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We develop the effective field theory of diffusive Nambu-Goldstone (NG) modes associated with
spontaneous internal symmetry breaking taking place in nonequilibrium open systems. The effective
Lagrangian describing semiclassical dynamics of the NG modes is derived and matching conditions for
low-energy coefficients are also investigated. Due to new terms peculiar to open systems, the associated
NG modes show diffusive gapless behaviors in contrast to the propagating NG mode in closed systems. We
demonstrate two typical situations relevant to the condensed matter physics and high-energy physics,
where diffusive type-A or type-B NG modes appear.
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I. INTRODUCTION

Symmetry and its realization give fundamental descrip-
tions of physical systems from condensed matter physics to
high-energy physics. Global symmetry of the system, if it
exists, remains unbroken, or spontaneously broken in a
given situation—e.g., in the ground state—and the resulting
symmetry realization restricts a possible low-energy spec-
trum contained in the system: if spontaneous symmetry
breaking (SSB) of continuous global symmetry takes place,
it leads to the inevitable appearance of gapless excitations
known as the Nambu-Goldstone (NG) modes according to
the NG theorem [1–3] with a low-dimensional exception
protected by the Mermin-Wagner theorem [4–6].
Although the original NG theorem is applicable to

systems respecting the Lorentz symmetry in the ground
state, the scope of its application has been just recently
extended to several interesting directions. One example is a
generalization of the NG theorem to a nonrelativistic
system. In the absence of the Lorentz symmetry, there is
generally a mismatch between the number of NG modes
and the number of the broken symmetries, and the
associated (so-called type-B) NG mode for broken internal

symmetry often shows a quadratic dispersion relation
ω ¼ ak2ða ∈ RÞ [7–20]. Furthermore, the notion of sym-
metry and its spontaneous breaking are also extended to
nonequilibrium closed systems [21–29] and open systems
[30–33], where diffusive gapless modes appear. To achieve
these developments, one most powerful tool, the effective
field theory (EFT) [34–36], has been actively used. One can
apply EFT to show a nonrelativistic generalization of the
NG theorem [8,15,17,18] and to describe nonequilibrium
closed systems respecting conservation laws [21–29].
Dissipative effects in the low-energy spectrum are captured
with the help of the Schwinger-Keldysh (real-time) for-
malism [37–39], and the doubled symmetry structure
inherent in it plays a central role.
In this paper, taking one step further, we develop EFT for

the NG modes resulting from spontaneous symmetry
breaking in nonequilibrium open systems (or non-
Hermitian systems) where the conservation law is violated
by considering e.g., the diffusive coupling between the
system and environment [30–33]. Generalizing the Callan-
Coleman-Wess-Zumino’s (CCWZ) coset construction
[34,35] to the Schwinger-Keldysh formalism, we lay out
a solid basis to construct the general effective Lagrangian
for the open system NG modes, and apply it to two typical
situations where the type-A and type-B NG modes appear.

II. SYMMETRY STRUCTURE IN OPEN SYSTEMS

Real-time dynamics of quantum systems can be system-
atically described by the use of the Schwinger-Keldysh
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formalism [37–39]. One most basic quantity is the closed-
time-path generating functional (CTPGF) defined by

Z½j1; j2�≡ Trðρ̂0Û†
j2
ð∞;−∞ÞÛj1ð∞;−∞ÞÞ

¼
Z

Dφ1Dφ2eiðS½φ1;j1�−S½φ2;j2�Þρ0½φ�; ð1Þ

where Ûjðt2; t1Þ denotes the time-evolution operator from
t1 to t2 in the presence of the external field jðtÞ, ρ̂0 the
initial density operator at t ¼ −∞. In the second line, we
used the path-integral expression for a system composed of
dynamical field variables φ with its action S½φ; j�. One
crucial point for the Schwinger-Keldysh formalism is the
doubled degrees of freedom φ → fφ1;φ2g on the CTP (see
Fig. 1). As a result, if the system originally enjoys G-
symmetry, it is also doubled; the phase weight
eiðS½φ1;j1�−S½φ2;j2�Þ is invariant under ðG1 ×G2Þ transforma-
tion acting on φ1 and φ2, respectively.

