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In this work, we study the relativistic quantum kinetic equations in 2þ 1 dimensions from Wigner
function formalism by carrying out a systematic semiclassical expansion up to ℏ order. The derived
equations allow us to explore interesting transport phenomena in 2þ 1 dimensions. Within this framework,
the parity-odd transport current induced by the external electromagnetic field is self-consistently derived.
We also examine the dynamical mass generation by implementing four-fermion interaction with mean-field
approximation. In this case, a new kind of transport current is found to be induced by the gradient of the
mean-field condensate. Finally, we also utilize this framework to study the dynamical mass generation in an
external magnetic field for the (2þ 1)-dimensional system under equilibrium.
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I. INTRODUCTION

The study of relativistic quantum kinetic theory has
attracted much interest recently, partly motivated by the
theoretical developments and experimental search for
anomalous chiral transport phenomena in relativistic nuclear
collisions [1–3]. Such a theory is both theoretically impor-
tant as a many-body theoretical description and practically
useful for describing relevant transport in a general out-of-
equilibrium system. Many interesting results were obtained
in 3þ 1 dimensions, such as the relativistic kinetic theory
for a scalar and fermions without an external field [4], the
anomalous chiral transport equation in heavy-ion collisions
[5–10], the quantum kinetic theory for massive fermions
under external fields [11–20], and the nonrelativistic kinetic
theory of a spin-polarized system [21–23].
The relativistic quantum kinetic theory in 2þ 1 dimen-

sions is of its own interest. First, it could be a good starting
point for developing a full quantum transport description
for the case of massive fermions. At the moment, it is still a
challenge to derive the kinetic equation with the spin

evolution of the massive fermions under the external
Abelian gauge field in 3þ 1 dimensions. One technical
reason is that there are 16 independent components of the
Wigner function in 3þ 1 dimensions, which are coupled
with each other by the mass term and very complicated to
solve. In contrast, there are just 4 independent components
of the Wigner function in 2þ 1 dimensions, and their
equations are much simpler. This could allow a better
conceptual and technical understanding of the finite mass
effects in the quantum transport equations [24]. Second, the
quantum electrodynamics in 2þ 1 dimensions (QED3) has
attracted recent physical interest, e.g., in the studies of the
high-Tc superconducting systems [25,26] and the graphene
[27–30]. Other interesting phenomena in 2þ 1 dimensions
include e.g., the fermion condensation in the massless limit
induced by the magnetic fields hψ̄ψi ∝ jeBj [31–34].
In this work, we will study the relativistic quantum

kinetic equations in 2þ 1 dimensions within the Wigner
function formalism. The starting point is a Dirac theory
with massive fermions coupled to external electromagnetic
fields and with dynamical four-fermion interactions, i.e.,
the Nambu–Jona-Lasinio (NJL) model in 2þ 1 dimensions
which allows one to consider the dynamical mass gen-
eration in the external electromagnetic field. To systemati-
cally derive the kinetic equation of the NJL model in 2þ 1
dimensions, we will adopt the strategy in our previous work
[9], starting from the Lagrangian of the NJL model in 2þ 1
dimensions and carrying out the semiclassical expansion by
keeping the equations up to ℏ order. In doing so, we will
self-consistently derive the well-known parity-odd
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transport current, jμ ∝ ϵμρσFρσ [35–41]. Furthermore, we
will study the dynamical mass generation in this general
framework by deriving and consistently solving the gap
equation and the kinetic equations together. The results will
provide useful insights about the quantum effects beyond
the mean-field as well as the role of the external magnetic
field in dynamical mass generation. As we shall show later,
the massive fermions in 2þ 1 dimensions demonstrate
certain quantum features that would emerge in 3þ 1
dimensions only for massless chiral fermions. The case
here is similar to the study of Weyl fermions. For massless
fermions, one usually studies particles with parallel or
antiparallel spin and momentum in two-dimensional spin
space. It may be noted that in general, a physical fermion
state in 2þ 1 dimensions could be the superposition of two
inequivalent irreducible representations as mirror images of
each other. In the present work, we choose to focus one
sector composed of the particles with “spin up” and the
antiparticles with “spin down” (see Appendix A for further
definitions). Our study would help provide useful theo-
retical understanding for physical systems typically con-
taining both sectors, and it might also be possible that
certain future (2þ 1)-dimensional quantum materials
might realize an isolated sector.
The paper is organized as follows. In Sec. II, we give

a simple review on Wigner function formalism and
derive the full quantum kinetic equations in this approach
without collision term. In Sec. III, we focus on deriving the
covariant transport equations in 2þ 1 dimensions and the
equal-time transport equations by carrying out the semi-
classical expansion method, as well as self-consistently
deriving the parity-odd transport currents. In Sec. IV, we
further obtain the covariant and equal-time quantum trans-
port equations with a collision term in relaxation time
approximation. In Sec. V, we investigate the dynamical
mass generation under the external field from the gap
equation that incorporates quantum effects. Finally, we
conclude in Sec. VI.

II. EQUATION OF MOTION FOR THE
WIGNER FUNCTION

To study the dynamical mass generation for fermions
in 2þ 1 dimensions, let us consider the NJL model in
2þ 1 dimensions, which can be written in the following
form [31,42–45]:

L ¼ ψ̄ðiℏγμDμ −m0Þψ þ G
2
ðψ̄ψÞ2; ð1Þ

where Dμ ¼ ∂μ þ iQAμ=ℏ is the covariant derivative, and
the dimension of the charge Q is ½m�1=2, which is different
from the case in 3þ 1 dimensions. Besides, there are some
other differences between the 2þ 1 and the 3þ 1 dimen-
sions, although the Lagrangian density takes the same
formula. Firstly, the Dirac matrices γ in 2þ 1 dimensions

are different from those in 3þ 1 dimensions. There are two
nonequivalent irreducible representations of the Dirac
matrices in 2þ 1 dimensions, which are characterized
by i

2
Trðγ0γ1γ2Þ ¼ s, s ¼ �1 [46]. In this work, we choose

the Jackiw representation [47],

γ0¼ τ3; γ1¼ iτ1; γ2¼ iτ2; γμγν¼gμν− iϵμναγα: ð2Þ

Here, τi are the Pauli matrices and ϵ012 ¼ ϵ012 ¼ 1,
gμν ¼ diagð1;−1;−1Þ. Particularly, fI2×2; γ0; γ1; γ2g form
a complete, linearly independent basis of 2 × 2 matrices,
and the chirality γ5 ¼ iγ0γ1γ2 ¼ −1 has a fixed value in the
Jackiw representation [24]. The other nonequivalent irre-
ducible representations are obtained by flipping the sign
of γμ, γ̃μ ¼ −γμ, and γ̃5 ¼ þ1. Second, unlike in 3þ 1
dimensions, the spinor ψ in Eq. (1) just represents the
particle with spin up or the antiparticle with spin down in
the irreducible representations of Dirac matrices Eq. (2),
as discussed in Appendix A, while the spin-down particles
and spin-up antiparticles are represented by the other
irreducible representations characterized by γ̃μ [48].
Third, as discussed in Ref. [47], the Lagrangian density
in Eq. (1) is not invariant under parity transformation,
due to the mass term with the irreducible representations
Eq. (2). To see this, we take the parity transformation
corresponding to flipping the sign of one of the axes,
say x̂, and a spinor under such parity transformation
is P̂xψðt; x; yÞP̂x ¼ −iγ1ψðt;−x; yÞ, then the mass term
will flip the sign under parity transformation, i.e.,
P̂xψ̄ψðt; x; yÞP̂x ¼ −ψ̄ψðt;−x; yÞ.
In this work, we choose one of the irreducible repre-

