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In this work, we study the effect of (anti)kaon condensation on the properties of compact stars that
develop hypernuclear cores with and without an admixture of Δ-resonances. We work within the covariant
density functional theory with the parameters adjusted to K-atomic and kaon-nucleon scattering data in the
kaonic sector. The density-dependent parameters in the hyperonic sector are adjusted to the data on Λ and
Ξ− hypernuclei data. The Δ-resonance couplings are tuned to the data obtained from their scattering off
nuclei and heavy-ion collision experiments. We find that (anti)kaon condensate leads to a softening of the
equation of state and lower maximum masses of compact stars than in the absence of the condensate. Both
theK− and K̄0 condensations occur through a second-order phase transition, which implies no mixed-phase
formation. For large values of (anti)kaon and Δ-resonance potentials in symmetric nuclear matter, we
observe that condensation leads to an extinction of Ξ−;0 hyperons. We also investigate the influence of
inclusion of additional hidden-strangeness σ� meson in the functional and find that it leads to a substantial
softening of the equation of state and delay in the onset of (anti)kaons.
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I. INTRODUCTION

Born in supernova explosions neutron (or compact)
stars (NSs) are the densest cosmic bodies in the modern
Universe. They provide a unique domain of density range
to study the novel states of matter. Indeed, matter in
compact stars is compressed by the gravitational force to
densities a few times nuclear saturation density, n0 [1–4].
During the last decade electromagnetic as well as gra-

vitational wave observations placed a number of constraints
on the global properties of compact stars (masses, radii,
deformabilities, etc.) which significantly constrain the range
of admissible equationof state (EOS)models of densematter.
We briefly list below the most important observational
results. The masses of massive M ∼ 2 M⊙ compact star
(millisecond pulsars) in binaries with white dwarfs were
determined for J1614 − 2230 (M ¼ 1.908� 0.016 M⊙)
[5,6], J0348þ 0432 (2.01� 0.04 M⊙) [7], and J0740þ
6620 (2.14þ0.20

−0.18 M⊙ with 95% credibility) [8]. The radius
of a canonical 1.4 M⊙ compact stars was inferred from

low-mass x-ray binaries in globular clusters in the range
10 ≤ R ≤ 14 km [9]. The mass-radius measurements of
PSR J0030þ 0451 by the NICER experiment determined
M ¼ 1.44þ0.15

−0.14 M⊙, R ¼ 13.02þ1.24
−1.06 km [10], and M ¼

1.34þ0.15
−0.16 M⊙, R ¼ 12.71þ1.14

−1.19 km (with 68.3% credibility)
[11]. The first multimessenger gravitational-wave event
GW170817 observed by the LIGO-Virgo collaboration
[12–14] set constraints on the tidal deformabilities of
involved stars which through a tight correlation with the
radii predict a radius 12 ≤ R1.4 ≤ 13 km for the canonical-
mass star M ¼ 1.4 M⊙. The LIGO-Virgo collaboration
observation of the GW190425 event in gravitational waves
determined the component masses range 1.46–1.87 M⊙
[15]. Another event GW190814 suggests a binary with a
light component with a mass 2.59þ0.08

−0.09 M⊙ [16] which falls
in the “mass gap” (2.5 M⊙ ≤ M ≤ 5 M⊙). The nature of
the lighter companion is still not resolved [17–21], but the
neutron star interpretation appears to be in tension with
formation of heavy baryons (hyperons, Δ-resonances) in
compact stars [22–24].
Due to large densities reached in the core region of

compact stars, new hadronic degrees of freedom are
expected to nucleate in addition to the nucleons. One such
possibility is the onset of hyperons, as initially suggested
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in Ref. [25]. This occurs in the inner core of compact
stars at about ð2 − 3Þn0. Even though the presence of
hyperons in compact stars may seem to be unavoidable,
it leads to an incompatibility of the theory with the
observations of massive pulsars mentioned above, as is
evidenced by many studies which used either phenomeno-
logical [26–30] or microscopic [31–35] approaches.
Specifically, hyperons lead to a softening of the EOS
and imply a low value of the maximum mass of compact
stars, below those observed. This problem is known as the
“hyperon puzzle.” The studies prior to the discovery of
massive pulsars, the work during the last decade focused
mainly on models which provide sufficient repulsion
among the hadronic interactions which guarantees stiffer
EOS and larger maximum masses of hypernuclear stars;
these have been carried out mostly within the covariant
density functional theory [36–52]. But microscopic models
have also been employed [53,54].
Another fascinating possibility of the onset of non-

nucleonic degrees of freedom is the appearance of stable
Δ-resonances in the matter. Whether Δ-resonances play
any role in the NSs is still a matter of debate [49,55]. Early
work [26,56] indicated that the threshold density for the
appearance of Δ-resonances could be as high as (9–10) n0.
More recent work in Refs. [49,57–59] have shown that
indeed these non-strange baryons may appear in nuclear
matter at density in the range ð1 − 2Þn0. In particular, the
recent work which included both hyperons and Δ-reso-
nance [49,60] showed that the inclusion of Δ-resonances
into the NS matter composition reduces the radius of a
canonical 1.4 M⊙ mass compact star, whereas the maxi-
mum mass implied by the EOS does not change signifi-
cantly. The onset of Δ-resonances also shifts the onset of
hyperons to higher densities [49,57,60].
Yet another possibility of a new non-nucleonic degree of

