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We give detailed results of OðαÞ QED corrections (both real emission and virtual corrections) to
B → Klþl− modes. Requiring the real emission to be gauge invariant, the structure of the contact term(s)
is fixed. The calculation is done with a fictitious photon mass as the IR regulator and results are shown to be
independent of it, establishing the cancellation of the soft divergences. Results are presented for a choice of
photon energy, kmax, and photon angle θcut. The QED effects are negative, thereby reducing the rate
compared to that without QED effects. Electron channels are shown to receive large corrections (Oð20%Þ).
Impacts on lepton flavor universality ratio Rμe

K are also discussed.
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I. INTRODUCTION

Flavor changing neutral currents, being both loop and
Cabibbo-Kobayashi-Maskawa (CKM) suppressed within
the Standard Model (SM), are an ideal hunting ground for
physics beyond the SM. Quark level transitions b →
slþl− have played an important role in our quest for
searching for new physics as well as better understanding
of the very interesting coupled dynamics of the electroweak
and strong interactions governing the purely leptonic
channel Bs → lþl− [1–4] and exclusive semileptonic
channels B → Kð�Þlþl− (see for example [5–20]).
More and better data have hinted at some deviations

[21–23] from the SM expectations [24] in B → Klþl−

decays. Though not completely conclusive at this point,
these deviations could be hinting at new physics just at the
corner. However, such an unambiguous conclusion is
somewhat masked due to hadronic uncertainties emanating
from form factors as well as possible contamination from
other long distance effects like tails of the charmonium
resonances. The quest for precision tests of the SM via the
flavor changing neutral currents and searches for possible
new physics have led to consideration of theoretically clean
observables (sometimes also called optimized observables
in specific contexts). The basic idea is to consider or
construct observables—usually ratios of quantities—which
are (almost) free of the hadronic uncertainties, at least in a

chosen kinematic range. The decay modes B → Klþl−

allow us to test the lepton flavor universality (LFU), i.e.,
whether the decays into l ¼ e or μ proceed with equal
strengths. Within the SM, the flavor universal coupling of
the Z boson with the leptons ensures this, of course up to
the difference in the lepton masses. If the kinematical
range is chosen such that the dilepton invariant mass is way
larger than for either of the leptons chosen, then it is
expected that the ratio of the two branching fractions is
unity to a high accuracy. To this end, the following quantity
is often considered as a clean test of the LFU and thus SM
itself [25]:

Rμe
K ≡

R
6 GeV2

1 GeV2 dq2
dΓðB0→K0μþμ−Þ

dq2R
6 GeV2

1 GeV2 dq2
dΓðB0→K0eþe−Þ

dq2

ð1Þ

Within SM, this ratio is unity while experimentally it has
shown deviations from this expectation [23]:

Rμe
K jexp ¼ 0.846þ0.060þ0.016

−0.054−0.014 : ð2Þ

More data and smaller errors will eventually provide
possible evidence of new physics with greater confidence.
In the meantime, it is important to critically analyze all
possible sources of uncertainties or any other effects that
may affect theoretical predictions. Theoretically, following
the standard approach of operator product expansion and
integrating out heavy degrees of freedom, an effective
Hamiltonian is built out of relevant degrees of freedom that
are then evolved down to the scale of a b quark with the
help of renormalization group equations. With this set of
quark level operators, the physical hadronic matrix ele-
ments are computed and it is this step that involves the
introduction of the form factors. As mentioned above, some
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of the largest uncertainties stem from form factors and this
deficiency is partly taken care of by considering observ-
ables that have very little sensitivity to form factors. The
strong interaction effects, both perturbative and nonpertur-
bative, are included via the renormalization group equa-
tions and form factors, respectively. Are there any other
effects that may be relevant but have not been included
explicitly? In particular, what about QED corrections?With
charged particles involved, the soft photon corrections
could be non-negligible and therefore should be system-
atically included. Such soft photon corrections have been
computed for B decays [26–30] and have been shown to
have some impact. In the present work, we focus our
attention on the modes B → Klþl− and compute the QED
corrections. There are both virtual corrections to OðαÞ as
well as one photon emission real contributions. As is well
known [31–38], the sum of the two yield a finite result.
These effects are important in the light of the relevance of
these modes. As this work was underway, [39] appeared
which addresses the same issues. The results found here
broadly agree with those in [39], though there are some
differences. We comment on these later.

II. B → Kl+l− WITHOUT QED CORRECTIONS

The effective Hamiltonian relevant for describing the
b → slþl− transition reads [40,41]

Heff ¼ 4
GFffiffiffi
2

p V�
tsVtb

X10
i¼1

CiðμÞOiðμÞ: ð3Þ

Where, GF is Fermi constant, V�
ts and Vtb are CKM

elements, Cis are the Wilson coefficients, and Ois are
the operators. μ is the scale separating long distance physics
from short distance physics. CiðμÞ contain the information
of short distance physics and can be determined using
perturbation theory. OiðμÞ contain the information of long
distance physics. The matrix elements of these operators
are genuine nonperturbative quantities that can be para-
metrized in terms of form factors using Dirac and Lorentz
structure. The operators most relevant for this semileptonic
process are O7, O9, and O10:

O7 ¼ −
e

16π2
2mb

q
iðs̄σμνqνRbÞðl̄γμlÞ;

O9 ¼
e2

16π2
ðs̄γμLbÞðl̄γμlÞ;

O10 ¼
e2

16π2
ðs̄γμLbÞðl̄γμγ5lÞ: ð4Þ

The Wilson coefficients used in the calculation are
Ceff
7 ¼ −0.319, C9 ¼ 4.228, and C10 ¼ −4.410. Ceff

9 is
defined by [42]

Ceff
9 ¼ C9 þ Ypertðq2Þ;