sentations of Dirac matrices, which means we focus on the
subsystem composed of the particles with spin up and the
antiparticle with spin down. Consequently, the properties
of positive charge and negative charge are not necessarily
the same. For instance, the dynamical mass is different
for opposite charges. Besides, this system is similar to the
chiral system; the spin is locked in both of them. In the
chiral system, the spin is either parallel or antiparallel to the
momentum, while the spin is out of plane in this system.
Under the mean field approximation, the Lagrangian

density can be reduced as

LMF ¼ ψ̄ðiℏγμDμ − ðm0 þ σÞÞψ −
1

2G
σ2; ð3Þ

with the effective mass σ ¼ −Ghψ̄ψi. In this work, the
flavor structure is not considered for simplification. From
the mean field effective Lagrangian density, one obtains the
Dirac equation:

½iℏγμDμ − ðm0 þ σÞ�ψ ¼ 0;

ψ̄ ½iℏγμDþ
μ þ ðm0 þ σÞ� ¼ 0;
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where the operator Dþ
μ ¼ ∂⃖μ − iQAμ=ℏ, ∂⃖μ is the space-

time derivative which acts only on the former function.
The covariant and gauge invariant Wigner function for

fermions in 2þ 1 dimensions is [11,24]

Wαβðx; pÞ ¼
Z

d3y
ð2πℏÞ3 e

− i
ℏp·yhψ̄βðxþÞUðx; yÞψαðx−Þi;

Uðx; yÞ ¼ e
− i
ℏQ
R

xþ
x−

dzμAz ; ð4Þ

where the notation x� ¼ x� y
2
, and the function Uðx; yÞ is

the gauge link ensuring the invariance under gauge trans-
formation. Combining the above Dirac equations and the
definition of a Wigner function, we can write down the
equation of motion for the Wigner function as [13,49]

ð=K −MÞWðx; pÞ ¼ 0; ð5Þ

where the operator Kμ ¼ πμ þ 1
2
iℏ▿μ; herein these two

operators are respectively,

πμ ¼ pμ −
1

2
Qℏj1

�
1

2
ℏ△

�
Fμν∂p

ν ;

▿
μ ¼ ∂μ −Qj0

�
1

2
ℏ△

�
Fμν∂p

ν ;

and the function ji (i ¼ 0, 1) is the spherical Bessel
function. The mass M operator can be decomposed as

M ¼ M1 − iM2; M1 ¼ m0 þ cos

�
1

2
ℏ△

�
σ;

M2 ¼ sin

�
1

2
ℏ△

�
σ: ð6Þ

Here the triangle operator△ ¼ ∂x · ∂p, in which the spatial
derivative ∂x only acts on the effective mass σ, but not on
the Wigner function W.
The Wigner function is a 2 × 2 matrix, and it can be

expanded in terms of four independent generators of
Clifford algebra,

Wðx; pÞ ¼ 1

2
ðFþ γμVμÞ;

F ¼ Tr½W�; Vμ ¼ Tr½γμW�: ð7Þ

It is obvious that the Wigner function in 2þ 1 dimensions
has less independent degrees of freedom compared to that
in 3þ 1 dimensions—the pseudoscalar, axial-vector,
and antisymmetric tensor are absent in 2þ 1 dimensions.
These four coefficients correspond to some physical
distributions—the mass density, current density, and
energy-momentum tensor density:

σ ¼ −G
Z

d3pFðx; pÞ;

jμðxÞ ¼
Z

d3pVμðx; pÞ;

TμνðxÞ ¼
Z

d3ppμVνðx; pÞ: ð8Þ

According to Noether’s theorem, the conserved angular-
momentum flux density is

Jλμν ¼ xμTλν − xνTλμ þ Sλμν:

Herein, the first two terms represent the orbital part of
the angular momentum, which depend on the canonical
energy-momentum tensor density Tμν. While the last term
defines the canonical spin tensor density, which can be
written as [49–51]

Sμαβ ≡ ℏ
4
hψ̄ðxÞfγμ; σαβgψðxÞi

¼ ℏ
4

Z
d3pTr½fγμ; σαβgWðx; pÞ�

¼ ℏ
2
ϵμαβ

Z
d3pFðx; pÞ; ð9Þ

where, the spin information is encoded in the scalar
componentFðx; pÞ. It is made more clear by the following
relation:

S0ij ¼ ℏ
4
hψ̄fγ0; σijgψi

¼ ℏϵ0ij
�
ψ† σz

2
ψ

�
¼ ℏ

2
ϵ0ij

Z
d3pFðx; pÞ:

Substituting Eq. (7) into Eq. (5), one can derive the
kinetic equations for the four independent components as
follows:

πμVμ −M1F ¼ 0;

1

2
ℏ▿μVμ þM2F ¼ 0;

πμF −M1Vμ þ
1

2
ℏϵμρσ▿ρVσ ¼ 0;

1

2
ℏ▿μFþM2Vμ − ϵμρσπ

ρVσ ¼ 0: ð10Þ

These equations form the complete equation set to describe
the evolution of the system. Although they are much
simpler than those in 3þ 1 dimensions, these equations
are still difficult to solve. Similar to our previous work [9],
for the rest of this paper, we will take the semiclassical
approximation and expand the equations in orders of ℏ to
simplify the above equations.
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III. TRANSPORT EQUATION WITHOUT
COLLISION TERM

Our goal is to derive the quantum kinetic equation of the
fermions under external Abelian field from Eq. (10). As we
did in [9], we take the semiclassical expansion to the
operators and the components of the Wigner function as
follows:

πμ ¼ pμ −
1

12
Qℏ2

△Fμν∂p
ν þOðℏ4Þ;

▿
μ ¼ ∂μ −QFμν∂p

ν þOðℏ2Þ; ð11Þ

M1 ¼ m −
1

2

�
1

2
ℏ△

�
2

σ þOðℏ4Þ;

M2 ¼
1

2
ℏ△σ þOðℏ3Þ; ð12Þ

F ¼ F0 þ ℏF1 þOðℏ2Þ; Vμ ¼ Vμ
0 þ ℏVμ

1 þOðℏ2Þ:
ð13Þ

In the above equations, m ¼ m0 þ σ is the effective mass,
while σ ¼ −G

R
d3pFðx; pÞ. Now we can solve Eq. (10)

order by order.