freedom at high densities is the appearance of various
meson (pion, kaon, ρ-meson) condensates. Initially, pion-
condensation and its implications for neutron star physics
was studied [61–63]. Later, the focus shifted towards
the strangeness-carrying (anti)kaons (K̄) condensate, ini-
tially suggested within a chiral perturbative model in
Refs. [64,65]; for further models and developments see
[28,66,67]. It has been then realized that the repulsive
optical potential developed by the Kþ mesons in the
nuclear matter disfavors the presence of kaons in neutron
star matter. Several authors [68–74] have studied the (anti)
kaon condensation in nuclear as well as hypernuclear
matter. The onset of (anti)kaons in the compact star matter
is very sensitive to the K− optical potentials as well as the
presence of hyperons. In the latter case, it is observed that
the threshold density of (anti)kaons is shifted to even higher

matter densities [75]. A generic feature of the onset of the
condensates is the softening of the EOS and the reduction
of the maximum masses of compact stars, which could
become potentially incompatible with the observations of
massive pulsars. The onset of (anti)kaon condensation
affects many properties of compact stars beyond the
equation of state, such as superfluidity [76], neutrino
emission via direct Urca processes [77,78], and bulk
viscosity [79]. This is a direct consequence of the changes
in the single-particle spectrum of fermions, e.g., the Fermi
momenta, effective masses, etc.
In the present work, we explore the possibility of (anti)

kaon condensation in β-equilibrated Δ-resonance admixed
hypernuclear matter in the core region of compact stars
within the framework of covariant density functional (CDF)
model. To construct the EOS, we implement the DD-
ME2 parametrization of density functional with density-
dependent couplings [80]. This model has been extended
previously to the Δ-resonance admixed hypernuclear mat-
ter without (anti)kaon condensation [49,60], showing that
the resulting EOS is broadly compatible with the available
astrophysical constraints. It has been also extended to
include the effect of strong magnetic fields [81]. This
work, therefore, will focus on the novel aspects that are
introduced by the (anti)kaon condensation.
The paper is arranged as follows. In Sec. II we briefly

describe the density-dependent CDF formalism and its
extension to (anti)kaons condensation in Δ-resonances
admixed hypernuclear matter. Section III is devoted to
numerical results and their discussions. The conclusions
and future perspectives are given in Sec. IV. We use natural
units ℏ ¼ c ¼ 1 throughout.

II. FORMALISM

A. Density dependent CDF model

In this work, we consider the density dependent CDF
model to study the transition of matter from hadronic to
antikaon condensed phase in β-equilibrated Δ-resonance
admixed hypernuclear matter. The matter composition is
considered to be of the baryon octet (b≡ N;Λ;Σ;Ξ),
Δ-resonances (d≡ Δþþ;Δþ;Δ0;Δ−), antikaons (K̄≡
K−; K̄0) alongside leptons (l) such as electrons and muons.
The strong interactions between the baryons as well as the
antikaons are mediated by the isoscalar-scalar σ, σ�, iso-
scalar-vector ωμ, ϕμ, and isovector-vector ρμ meson fields.
The additional hidden strangeness mesons (σ�;ϕμ) are
considered to mediate the hyperon-hyperon as well as
(anti)kaon-hyperon interactions. The total Lagrangian den-
sity consisting of the baryonic, leptonic, and kaonic parts is
given by [49,68,69,82]
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L ¼
X

b

ψ̄bðiγμDμ
ðbÞ −m�

bÞψb þ
X

d

ψ̄dνðiγμDμ
ðdÞ −m�

dÞψν
d

þ
X

l

ψ̄ lðiγμ∂μ −mlÞψ l þDðK̄Þ�
μ K̄Dμ

ðK̄ÞK −m�2
K K̄K

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ þ 1

2
ð∂μσ

�∂μσ� −m2
σ�σ

�2Þ

−
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ −

1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ

−
1

4
ϕμνϕ

μν þ 1

2
m2

ϕϕμϕ
μ; ð1Þ

where the fields ψb, ψν
d, ψ l correspond to the baryon octet,

Δ-baryon, and lepton fields. mb, md, mK , and ml represent
the bare masses of members of baryon octet, Δ-quartet,
isospin doublet for (anti)kaons and leptons, respectively. The
covariant derivative in Eq. (1) is

DμðjÞ ¼ ∂μ þ igωjωμ þ igρjτj · ρμ þ igϕjϕμ; ð2Þ

with j denoting the baryons (b, d) and (anti)kaons (K̄). The
density-dependent coupling constants are denoted by gpj
where “p” index labels the mesons. The isospin operator for
the isovector-vector meson fields is represented by τj. The
gauge field strength tensors for the vector meson fields are
given by

ωμν ¼ ∂νωμ − ∂μων;