Ypertðq2Þ ¼ hðq2; mcÞ
�
4

3
C1 þ C2 þ 6C3 þ 60C5

��
−
1

2
hðq2; mbÞ

�
7C3 þ

4

3
C4 þ 76C5 þ

64

3
C6

�

−
1

2
hðq2; 0Þ

�
C3 þ

4

3
C4 þ 16C5 þ

64

3
C6

�
þ 4

3
C3 þ

64

9
C5 þ

64

27
C6; ð5Þ

where

hðq2; mqÞ ¼
4

9
ln

�
m2

q

μ2

�
þ 8

27
þ 4

9

�
4m2

q

q2

�
−
4

9

�
2þ 4m2

q

q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� 4m2
q

q2
− 1

����
s

×

8>>>>>>>><
>>>>>>>>:

− iπ
2
þ ln

0
B@1þ

ffiffiffiffiffiffiffiffiffi
1−

4m2
q

q2

q
ffiffiffiffiffi
4m2

q

q2

q
1
CA; if 4m2

q

q2 ≤ 1

arctan

 
1ffiffiffiffiffiffiffiffiffi
4m2

q

q2
−1

q
!
; if 4m2

q

q2 < 1

ð6Þ

The amplitude for the process Bðp0Þ → Kðp1Þlþðp2Þl−ðp3Þ can be written in the following form [6]

M ¼
�
GFαjV�

tsVtbj
2
ffiffiffi
2

p
π

�
½T1

μðl̄γμlÞ þ T2
μðl̄γμγ5lÞ�;

¼
�
GFαjV�

tsVtbj
2
ffiffiffi
2

p
π

�
ðl̄Γμ

AlÞ ⊗ HAμðp; p0Þ; ð7Þ
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where

Γμ
A¼1 ¼ γμ; T1μðp0; p1Þ ¼ A0pμ þ B0qμ; ð8Þ

and

Γμ
A¼2 ¼ γμγ5; T2μðp0; p1Þ ¼ C0pμ þD0qμ: ð9Þ

Further, we have defined the following combinations of momenta: pμ ¼ ðp0 þ p1Þμ and qμ ¼ ðp0 − p1Þμ ¼ ðp2 þ p3Þμ. In
the following, the two kinematical invariants used frequently are given by s ¼ p2 ¼ ðp0 þ p1Þ2, and the dilepton invariant
mass squared, q2 ≡ ðp0 − p1Þ2 ¼ ðp2 þ p3Þ2. The other factors entering the amplitude above, depending on the
combinations of the Wilson coefficients (Ceff

7 , Ceff
9 , and C10) and form factors (fþ, f−, and fT), are given as

A0 ¼ Ceff
9 fþðq2Þ þ

2mb

mK þmB
Ceff
7 fTðq2Þ;

B0 ¼ Ceff
9 f−ðq2Þ −

2mbðmB −mKÞ
q2

Ceff
7 fTðq2Þ;

C0 ¼ C10fþðq2Þ; D0 ¼ C10f−ðq2Þ: ð10Þ
The nonradiative differential decay width is given by

d2Γ0ðB → Klþl−Þ
dq2ds

¼ 1

ð2πÞ3
1

32m3
B
jM0ðB → Klþl−Þj2; ð11Þ

where the explicit form of the matrix element is

M0ðB → Klþl−Þ ¼ GFα

2
ffiffiffi
2

p
π
V�
tsVtb

���
Ceff
9 fþ þ Ceff

7

2fTmb

mB þmk

�
pμ

þ
�
Ceff
9 f− − Ceff

7

2fTmb

q2
ðmB −mkÞ

�
qμ
�
ðl̄γμlÞ

− ðC10fþpμ þ C10f−qμÞðl̄γμγ5lÞ
	
: ð12Þ

The form factors fþðq2Þ, f−ðq2Þ, and fTðq2Þ are parametrized as [10,43]

fiðq2Þ ¼
fið0Þ
1 − q2

m2
res;i

�
1þ b1i

�
zðq2Þ − zð0Þ þ 1

2
ðz2ðq2Þ − z2ð0ÞÞ

�	
;

where, fið0Þ ¼ f0.34; 0.34; 0.39g, b1i ¼ f−2.1;−4.3;−2.2g, andmres;i ¼ f5.83; 5.37; 5.41g for i ¼ ðþ; 0; TÞ, respectively,

f− ¼ ðf0 − fþÞ
m2

B −m2
K

q2
and zðq2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τþ − q2

p
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τþ − τ0
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τþ − q2
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τþ − τ0

p ;

with τ0 ¼ ffiffiffiffiffi
τþ

p ð ffiffiffiffiffi
τþ

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τþ − τ−

p Þ and τ� ¼ ðmB �mKÞ2.

III. QED CORRECTIONS

We now consider QED corrections. Figure (1) shows the
photon emission diagrams (× denotes possible places from
where a photon can be emitted, including B and K legs
when charged and computed assuming the mesons to be
point like and employing scalar QED). Figure 1(b) is the

so-called contact term (CT) and arises due to the gauge
invariance of QED. In [39], a mesonic level Lagrangian is
assumed and, following the minimal coupling prescription,
these are computed.Our approach is different from theirs and
is discussed in detail below. Figure (2) shows some of the
representative diagrams that contribute to the virtual correc-
tions. As is clearly shown, the diagrams which involve
photon from the contact term are also included to ensure
cancellation of the infrared divergences and having a gauge
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invariant result. The photonmomentum is denoted by k in the
calculations below, and the polarization vector is denoted by
ϵαðkÞ. Consider the general case where the charges of the B
and K meson are denoted byQB and QK . Since we are only
interested in lepton number conserving processes, eventually
we impose QB ¼ QK , but for the time being we keep them
general.

