can be deposited
in a low enough density environment. For the latter, one

TABLE I. Parameters and stellar quantities of the models
shown in Sec. III D. The EOS is ALF2. The quantities are
central density ρ0, axial angular velocity Ω0, entropy scale ks,
angular velocity ratio ΩM=Ω0 and rotation law scale σ−1,
baroclinic parameter b, gravitational and baryon mass M and
M0, stellar angular momentum J, average entropy per baryon
mass S=M0, kinetic-to-gravitational energy ratio T=jWj, circum-
ferential radius Rcir, Keplerian angular velocity at the equator
Ωkep, angular velocity at the equator Ωeq, expected disk mass
Mdisk, maximum temperature Tmax.

Quantity A B C

ρ0 [ρn] 2.097 3.808 9.767
Ω0 [kHz] 1.599 1.044 1.154
ks 2.138 4.354 5.015
ΩM=Ω0 1.056 1.118 1.071
σ−1 [km] 8.189 2.497 4.714
b −0.6136 −2.465 × 10−4 −1.589
M [M⊙] 2.63 2.50 3.60
M0 [M⊙] 2.86 2.76 3.84
J [M2

⊙] 5.92 2.34 11.4
S=M0 [kB=mn] 2.54 3.60 7.09
T =jWj 0.194 0.0398 0.0958
Rcir [km] 25.9 30.2 158
Ωkep [kHz] 0.712 0.547 0.560
Ωeq [kHz] 0.536 0.193 0.458
Mdisk [M⊙] 0.00 0.00 0.372
Tmax [MeV] 45.5 47.5 112

7It would be interesting, in the future, to find a physically
motivated parametrization of the star with a number of free
parameters less or equal to the number of global constraints on
the stellar evolution (i.e., three), so that the turning point criterion
[27,28] would be applicable, and to compare this secular stability
with dynamical simulations as done by Takami et al. [30] and
Camelio et al. [32].

8Note that this is not consistent, since when some matter
escapes black hole formation, its mass and angular momentum
should not contribute to the black hole total mass and angular
momentum. However, local energy is not well defined in general
relativity. We checked with the extreme case of model C that an
iterative procedure [65] would result in a disk mass about 12%
smaller than in our approach, which is an acceptable level of
precision.
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usually assumes that the central object needs to collapse to a
black hole, but see [68] for the possibility to launch
relativistic outflows in the presence of a central neutron star.
In Fig. 8 we compare the profiles of ΩðrÞ along the

equator for our models A, B, and C and that obtained by
Hanauske et al. [5] from the merger of two M ¼ 1.25 stars
with the ALF2 EOS and a Γth ¼ 1.8 thermal component
(Hanauske et al. [5] found that the rotational profile of the
remnant is almost independent from the value of Γth, see
their Fig. 16). Our model reproduces the qualitative features
of the simulated rotational profiles (e.g., the off-axis
maximum of the angular velocity), but there are quantita-
tive differences. In particular, the maximum of the angular
velocity is much closer to the rotational axis in our models
rather than in Hanauske et al. [5].

In Fig. 9 we show a histogram of the thermodynamical
properties of the matter for models B and C, like those in
Perego et al. [4]. First, we note the defining difference
between the (almost) effectively barotropic configuration of
model B and the baroclinic (i.e., nonbarotropic) configu-
ration of model C: given a value of the density, there is only
one value of temperature that can be obtained in model B,
while this is not true for model C. Second, we remark that
the models reproduce the qualitative features of the histo-
grams in Perego et al. [4] (e.g., the polytropic increase of
the temperature with the density, the maximum of the
temperature reached off center, and the baroclinicity), but
there are quantitative differences, most notably a smaller
variation of the temperature for a given density in model C
compared to the simulation results of Perego et al. [4].

FIG. 6. Density ρ, temperature T, and angular velocity Ω profiles of models A and B.
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In future works, we will refine our model and the code in
order to improve the quantitative comparison with the
results of dynamical simulations.

We provide the communitywith ten realistic BNS remnant
models (including model A) with the ALF2 EOS and stellar
properties in the ranges 2.4 < M < 3.5, 5.5 < J < 7.5,
1.5 < ρ0=ρn < 4, ΩM=Ω0 > 1.05, compatible to numerical
relativity simulations, e.g., [69,70], plusmodelsB andC.The
stellar profiles and a PYTHON script to read them can be
downloaded from Zenodo [35]. This dataset can be used as
background models for microphysical studies or as initial
conditions for dynamical evolution.

IV. CONCLUSION

In this paper we studied realistic stationary models
for postmerger configurations after a BNS merger. We
modeled the EOS with cold polytropic pieces [36] plus a
thermal component as described in more detail in [26].
Our remnant model is controlled by the central density
and other parameters that fix the rotational and thermal
distributions. We explored a broad range of postmerger
configurations and discussed their stability based on
qualitative criteria.