ρμν ¼ ∂νρμ − ∂μρν;

ϕμν ¼ ∂νϕμ − ∂μϕν: ð3Þ
The Dirac effective baryon and (anti)kaon masses in

Eq. (1) are given by

m�
b ¼ mb − gσbσ − gσ�bσ�; m�

d ¼ md − gσdσ;

m�
K ¼ mK − gσKσ − gσ�Kσ�: ð4Þ

In the relativistic mean-field approximation, the meson
fields obtain expectation values which are given by

σ ¼
X

b

1

m2
σ
gσbnsb þ

X

d

1

m2
σ
gσdnsd þ

X

K̄

1

m2
σ
gσKnsK̄; σ� ¼

X

b

1

m2
σ�
gσ�bnsb þ

X

K̄

1

m2
σ�
gσ�KnsK̄;

ω0 ¼
X

b

1

m2
ω
gωbnb þ

X

d

1

m2
ω
gωdnd −

X

K̄

1

m2
ω
gωKnK̄; ϕ0 ¼

X

b

1

m2
ϕ

gϕbnb −
X

K̄

1

m2
ϕ

gϕKnK̄;

ρ03 ¼
X

b

1

m2
ρ
gρbτb3nb þ

X

d

1

m2
ρ
gρdτd3nd þ

X

K̄

1

m2
ρ
gρKτK̄3nK̄; ð5Þ

where ns ¼ hψ̄ψi and n ¼ hψ̄γ0ψi denote the scalar and
vector (number) densities, respectively. The explicit form
of scalar and vector density of baryons in the T ¼ 0 limit is

nsj ¼
2Jj þ 1

4π2
m�

j

�
pFj

EFj
−m�2

j ln

�
pFj

þ EFj

m�
j

��
;

nj ¼
2Jj þ 1

6π2
p3
Fj
; ð6Þ

respectively, with Jj, pFj
and EFj

being the spin, Fermi
momentum and Fermi energy of the jth baryon. For the
case of s-wave (anti)kaons, the number density is given as

nK−;K̄0 ¼ 2

�
ωK̄ þ gωKω0 þ gϕKϕ0 �

1

2
gρKρ03

�
;

¼ 2m�
KK̄K: ð7Þ

Here, ωK̄ represents the in-medium energies of (anti)kaons
and are given by (considering isospin projection as ∓ 1=2
for K−; K̄0)

ωK−;K̄0 ¼ m�
K − gωK − gϕKϕ0 ∓ 1

2
gρKρ03: ð8Þ

In case of leptons (l), the number density is given by
nl ¼ p3

Fl
=3π2. The chemical potential of the jth baryon is

μj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Fj
þm�2

j

q
þ Σ0 þ Σr; ð9Þ

where ΣB ¼ Σ0 þ Σr denotes the vector self-energy with

Σ0 ¼ gωjω0 þ gϕjϕ0 þ gρjτj3ρ03; ð10Þ

Σr ¼
X

b

�∂gωb
∂n ω0nb −

∂gσb
∂n σnsb þ

∂gρb
∂n ρ03τb3nb

þ ∂gϕb
∂n ϕ0nb

�
þ
X

d

ðψb → ψν
dÞ: ð11Þ

Equation (11) is the rearrangement term which is required
in case of density-dependent meson-baryon coupling mod-
els to maintain the thermodynamic consistency [83]. Here,
n ¼ P

j nj represents the total baryon number density.
The threshold condition for the onset of jth baryon into

the nuclear matter is given by [69]

μj ¼ μn − qjμe; ð12Þ
where qj is the charge of the jth baryon. μe ¼ μn − μp
is the chemical potential of electron with μn, μp denoting
the same for neutron and proton. With increasing
density, the Fermi energy of electrons increases and
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once it reaches the rest mass of muons, i.e., μe ¼ mμ,
muons start to appear in the nuclear matter.
In case of (anti)kaons, the threshold conditions are

governed by the strangeness changing processes such as,
N⇌N þ K̄ and e−⇌K− [1,70] and are given by

μn − μp ¼ ωK− ¼ μe; ωK̄0 ¼ 0: ð13Þ

The total energy density due to the fermionic part is
given by

εf ¼
1

2
m2

σσ
2 þ 1

2
m2

ωω
2
0 þ

1

2
m2

ρρ
2
03 þ

X

j≡b;d

2Jj þ 1

2π2

�
pFj

E3
Fj
−
m�2

j

8

�
pFj

EFj
þm�2

j ln

�
pFj

þ EFj

m�
j

���

þ 1

2
m2

σ�σ
�2 þ 1

2
m2

ϕϕ
2
0 þ

1

π2
X

l

�
pFl

E3
Fl
−
m2

l

8

�
pFl

EFl
þm2

l ln

�
pFl

þ EFl

ml

���
: ð14Þ

And the energy density contribution from the kaonic
matter is

εK̄ ¼ m�
KðnK− þ nK̄0Þ; ð15Þ

giving the total energy density as ε ¼ εK̄ þ εf. Now,
because (anti)kaons being bosons are in the condensed
phase at T ¼ 0, the matter pressure is provided only by the
baryons and leptons and is given by the Gibbs-Duhem
relation

pm ¼
X

j≡b;d

μjnj þ
X

l

μlnl − εf: ð16Þ

The rearrangement term in Eq. (11) contributes explicitly to
the matter pressure term only through the vector self-
energy term.
Two additional constraints—the charge neutrality and

global baryon number conservation—should be taken into
account to calculate the equation of state self-consistently.
The charge neutrality condition is given by