1

The charges attached to that symmetry can be diffused if
the system is put under the influence of environments, and,
as a result, the above symmetry structure is modified. For
example, let us consider the total system composed of two
kinds of dynamical variables φ ¼ fϕ; σg with system
variables ϕ and environment variables σ. Then, the total
action S½ϕ; σ; j� is given by

S½ϕ; σ; j� ¼ Ssys½ϕ; j� þ Senv½σ� þ Sint½ϕ; σ�; ð2Þ

where Ssys, Senv and Sint are the actions of the system,
environment and interaction part among them. Here, we
assume that the background field is only coupled to the
system variable ϕ. By integrating out the environment
variables, we define the influence functional Γ½ϕ1;ϕ2�
as [40]

eiΓ½ϕ1;ϕ2� ≡
Z

Dσ1Dσ2eiðSenvþSintÞρ0½ϕ; σ�: ð3Þ

This procedure enables us to obtain the path-integral
formula for open systems as

Z½j1; j2� ¼
Z

Dϕ1Dϕ2eiSopen½ϕ1;ϕ2;j1;j2�; ð4Þ

where we defined the action for the open system Sopen:

Sopen ¼ Ssys½ϕ1; j1� − Ssys½ϕ2; j2� þ Γ½ϕ1;ϕ2�: ð5Þ

The crucial point here is that the open system action
Sopen½ϕ1;ϕ2; j1; j2� is, in general, not invariant under the
nondiagonal part of ðG1 × G2Þ transformation due to the
presence of the influence functional Γ½ϕ1;ϕ2�. This is a
manifestation of violating conservation laws. Even in that
cases, the diagonal subgroup of doubled symmetry, which
we callGA symmetry, still survives, and we can consider its
spontaneous breaking in open quantum systems [30–33].
Our purpose is to construct the low-energy (IR) effective
field theory describing such situations based on the under-
lying (UV) theory for open systems defined in Eq. (4).
Suppose that spontaneous GA-symmetry breaking of the

quantum open system takes place. Integrating out gapped
degrees of freedom, we would like to develop the low-
energy EFT for the associated NG fields:

Z½j1; j2� ¼
Z

DπRDπAeiSeff ½πR;πA;j1;j2�: ð6Þ

Here we introduced the effective action Seff ¼
R
ddxLeff for

fπR; πAg—a combination of doubled NG fields in the so-
called Keldysh basis whose properties will be elucidate in
the next section. The vital point here is that we need to pay
attention to several basic restrictions to the CTPGF (e.g.,
the probability conservation), which can be manifestly
respected by demanding the following conditions for the
effective action (see e.g., Refs. [24,27] in detail):

Seff ½πR; πA ¼ 0� ¼ 0; ð7aÞ

Seff ½πR; πA�� ¼ −Seff ½πR;−πA�; ð7bÞ

ImSeff ½πR; πA� ≥ 0; ð7cÞ

where we switched off the external field. In the following,
we will construct the effective action with vanishing
external field j based on the coset construction [34–36].

III. COSET AND MAURER-CARTAN 1-FORM

Let us first specify building blocks of the effective
Lagrangian attached to spontaneous symmetry breaking
of open systems GA → HA with unbroken symmetry sub-
groupHA. In this paper, we employ the standard assumption
in the coset construction that the broken generators are
closed under the action of unbroken symmetry generators.
Naively speaking, it may be natural to identify the asso-

ciated NG fields as a coordinate of the coset GA=HA since
the symmetry breaking pattern is GA → HA. Nevertheless,

FIG. 1. Closed-time-path contour for the generating
functional (1).

1However, note that nondiagonal part of ðG1 ×G2Þ is explic-
itly broken due to the existence of the boundary, e.g., ρ0½φ�. This
broken symmetry is recently shown to be nonlinearly realized in
the effective field theory for conserved systems such as dis-
sipative hydrodynamics (see e.g., Refs. [24,27]).
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due to the basic structure of the Schwinger-Keldysh EFT,
we need to include the doubled NG fields into the
effective Lagrangian. With the help of a set of NG fields
π ¼ ðπR; πAÞt, we then introduce doubled cosets ξiðπÞ ∈
Gi=Hi (i ¼ 1, 2), on which the Gi transformation acts as