FIG. 7. Angular momentum per unit mass along the equator
(j, top) and density profile (ρ, bottom) of model C. In the top
panel, the horizontal line is the angular momentum per unit mass
of the innermost stable circular orbit of the black hole with the
same mass and angular momentum of model C. In the bottom
panel, the black line separates the matter expected to fall onto the
black hole in case of stellar collapse from that forming the
accretion disk.

FIG. 8. Rotational profiles of models A (straight blue line), B
(dashed blue line), and C (dotted blue line) and of the ALF2-
M125 Γth ¼ 1.8 model of Hanauske et al. (Fig. 16 of Ref. [5])
(dot-dashed red line).

FIG. 9. Mass-weighted, normalized histogram of the thermo-
dynamical distribution (temperature vs rest mass density) of
matter for models B (top) and C (bottom), to be compared with
Perego et al. [4].
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In particular we have
(i) introduced new rotation and thermal laws, Eqs. (8)

and (10), that are motivated by numerical simula-
tions [4,5].

(ii) applied the technique recently developed by Camelio
et al. [26] to BNS merger remnants. We obtained
baroclinic (i.e., not effectively barotropic) configura-
tions, which are more suitable to model merger
remnants than the effectively barotropic ones [4].

(iii) performed an extensive parameter space study in
which we included the effects of differential rotation,
temperature, and baroclinicity.

Our main results are
(i) the central density ρ0, the axial angular velocity Ω0,

and the thermal scale ks are the parameters that have
the largest impact on the global remnant properties,
see Fig. 4.

(ii) baroclinicity (implemented with the parameter b) is
necessary to reproduce the thermodynamical profile
of BNS merger remnants, in particular the existence
of a hot ring in the equatorial plane [4,21], compare
models A and B in Sec. III D.

(iii) the collapse of a BNS merger remnant to a black
hole may generate a massive disk which could
provide the central engine to launch a short gamma
ray burst [31,32], see Figs. 4(d) and 7.

(iv) the increase of the central density ρ0 may cause
convective instabilities and the increase of the axial
angular velocity Ω0 may cause low-T =jWj insta-
bility. If no convection is present, an increased
thermal content (ks) seems to increase stability by
reducing the maximal T =jWj that can be reached by
the model.

(v) we make the results of our parameter search and a set
of realistic models available to the community [35].

The approach described here can be extended further:
(i) an even more realistic description of the remnant

physics, namely (a) the inclusion of composition in
the model, (b) the adoption of more realistic EOSs
(for example the new piecewise parametrization of
O’Boyle et al. [71] or a tabulated EOS), (c) the
addition of the magnetic field (see Ref. [72] for an
example of protoneutron star studied in Newtonian
gravity), and (d) the use of a rotation curve that is
truly Keplerian by construction, not only because it
approaches the Keplerian trend at large radii (like in
this work and in Uryū et al. [18]), but also the
Keplerian frequency.

(ii) addition of physically motivated restrictions on the
free parameters of the stationary remnant model to
simplify the study of its stability and the test of these
predictions with dynamical simulations [5,32] and/
or a perturbative study [73,74].

In this way it will be possible to perform realistic fits of the
mergers remnant obtained by dynamical simulations.
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APPENDIX A: IMPLEMENTATION DETAILS

1. Equation of state

We adopt a set of EOSs obtained with different methods
and different components: ALF2 (nuclear-quark hybrid

TABLE II. EOS properties. For each EOS, we report the EOS
high-density polytropic index Γ7; the EOS thermal constant kth;
the temperature T2;2 ¼ Tð2ρn; 2 kBÞ; the critical density for the
EOS inversion ρc; the central density ρtov of the maximal mass
Mtov nonrotating configuration; the circumferential radius R1.4 of
the nonrotating configuration withM ¼ 1.4; the maximum stellar
angular momentum JrM, maximum angular rotation Ωr

M, and
maximal massMr

M on the stable branch of the Keplerian curve of
a rigidly rotating and cold NS.

Quantity ALF2 SLy APR4 ENG

Γ7 1.890 2.851 3.348 3.168
kth 1.993 1.215 0.9610 1.385
T2;2 [MeV] 37.9 23.1 18.3 26.3
ρc [ρn] 45.0 5.58 4.44 4.35
ρtov [ρn] 6.11 7.49 7.14 6.65
Mtov [M⊙] 1.98 2.05 2.19 2.24
R1.4 [km] 12.5 11.6 11.2 11.8
JrM [M2