A. The zeroth order

To the zeroth order, Eq. (10), can be written as

pμVð0Þ
μ −mFð0Þ ¼ 0;

▿
μVð0Þ

μ þ△σðxÞFð0Þ ¼ 0;

pμFð0Þ −mVð0Þ
μ ¼ 0;

ϵμρσpρVσ
ð0Þ ¼ 0: ð14Þ

From the first and third equations of the above set of
equations, one can get the on-shell condition for F,

ðp2 −m2ÞFð0Þ ¼ 0: ð15Þ

We can formally write Fð0Þ as

Fð0Þ ¼ mfð0Þðx; pÞδðp2 −m2Þ: ð16Þ

Then the vector Vμ
ð0Þ can be represented as

Vμ
ð0Þ ¼ pμfð0Þðx; pÞδðp2 −m2Þ: ð17Þ

According to the definition of the current density Eq. (8),
we can get

jμ0 ¼
Z

d3pμfð0Þðx; pÞδðp2 −m2Þ: ð18Þ

Then the physical meaning of function fð0Þðx; pÞ now is
clear—it can be interpreted as the zeroth order distribution
function of the fermions in 2þ 1 dimensions.
It might be worth noting that the equation set (14)

contains four equations: we obtain the formal solution of
Fð0Þ and Vμ

ð0Þ by using the first and third equations, then

the fourth equation is automatically satisfied. Meanwhile,
the second equation of (14) leads to the evolution equation
of fð0Þðx; pÞ, i.e., the zeroth order covariant transport
equation:

δðp2 −m2Þðp · ▿þmσν∂ν
pÞfð0Þðx; pÞ ¼ 0; ð19Þ

where the operator ▿μ ¼ ∂μ −QFμν∂p
ν , and herein we have

introduced a notation σν ¼ ∂νσðxÞ. The corresponding gap
equation can be written as

m −m0 ¼ −Gm
Z

d3pfð0Þðx; pÞδðp2 −m2Þ: ð20Þ

The above two equations (19) and (20) form a complete,
self-consistent kinetic transport equation at zeroth order.
They should be solved concurrently when solving the
transport equations numerically. Now the information of
zeroth order is clear. With this, we move on to construct the
kinetic equation up to the order of ℏ.

B. The first order

The ℏ-order sector of Eq. (10) is

pμVð1Þ
μ −mFð1Þ ¼ 0;

▿
μVð1Þ

μ þ△σðxÞFð1Þ ¼ 0;

pμFð1Þ −mVð1Þ
μ þ 1

2
ϵμρσ▿

ρVσ
ð0Þ ¼ 0;

1

2
▿μFð0Þ þ

1

2
△σðxÞVð0Þ

μ − ϵμρσpρVσ
ð1Þ ¼ 0; ð21Þ

where the operator ▿μ ¼ ∂μ −QFμν∂p
ν . According to the

first and third equation in Eq. (21), one can get

ðp2 −m2ÞFð1Þ þ 1

2
ϵμρσpμ▿ρV

ð0Þ
σ ¼ 0: ð22Þ

Plugging in the solution ofVð0Þ
σ (17), the second term of the

above equation is

1

2
ϵμρσpμ▿ρV

ð0Þ
σ ¼ −Qp · F̃fð0Þðx; pÞδðp2 −m2Þ:

Herein, F̃μ ¼ 1
2
ϵμρσFρσ ¼ ð−B;−E2; E1Þ is the dual field

strength, and B ¼ −1=2ϵijFij, Fij ¼ −ϵijB, Ei ¼ Fi0. It is
interesting that the magnetic field B is a pseudoscalar rather
than a pseudovector.
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Now Eq. (22) can be further simplified as

ðp2 −m2ÞFð1Þ ¼ Qp · F̃fð0Þðx; pÞδðp2 −m2Þ: ð23Þ

Utilizing the property of the delta function, xδ0ðxÞ ¼
−δðxÞ, the solution of Fð1Þ can be formally written as

Fð1Þ ¼ Gðx; pÞδðp2 −m2Þ −Qp · F̃fð0Þðx; pÞδ0ðp2 −m2Þ:
ð24Þ

In addition, we have introduced a new function Gðx; pÞ.
From the third equation in Eq. (21), we can get the solution
of Vμ

1,

Vμ
ð1Þ ¼

1

m
pμGðx;pÞδðp2−m2Þ

−
1

m
Qpμp · F̃fð0Þðx;pÞδ0ðp2−m2Þþ 1

2m
ϵμρσ▿ρV

ð0Þ
σ :

ð25Þ
After some calculation, the last term can be reduced as

1

2m
ϵμρσ▿ρV

ð0Þ
σ ¼ 1

2m
ϵμρσpσð▿ρfð0Þðx; pÞÞδðp2 −m2Þ þQ

m
pμp · F̃fð0Þðx; pÞδ0ðp2 −m2Þ −mQF̃μfð0Þδ0ðp2 −m2Þ

− ϵμρσpσσρfð0Þðx; pÞδ0ðp2 −m2Þ:

Here, the Schouten identity in 2þ 1 dimensions,

pλϵμρσ − pμϵρσλ þ pρϵσλμ − pσϵλμρ ¼ 0; ð26Þ

is employed.
Now, Eq. (25) can be further reduced as

Vμ
ð1Þ ¼

1

m
pμGðx; pÞδðp2 −m2Þ þ 1

2m
ϵμρσpσð▿ρfð0Þðx; pÞÞδðp2 −m2Þ −mQF̃μfð0Þðx; pÞδ0ðp2 −m2Þ

− ϵμρσpσσρfð0Þðx; pÞδ0ðp2 −m2Þ; ð27Þ

and the physical meaning of the function Gðx; pÞ becomes clear. According to the definition of the current density,
the function Gðx; pÞ can be regarded as a first-order correction to the distribution function, and it can be formally
decomposed as

Gðx; pÞ ¼ mfð1Þðx; pÞ: ð28Þ

Then the solution of Fð1Þ and Vμ
ð1Þ can now be rewritten as

Fð1Þ ¼ mfð1Þðx; pÞδðp2 −m2Þ −Qp · F̃fð0Þðx; pÞδ0ðp2 −m2Þ;

Vμ
ð1Þ ¼ pμfð1Þðx; pÞδðp2 −m2Þ þ 1

2m
ϵμρσpσð▿ρfð0Þðx; pÞÞδðp2 −m2Þ −mQF̃μfð0Þðx; pÞδ0ðp2 −m2Þ

− ϵμρσpσσρfð0Þðx; pÞδ0ðp2 −m2Þ: ð29Þ

Using the formal solution of Vμ
ð1Þ, we can get the first-order current density

jμ1 ¼
Z

d3pVμ
ð1Þ

¼
Z

d3ppμfð1Þðx; pÞδðp2 −m2Þ þ 1

2m
ϵμρσ

Z
d3ppσð▿ρfð0Þðx; pÞÞδðp2 −m2Þ

−mQF̃μ

Z
d3pfð0Þðx; pÞδ0ðp2 −m2Þ − ϵμρσσρ

Z
d3ppσfð0Þðx; pÞδ0ðp2 −m2Þ: ð30Þ

A couple of interesting physical phenomena can be seen in this equation. First, let us focus on the third term, which is
originated from the external electromagnetic field. In this term, the vacuum contributes a conserved vector current [35–40],
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jμv ¼ ℏmQF̃μ 2