X

b

qbnb þ
X

d

qdnd − nK− − ne − nμ ¼ 0: ð17Þ

B. Coupling parameters

In the density dependent CDFmodel implemented in this
work, DD-ME2 [80] coupling parametrization is incorpo-
rated. The coupling functional dependence of the scalar σ
and vector ω meson on density is given by

giNðnÞ ¼ giNðn0ÞfiðxÞ; for i ¼ σ;ω; ð18Þ

where, x ¼ n=n0, n, n0 being the total baryon number
density and nuclear saturation density, respectively, with

fiðxÞ ¼ ai
1þ biðxþ diÞ2
1þ ciðxþ diÞ2

: ð19Þ

For the case with ρ meson, the density dependence
coupling functional is defined as

gρNðnÞ ¼ gρNðn0Þe−aρðx−1Þ: ð20Þ

The parameters of the meson-nucleon couplings in DD-
ME2 parametrization model is given in Table I. The
coefficients associated with DD-ME2 model are fitted to
reproduce nuclear phenomenology; the details can be
found in Ref. [80]. Since the nucleons do not couple
to the strange mesons, gσ�N ¼ gϕN ¼ 0. The masses of
the additional hidden strangeness mesons are taken as
mσ� ¼ 975 MeV and mϕ ¼ 1019.45 MeV. The nuclear
saturation properties are provided in Table II. The param-
eters E0, K0, Q0 denote the saturation energy, incompress-
ibility, and skewness in isoscalar sector, and Esym, Lsym for
symmetry energy coefficient and its slope in isoscalar
sector, all evaluated at the saturation density. It should
be noted, that the experimentally obtained values of some
of these parameters have an uncertainty range given by
n0 ∈ ½0.14 − 0.17� fm−3 [84], −E0 ∈ ½15 − 17� MeV [84],
K0 ∈ ½220 − 260� MeV [85,86], Esym∈ ½28.5−34.9�MeV
[87,88]. Once the parameters of the model are fixed to
particular values within the range indicated above, the EOS
is obtained by straightforward extrapolation to the high-
density regime. At present, the high-density properties of
dense matter are constrained by astrophysics of compact
stars and modeling of heavy-ion collision experiments,
both of which carry uncertainties of their own.
The bare masses of the members of the baryon octet,

Δ-quartet, and (anti)kaons considered in this work aremΛ ¼
1115.68 MeV, mΞ0 ¼1314.86MeV, mΞ− ¼1321.71MeV,
mΣþ ¼ 1189.37 MeV, mΣ0 ¼ 1192.64 MeV, mΣþ ¼
1197.45 MeV, mΔ ¼ 1232 MeV, mK ¼ 493.69 MeV.

TABLE I. The meson masses and parameters of the DD-ME2
parametrization used in Eqs. (18) and (19).

Meson (i) mi (MeV) ai bi ci di giN

σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396
ω 783 1.3892 0.9240 1.4620 0.4775 13.0189
ρ 763 0.5647 7.3672
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For the meson-hyperon vector coupling parameters, we
incorporated the SU(6) symmetry and quark counting rule
[72,89] as

1

2
gωΛ ¼ 1

2
gωΣ ¼ gωΞ ¼ 1

3
gωN;

2gϕΛ ¼ 2gϕΣ ¼ gϕΞ ¼ −
2

ffiffiffi
2

p

3
gωN;

1

2
gρΣ ¼ gρΞ ¼ gρN; gρΛ ¼ 0: ð21Þ

The scalar meson-hyperon couplings are calculated by
considering the optical potentials of Λ, Σ, Ξ as −30,
þ30, and −14 MeV, respectively [81]. Furthermore, the
scalar strange meson σ�-hyperon coupling is evaluated
from the measurements on light double-Λ nuclei and fitted
to the optical potential depth UΛ

Λðn0=5Þ ¼ −0.67 MeV
[90]. The scalar meson-hyperon couplings for the other
strange baryons can be obtained from the relationship

gσ�Y
gϕY

¼ gσ�Λ
gϕΛ

; Y ∈ fΞ;Σg: ð22Þ

Table III provides the numerical values of the meson-
hyperon couplings at nuclear saturation density, where
RσY ¼ gσY=gσN , Rσ�Y ¼ gσ�Y=gσN denote the scaling factors
for nonstrange and strange scalar mesons coupling to
hyperons respectively. Because experimental information
on the Δ-resonance is scarce, the meson-Δ baryon cou-
plings are treated as parameters. In the subsequent dis-
cussion we consider gωΔ ¼ 1.10gωN and gρΔ ¼ gρN for
vector-meson couplings [49,91]. For the scalar meson-Δ
baryon couplings we use two values of the isoscalar
potentials viz. VΔ ¼ VN and 5=3VN with VN being the