ξiðπÞ⟶
Gi giξiðπÞh−1i ðπ; giÞ with gi ∈ Gi; hi ∈ Hi:

ð8Þ

Sincewe are considering the situationwhere all nondiagonal
parts of G1 ×G2 are explicitly broken in the open system,
we only need to respectGA symmetry. By choosing a special
representative

ξ1;2ðπÞ≡ ξðπRÞe�iπA=2 with ξðπRÞ≡ eiπR ; ð9Þ

which gives our definition of πR and πA, we find the simple
transformation rule under ðg; gÞ ∈ GA transformation:

ξðπRÞ⟶
GA gξðπRÞh−1ðπR; gÞ;

πA⟶
GA hðπR; gÞπAh−1ðπR; gÞ: ð10Þ

In other words, we introduced the nonlinearly transforming
NG field πR and the associated linearly transforming adjoint
field πA under GA transformation. Note that πR and πA
indeed parametrize the average and the difference parts of
the doubledNG fields, which are required to satisfy the basic
constraints (7a)–(7c).
With the help of the coset ξðπRÞ, we introduce the

Maurer-Cartan 1-form as

αðπRÞ≡ i−1ξ−1ðπRÞdξðπRÞ: ð11Þ

Then, projections of the Maurer-Cartan 1-form are shown
to transform in the usual manner [34,35]:

α⊥ðπRÞ⟶
GA hα⊥ðπRÞh−1;

αkðπRÞ⟶
GA hα⊥ðπRÞh−1 þ i−1hdh−1; ð12Þ

where we introduced projections onto broken and unbroken
sectors as α⊥ ≡ trðXaαÞXa and αk ≡ trðXααÞXα. Among
the generic generators XI of GA satisfying

½XI; XJ� ¼ iXKfKIJ;

trðXIXJÞ≡ gIJ; ð13Þ

we here introduced Xa and Xα as generators which
belong to broken and unbroken parts, respectively.2

In the following, assuming gaα ¼ 0, we lower (raise) the
broken and unbroken indices by using the block diagonal
part of the Cartan (inverse) metric gab and gαβ (gab and gαβ).
Equation (12) tells us how derivatives of the Maurer-

Cartan 1-form transform under the act of GA. For instance,
we can show a derivative of α⊥ defined by

Dμαν⊥ ≡ ∂μαν⊥ þ i½αμk; αν⊥�; ð14Þ

transforms covariantly:

Dμαν⊥⟶
GA hDμαν⊥h−1: ð15Þ

Transformation rules specified in Eqs. (10), (12), and (15)
will be essential in constructing the effective Lagrangian of
the NG mode in the subsequent section.
On the other hand, it seems unnecessary to examine the

explicitly broken ðg; g−1Þ ∈ GR-transformation property.
Nevertheless, as will be shown later, we need them to
clarify matching conditions for low-energy coefficients.
Restricting ourselves to the semiclassical description of the
NG fields, we obtain the following GR-transformation rule
(see the Appendix A for derivation):

πR⟶
GR

πR þOðℏ2Þ; πA⟶
GR

πA þ 2½e−iπRθeiπR �⊥ þOðℏ3Þ;
ð16Þ

where we introduced A⊥ ≡ trðXaAÞXa with a transforma-
tion parameter θ≡ θIXI. Note that we count πA and GR-
transformation parameter as OðℏÞ as is usual for the
Schwinger-Keldysh EFT [24,27].

IV. EFFECTIVE LAGRANGIAN
AND DIFFUSIVE NG MODES

Taking account of basic constraints of the Schwinger-
Keldysh EFT (7a)–(7c) and GA-transformation properties
developed in the previous section, we now construct the
general GA-invariant effective Lagrangian by the use of the
α⊥;k and πA as basic building blocks.
In this paper, we restrict ourselves to the semiclassical

description of NG fields within second order in derivatives.
In other words, we will collect possible terms up to
Oðπ2A; ∂2

t ; ∂2
i Þ. Here, we assume neither Lorentz nor

Galilean symmetry but assume rotational symmetry because
dissipative coupling to environment generally breaks the
boost symmetry. As a result, temporal and spatial compo-
nents (and derivatives) appear independently while the
spatial component have to be contracted with each other
using the Kronecker delta δij.
Now, let uswrite downall possible terms. First,wenote that

the condition (7) forces all terms to keep at least one A-type
field πA. This means that we have terms containing one πA or
two πA. Recalling the transformation rules given in Eqs. (10),
(12), and (15), we find Oðπ1AÞ six invariant terms as