A. Contact term

Before explicitly computing the virtual corrections and
the real emission contributions, it is important to fix the
contact term. To this end, consider photon emission
from different legs. The process under consideration thus
is Bðp0Þ → Kðp1Þlþðp2Þl−ðp3ÞγðkÞ. For the mesons,
employing scalar QED, the matrix element for photon
emission from the external legs, written in terms of
quantities for the nonradiative decay, reads

M̃¼−eϵαðkÞūðp2ÞΓμ
A
ð=p3þ=kÞ−ml

2p3:k
γαvðp3Þ⊗HAμðp0;p1Þ

þeϵαðkÞūðp2Þγα
ð=p2þ=kÞþml

2p2:k
Γμ
Avðp3Þ⊗HAμðp0;p1Þ

þeQBϵαðkÞ
2pα

0

2p0:k
ūðp2ÞΓμ

Avðp3Þ⊗HAμðp0−k;p1Þ

−eQKϵαðkÞ
2pα

1

2p1:k
ūðp2ÞΓμ

Avðp3Þ⊗HAμðp0;p1þkÞ:

ð13Þ

It is clear from the above equation that when the photon is
emitted from one of the leptons, the momentum depend-
ence of the hadronic part, HAμ remains the same as in
nonradiative decay while the dependence is appropriately
modified in case of emission from the meson legs. Given
the explicit structure of HAμ, the above can be written in a
more explicit and convenient form:

M̃ ¼ M0eϵα
X
i

Qiηipα
i

pi:k
þM0ðkÞ; ð14Þ

where, pi and Qi are the momenta and charges of different
particles, respectively, and ηi areþð−Þ for outgoing (incom-
ing) particle [34].M0 is the amplitude for the processwithout
the photon emission. The first term above is nothing but
the Low’s soft photon amplitude: Mða → bγðkÞÞjk→0 ¼
S ⊗ Mða → bÞ, where S is the universal soft function given
by the quantity multiplyingM0. It can be explicitly verified
that the Low’s term is gauge invariant by itself. This piece is
easy to compute as the hadronic contribution is same as that
in the case of nonradiative amplitude. The remainder is
written as M0ðkÞ and is the noninfrared contribution; i.e.,
unlike the Low’s term, which isOð1=kÞ, the terms inM0ðkÞ
are OðkÞ and higher. We now turn to M0ðkÞ.
M0ðkÞ consists two contributions: M0

lept, arising from the
emission from the leptons, and M0

mes from the mesons.
These are given by

M0
lept ¼ eϵαðkÞ

�
ūðp2Þγα

=k
2p2:k

Γμ
Avðp3Þ

− ūðp2ÞΓμ
A

=k
2p3:k

γαvðp3Þ
	
⊗ HAμðp0; p1Þ; ð15Þ

and

M0
mes ¼ −eϵαðkÞ

�
QBαA

2pα
0

2p0:k
þQKβA

2pα
1

2p1:k

	
× ūðp2ÞΓμ

Avðp3Þkμ; ð16Þ
αA ¼ A0 þ B0 or C0 þD0 and βA ¼ A0 − B0 or C0 −D0 for
A ¼ 1, 2. In obtaining this form, we have made use of the
fact that the general structure of HAμ has the form

FIG. 1. Representative diagram for real photon emission.

FIG. 2. Representative diagrams contributing to virtual corrections.
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HAμðp; qÞ ¼ XApμ þ YAqμ: ð17Þ

Thus, it is straightforward to incorporate the appropriate
shifts in the momentum dependence due to an additional
photon being emitted, and one immediately arrives at the
form above. Therefore, the total contribution beyond Low’s
soft photon contribution

M0ðkÞ ¼ M0
lept þM0

mes: ð18Þ

As mentioned above, Low’s contribution is automatically
gauge invariant. Let us now check the gauge invariance
of M0ðkÞ by making the replacement: ϵα → kα. This
replacement in M0

lept yields zero. Therefore this subset is
gauge invariant by itself. Turning now to M0

mes, the
replacement yields

M0
mesjϵα→kα ¼ −eðQB þQKÞξAkμ½ūðp2ÞΓμ

Avðp3Þ�: ð19Þ

Here, ξA ¼ A0ðq2ÞðC0ðq2ÞÞ for A ¼ 1ð2Þ.
This is the extent by which gauge invariance is violated.

Therefore, negative of this quantity is the contribution that
should be there to ensure gauge invariance of the full
amplitude. Moreover, this has the form of a contact term
and should be added to the amplitudeM0 to ensure a gauge
invariant result. Rewriting this as an additional term in the
effective Hamiltonian at the hadronic level (the result for
ϵ → k, therefore flipping back to ϵ)

HCT
eff ¼ ieξAðQB þQKÞ½ūðp2ÞΓα

Avðp3Þ�Aαϕ
†
KϕB: ð20Þ

This then provides the contact term [Fig. 1(b)] and will
contribute both to the real emission and virtual corrections
and is OðkÞ. The contact term is proportional to the sum of
the QB and QK , and clearly it plays no role when B and K
are neutral. Our way of determining the contact terms
is very different from that adopted in [39]. There, a mesonic
level Lagrangian with specific operator structure is
assumed, and then, following the minimal coupling pre-
scription ∂μ → ∂μ − ieAμ, the required contact terms are
obtained. The contact terms obtained here include effects
due to all operators that contribute to this process. This
leads to some difference in the numerical values of the
corrections compared to that in [39], but, as we see later,
there is in general good agreement between the two results.
At this stage, it may be useful to compare the contact

terms within the two approaches in some more detail. The
effective mesonic part of matrix amplitude reads

HAμðp; qÞ ¼ XApμ þ YAqμ; ð21Þ

where XA¼1ðYA¼1Þ ¼ A0ðB0Þ and XA¼2ðYA¼2Þ ¼ C0ðD0Þ.
Explicit form of A0, B0, C0, and D0 are given above in
terms of form factors. Compared to [39], we have Ceff

7

present. At the mesonic level, the effective Lagrangian

should be built as a tower of derivative operators and
invariant under QCD × QED. The contact term that is
obtained here can be matched to the lowest term in such an
expansion. Reference [39] also includes the first order
derivatives.
After having fixed the contact term, ensuring the require-

ment of gauge invariance of the full amplitude, we now turn
to computing the OðαÞ corrections: real photon emission
rates and virtual corrections to the nonradiative amplitude
to that order and then squaring the amplitude retaining up to
the interference terms between the lowest order and OðαÞ
terms. Finally, to obtain the rate to be compared with the
experimentally observed one, these two are incoherently
added. We closely follow [31] in our explicit calculations.
In particular, the photon is imparted a small mass mγ ¼ λ.
This takes care of the IR divergences. The loop integrals are
regularized using dimensional regularization.