nucleon potential [23,49]. These values were extracted
from the studies of electron and pion scattering off nuclei
studies as well as studies of heavy-ion collisions which
involved Δ-resonance production.
The numerical values of scalar meson-Δ-baryon cou-

pling parameters with VΔ ¼ VN is RσΔ ¼ 1.10 and that
with VΔ ¼ 5=3VN is RσΔ ¼ 1.23, where RσΔ ¼ gσΔ=gσN
denotes the nonstrange scalar meson coupling to Δ-reso-
nances. Similar to the nucleons, Δ-resonances do not
couple to σ�, ϕ mesons, i.e., gσ�Δ ¼ gϕΔ ¼ 0.
The meson-(anti)kaon couplings are fixed according to

Refs. [75,92] and are taken as density independent. The
vector meson-(anti)kaon coupling parameters are evaluated
from the isospin counting rule [75] and are given as

gωK ¼ 1

3
gωN; gρK ¼ gρN: ð23Þ

And in case of the additional hidden strange force medi-
ating mesons, the couplings are given as [72]

gσ�K ¼ 2.65; gϕK ¼ 4.27: ð24Þ

The scalar meson-(anti)kaon coupling constants are
calculated by fitting to the real part of K− optical potential
at nuclear saturation density. The readers may refer to
Ref. [74] for details. References [63,93,94] show that the
(anti)kaons experience an attractive potential in nuclear
matter whereas the opposite is true for the case with kaons
in nuclear matter [95,96]. Different model calculations
[93,94,97–99] have provided the K− optical potential in
normal nuclear matter to be in the range from −40 to
−200 MeV. We have chosen a K− optical potential range
of −120 ≤ UK̄ ≤ −150 MeV in this work and numerical
values of gσK for the mentioned optical potential range is
provided in Table IV.

III. RESULTS

In this section we report our numerical results for matter
composition with (anti)kaons and (i) nucleons þ hyperons
(NY), (ii) nucleonsþ hyperonsþ Δ-resonances (NYΔ) for
varying values of (anti)kaon optical potentials. The case of
pure nuclear matter with (anti)kaons was considered
already in Ref. [74] and the reader is referred to that work.
From calculations, it is found that the phase transition to
(anti)kaon condensed phase is of the second order for both
NY and NYΔ compositions. In all the calculations the K−

meson is observed to appear before the onset of K̄0. Table V
provides the threshold densities of (anti)kaons for different

TABLE II. The nuclear properties of the density-dependent CDF model (DD-ME2) at n0.

n0 (fm−3) E0 (MeV) K0 (MeV) Q0 (MeV) Esym (MeV) Lsym (MeV) m�
N=mN

0.152 −16.14 250.9 478.9 32.3 51.3 0.57

TABLE III. Scalar meson-hyperon coupling constants for DD-
ME2 parametrization.

Λ Ξ Σ

RσY 0.6105 0.3024 0.4426
Rσ�Y 0.4777 0.9554 0.4777

TABLE IV. Scalar σ meson-(anti)kaon coupling parameter
values in DD-ME2 parametrization at n0.

UK̄ (MeV) −120 −130 −140 −150

gσK 0.4311 0.6932 0.9553 1.2175
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values of Δ-baryon as well as UK̄ potentials for two matter
compositions.
It is observed that the (anti)kaons do not appear at all

in case of UK̄ ¼ −120 MeV for all matter compositions.
(Anti)kaons are observed to appear only after UK̄ ¼
−130 MeV with VΔ ¼ 5=3VN . This happens as the
higher Δ-potential shifts the onset of hyperons to higher
densities making the way for the (anti)kaons. In all the
cases considered, it is observed that with the inclusion of
Δ-resonances into the composition of matter the threshold
densities of onset of (anti)kaon is shifted to higher
densities.
Figure 1 shows the in-medium (effective) energies of K̄

mesons as a function of baryon (vector) number density in
NYΔ matter described by the DD-ME2 CDF. The onset of
K− mesons condense in the compact star matter occurs
when the respective effective energy crosses the electron
chemical potential, which then marks the threshold density.

In the case K̄0 mesons, the condensate appears when their
in-medium energy value reaches zero. With the increase in
the values of UK̄ , the density threshold for the onset of the
(anti)kaons is shifted to lower densities.
The EOSs with NYand NYΔ matter compositions in the

absence as well as in presence of (anti)kaon degrees of
freedom are shown in Fig. 2. In the case with no (anti)kaons
in the matter, the EOSs of NYΔ matter is stiffer than the
EOS of NY matter in the high-density regime and the
opposite is true in the low-density regime. This is consistent
with the results of Ref. [49] found within the same
DD-ME2 parametrization. The middle and right panels
of Fig. 2 include (anti)kaons with potential values UK̄ ¼
−140;−150 MeV, respectively. It is seen that the onset of
(anti)kaon condensation softens the EOS, which is marked
by a change in the slope of EOSs beyond the condensation
threshold. Furthermore, the softening is more pronounced
in the case of NYΔ composition, which reverses the high-
density behavior seen in the left panel: the EOS with NYΔ
composition is now the softest among all considered cases.
It is further seen that the higher the value of UK̄ the more
pronounced is the softening of the EOSs.
The mass-radius (M-R) relations corresponding to the