ð2πÞ2
Z

d3pθð−p0Þδ0ðp2 −m2Þ ¼ ℏ
Q
8π

ϵμαβFαβ: ð31Þ

However, it is different form the normal electric current. Writing down different components explicitly, j0v ∝ B, j1v ∝ E2,
j2v ∝ E1, we find the current is perpendicular to the electric field. Also, it explicitly violates parity symmetry since
F̃μ ≡ ϵμαβFαβ is an axial vector.
Second, the last term in Eq. (30) is a novel current, which is induced by the space-time gradient of the condensation,

jμσ ¼ −ℏϵμρσσρ
Z

d3ppσfð0Þðx; pÞδ0ðp2 −m2Þ ¼ −ℏϵμρνσρuνIm;

Im ¼
Z

d3pðu · pÞfð0Þðx; pÞδ0ðp2 −m2Þ ¼ −
X
ϵ¼�1

ϵ

Z
d2p

ð2πÞ22Eð0Þ
p

d

dEð0Þ
p

fð0Þϵfluidðx;pÞ; ð32Þ

where uν is the fluid velocity, and ffluid is the distribution
function in the fluid comoving frame. Unlike Eq. (31), there
is no vacuum contribution here, but only the medium
contribution. However, it is similar to the current in Eq. (31)
in terms of its direction. Taking the rest frame of fluid, i.e.,
uμ ¼ ð1; 0; 0Þ, one can find j0σ ∝ 0, j1σ ∝ σ2, and j2σ ∝ σ1.
Such current is perpendicular to the gradient of condensa-
tion function σðxÞ. It is clear that this gradient current
vanishes when the condensation is homogeneous or when
there is no net particle number. This new gradient current
may be the special case in 2þ 1 dimensions. It is a natural
and interesting question to ask whether and how these
nontrivial currents would also emerge in a fluid dynamic

description of the same (2þ 1)-dimensional massive fer-
mion systems. Fluid dynamics with anomalous currents is
known in the case of (3þ 1)-dimensional chiral fermion
systems [52] and has important phenomenological appli-
cations [53,54]. It will be tempting to construct a fluid
dynamics for (2þ 1)-dimensional massive fermions in a
future study.
Next, we move on to discuss the transport equation for

fð1Þðx; pÞ, which is determined by the second equation of
Eq. (21). Substituting the solution for Vμ

ð1Þ into the second

equation of Eq. (21), and applying appropriate simplifica-
tions, we find the equation of motion

δðp2 −m2Þ
�
p · ▿fð1Þðx; pÞ þ 1

2m
Qð∂νp · F̃Þð∂ν

pfð0Þðx; pÞÞ −
1

2m2
ϵμρσσμpσð▿ρfð0Þðx; pÞÞ þmσ · ∂pfð1Þðx; pÞ

�

− δ0ðp2 −m2Þ
�
Q
m
p · F̃ðp · ▿fð0Þðx; pÞÞ þQp · F̃σ · ∂pfð0Þðx; pÞ

�
¼ 0: ð33Þ

C. Covariant transport equation up to ℏ order

Now, let us combine the zeroth order and the first order transport equations, i.e., Eq. (19) and Eq. (33), as well as the gap
equation; we can get the complete covariant transport equation for fermions in 2þ 1 dimensions as follows:

δ

�
p2 −m2 − ℏ

Q
m
p · F̃

��
p · ▿þmσν∂ν

p þ ℏ
Q
2m

ð∂νp · F̃Þ∂ν
p − ℏ

1

2m2
ϵμρσσμpσ▿ρ

�
fðx; pÞ ¼ 0;

m −m0 ¼ −G
�
m
Z

d3pfðx; pÞδðp2 −m2Þ − ℏQ
Z

d3pp · F̃fð0Þðx; pÞδ0ðp2 −m2Þ
�
; ð34Þ

where the distribution function fðx; pÞ ¼ fð0Þðx; pÞ þ ℏfð1Þðx; pÞ, and we have used the Taylor expansion to the delta
function in the transport equation with keeping to the first order. It is worth noting that the on-shell condition has been
modified by the quantum effect. The correction is originated from the coupling between the fermion’s magnetic moment
and the external electromagnetic field. According to the modified on-shell condition, we can get the shifted energy

p0 ¼ ϵEp; Ep ¼ Eð0Þ
p þ ℏ

ϵQ
2m

p̃ · F̃

Eð0Þ
p

: ð35Þ
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Herein, p̃μ ¼ ðEð0Þ
p ; ϵp⃗Þ, and Eð0Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the

classical energy; ϵ ¼ �1 denotes the positive and
negative energy respectively, which also means that the
distribution now can be decomposed of two branches as
follows:

fðx; pÞ ¼ 2

ð2πÞ2
X
ϵ¼�1

θðϵp0Þf̃ϵðx; ϵpÞ;

f̃þðx; pÞ ¼ fþðx; pÞ; f̃−ðx;−pÞ ¼ f−ðx;−pÞ − 1:

ð36Þ
In these equations, we have included the vacuum contri-
bution, because it contributes to the physics we are
interested in, and fϵðx; ϵpÞ is the particle (ϵ ¼ 1) or
antiparticle (ϵ ¼ −1) distribution function.
The quantum correction in energy is caused by the

interaction between the fermion’s magnetic moment and
the external field. This is more clear in the particle
comoving frame, in which p̃μ ¼ ðp0; 0; 0Þ, and the energy
becomes

Ep ¼ Eð0Þ
p − ℏ

ϵQ
2m

B ¼ Eð0Þ
p − ℏμBB: ð37Þ

μB ¼ ϵQ
2m is the Bohr magneton. This is the Zeeman effect in

2þ 1 dimensions. It is interesting that the above shifted
energy can also be treated as modification of the effective
mass

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
; M ¼ mþ δm;

δm ¼ ℏ
ϵQ
2m2

p · F̃⟶
E¼0

−ℏμB
Eð0Þ
p

m
B; ð38Þ

where M is the effective mass of the fermions under the
external field, while δm is the mass correction which is at ℏ
order, and proportional to the magnetic field in the absence
of electric field E.