B. Real photon emission

The total contribution to the real photon emission
amplitude Bðp0Þ → Kðp1Þlþðp2Þl−ðp3ÞγðkÞ will then
be sum of Low’s IR terms, M0ðkÞ with the contribution
from the contact term included properly. At the decay rate
level, one then writes

dΓreal ¼ dΓ0ð1þ 2αB̃Þ þ dΓ0; ð22Þ

where, dΓ0 is the nonradiative decay rate and the quantity B̃
given below captures the IR contribution stemming from
the Low’s term.

B̃ ¼ 1

8π2

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2

p
�X

i

Qiηipα
i

pi:k

�
2

; ð23Þ

where one can easily see the universal soft factor S ¼
ϵαðkÞT̃αðkÞ for the present case

T̃αðkÞ ¼ −
2pα

i ηi
2k:piηi

þ 2pα
jηj

2k:pjηj
:

Using charge conservation,
P

i Qiηi ¼ 0, B̃ can be rewrit-
ten as

B̃ ¼ 1

8π2

Z
kmax

0

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2

p
X

i≠j;i<j

QiQjηiηj

�
pα
i

pi:k
−

pα
j

pj:k

�
2

;

ð24Þ

where kmax has been introduced explicitly. Only photons
below kmax cannot be observed experimentally and the
theoretical rate will thus depend on the value of kmax.
As seen from the equation above, the indices i and j then
take values i ¼ 1, 2, 3 and j ¼ 2, 3, 4, where the numbers
1, 2, 3, and 4 represent particles B, K, lþ, and l−,
respectively.
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For the charged B meson decay, there will be six terms
in B̃,

B̃ ¼ B̃BK þ B̃Blþ þ B̃Bl− þ B̃Klþ þ B̃Kl− þ B̃lþl− :

After integrating over k, B̃ reads (Appendix A lists the
integrals encountered during calculation)

B̃ij ¼
QiQjηiηj

2π

�
ln

�
k2maxmimj

λ2EiEj

�

−
pi:pj

2

�Z
1

−1

dx
p2
x
ln

�
k2max

E2
x

�
þ
Z

1

−1

dx
p2
x
ln

�
p2
x

λ2

�	�
;

ð25Þ

where we have defined the following combinations that are
convenient parametrizations while evaluating the integrals
like those above:

2px ¼ ð1þ xÞpi þ ð1 − xÞpj;

2Ex ¼ ð1þ xÞEi þ ð1 − xÞEj;

2p0
x ¼ ð1þ xÞpiηi − ð1 − xÞpjηj: ð26Þ

Here pi;j are the four momenta while Ei;j are the energies of
the particles. These lead to

p2
x ¼ ð1þ xÞ2p2

i þ ð1 − xÞ2p2
j þ 2ð1 − x2Þpi:pj;

p02
x ¼ ð1þ xÞ2p2

i þ ð1 − xÞ2p2
j − 2ð1 − x2Þpi:pjηiηj:

ð27Þ

The non-IR contribution includes terms beyond the Low’s
term in the amplitude, at OðkÞ and higher. The remaining
terms in the decay rate are the square of these non-IR terms
and the interference term between the IR and non-IR terms.
The contribution from the square of the non-IR terms is
found to be negligible and is not considered in the analysis.
On the other hand, the interference terms produce relevant
contribution. These interference terms depend on θ, the
angle between negatively charged leptons and photons. We
observe (as shown below) that the correction factor as
defined later, denoted Δi (i ¼ e) μ below, is very sensitive
to a lower angular cut θcut for i ¼ e due to the smallness of
electron mass, while, for the chosen values of kmax, there is
not much effect when i ¼ μ.

C. Virtual photon corrections

There are three kind of diagrams contributing to virtual
corrections: (i) photon starting and ending at the same
charged particle leg [Fig. 2(a)]; (ii) photon line between two
different charged particles [Figs. 2(b) and 2(c)]; (iii) photon
from the contact term ending on a charged particle leg
[Fig. 2(d)].

We first consider the set of diagrams arising due to the
contact term. Specifically, we consider the case when
the photon from the effective contact term vertex attaches
to the lepton leg. This contribution gets canceled by an
equally opposite diagram where the photon attaches to
the antilepton leg. The other two diagrams with the photon
from the contact vertex ending at either the B or K leg can
be evaluated in a straightforward manner. These lead to UV
divergences and a finite part (MCT). These UV divergences
would require extra higher dimensional operators to be
canceled or absorbed systematically. It is worth noting that
the way we arrived at the contact term was by requiring
the real emission amplitude to be gauge invariant. This
amplitude is OðeÞ, and therefore the contact term that
one gets is of this order only, i.e., with one photon.
Moreover, it is possible that one misses out on terms
that vanish for on shell photons but can contribute to
virtual corrections. Also when evaluating the virtual
corrections, there is an extra factor of e, and this
correction is Oðe2Þ. From an effective theory point of
view, there can be, or rather will be, operators corre-
sponding to a term with leptons, B and K mesons and
two photons like the one in Fig. 3. These would lead to
diagrams of the type shown on the right in Fig. 3. In
dimensional regularization, scaleless integrals would
simply be zero. One would also be required to include
other higher dimensional operators at OðeÞ, including
the derivative operators, to the given order for con-
sistency. One may now start with the effective
Hamiltonian, including the one photon contact term,
and then require the two photon emission amplitude to
be gauge invariant, thereby fixing the two photon
contact term plus possibly more new terms, which
would actually correspond to some higher dimensional
operators. However, again there is no guarantee that the
terms will get completely fixed since one again is
requiring on shellness of the two photons. Or, as the
suggested prescription in [39], consider higher dimen-
sional derivative operators and, using minimal coupling,
generate required terms. However, recalling that mini-
mal coupling prescription may be ambiguous [44],
utmost care should be taken to fix the structure of
such terms and also to keep in mind that there could be