2We will use the notation I; J;… to label generic generators of
GA, and a; b;…ðα; β;…Þ for broken and (unbroken) ones.
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Oð∂1
t ; ∂0

i Þ∶ trðπAα0⊥Þ; trðXI0 ½πA; α0⊥�Þ;
Oð∂2

t ; ∂0
i Þ∶ trðπAD0α0⊥Þ; trðXI0 ½πA;D0α0⊥�Þ;

Oð∂0
t ; ∂2

i Þ∶ δijtrðπADiαj⊥Þ; δijtrðXI0 ½πA;Diαj⊥�Þ; ð17Þ

where indices I0 denote possible generators commuting with
all the elements in HA: ½XI0 ; Xα� ¼ 0. Note that rotational
symmetry prohibits us to have Oð∂1

i Þ terms. Moreover, the
leading-order term with two A-type field πA is given by

Oð∂0
t ; ∂0

i Þ∶ trðπAπAÞ: ð18Þ
Higher-derivative corrections could be incorporated in the
similar manner as Ref. [41]. All the above terms in Eqs. (17)
and (18) are all specified solely from the Lie algebra attached
to broken and unbroken symmetries.
On the other hand, there are also other possible terms

given by

trðπAα0⊥α0⊥Þ; δijtrðπAαi⊥αj⊥Þ; ð19Þ
and terms similar to the second terms in Eq. (17) but with
anticommutator instead of commutator. Such terms generally
contain the so-called d coefficient dIJK ≡ trðXIfXJ; XKgÞ,
which depends on the representation of GA for microscopic
constituents [42]. In that sense, we cannot specify these terms
just from the symmetry breaking pattern GA=HA. Although
consideration of these terms is interesting in its own right,3 we
will omit these terms in the following analysis, leaving it as
future works.
We are now ready to write down the semiclassical

effective Lagrangian for NG mode in open systems.
Summing up all terms in Eqs. (17) and (18), we find the
leading-order GA-invariant Schwinger-Keldysh effective
Lagrangian is given by

Leff ¼ − F

�
1

f2
trðπAD0α0⊥Þ þ itrðmI0XI0 ½πA; α0⊥�Þ

− δijtrðπADiαj⊥Þ þ γtrðπAα0⊥Þ
þ itrðζI0t XI0 ½πA;D0α0⊥�Þ

þ iδijtrðζI0s XI0 ½πA;Diαj⊥�Þ − i
A
2F

trðπAπAÞ
�
;

ð20Þ

where we used the covariant derivative of α⊥ defined in
Eq. (14). We here rescaled the NG fields as πR;A → πR;A=F,
and assigned coefficients to make that of the third term to be
unity. Note that all coefficients are assumed to be real in
order to respect the Schwinger-Keldysh constraint (7b). A
set of real parameters ff;mI0 ; γ; ζI

0
t ; ζI

0
s ; Ag gives low-energy

coefficients, whose matching will be discussed shortly. The
condition (7c) leads to A ≥ 0, and when the charge is
assumed to diffuse into the environment, we may also have
γ > 0. For notational simplicity, we also assumed that the
broken symmetry generators are irreducible under the
unbroken symmetry transformation H. If not, the EFT
parameters ff;mI0 ; γ; ζI

0
t ; ζI

0
s ; Ag may have different values

among irreducible sectors.
It should be emphasized that it corresponds to (or defines)

type-A or type-B NG mode whether terms proportional to
mI0 vanish or not [8–20]. Terms appearing in the second line
of Eq. (20) are not invariant under GR transformation.
Hence, they are peculiar to the Schwinger-Keldysh EFT
for nonequilibrium open systems, where GR symmetry is
explicitly broken. To see the quadratic part of the effective
Lagrangian, expanding the Maurer-Cartan 1-form as αμ⊥ ¼
∂μπR=F þOðπ2RÞ and αμk ¼ Oðπ2RÞ, we obtain