D. Equal-time transport equation

In practical calculations of solving the transport equation
numerically, we need the equal-time transport equation.
The equal-time transport equation can be obtained by
integration over p0 to covariant transport equation in
Eq. (34). After integration over p0 and using the chain
rule for the space-time and momentum derivatives (because
the energy Ep is no longer an independent variable), as well
as replacing p by ϵp, we get

X
ϵ¼�1

ϵ

2
Ep

	�
1

Ep
þ ℏ

1

2mEð0Þ2
p

ϵijσipj

�
∂0 þ

�
pi

E2
p
þ ℏ

1

2m2Eð0Þ
p

ϵijðσ0vi − σiÞ
�
∂i

þ ϵQ

�
Ẽj

Ep
þ ϵij

pi

E2
p
Bþ ℏ

m

Eð0Þ2
p

b0Bσj þ ℏ
1

2m2Eð0Þ2
p

σ · F̃pj

�
∂j
p



fϵðx;pÞ ¼ 0; ð39Þ

where vi ¼ −∂i
pE

ð0Þ
p ¼ pi=Eð0Þ

p is the zeroth order group velocity and Ẽj ¼ Ej þ 1
ϵQ ∂jEp is the effective electric field. The

effective energy is Ep ¼ Eð0Þ
p þ ℏ ϵQ

2m
p·F̃

Eð0Þ
p
.

Taking the Taylor expansion to the 1=Ep and 1=E2
p terms with keeping up to ℏ order, one can rewrite the above

equation as

	
ð1þ ℏϵijσibjÞ∂0 þ

1ffiffiffiffi
G

p
�
ð1 − 2ℏϵQb · F̃Þvj þ ℏ

Eð0Þ
p

m
ϵijðσ0bi − σib0Þ

�
∂j

þ ϵQffiffiffiffi
G

p
�
Ẽj þ Bϵijvi − ℏϵQðb · F̃ÞðẼj þ 2BϵijviÞ þ ℏ

1

2Eð0Þ2
p

Bσj þ ℏ
Eð0Þ
p

m
ðσ · F̃Þbj

�
∂j
p



fϵðx;pÞ ¼ 0: ð40Þ

Herein, for the sake of simplification, we have introduced a new vector bμ ¼ pμ=ð2mEð0Þ2
p Þ. The energy Ep and the factorffiffiffiffi

G
p

now can be written as

Ep ¼ Eð0Þ
p ð1þ ℏϵQb · F̃Þ;

ffiffiffiffi
G

p
¼ 1 − ℏϵQb · F̃: ð41Þ

Accordingly, the corresponding gap equation in Eq. (34) can also be reduced as the following by integration over p0,

m −m0 ¼ −G
X
ϵ¼�1

Z
d2p

ð2πÞ22Eð0Þ
p

�
2mf̃ϵðx;pÞ þ ℏϵQ

p · F̃

Eð0Þ
p

d

dEð0Þ
p

f̃ð0Þϵðx;pÞ − ℏϵQ
BEð0Þ

p þ p · F̃

Eð0Þ2
p

f̃ð0Þϵðx;pÞ
�
− ℏ

GQB
4π

;

ð42Þ
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where f̃þðx;pÞ ¼ fþðx;pÞ and f̃−ðx;pÞ ¼ f−ðx;pÞ − 1. Equations (40) and (42) are the complete equal-time transport
equations in 2þ 1 dimensions.

IV. TRANSPORT EQUATION WITH COLLISION TERM

The quantum transport equation derived in the above section did not consider the collision term. To simply investigate the
effect of the collision term, we will use the well-known relaxation time approximation. As the first step, the relaxation time
approximation for the Wigner function can be written as follows [55,56]:

ð=K −MÞWðx; pÞ ¼ −
iℏ
2
γ · u

Wðx; pÞ −Weq

τ
; ð43Þ

where uμ is the four fluid velocity of the hot medium, which can be determined by the Landau matching condition (such as
u · Jeq ¼ u · J or uμT

μν
eq ¼ uμTμν), and τ is the relaxation time, which may depend on the space-time. There is a detailed

analysis about the relaxation time approximation for the Wigner function in [55].
Then the kinetic equations for the four independent components now can be written as

πμVμ −M1F ¼ 0;

1

2
ℏ▿μVμ þM2F ¼ −

ℏ
2
u ·

V −Veq

τ
;

πμF −M1Vμ þ
1

2
ℏϵμρσ▿ρVσ ¼ −

ℏ
2
ϵμρσuρ

Vσ −Vσ
eq

τ
;

1

2
ℏ▿μFþM2Vμ − ϵμρσπ

ρVσ ¼ −
ℏ
2
uμ

F −Feq

τ
: ð44Þ

Similarly with the above section, using the semiclassical expansion method to solve this set of equations up to ℏ order, we
find the formal solution of scalar and vector components as follows:

F ¼ mfðx; pÞδðp2 −m2Þ − ℏQp · F̃fð0Þðx; pÞδ0ðp2 −m2Þ;

Vμ ¼ pμfðx; pÞδðp2 −m2Þ þ ℏ
2m

ϵμρσpσð▿ρfð0Þðx; pÞÞδðp2 −m2Þ − ℏmQF̃μfð0Þðx; pÞδ0ðp2 −m2Þ

− ℏϵμρσpσσρfð0Þðx; pÞδ0ðp2 −m2Þ þ ℏ
2m

ϵμρσuρpσ f
ð0Þ − fð0Þeq

τ
δðp2 −m2Þ:

These equations are the same with the solutions in Eqs. (16) and (17) and Eq. (29), respectively, in zeroth order and ℏ order,
except the last term of the vector component Vμ.
Furthermore, the covariant quantum transport equation can be derived as

δ

�
p2 −m2 − ℏ

Q
m
p · F̃

��
p · ▿þmσν∂ν

p þ ℏ
Q
2m

ð∂νp · F̃Þ∂ν
p − ℏ

1

2m2
ϵμρσσμpσ▿ρ

�
fðx; pÞ

¼ −
�
p · u −

ℏ
2m2

ϵμρσσ
μuρpσ þ ℏ

p · ω
m

−
ℏ
2m

ϵμρσ
∂μτ

τ
uρpσ

�
fðx; pÞ − feqðx; pÞ

τ
δ

�
p2 −m2 − ℏ

Q
m
p · F̃

�
; ð45Þ

where ωμ ¼ ð1=2Þϵμρσ∂ρuσ is the vorticity vector. We find that the collision term in relaxation time approximation does not
modify the on-shell condition. It is also obvious that this equation returns to the traditional relaxation time formalism of the
kinetic equation when σμ;ωμ; ∂μτ → 0. In addition, the corresponding gap equation is irrelevant to the relaxation time
approximation by definition, hence it takes the same formula as that in the above section,

m −m0 ¼ −G
�
m
Z

d3pfðx; pÞδðp2 −m2Þ − ℏQ
Z

d3pp · F̃fð0Þðx; pÞδ0ðp2 −m2Þ
�
: ð46Þ
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Finally, the equal-time transport equation now can be written as
	