FIG. 3. Two photon contact term. Left: real emission. Right:
virtual correction.
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more than one structure for such terms.1 Perhaps the
right way would be to start with the quark level
operators and compute the following matrix element
say within a sum rule approach

hKðp1Þlþl−γðkÞjðl̄ΓμlÞðs̄Γ0
μbÞjBðp0Þi ∝ ϵα

Z
d4xeik:x

× hKðp1Þlþl−jT½jemα ðxÞðl̄ΓμlÞðs̄Γ0
μbÞð0Þ�jBðp0Þi:

This will in general have two type of terms: (i) photon
emission from leptons times the B to K matrix element
and (ii) the photon being emitted from the hadronic
system. Using the QED Ward identity, the general
structure of the hadronic tensor can then be fixed and

finally, the new form factors can be evaluated, or at least
estimated, in the factorization approximation. The pro-
cedure can then be repeated for two photon emission
case. It is evident that it will keep becoming rather
daunting to evaluate newer matrix elements. This will be
taken up separately, comparing the results of different
approaches.
Given these issues, which are certainly beyond the scope

of the present work, we choose to simply evaluate the
virtual contributions assuming the contact term derived
above. Denoting the different contributions as CTVI, with
I ¼ 1, 2, 3, 4 such that 1, 2, 3, and 4 correspond to
contribution due to virtual photon starting from contact
vertex and ending at lþ, l−, B, and K legs, respectively:

CTV1ð2Þ ¼ � 4ie2α1
ð4πÞ2 ūðp2Þmlvðp3Þ

Z
1

0

dxð1þ xÞ
�
2

ϵ
− logðx2p2

2ðp2
3Þ
��

;

CTV3ð4Þ ¼ 2ie2α2
ð4πÞ2 iūðp2Þ=p1ð=p0Þvðp3Þ

Z
1

0

dxð2 − xÞ
�
2

ϵ
− logðx2p2

1ðp2
0Þ
��

:

It is seen explicitly that the contributions due to the photon ending at lepton legs cancel with each other, while the remaining
terms result in

CTV3þ CTV4 ¼ ααA
ð2πÞ ūðp2ÞΓμ

Avðp3Þ
Z

1

0

dxð2 − xÞ
�
−2
ϵ

þ p1μ log ðx2m2
1Þ þ p0μ logðx2m2

0Þ
�
;

¼ α

ð2πÞ
�
α1½ūðp2Þ=p1vðp3Þð3 logm1m0 − 7Þ� þ α2

�
ūðp2Þ=p1γ5vðp3Þð3 logm1m0 − 7Þ

þūðp2Þð=p2þ =p3Þγ5vðp3Þ
�
3 logm0 −

7

2

�	
− αAūðp2Þð=p1þ =p0Þvðp3Þ

3

ϵ

�
:

In the neutral meson case there are no left over UV divergences, while for charged meson case, there are left over UV
divergences which should be taken care of by higher dimensional operators. At present, we choose to discard the UV
divergences above stemming from contact term, and include the finite part in our calculation. The finite part is proportional
to momenta of the particles and numerically contributes to ∼1.4%, which is very close to what [39] finds for analogous
contributions.
Evaluating the rest of the diagrams, one then finds

Mvirtual ¼ M0

�
1þ αBþ α

2π

	
þMCT: ð28Þ

In this equation, the last term in the parenthesis is the magnetic moment like term, which is free of divergences. The quantity
denoted as B contains contributions from the self energy and vertex corrections and reads

B ¼ i
8π3

Z
d4k

1

ðk2 − λ2 þ iϵÞ

"X4
i¼1

Q2
i ð2pi − kÞ2

ðk2 − 2k:piÞ2
− 2

X
i≠j;i<j

QiQjηiηjð2piηi − kÞ:ð2pjηj þ kÞ
ðk2 − 2k:piηiÞðk2 þ 2k:pjηjÞ

#
: ð29Þ

Using charge conservation
P

i Qiηi ¼ 0, B can be written as

1That there will be need to go beyond minimal coupling is also pointed out in [39].
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B ¼ −i
8π3

Z
d4k

1

ðk2 − λ2 þ iϵÞ
X

i≠j;i<j

QiQjηiηj

�
2pα

i ηi − kα

k2 − 2k:piηi
þ 2pα

jηj þ kα

k2 þ 2k:pjηj

�
2

; ð30Þ

where, like for the real emission, i ¼ 1, 2, 3 and j ¼ 2, 3, 4, and the numbers 1, 2, 3, and 4 represent particles B, K, lþ, and
l−, respectively. Now, for B → Klþl−, when both the mesons and the leptons are charged, a total of six diagrams will
contribute to B

B ¼ BBK þ BBlþ þ BBl− þ BKlþ þ BKl− þ Blþl− :

After integrating over k and employing dimensional regularization, the general structure of Bij is calculated to be

Bij ¼
−1
2π

QiQjηiηj

�
ln

�
mimj

λ2

�
þ 1

4

Z
1

−1
dxln

�
p02
x

mimj

�
þ pi:pjηiηj

2

Z
1

−1

dx
p02
x
ln

�
p02
x

λ2

�	
: ð31Þ

Relevant integrals encountered in the intermediate steps are
collected in Appendix B.