Leff ¼ −ρabπaA∂0π
b
R þ gtab∂0π

a
A∂0π

b
R − gsab∇πaA · ∇πbR þ i

2
gAabπ

a
Aπ

b
A

¼ i
2
ð πaR πaA Þ

 
0 iðgtab∂2

0 − ρab∂0 − gsab∇2Þ
iðgtab∂2

0 þ ρab∂0 − gsab∇2Þ gAab

!�
πbR
πbA

�
; ð21Þ

where we defined the following quantities:

ρab ≡ −mI0fI0ab þ γgab; gAab ≡ Agab; ð22Þ
gtab ≡ f−2gab − ζI

0
t fI0ab; gsab ≡ gab þ ζI

0
s fI0ab; ð23Þ

and neglected surface terms resulting from the integration
by parts. We thus obtain the inverse retarded/advanced
Green’s functions for the NG modes as

ðGab
R;AÞ−1ðω; kÞ ¼ −gtabω2 ∓ iρabωþ gsabk

2: ð24Þ

Solving detðGab
R Þ−1ðω; kÞ ¼ 0 enables us to get the

dispersion relation for the several types of NG modes
depending on which parameters are present.
Figure 2 shows three cases of dispersion relations for the

type-A and type-B NG modes with nonvanishing γ and
vanishing ζ terms. We see that all the NG modes show the
diffusive behavior due to the nonvanishing negative imagi-
nary part ImωðkÞ < 0. On the other hand, the real parts show
qualitatively different behaviors between type-A and type-B
modes; the type-A NG mode has no real part in the

3In particular, the second term in Eq. (19) gives an extension of
a nonlinear coupling appearing in the Kardar-Parisi-Zhang
equation [43], which is expected to control the universality class.
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low-momentum region, while the type-B NGmode has that.
Besides, the dispersion relation of the type-ANGmode has a
special point jkj ¼ fγ=2, beyond which it acquires a real
part. This is in sharp contrast to the type-BNGmode because
they do not have such a special point [compare Figs. 2(a),
2(b) and2(c)]. The reasonwhy the type-BNGmodedoes not
have the special point is that its kinetic term is first order in
time derivative and not negligible compared to the dissipa-
tion term even in the low-energy limit. It is worthwhile
emphasizing that the presence of the special point for the
type-A NG mode is a universal prediction following from
our EFT although it depends on the model whether it really
stays in the low-energy observable regime or not. More
explicitly, its position in the momentum space depends on
thevalue of both the condensate f and diffusive coefficient γ.
Figure 2 also demonstrates how the spectrum of type-A and
type-BNGmodes is connected by changing the parameterm
from m ¼ 0 [Fig. 2(a)] to m ≠ 0 [Figs. 2(b) and 2(c)].
Perhaps, it is instructive to draw an analogy between the

diffusive NG modes and damped harmonic oscillators.
Indeed, the behavior shown in Fig. 2(a) allows a following
simple interpretation: jkj ≤ fγ=2 and jkj ≥ fγ=2 for the
type-A correspond to the overdamping and the under-
damping, respectively, and the special point at jkj ¼ fγ=2
corresponds to the critical damping. It is also possible to
understand the behavior of the type-B NG mode in analogy
to the damped harmonic oscillator. One can regard the type-
B NG mode as an electrically charged damped harmonic
oscillator in the two-spatial dimension under homogeneous
background magnetic fields (applied perpendicular to the
two-spatial direction).
Let us then specify the matching condition for low-

energy coefficients in ρab and gab based on the linearized
effective Lagrangian (21). In contrast to SSB in the ground
state, we generally have new couplings peculiar to non-
equilibrium open systems: ρab can have symmetric com-
ponents whereas gtab and gsab can have antisymmetric
components. To clarify the matching condition, noting that
the leading infinitesimal transformation of the NG fields is
given by πbR;A → πbR;A þ ϵaA;RðδAa;Ra

πbR;A þOðϵ; πÞÞ with

δAa
πbR ¼ Fδba; δAa

πbA ¼ 0; and

δRa
πbR ¼ 0; δRa

πbA ¼ Fδab; ð25Þ

we turn our attention to the leading part of Noether currents
attached to the GA;R transformations:

Jμa;A ¼
�
Fðgtba∂0π

b
A − ρbaπ

b
AÞ

−Fgsba∇πbA

�
þ � � � ;