EOSs in Fig. 2 were obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations for static nonrotat-
ing spherical stars [1] and are shown in Fig. 3. For the crust
region, the BPS EOS [100] is used. The inclusion of
additional exotic degrees of freedom reduces the maximum
mass of NSs in comparison to nucleonic matter from 2.5 to
∼2 M⊙. The compactness is also observed to be enhanced
due to the appearance of Δ−-resonance at lower densities.
The parameter values of the maximum mass stars are
provided in a tabulated form in Table VI. From Tables V
and VI it can be inferred that K− meson appears in all the
EOS models with UK̄ ¼ −140;−150 MeV. But K̄0 meson
does not appear in the hypernuclear star with UK̄ ¼
−140 MeV and Δ-baryon admixed hypernuclear star with
VΔ ¼ VN andUK̄ ¼ −140 MeV. Consistent with the (anti)
kaon softening of the EOS seen in Fig. 2 the maximum
masses of the stars with NYΔ composition and (anti)kaon
condensation lie below those without Δ resonances, which
is the reverse of what is observed when (anti)kaon con-
densation is absent.

TABLE V. Threshold densities, nu for (anti)kaon condensation in NY and NYΔ matter for different values of Δ-
potentials and K− optical potential depths UK̄ðn0Þ.

NYΔK̄

Configuration NYK̄ VΔ ¼ VN VΔ ¼ 5=3VN

UK̄ (MeV) nu (K−) (n0) nu (K̄0) (n0) nu (K−) (n0) nu (K̄0) (n0) nu (K−) (n0) nu (K̄0) (n0)

−120 − − − − − −
−130 − − − − 5.86 6.79
−140 3.97 6.95 4.26 6.92 4.37 5.05
−150 3.06 5.59 3.33 5.39 3.90 4.37
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FIG. 1. The effective energy of (anti)kaons as a function of
baryon number density in NYΔ matter for Δ-potential values
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right panels show the energies of K− and K̄0, respectively.
The chemical potential of electron for the same matter compo-
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From the analysis above, we conclude that compact
stars containing (anti)kaons are consistent with the astro-
physical constraints set by the observations of massive
pulsars, the NICER measurements of parameters of PSR
J0030þ 0451, the low-mass x-ray binaries in a globular
cluster, and the gravitational wave event GW190425, see
Sec. I. Although we do not provide here the deformabilities
of our models, from the values of the radii obtained it is
clear that our models are also consistent with the
GW170817 event. Finally, our models are inconsistent
with the interpretation of the light companion of the
GW190814 binary as a compact star. Including the rotation

even at its maximal mass-shedding limit will not be
sufficient to produce a ∼2.5 M⊙ mass compact star, see
Refs. [22,23].
Figure 4 shows the particle composition in NY matter

with (anti)kaons as a function of baryon number density
and for UK̄ ¼ −140;−150 MeV. At low densities, before
the onset of strange particles, the charge neutrality is
maintained among the protons, electrons and muons. At
somewhat higher density (≥2n0) Λ and Ξ− appear in the
matter (because of the repulsive nature of Σ potential in
dense nuclear matter, Σ baryons do not appear in the
composition). Finally, the (anti)kaons and Ξ0 appear in the
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high-density regime (≥4n0). Comparing the upper and
lower panels of the figure, we observe that the higher
UK̄ value implies a lower density threshold of the onset of
(anti)kaon, as expected. The onset of (anti)kaons also
affects the population of leptons; K− are efficient in
replacing electrons and muons once they appear, thus they
contribute to the extinction of leptons, which occurs at
lower densities for higher values of UK̄ . In the case of
UK̄ ¼ −150 MeV, the Ξ− fraction is seen to be strongly
affected with the appearance of K− mesons. This is
expected as K− being bosons are more energetically

favorable for maintaining the charge neutrality compared
to fermionic Ξ−. The composition in the case of UK̄ ¼
−140 MeV does have K̄0 mesons (nu ∼ 6.95n0), whereas
for UK̄ ¼ −150 MeV, K̄0 appears at onset density nu ∼
5.59 n0 which leads to an additional softening of the EOS.
Figure 5, which is analogous to Fig. 4, shows the particle
population in NYΔ-matter as a function of baryon number
density for UK̄ ¼ −140 MeV. It is observed that for VΔ ¼
VN only Δ− resonance appears, whereas for VΔ ¼ 5=3VN
the onset of the entire quartet ofΔ-resonances is possible. It
seen that in general the Δ-resonances effectively shift the

TABLE VI. Properties of maximum mass stars for various compositions and values of (anti)kaon potential UK̄ðn0Þ. For each
composition/potential value the entries include maximum mass (in units of M⊙), the radius (in units of km), and the central number
density (in units of n0).