D. Sommerfeld factor

We have also considered the Sommerfeld enhancement
factor (Coulomb factor), arising due to the difference in the
scattering in the presence of potential versus the absence of
the potential [45]. This correction is a multiplicative factor
given by

Ωc ¼
Y
i<j

−2πα
βij

1

e
−2πα
βij − 1

; ð32Þ

where βij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
i m

2
j

ðpi:pjÞ2

r
, representing the relative velocity

between the ith and jth particles.

E. Total OðαÞ QED corrections

We are now in a position to compute the decay rate to
OðαÞ:

dΓreal ¼ dΓ0

�
1þ 2αB̃þ 2αBþ α

π

�
Ωc: ð33Þ

Both B̃ and B (or equivalently B̃ij and Bij) depend on the
fictitious photon mass λ, which was introduced to regulate
the IR divergences. The result for the physical rate above
should be independent of λ. Defining Hij ¼ Bij þ B̃ij

given as

Hij ¼
−QiQjηiηj

2π

�
− ln

�
k2max

EiEj

�
þ 1

4

Z
1

−1
dx ln

�
p02
x

mimj

�

þpi:pjηiηj
2

Z
1

−1

dx
p02
x
ln

�
p02
x

λ2

�
þpi:pj

2

Z
1

−1

dx
p2
x
ln

�
k2max

E2
x

�

þpi:pj

2

Z
1

−1

dx
p2
x
ln

�
p2
x

λ2

�	
: ð34Þ

Recalling, p02
x ¼ð1þxÞ2p2

i þð1−xÞ2p2
j−2ð1−x2Þpi:pjηiηj,

p2
x ¼ ð1 þ xÞ2p2

i þ ð1 − xÞ2p2
j þ 2ð1 − x2Þpi:pj, next

observe that, for ηiηj ¼ −1 (i.e., one incoming and one
outgoing particle), p02

x ¼ p2
x, which leads to the cancella-

tion of the λ2 term in Hij. In the other case when ηiηj ¼ 1

(both are either incoming or outgoing particles), changing
x → 1=x leads to p02

x → p2
x=x2 and the final result is again

λ2 independent.2 This then explicitly verifies that the
physical rate is independent of the IR regulator λ that
was introduced in the intermediate steps of the calculation,
and is thus free of IR divergences. This also provides a
crucial check on the calculation performed. To OðαÞ, the
corrected double differential decay rate (with index i being
0 or c for the neutral and charged B decay mode) can be
written as

d2Γi

dsdq2
¼ d2Γ0

dsdq2
ð1þ ΔiÞ; ð35Þ

where the correction factor Δi is defined as

Δi ¼



d2Γi

dsdq2

�



d2Γ0

dsdq2

� − 1; ð36Þ

Δi contains corrections due to infrared factors and non-
infrared factors up to OðkÞ terms. We have explicitly
checked that the Oðk2Þ piece is rather small, and therefore
it has been dropped from the analysis. The other relevant
quantity is the shift in Rkμe due to the QED corrections. This
shift, ΔRkμe

, is defined as

2Since x ∈ ð−1; 1Þ, changing it to 1
x leads to trouble at x ¼ 0.

We have checked that the imaginary part of the quantity B is
nothing but the Coulomb/Sommerfeld factor. Since we have
considered this term explicitly, we thus have taken only the real
part of B while evaluating the results.
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Δi
Rkμe

¼ R0
kμe

�
ΔΓi

μ

Γi
μ
−
ΔΓi

e

Γi
e

�
: ð37Þ

Below, we discuss the impact of these QED corrections.

IV. RESULTS

To OðαÞ, the impact of QED corrections, real and
virtual, is captured by the quantity Δi [see Eq. (36)], with i
denoting the neutral (i ¼ 0) or charged (i ¼ c) B decay.
These are shown in Fig. 4 for the electron and muon
channels. Shown in these figures are the correction factors
for different choices of the maximum photon energy kmax
and the angular cut θcut. First, it is to be noted that the
correction factor for the electrons is about three times
larger than that for the muons (and both are negative, i.e.,
the correction factor will decrease the rate). This differ-
ence is essentially due to the smallness of electron mass
compared to the muon mass by about two orders of
magnitude. The QED corrections impact the more massive
charged particles significantly less compared to lighter

particles. There is a mild dependence on the photon
energy cut, kmax. The other important feature is the
sensitivity to θcut, particularly for the case of electrons.
Choosing θcut∼ few degrees, this sensitivity essentially
disappears.
An important set of terms are those in the IR terms

that have logarithmic dependence on the lepton mass,
lnðmlÞ. Figure 5 shows the sensitivity on ml. The lower
two curves essentially are what is expected for the
electron and muon case, respectively (being about 10%
as in Δi) while the one in blue is for the case when
ml ¼ 10−50 MeV. There is clearly a much larger con-
tribution for this value and this is going to become
larger as ml → 0. Employing θcut∼ few degrees takes
care of this issue. These lnðmlÞ terms correspond to hard
collinear logs. These have been rigourously shown to
cancel in [39] by choosing the kinematical variables
appropriately, and choosing phase space slicing method.
All other IR divergences, including the ln2ðmlÞ terms are
explicitly seen to cancel when the virtual corrections
and real emission terms are added. To see this cancel-
lation in the present case, recall that

FIG. 4. OðαÞ corrections to neutral and charged B → Kll modes. Left: electrons. Right: muons.
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Hij ¼
−QiQj

2π

�
− ln

�
k2max

EiEj

�
þ 1

4

Z
1

−1
dx ln

�
p02
x

mimj

�

þ pi:pj

2

Z
1

−1

dx
p2
x
lnðx2Þ þ pi:pj

2

Z
1

−1

dx
p2
x
ln

�
k2max

E2
x

�	
:

ð38Þ

Here, we stress that Hij is only due to sum of IR part of
real emission and virtual correction. Note that contact
term contributions are not included in Hij. Hij is
enough to see the cancellation of IR divergences but
not enough in order to see the cancellation of collinear
divergences. Looking closely at Hij and extracting the
terms containing logml, we find that the first three
terms in Hij are free of logml dependence once the
integrations are carried out. Focusing on the fourth term,

pi:pj

2

Z
1

−1

dx
p2
x
ln

�
k2max

E2
x

�
¼ −4 lnml ln

�
k2max

El1El2

�
: ð39Þ

We know that there other non-IR terms in the total
amplitude beyond Hij. To extract the remaining logml

term(s), consider the complete differential decay rate:

d2ΓT

dsdq2

����
B→Klþl−

¼ d2Γ
dsdq2

����
B→Klþl−

þ d2Γ
dsdq2

����
B→Klþl−γ

;

¼ d2Γ0

dsdq2

����
B→Klþl−

ð1þΔsÞþ d2Γ0

dsdq2
; ð40Þ

Second term of Eq. (40) contains all the non-IR terms
up to OðkmaxÞ. The non-IR part above contains the
logml term that we are after, which is easily extracted
by integrating the term that has the form p2:p3

2ðk:p2Þðk:p3Þ,
and finally has the desired form with coefficient pk:k.
Now choosing the kinematical variable instead as t ¼
ðpB − pkÞ2, s ¼ ðpk þ p2Þ2, x ¼ ðpk þ kÞ2, and q2 ¼
ðp2 þ p3Þ2 and Ek in the rest frame of ðqþ kÞ2, we
see that its coefficient is negative of that coming from
the fourth term in Hij above, and therefore total
differential decay rate is free from collinear divergences.
This then completes the explicit verification of cancel-
lation of the collinear divergences, once a suitable set of
kinamatical variables are chosen, similar to that dem-
onstrated in [39]. In matching with [39], Hij above is
the sum of their H̃ij

s þ H̃ij
ðhcÞ þ ˜F ij

ðsÞ and also some
part of ˜F ij

ðhcÞ. While discussing the numerical impact of
the QED corrections below, we follow the conventional
kinematical variables and impose cuts on the photon
energy and angle and report the results.
Figure 6 shows the impact of QED effects onΔi

Rμe
K
, which

is defined in Eq. (37) for θcut ¼ 3° as a function of q2. Also,
the charged mode is affected more as there are extra
contributions from the contact term, which being propor-
tional to ðQB þQKÞ are absent for the neutral mode. As the
QED effects are sizable ∼20% for the electrons (∼5% for
muons, and both are negative), Δi

Rμe
K
, and thus, Rμe

K ,

FIG. 6. Shift in Rμe
K due to OðαÞ QED effects.

FIG. 5. Behavior of lnðmlÞ terms.
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increases. However, as mentioned above, all the quantities
are sensitive to kmax and θcut. The shift in Rμe

K , over the q2

range, is about 20% for kmax ¼ 25 MeV while with the
increase in kmax to 125 MeV, it decreases to about 10%.
This is quite expected since, with the increase in kmax, the
muons also start to effectively behave as electrons, i.e., me,
mμ ≪ kmax, and thus both are affected similarly. We have
checked that for such a case Δi

Rμe
K
is very close to zero.

In particular, choosing θcut∼ few degrees and kmax ∼
250 MeV leads to a ∼5% (positive) shift in Rμe

K :

ΔðcÞ
Rμe
K
¼ 5.34%; Δð0Þ

Rμe
K
¼ 7.43%: ð41Þ

The results obtained here are in general agreement with
the ones reported in [39]. The electron modes receive large
QED corrections, Oð20%Þ where as the muon modes
receive smaller corrections. We have also checked that
choosing different kmax values for the muons and electrons
changes the shift in Rμe

K such that the final value of Rμe
K ,

including the QED effects, deviates from unity by a few
percent. This is again in broad agreement with [39]. The
two studies essentially differ in arriving at the contact term
(s), leading to some differences in the numerical values in
the end, and in dealing with the lnðmlÞ terms and phase
space. Despite these differences, it is encouraging to see
very similar conclusions being reached for the physical
quantities.

V. SUMMARY AND CONCLUSIONS

We have calculated the OðαÞ QED effects to B →
Klþl− modes. These corrections are negative and thus
reduce the rates. Starting with the nonradiative amplitude,
and demanding the gauge invariance of the one photon
emission amplitude (treating the mesons as point particles
and employing scalar QED to calculate the amplitude), the
contact term is fixed. Both the real and virtual QED effects
are then calculated. While calculating the virtual correc-
tions due to the contact term, there are UV divergences that
should cancel against similar divergences of higher dimen-
sions, in particular two photon contact terms. For the
present, we take a more phenomenological view point of
these and simply discard the divergences and retain the
finite terms in the calculations. A fictitious photon mass, λ,
is chosen as the IR regulator. The physical differential
decay rate is shown to be independent of the regulator λ,
thereby showing the cancellation of the soft divergences.
The physical rate as well as the ratio of the rates into muons
and electrons are sensitive to the choice of the max photon
energy, kmax and the photon angle with respect to the
charged lepton θcut. We have also discussed the potentially
large lnðmlÞ terms whose effect is canceled by choosing
θcut∼ few degrees. Electron channels are found to receive
∼13–25% corrections while for muons the corrections for
the same kmax and θcut are around 8%. For kmax∼ 250MeV,

the corrections to the lepton flavor universality ration, Rμe
K

are about 5%. This seems like a large correction, particu-
larly given the fact that this observable has been exper-
imentally known to show deviations from unity (the value
of Rμe

K expected within the standard model without these
QED effects). This would worsen the tension between
theory and experiments. However, a word of caution is in
order. This Oð5%Þ positive shift in Rμe