ð1þℏϵijσibjÞ∂0þ

1ffiffiffiffi
G

p
�
ṽj−ℏϵQb0ϵijẼiþℏϵQðϵikẼibkÞṽjþ2ℏϵQBbjþ 1

2Eð0Þ2
p

ðϵikṽiσkÞṽjþℏ
Eð0Þ
p

m
ϵijðσ0bi−σib0Þ

�
∂j

þ ϵQffiffiffiffi
G

p
�
ẼjþBϵijṽiþℏϵQð2b0BþϵklẼkblÞðẼjþBϵijṽiÞþℏ

Eð0Þ
p

m
ðσ · F̃Þbj

�
∂p
j



fϵðx;pÞ

¼−
1

Ep

�
p ·u−

ℏ
2m2

ϵμρσσ
μuρpσþℏ

p ·ω
m

−
ℏ
2m

ϵμρσ
∂μτ

τ
uρpσ

�
fðx;pÞ−feqðx;pÞ

τ
: ð47Þ

Similarly, the corresponding gap equation remains the same:

m −m0 ¼ −G
X
ϵ¼�1

Z
d2p

ð2πÞ22Eð0Þ
p

�
2mf̃ϵðx;pÞ þ ℏϵQ

p · F̃

Eð0Þ
p

d

dEð0Þ
p

f̃ð0Þϵðx;pÞ − ℏϵQ
BEð0Þ

p þ p · F̃

Eð0Þ2
p

f̃ð0Þϵðx;pÞ
�
− ℏ

GQB
4π

:

ð48Þ

So far, we have developed the theoretical framework, as the combination of Eqs. (47) and (48), to describe the evolution of
the distribution function f for fermions with dynamical mass m in 2þ 1 dimensions. The space-time evolution of such
systems with any initial condition can be studied by solving the equation of motions numerically.

V. THE GAP EQUATION IN EQUILIBRIUM STATE

An interesting question is how the dynamical massm changes with temperature, chemical potential, and external field. In
this section, we consider a simple case in which the system is under a constant electromagnetic field, and close to the global
equilibrium state, as well as the condensation σ is constant for space-time, i.e., σμ ¼ ∂μσðxÞ ¼ 0. Besides, we set the mass
m0 ¼ 0 for a clear physical picture. The transport equation (40) can be reduced to the following:

	
∂0 þ

1ffiffiffiffi
G

p ð1 − 2ℏϵQb · F̃Þvi∂i þ
ϵQffiffiffiffi
G

p ½Ẽj þ Bϵijvi − ℏϵQðb · F̃ÞðẼj þ 2BϵijviÞ�∂j
p



fϵðx;pÞ ¼ 0: ð49Þ

As discussed in Appendix B, the equilibrium distribution function can be written as follows:

fϵðx;pÞ ¼ 1

eðEp−ϵμÞ=T þ 1
¼ fð0Þϵðx;pÞ þ ℏ

ϵQ
2m

p · F̃

Eð0Þ
p

∂
Eð0Þ
p
fð0Þϵðx;pÞ;

fð0Þϵðx;pÞ ¼ 1

eðE
ð0Þ
p −ϵμÞ=T þ 1

: ð50Þ

Herein, fð0Þϵðx;pÞ is the zeroth order equilibrium distribution function and fϵðx;pÞ is the complete equilibrium distribution
function which include the zeroth and first-order contribution. The notations T and μ are the temperature and effective
chemical potential, respectively. It should be noticed that we have let uμ ¼ ð1; 0Þ just for convenience, and the effective
chemical potential μðxÞ ¼ μ0 −QA0, where μ0 is the chemical potential of fermions, and A0 the electric potential. However,
this conflicts with the assumption of constant σ. Therefore, the electric field should be absent and the effective chemical
potential μðxÞ ¼ μ0. Then, the gap equation (42) can be written as

m ¼ −G
X
ϵ¼�1

Z
d2p

ð2πÞ22Eð0Þ
p

�
2mf̃ϵðx;pÞ − ℏϵQB

d

dEð0Þ
p

fð0Þϵðx;pÞ
�
− ℏ

GQB
4π

: ð51Þ

Herein, the effective chemical potential μðxÞ ¼ μ0 in the equilibrium distribution function. It means that there is no
magnetic field effect on the zeroth order distribution function, which can be understood due to the system as a whole is
under a static state because of the fluid velocity uμ ¼ ð1; 0Þ. It may be noted that taking the zero temperature of the above
result shows explicitly that the vacuum condensate is proportional to the magnetic field strength.
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Substituting Eq. (50) into the gap equation (51), one can
find the analytical expression as

m2

2π
þm

�
1

G
−

Λ
2π

�
þ m
2π

T
X
ϵ¼�1

ln ð1þ eð−mþϵμÞ=TÞ

þ ℏ
QB
2π

�
1

eðm−μÞ=T þ 1
−

1

eðmþμÞ=T þ 1

�
þ ℏ

QB
4π

¼ 0:

ð52Þ

It is obvious that the quantum correction is contributed
to by the magnetic field. The gap equation returns to
the classical case when the magnetic field vanishes. The
bare coupling constant G can be fine-tuned, since the NJL
model in 2þ 1 dimensions is renormalizable. We take the
normalization scheme as in Refs. [57–59],

1

G
−

1

Gc
¼ −

M0

2π
sgnðG −GcÞ; ð53Þ

where the critical coupling Gc ¼ 2π=Λ and M0 > 0 are of
finite quantities respectively, and sgnðxÞ is a sign function
of x. For a vacuum state in absence of the magnetic field,
i.e., QB ¼ 0, T ¼ 0, and μ ¼ 0, one can get

m2

2π
þm

�
1

G
−

Λ
2π

�
¼ m2

2π
−
mM0

2π
sgnðG −GcÞ ¼ 0: ð54Þ

There are two solutions of the above equation, one is
m ¼ 0, while another is m ¼ M0sgnðG − GcÞ. It means
that the dynamical mass generation is only possible for
G > Gc, in which the dynamical mass m ¼ M0. The
quantity M0 plays a role as the effective fermion mass
in vacuum. The solution m ¼ 0 is a trivial solution.
This can be seen by introducing the thermodynamic
potential Ω. Path integral calculations [58,60] show that
∂Ω=∂m ¼ m2

2π −
mM0

2π sgnðG −GcÞ, hence Eq. (54) is
equivalent to the extremization condition of the thermo-
dynamic potential. For the supercritical case (G > Gc),
∂2Ω=∂m2jm¼0 < 0 is the maximum value of the effec-
tive potential Ω, while ∂2Ω=∂m2jm¼M0

> 0 is the mini-
mum of it. So m ¼ M0 is the physical mass. Besides,
there is one, and only one trivial solution m0 ¼ 0 when
the coupling constant G equals to the critical coupling
constant Gc.
In the presence of the magnetic field, QB ≠ 0, the

situation is different and the dynamical mass generation
can occur for the arbitrary coupling constantG. In that case,
the gap equation (52) becomes

m2

2π
−
mM0

2π
sgnðG −GcÞ þ ℏ

QB
4π

¼ 0

⇒ η2m − ηmsgnðG −GcÞ þ
1

2
sgnðQÞη2B ¼ 0; ð55Þ

where we defined the dimensionless variables ηm ≡m=M0

and ηB ≡ ffiffiffiffiffiffiffiffiffiffijQBjp
=M0. The corresponding solutions can be

written as

ηm� ¼ 1

2

�
sgnðG−GcÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðG−GcÞ2 − 2sgnðQÞη2B

q �
:

ð56Þ

According to this equation, one can find that there is a
nonsymmetry case for the sign of the electric charge Q. As
mentioned before, this is due to the choice of irreducible
representation of the Dirac matrices, which is limited to the
spin-up particles and spin-down antiparticles. Again, the
physical solution of mass can be obtained by minimizing
the effective potential Ω. The left-hand side of Eq. (55)
equals ∂Ω=∂m. First, in the case of negative charge
(Q < 0), the physical solution of mass m scaled by the
vacuum mass M0 is ηmþ ¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η2B

p
Þ for the

supercritical case (G > Gc), ηmþ ¼ 1
2
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η2B

p
Þ

for subcritical case (G > Gc), and ηmþ ¼ ηB
2

for critical
case (G ¼ Gc). It means that the symmetry breaking can
occur for arbitrary magnetic field strength for these three
different critical cases. Furthermore, the situation is differ-
ent for the case of positive charge (Q > 0); the physical
solution is ηmþ ¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2η2B

p
Þ for the supercritical

case (G > Gc) and ηmþ ¼ 1
2
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2η2B

p
Þ for the

subcritical case (G > Gc). These show us that the sym-
metry breaking can occur for the case of the supercritical
and subcritical in the case of positive charge but they
are limited to a small magnetic field strength, such as
0 ≤ ηB ≤ 1ffiffi

2
p . However, there is no solution for the case of

critical case (G ¼ Gc).
Now we move on to the more general case of finite

temperature and chemical potential. With the scheme of
Eq. (53), the gap equation (52) becomes

m2

2π
−
mM0

2π
sgnðG − GcÞ þ

m
2π

T
X
ϵ¼�1

ln ð1þ eð−mþϵμÞ=TÞ

þ ℏ
QB
2π

�
1

eðm−μÞ=T þ 1
−

1

eðmþμÞ=T þ 1

�
þ ℏ

QB
4π

¼ 0:

ð57Þ

We can find that there are more rich phenomena of the
symmetry breaking in the case of finite temperature.
Similarly, the left-hand side of Eq. (57) equals to
∂Ω=∂m, and physical solutions of this equation minimize
the effective potential Ω.
The corresponding numerical results are shown in

Figs. 1–3. First, Fig. 1 shows the dynamical mass m is a
function of the temperature, scaled by the vacuum mass
M0, for three different magnetic fields. The black solid line
corresponds to the zero magnetic fields, which can be
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regarded as the classical results without the quantum
correction. The dashed lines correspond to the results offfiffiffiffiffiffiffiffiffiffijQBjp

=M0 ¼ 0.2 and 0.4, which includes the quantum
correction originated from the interaction between the
particle and magnetic field. While both of them correspond
to Q < 0 and G > Gc, the left panel is for neutral systems
μ ¼ 0 and the right panel is for a finite chemical potential
μ=M0 ¼ 0.5. We can find that dynamical mass is enhanced
by the magnetic field and the finite chemical potential. We
note that while the Lagrangian with m0 ¼ 0 has parity
symmetry, the dynamical mass generation m > 0 would
break it spontaneously in the vacuum. Our results without
magnetic field show that at high enough temperature the
dynamical mass vanishes and the symmetry restores via a
second-order transition. Turning on a magnetic field, which
explicitly breaks parity, causes the transition to become a
crossover.

As mentioned previously, the dynamical mass generation
is not identical for positive and negative charges, which
can be seen by comparing Fig. 3 and the right panel of
Fig. 1. There is no nontrivial solution for Eq. (57) when
the temperature T beyond a given temperature, denoted by
T�, and the temperature T� is smaller for the stronger
magnetic field. We can see that the dashed lines suddenly
jump to zero beyond the temperature T�; this is because the
left-hand side of Eq. (57) is a monotonically increasing
function beyond the temperature T�, and the mass m ¼ 0
is corresponding to the minimum value of the thermal
potential.

VI. CONCLUSION

In this work, we have derived the relativistic quantum
kinetic equation for massive fermions with NJL interactions

FIG. 3. The dynamical mass m is a function of the temperature
T, scaled by the vacuum mass M0 in the case of Q > 0.

FIG. 1. The dynamical mass m as a function of the temperature T, scaled by the vacuum mass M0.

FIG. 2. The dynamical mass m as a function of the magnetic
field

ffiffiffiffiffiffiffiffiffiffijQBjp
, scaled by the vacuum mass M0.
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in 2þ 1 dimensions from the Wigner function formalism by
carrying out the semiclassical expansion up to ℏ order. The
equations are obtained both without and with a collision
term. These results have allowed us to examine the quantum
effect from electromagnetic fields on single-particle proper-
ties and to self-consistently obtain parity-odd transport
currents induced by these external fields. By deriving the
gap equation together with the transport equations, we have
also investigated the dynamical mass generation phenome-
non in this nonequilibrium framework. In particular, we have
identified interesting quantum effects that are absent in the
usual classical mean-field result for the gap equation and that
are induced by the magnetic field and the collision term. We
have also found a new kind of quantum transport current that
is induced by the gradient of out-of-equilibrium condensate.
We’ve computed the mass gap in the special case of global
equilibrium and constant magnetic field and found the
nontrivial influence of the magnetic field on chiral con-
densate due to the quantum effects included in our results.
As we have shown, the massive fermions in 2þ 1

dimensions demonstrate interesting quantum features that
are drastically different from the usual (3þ 1)-dimensional
massive fermions. On the other hand, these features shown
in the order-ℏ transport equations also appear reminiscent
of some properties seen in systems of (3þ 1)-dimensional
massless chiral fermions. This may have its origin in the
correlation of fermion spin degrees of freedom with
other degrees of freedom of the particles: in the (2þ 1)-
dimensional massive case with particle/antiparticle due to
dimensionality, while in the (3þ 1)-dimensional massless
case with momentum due to chirality. Such an interesting
connection motivates further studies that we plan to carry
out and report elsewhere in the future. We end this paper by
noting again that a physical fermion state in 2þ 1 dimen-
sions could generally be the superposition of two inequi-
valent irreducible representations as mirror images of each
other. In the present work, we choose to focus on one
representation and understand the consequences of this
specific mode alone. Studying physical systems with both
sectors is certainly an interesting question which will be
investigated as our next step. It would also be tempting to
explore the possibility that future developments may find
certain (2þ 1)-dimensional quantum materials realizing an
isolated sector.
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et technologies (FRQNT) through the Programmede
Bourses d’Excellencepour Étudiants Étrangers (PBEEE).