NYΔK̄

Configuration NYK̄ VΔ ¼ VN VΔ ¼ 5=3VN

UK̄ (MeV) Mmax (M⊙) R (km) nc (n0) Mmax (M⊙) R (km) nc (n0) Mmax (M⊙) R (km) nc (n0)

0 2.008 11.651 6.107 2.021 11.565 6.160 2.049 11.226 6.349
−140 2.005 11.652 6.096 2.019 11.566 6.151 2.032 11.343 6.214
−150 1.994 11.664 6.13 2.006 11.61 6.143 1.973 11.448 6.028
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threshold densities of hyperons to higher densities, thus
diminishing their role. This concerns both the neutral Λ as
well as Ξ− hyperon. This shift is stronger for larger values
of VΔ. Resonances also suppress the lepton fraction by
lowering the density at which they disappear in NYΔ-
matter, this effect being magnified for larger values of VΔ.
In the high-density regime the negative charge is provided
by Δ− − Ξ− − K− mixture and it is seen that the rapid
increase in the K− population suppresses the Δ− − Ξ−

abundances for VΔ ¼ 5=3VN, as kaons are energetically
more favorable than the heavy baryons. Note also that the
onset of K̄0 meson abruptly decreases the abundance of Ξ−,
as seen in the lower panel; (in the upper panel, i.e., for
UK̄ ¼ −140 MeV and VΔ ¼ VN , the K̄0 mesons do not
appear). There is some qualitative differences between the
two cases VΔ ¼ 1 and 5=3VN : (i) theΔ− baryon disappears
at higher matter densities for VΔ ¼ 1 but its abundance is
almost constant in for VΔ ¼ 5=3VN ; (ii) the Λ hyperon
dominates over the neutron fraction at higher density for
∼5.5 n0 in case of VΔ ¼ VN compared to ∼4.5 n0 in case
of VΔ ¼ 5=3VN .
Figure 6 shows the same as in Fig. 5 but for

UK̄ ¼ −150 MeV. The particle fractions show identical
trends as in Fig. 5 until the appearance of (anti)kaons.

The larger potential favors earlier onset of (anti)kaons in
matter; for example, the K− sets in before the Ξ−, and it is
now the dominant negatively charged component shortly
after the density increases beyond the onset value. The
effect of the onset of K̄0 on the Ξ− and Δ−, which is
mediated via changes in the abundances of K−, is seen
clearly again. As before, for a large value of VΔ ¼ 5=3VN ,
all the members of the quartet of Δ-resonances are present
in the matter composition. Another notable fact is the
complete extinction of Ξ−;0 baryons, which is consistent
with the trends seen in Figs. 4 and 5. Interestingly, in the
case VΔ ¼ 5=3VN the (anti)kaons abundances are the
largest among all particles in the high-density regime,
which leads also to the softening of the EOS observed
above. Figure 7 shows the (anti)kaon effective mass as a
function of normalized baryon number density for various
strengths of UK̄ with different matter compositions. The
effective mass of (anti)kaons tends to decrease rather
steeply in case of higher strengths of UK̄ . It is observed
that in the low-density regime, the (anti)kaon effective mass
decreases relatively quickly in the case of Δ-resonances
admixed matter compared to that with the only hyperonic
matter. The reason is the larger scalar potential values
arising from the onset of additional nonstrange baryons at
lower densities. And at higher densities, the (anti)kaon
effective mass values are observed to be larger in the former
case than the latter one. This may be attributed to the
delayed onset of hyperons because of the Δ-resonances
appearance.
The matter pressure as a function of energy density for

different matter compositions with and without σ� meson
for the hyperon-hyperon interactions is shown in Fig. 8.
Being a scalar, σ� meson makes the EOS softer as is evident
from the figure. It is observed that incorporating σ� meson
rules out the possibility of (anti)kaon phase transition with0.01
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UK̄ ¼ −120 MeV. This is because this scalar meson
further reduces the effective mass of (anti)kaons halting
their onset in the matter. The phase transition from the
purely hadronic to (anti)kaon condensed phase is second
order. The results of mass-radius (M − R) relationship
obtained by solving the TOV equations for nonrotating
spherical stars corresponding to the EOSs in Fig. 8 are
presented in Fig. 9. It is observed that in both cases of NY
for NYΔ matter the inclusion of σ� meson leads to lower
maximum mass. It is also seen that the addition of Δs

reduces the radius of the of the stars and mildly increases the
maximum, which consistent with the findings without (anti)
kaon condensation. Table VII provides the stellar maximum
masses, radii, and corresponding central densities evaluated
from the EOSs in Fig. 8 with UK̄ ¼ −120 MeV.
Figure 10 shows the particle abundances in case of

hypernuclear matter with UK̄ ¼ −120 MeV with and with-
out σ� meson. The main qualitative difference is that K−

appears for n ≥ 5.4 n0 in the first case and it does not
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TABLE VII. Properties of maximum mass stars for various
compositions, UK̄ ¼ −120 MeV, VΔ ¼ 5=3VN in the cases with
σ� meson and without. In both cases we list the maximum mass
(in units of M⊙) the radius (in units of km), and central number
density (in units of n0).