K is obtained by
choosing the same kmax and θcut for both the electrons and
muons. Changing these to suit the actual experimental cuts
would change these numbers. The results presented here
are in general agreement with those obtained in [39], which
appeared recently, though there are some differences in the
two calculations.
In conclusion, we have shown that the QED effects to

B → Klþl− are an important source of corrections and
should be systematically included. While the individual
rates, particularly for the electrons, do receive reasonable
corrections, with appropriate cuts (suiting the experiments),
observables like Rμe

K may only receive very nominal shifts
∼ few%, and these corrections depend on the cuts imposed.
This clearly shows the need for utmost care while compar-
ing the experimental results with the theoretical calcula-
tions. The present study and also [39] leave open the
question of left over UV divergences and computation of
two photon contact terms (and other higher dimensional
operators appropriate to the issue), calling for extra effort in
this direction. This is rather important so as to have an
unambiguous comparison with the experiments, particu-
larly given that observables like Rμe

K are heralded as very
clean probes of the standard model, and therefore of new
physics beyond it.
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APPENDIX A: REAL PHOTON EMISSION

B̃ ¼ −1
8π2

ηiηj

Z
kmax

0

d3k

ðk2 þ λ2Þ1=2
�
piμ

k:pi
−

pjμ

k:pj

�
2

;

¼ −1
8π2

ηiηj

Z
kmax

0

d3k

ðk2 þ λ2Þ1=2

×

�
m2

i

ðk:piÞ2
þ m2

j

ðk:pjÞ2
−

2pi:pj

ðk:piÞðk:pjÞ
	
; ðA1Þ

First integral:Z
kmax

0

d3k

ðk2 þ λ2Þ1=2
1

ðk:piÞ2
¼ 2π

1

m2
i
ln

�
k2maxm2

i

E2
i λ

2

�
: ðA2Þ
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Second integral:

Z
kmax

0

d3k

ðk2 þ λ2Þ1=2
1

ðk:pjÞ2
¼ 2π

1

m2
j
ln

�
k2maxm2

j

E2
i λ

2

�
: ðA3Þ

Third integral:

Z
kmax

0

d3k

ðk⃗2 þ λ2Þ1=2
1

ðk:piÞðk:pjÞ
¼ 2

Z
kmax

0

d3k

ðk2 þ λ2Þ1=2
Z

1

−1

dx
ðð1þ xÞðk:piÞ þ ð1 − xÞðk:pjÞÞ2

;

¼ 1

2

Z
kmax

0

d3k

ðk2 þ λ2Þ1=2
Z

1

−1

dx
k2p2

x
;

¼ 1

2

Z
kmax

0

d3k

ðk2 þ λ2Þ1=2
Z

1

−1

dx
ω2E2

x − k2p2
x
;

¼ 2π
1

2

Z
1

−1

dx
p2
x
ln

�
k2maxp2

x

E2
xλ

2

�
: ðA4Þ

Substituting back all the individual integrals,

B̃ij ¼
QiQjηiηj

2π

�
ln

�
k2maxmimj

λ2EiEj

�
−
pi:pj

2

�Z
1

−1

dx
p2
x
ln

�
k2max

E2
x

�
þ
Z

1

−1

dx
p2
x
ln

�
p2
x

λ2

�	�
: ðA5Þ

APPENDIX B: VIRTUAL PHOTON CORRECTIONS

B ¼ −i
8π3

ηiηj

Z
d4k

k2 − λ2

�
2piηi − k

k2 − 2k:piηi
þ 2pjηj þ k

k2 þ 2k:pjηj

�
2

;

¼ −i
8π3

ηiηj

Z
d4k

k2 − λ2

��
2piηi

k2 − 2k:piηi
þ 2pjηj
k2 − 2k:pjηj

�
2

− k2
�

1

k2 − 2k:piηi
−

1

k2 − 2k:pjηj

�
2
	
;

¼ −i
8π3

ηiηj

�Z
d4k

k2 − λ2

�
4m2

i

ðk2 − 2k:piηiÞ2
þ 4m2

j

ðk2 þ 2k:pjηjÞ2
þ 8pi:pjηiηj
ðk2 − 2k:piηiÞðk2 þ 2k:pjηjÞ

�

−
Z

d4k

�
1

ðk2 − 2k:piηiÞ2
þ 1

ðk2 þ 2k:pjηjÞ2
−

2

ðk2 − 2k:piηiÞðk2 − 2k:pjηjÞ
�	

:

First integral:

Z
d4k

ðk2 − λ2Þ
1

ðk2 − 2k:pjηjÞ2
¼ −iπ2

2m2
j
ln

�
m2

j

λ2

�
: ðB1Þ

Second integral:

Z
d4k

ðk2 − λ2Þ
1

ðk2 − 2k:piηiÞ2
¼ −iπ2

2m2
i
ln

�
m2

i

λ2

�
: ðB2Þ

Third integral:

Z
d4k

ðk2 − λ2Þ
1

ðk2 − 2k:piηiÞðk2 − 2k:pjηjÞ
¼ −iπ2

4

Z
1

−1

dx
p02
x
ln

�
λ2 þ p02

x

λ2

�

⟶
λ→0 −iπ2

4

Z
1

−1

dx
p02
x
ln

�
p02
x

λ2

�
: ðB3Þ
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Fourth and fifth integral: Z
d4k

1

ðk2 − 2k:pjηjÞ2
¼ −iπ2 lnðm2

jÞ: ðB4Þ

Sixth integral:

Z
d4k

1

ðk2 − 2k:piηiÞðk2 − 2k:pjηjÞ
¼ −iπ2

2

Z
1

−1
dx lnðp02

x Þ: ðB5Þ

Substituting back all the individual integrals:

B ¼ −ηiηj
2π

�
ln

�
mimj

λ2

�
þ 1

4

Z
1

−1
dx ln

�
p02
x

mimj

�
þ pi:pjηiηj

2

Z
1

−1

dx
p02
x
ln

�
p02
x

λ2

�	
: ðB6Þ
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