Jμa;R ¼
�
Fðf−2gab∂0π

b
R −mα0fα0abπbRÞ

−Fgab∇πbR

�
þ � � � ; ð26Þ

where the ellipses stand for higher-order terms with respect
to πR;A. Here J

μ
a;R is defined by the GR-invariant part of the

effective Lagrangian [corresponding to the first three terms
in Eq. (20)], and hence, not conserved in open systems.
Using these, we can identify the matching conditions,
which are sorted into the first category also present in the
closed system (see Appendix B for derivation)

hδAa
πbRijπ¼0 ¼ Fδba; hδRa

J0b;Aijπ¼0 ¼ −F2ρab;

GJ0a;RJ
0
b;A
ðω; k ¼ 0Þjω¼0 −

F2

ω
mI0fI0ab ¼ i

F2

f2
gab; ð27Þ

and the second one peculiar to the open system

C0
abðω; k ¼ 0Þjω¼0 ¼ −iF2γgab;

∂ωC0
abðω; k ¼ 0Þjω¼0 ¼ −F2ζI

0
t fI0ab;

∂kiC
i
abðω ¼ 0; kÞjk¼0 ¼ −F2ζI

0
s fI0ab; ð28Þ

where we defined

GJμa;RJ
ν
b;A
ðω; kÞ≡

Z
ddxeiωt−ik·xhJμa;RðxÞJνb;Að0Þi;

Cν
abðω; kÞ≡

Z
ddxeiωt−ik·xh∂μJ

μ
a;RðxÞJνb;Að0Þi: ð29Þ

FIG. 2. Dispersion relations for (a) type-A NG mode and (b) and (c) type-B NG modes with vanishing ζ terms.
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Here the angle bracket (with π ¼ 0) represents the path
integral without dynamics of the NG fields. Note that γ and
ζ terms are matched by Cν

abðω; kÞ in the second category
containing nonvanishing ∂μJ

μ
a;RðxÞ peculiar to open sys-

tems. While Eqs. (27) and (28) give matching conditions
including ζ terms, we will consider two models with
vanishing ζ terms in the following.
One remark on the matching condition is in order. In our

formulation, the currents JμA;R are defined in the IR EFT (20).
While JμA is equivalent to the UV theory one up to equations
of motion for gapped UV modes that are integrated out, it is
nontrivial to identify the UV operator equivalent to the IR
current JμR essentially because GR symmetry is explicitly
broken. Also, the second condition in Eq. (27) involves aGR
transformation. Thismight be again anobstruction to theUV-
IR matching since the equation of motion could not be GR
invariant in open systems. Therefore, further studies are
required for establishing the UV-IR matching conditions,
leaving it for future works.

V. EXAMPLES

We here present examples for the type-A and type-B
diffusive NG modes in Driven-dissipative Bose-Einstein
condensate (BEC) model and b. Dissipative SUð2Þ ×Uð1Þ
linear sigma model.
a. Driven-dissipative BEC model.—As an example

for a diffusive type-A NG mode, we consider a driven-
dissipative BEC system with Uð1Þ symmetry [31] whose
Lagrangian reads

Lopen¼ϕ†
A

�
i∂0þ

∇2

2m
þμþ iκ−

g− iγ0
2

jϕRj2
�
ϕRþðH:c:Þ

þ iðAþ2γ0jϕRj2Þ
2

jϕAj2þOðϕ3
AÞ; ð30Þ

where we introduced ϕR ≡ ðϕ1 þ ϕ2Þ=2 and ϕA ≡ ϕ1 − ϕ2

for the doubled Bosonic Schrödinger field. When κ < 0 and
γ0 > 0, a driven-dissipative condensate ϕ̄R ¼ ve−iω0t could
arise.Note that this solution is regarded as an example of time
crystal in nonequilibrium open systems [30–33] since it
spontaneously breaks a mixed part of time translation and
Uð1Þ symmetry (see Appendix C for a detailed analysis on
the driven-dissipative BEC model). In this case, terms
proportional to ζα