NYK̄ NYΔK̄ (VΔ ¼ 5=3VN)

Configuration
Mmax
(M⊙)

R
(km)

nc
(n0)

Mmax
(M⊙)

R
(km)

nc
(n0)

σωρϕ 2.124 11.673 5.973 2.137 11.023 6.538
σωρσ�ϕ 2.008 11.651 6.107 2.049 11.226 6.349
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appear up to n ∼ 7n0 in the second case. Consequently, the
charge neutrality is maintained between e − Ξ− þ K− and
protons in the first case and only e − Ξ− and protons in the
second case. Given by more than one order of magnitude
smaller abundance of electrons, the abundances of Ξ− and
protons almost coincide in the second case. Another feature
seen in Fig. 10 is that the electron and muon populations
disappear faster with increasing density in the case where
the σ� meson is included.
Figure 11, which is similar to Fig. 10, shows the compo-

sition of particles in NYΔmatter and forUK̄ ¼ −120 MeV.
In this case also, (anti)kaons are observed to appear only in
the EOSwhere σ� meson is excluded. It is seen, that themain
difference between the two cases is that σ� driven interactions
prefer lower threshold density ofΞ0 and their larger fraction,
which effectively leads to an exclusions of (anti)kaons in the
density range considered. Unlike the case with only hyper-
nuclear matter, in this case the lepton fractions are unaffected
by the exclusion or inclusion of σ� meson, because of the
negative charge is supplied by the Δ−-resonance.

IV. SUMMARY AND CONCLUSIONS

In this work, we discussed the second-order phase
transition to Bose-Einstein condensation of (anti)kaons

in hypernuclear matter with and without an admixture of
Δ-resonances within the framework of density-dependent
CDF theory. The resulting EOS, matter composition, and the
structure of the associated static, spherically symmetrical star
models were presented. The strong interactions viz. baryon-
baryon and (anti)kaon-baryon are handled on the same
footing. The mediators considered in this work are σ, ω, ρ
for the nonstrange baryons and two strange particle inter-
action mediating mesons- σ�, ϕ. The K− optical potentials
(−120 ≤ UK̄ ≤ −150 MeV) at nuclear saturation density are
considered in a range which fulfills the observational
compact star maximum mass constraint (∼2 M⊙).
We find that the (anti)kaon condensates cannot appear in

the hypernuclear matter, within our parametrization, if
UK̄ ≤ −130 MeV. K̄0 condensation is absent in maximum
mass compact stars with UK̄ ¼ −140 MeV. The inclusion
of hyperons into the matter composition shifts the onset of
(anti)kaons to higher density regimes in comparison to the
case without hyperons, i.e., only nuclear matter, c.f. to
Ref. [74]. For higher UK̄ values, the appearance of both the
(anti)kaons becomes possible in the maximum mass
models. The K− meson fraction is seen to dominate over
the Ξ− baryon for high UK̄ strengths. This can be attributed
to the fact that the K− particle being bosons is more favored
over the fermionic Ξ− particles.
Next, in the case of Δ baryon admixed hypernuclear

matter, the onset of (anti)kaons is shifted to even higher
densities compared to only hyperonic matter. (Anti)kaon
condensation is absent with UK̄ ≤ −120 MeV. The con-
densed phase is observed to appear in matter with UK̄ ¼
−130 MeV and VΔ ¼ VN . However, K̄0 condensation is
absent for this particular UK̄ strength. Larger values of
Δ-potentials VΔ imply that the entire Δ-resonances quartet
is present in matter. It is also observed that in a particular
matter composition (UK̄ ¼ −150 MeV, VΔ ¼ VN), the
onset of K− occurs even before that of Ξ− particles.
Moreover, for higher strengths of UK̄ and VΔ, the
Δ-baryons and (anti)kaons take over the Ξ−;0 particles
leading to their complete suppression in the matter. Lepton
populations are suppressed with increasing density more
quickly in case of higher strengths of VΔ. We find that the
effective mass of (anti)kaons is weakly dependent on the
composition of matter and decreases almost linearly in
the relevant density range 2 ≤ n=n0 ≤ 6, which reflects the
density dependence of the scalar potential.
The influence of the strange scalar interaction mediating

meson σ� on the composition and EOS are twofold:
firstly, including the σ� meson softens the EOS signifi-
cantly leading to lower maximum masses of compact stars.
Secondly, exclusion of σ� meson allows for (anti)kaon K−

to appear for weakly attractive potential strength UK̄ ∼
−120 MeV in both the hyperonic as well as Δ admix
hypernuclear matter.
As indicated in the discussion (Sec. III) the present

model with a suitable choice of parameters characterizing
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the (anti)kaon condensate is consistent with the currently
available astrophysical constraints listed in Sec. I. The
present model can, therefore, be used to model physical
processes in (anti)kaon condensate featuring Δ-admixed
hypernuclear star. Examples include cooling processes,
bulk viscosity, thermal conductivity, to list a few.
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