APPENDIX A: THE DEFINITION OF SPIN IN
2+ 1 DIMENSIONS

In the (2þ 1)-dimensional systems, the spin operator is
defined as σz=2, and there are two ways to show that such
an operator has the physical meaning of spin. On one hand,
σz=2 is the operator associated with the rotational gener-
ator. Under a Lorentz transformation, the spinor transforms
as [50]

ψ 0ðxÞ ¼ SðωÞψðxÞ; SðωÞ ¼ e
i
2
ωμνJμν ; ðA1Þ

where Jμν ¼ i
4
½γμ; γν� is the generators of the Lorentz group

[i.e., SOð1; 2Þ]. Noting that Jμν ¼ −Jνμ, there are three
independent generators:

N1 ¼ J10 ¼ iσ2
2

; N2 ¼ J20 ¼ iσ1
2

; M ¼ J12 ¼ σz
2
:

ðA2Þ

While N1 and N2 are related to the boost transformation,
M≡ σz=2 is related to rotation.
On the other hand, σz=2 is related to the magnetic

moment of the spinor, which can be seen from its coupling
with the electromagnetic fields. Multiplying the Dirac
equation under external fields by the operator ði=DþmÞ,
leads to the Klein-Gordon equation controlling the particle
energy,

ði=DþmÞði=D −mÞψ

¼
�
ðiDÞ2 −Q

2
σμνFμν −m2

�
ψ

¼ ½ðiDÞ2 −Qðiσ1E2 − iσ2E1 − BσzÞ −m2�ψ ¼ 0; ðA3Þ

where σμν ¼ i
2
½γμ; γν�. So we can also define the spin

operator as M ¼ σ12=2 ¼ σz=2 by the second term in
the first identity and the magnetic field term in the second
identity.
Then, we move on to clarify the meaning of the state-

ment “the particle with spin up or the antiparticle with spin
down.” Let us start from the free Dirac equation

ði=∂ −mÞψ ¼ 0; ðA4Þ

and work in one of the irreducible representations,
named A, in which γ0A ¼ σz, γiA ¼ iσi. In the momentum
space, the positive and negative solutions to the Dirac
equations are

ð=p −mÞuðpÞ ¼ 0; ð=pþmÞvðpÞ ¼ 0: ðA5Þ
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In the particle rest frame, one can find the solutions
respectively to be

uðm; 0Þ ¼
�
1

0

�
; vðm; 0Þ ¼

�
0

1

�
: ðA6Þ

It is straightforward to see that they are eigenstates of the
spin operator,

Muðm; 0Þ ¼ þ 1

2
uðm; 0Þ; Mvðm; 0Þ ¼ −

1

2
vðm; 0Þ:

ðA7Þ

Noting the � 1
2
eigenvalues for positive/negative solutions,

respectively, one can see that the irreducible representation
A represents “the particle with spin up or the antiparticle
with spin down”. Similarly, one can perform the same
analysis to another irreducible representation, B, and obtain
the states with opposite eigenvalues of the spin operator.

APPENDIX B: THE EQUILIBRIUM
DISTRIBUTION FUNCTION

In this Appendix, we discuss the form of the equilibrium
distribution function. The equilibrium distribution function
was obtained in [4,24] as

fϵeqðx;pÞ ¼
2

ð2πÞ2
1

ep·β−ϵα þ 1
;

p · β ¼ p0β0 þ piβi; βμ ¼ uμβ;

α ¼ μβ; β ¼ 1=T; ðB1Þ

where T, μ, and uμ are the temperature, chemical potential,

and velocity of fluid, respectively. The energy p0 ¼ Eð0Þ
p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

at the classical level and p0 ¼ Ep ¼
Eð0Þ
p ð1þ ℏϵQb · F̃Þ at the quantum level; see Eq. (41). It

is important to point out that the equilibrium distribution
function must be a solution of the transport equation
Eq. (49). Let us see what the conditions are for the solution.
It can be determined by the zeroth order of this transport
equation, i.e.,

f∂0 þ vi0∂i þ ϵQðEj þ Bϵijvi0Þ∂j
pgfϵðx;pÞ ¼ 0: ðB2Þ

Insertion of the above equilibrium distribution function into
this equation yields

pμpν∂μβν − ϵpμð∂μαþQFμνβνÞ ¼ 0: ðB3Þ

Herein, β ¼ 1=T, βμ ¼ uμβ, and α ¼ μβ. From this we can
get the following conditions:

∂μβν þ ∂νβμ ¼ 0;

∂μαþQFμνβν ¼ 0: ðB4Þ

The first equation is Killing’s equation. In this work, we
consider the case without rotation, ∂μβν − ∂νβμ ¼ 0, hence
the velocity and the temperature are all independent of x.
Then the second equation of the above becomes

∂μμþQFμνuν ¼ 0: ðB5Þ

Taking the derivative with respect to space-time, we can get

∂μ∂νμþQ∂μFνσuσ ¼ 0;

∂ν∂μμþQ∂νFμσuσ ¼ 0:

Combining these two equations yields

uσð∂μFνσ − ∂νFμσÞ ¼ 0:

Using the Bianchi identity leads to

DFμν ¼ 0; ðB6Þ

where the derivative operator D ¼ u · ∂. The above equa-
tion leads toDAμ ¼ ∂μϕ, ϕ is an arbitrary function, and we
choose a gauge-fixing that ϕ ¼ 0. Equation (B6) means
that the condition of equilibrium is the electromagnetic
field Fμν is constant in time in the rest frame of the fluid as
determined by velocity uμ. As a consequence, (B5) can be
simplified as

∂μðμþQA · uÞ ¼ 0: ðB7Þ

The solution is μðxÞ ¼ μ0 −QA · u, where μ0 is a constant.
μ0 can be interpreted as the Gibbs function per particle, or
the chemical potential, while μðxÞ is the effective chemical
potential containing electric potential [4].
According to the above conditions (B3), (B4), and (B6),

we can now prove that the distribution function (B1) also
satisfies the transport equation (49):

	
∂0 þ

1ffiffiffiffi
G

p ð1 − 2ℏϵQb · F̃Þvi∂i þ
ϵQffiffiffiffi
G

p ½Ẽj þ Bϵijvi − ℏϵQðb · F̃ÞðẼj þ 2BϵijviÞ�∂j
p



fϵðx;pÞ

¼ ð1 − 2ℏϵQðb · F̃ÞÞ½pμpν∂μβν − ϵpμð∂μαþQFμνβνÞ�f0ϵeqðx;pÞ ¼ 0:
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In this calculation, we have used the relations DF̃μ ¼ 1=2ϵμρσDFρσ ¼ 0 and f0ϵeqðx; pÞ ¼ dfϵeqðx; pÞ=dðp · βÞ. In
semiclassical expansion, the distribution (B1) can also be expanded as the following form:

fϵðx;pÞ ¼ 1

eðEp−ϵμÞ=T þ 1
¼ fð0Þϵðx;pÞ þ ℏ

ϵQ
2m

p · F̃

Eð0Þ
p

∂
Eð0Þ
p
fð0Þϵðx;pÞ;

fð0Þϵðx;pÞ ¼ 1

eðE
ð0Þ
p −ϵμÞ=T þ 1

: ðB8Þ

Noting that the velocity field is a global constant, we take the local rest frame of the whole system, uμ ¼ ð1; 0Þ, and
correspondingly the effective chemical potential μðxÞ ¼ μ0 −QA0, and it will be cast into μðxÞ ¼ μ0, when the electric field
is absent.
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