⊙] 4.07 4.03 4.83 5.03
Ωr

M [kHz] 1.48 1.85 1.98 1.85
Mr

M [M⊙] 2.43 2.43 2.61 2.68
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EOS [40]), SLy (nuclear EOS from an effective potential
[41]), APR4 (nuclear EOS from variational method [42]),
and ENG (relativistic Brueckner-Hartree-Fock nuclear
EOS [43]). We use the parametrization of Read et al.
[36] to implement them, including the SLy crust (we use
only one index i ¼ 1;…; 7 running from the crust
to high density). We summarize the EOS properties in
Table II.
In order to recover ρ, s fromh, p, we note that Eq. (B14)

of [26] can be generalized to

ðΓth − 1Þð1þ aiÞρþ ðΓth − ΓiÞkiρΓi

¼ ðΓth − 1Þh − Γthp: ðA1Þ

Given a couple of h, p we can get 0, 1, or more different
couples of ρ, s, see Fig. 10. It is important to know if the
coupleh, s admits at least one solution, because otherwise
such couple is not valid and the algorithm should be able
to mark that point as “vacuum outside the surface.” On the
other hand, whether or not the solution of the EOS is
unique is somehow less important because the only
quantities that enter in the Einstein and Euler equations
for an ideal gas are h and p and not ρ and s. This means
that one can find a valid stellar configuration without
knowing the rest mass and entropy distributions inside
the star.
In the case of a piecewise polytropic EOS such as

Eq. (1), the degeneracy can in principle be more problem-
atic than for a one-piece polytropic one because there can
be more than 2 valid ρ, s couples for given h, p. An
analysis of the piecewise EOSs considered in this paper
shows that this is not the case: the degeneracy is the same of
the one-piece polytropic EOS of Camelio et al. [26], i.e.,
there is only one critical density ρc in the range of the last

high-density piece,9 ρc > ρ6. In Table II we report the
critical density for each EOS considered; apart for the
ALF2 EOS, for which ρc ≃ 45ρn, the other critical densities
lie in the range 4ρn ≲ ρc ≲ 6ρn and are even lower than the
central density of the maximal mass configuration of the
spherical (nonrotating) model. Since the ALF2 has such a
high value of ρc, we can safely choose the low density
branch of the solution like we did in Camelio et al. [26],
while we cannot do the same for the other EOSs. For this
reason, we are able to compute the total stellar rest mass
M0, entropy S, and disk mass Mdisk only for ALF2. All
other quantities, such the stellar gravitational mass M and
angular momentum J, can be computed also for the
other EOSs.

2. Neutron star

We used a modified version [26,32] of the XNSv2 code
[44,45]; we refer the reader to the original papers for details
on the implementation. The only difference with respect to
our previous work [26] is that, at the beginning of the
iterative procedure to determine the stellar configuration,
we have slowly increased the thermal and rotational content
of the star by varying ks and Ω0, in order to increase the
stability of the numerical scheme. We set the following
parameters in our code:

(i) inner radial grid: boundary at r ¼ 30 M⊙, 3000
evenly spaced points,

(ii) outer radial grid: boundary at 1000 M⊙, 3000
increasingly spaced points,

(iii) absolute tolerance of maxðhÞ for convergence:
10−11,

(iv) planar symmetry,
(v) 50 points in the angular grid (in one of the hemi-

spheres),
(vi) 500 relaxing iterations (see discussion above),
(vii) 30 Legendre polynomials.
In order to implement the rotation law (8), we define two

functions G1 and G2:

FIG. 10. Left-hand side of Eq. (A1) for the Γ ¼ 3 EOS of
Camelio et al. [26]. ρc is the critical density for the inversion.

9In practice we studied Eq. (A1) in the range of each polytropic
piece and checked whether the critical density ρc;i, given by
cf. Eq. (B15) of [26],

ρΓi−1
c;i ¼ −

ðΓth − 1Þð1þ aiÞ
ðΓth − ΓiÞkiΓi

; ðA2Þ

(i) exists (i.e., the rhs is positive) and (ii) lays in the correct range
(i.e., ρi−1 ≤ ρc;i ≤ ρi). We found that, for the EOSs considered,
the only piece with a critical density [respecting conditions
(i)–(ii)] is the last one, and we therefore write ρc ≡ ρc;7. Note
that if the rhs of Eq. (A1) is negative and ρc exists the only valid
solution is the high-density one with ρ >

ffiffiffiffiffi
Γ7

Γ7−1
p

ρc. On the other
hand, it can be that ρc < ρ <

ffiffiffiffiffi
Γ7

Γ7−1
p

ρc [i.e., the rhs of Eq. (A1) is
positive], but the recovered s2 is negative, that is the entropy is
not physical and the only valid solution is the low-density one.
Unfortunately, in general one cannot exclude one specific branch.
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G1ðFÞ ¼ ḠðFÞΘðF0 − FÞ þ GðFÞΘðF − F0Þ; ðA3Þ

G2ðFÞ ¼ GðFÞΘðF0 − FÞ þ ḠðFÞΘðF − F0Þ; ðA4Þ

where Θ is the step function and

ḠðFÞ ¼ G0 −
Ω0 þ ΩM

2
F0

− ΩMðF − F0Þ − ðF − F0Þ3: ðA5Þ

We start by solving the system (3) and (4) with G≡G1. If
F < F0, then we solve again the system with G≡G2. We
found that in this way we increase the precision of the
solution close to the maximum, F ≃ F0. Moreover, instead
of solving the Newton-Raphson with F as an independent
variable, we found that it is numerically more stable to
solve the equations using Ω as an independent variable,
even if the rotation law is defined in F.
The heat function [Eq. (7)] is determined by numerical

integration.
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