0
t , ζα

0
s , andmα0 all vanish, and the dispersion

relation for the resulting NG modes is obtained as

ω ¼ −i
g

mγ0
k2 þOðk4Þ: ð31Þ

We thus see that there exists a diffusive gapless mode, whose
dispersion relation corresponds to the small jkjð<kcÞ
part of Fig. 2 (a) with kc ¼ fγ=2 (the exceptional point).
Note that the number of the gapless modes agrees with that of
broken symmetries; rankðgabÞ ¼ dimGA=HA.

b. Dissipative SUð2Þ ×Uð1Þ linear sigma model.—On
the other hand, the dissipative SUð2Þ ×Uð1Þ model with a
chemical potential defined by

Lopen ¼ φ†
A½−ð∂0 þ iμÞ2 þ ∇2 − γ0∂0 − 2λφ†

RφR�φR

þ ðH:c:Þ þ iAφ†
AφA ð32Þ

gives an example for the type-B NG mode [30]. This model
can be regarded as an effective model describing the kaon
condensation in the dense QCD matter [9,10] coupled to
the environment. Here φR;A denote doubled two-compo-
nent complex scalar fields. One can find a stationary
solution for φR’s equation of motion parametrized by
e.g., φ̄R ¼ ð0; vÞ with v ¼ μ=

ffiffiffiffiffi
2λ

p
, which spontaneously

breaks GA ¼ SUð2Þ × Uð1Þ symmetry down to HA ¼
Uð1Þ. Due to a nonvanishing antisymmetric part of ρab,
this system contains the type-B NG mode and its gapped
partner, whose dispersion relation is shown to be

ω ¼ �m − iγ
m2 þ γ2

k2 þOðk4Þ;

ω ¼ ð�m − iγÞf2 þ�mþ iγ
m2 þ γ2

k2 þOðk4Þ: ð33Þ

This gapless diffusive-propagating behavior of the type-B
NG mode is shown in Fig. 2(b). Taking account of one
diffusive type-A NG mode, we see that the total number of
the gapless NG modes is smaller than that of broken
symmetry, which is peculiar to type-B NG modes.

VI. SUMMARY AND DISCUSSION

We have developed the EFT for the NG modes asso-
ciated with SSB taking place in nonequilibrium open
systems based on the coset construction. The derived
effective Lagrangian enables us to describe the semiclass-
ical dynamics of the diffusive NG modes, which can be
applied to general open systems from open quantum system
including non-Hermitian quantum systems to classical
stochastic systems. As an application, we discussed the
diffusive dispersion relation for type-A and type-B NG
modes in two possible examples in condensed matter and
high-energy physics.
Let us comment on some future problems. While we

only investigate the dispersion relation of the diffusive NG
modes with vanishing ζt=s terms, the constructed effective
Lagrangian (20) contains much more information on many-
body processes of the diffusive NG modes. It is interesting
to investigate such information, e.g., low-energy theorems
and possible instability caused by ζt=s terms based on our
formalism. It would also be important to understand how
the loop correction from NG fields affects the low-energy
behavior of systems like the Mermin-Wagner theorem
[4–6]. Also, it is worthwhile clarifying an additional
constraint, known as dynamical Kubo-Martin-Schwinger/
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thermal symmetry [24,27,31,44,45] in thermal systems.
Another interesting direction is to consider the SSB of
spacetime symmetry in open systems. While the driven-
dissipative BEC discussed in this paper provides such a
simplest example of time crystal, more general models may
cause an instability towards the pattern formation [46,47].
We left these problems and wide applications of the
developed EFT in many physical systems from cold atomic,
condensed matter, high-energy, and active matter systems,
as future works.
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APPENDIX A: DERIVATION OF
GR-TRANSFORMATION RULE (16)

We here give the derivation of GR-transformation rules
of the NG fields given in Eq. (16). For that purpose, let us
explicitly write the GA transformation given in Eq. (8) as

ξ1;2ðπÞ → ξ1;2ðπ0Þ ¼ e�iθeiπRe�iπA=2e−iβ1;2ðπ;θÞ; ðA1Þ

where θ ¼ θIXI denotes the transformation parameter with
the pullback βðπ; θÞ ¼ βαðπ; θÞXα. To determine the pull-
back βðπ; θÞ, based on the power counting scheme in which
πA, θ and β1;2 are all counted as OðℏÞ, we expand ξ1;2ðπÞ
and their transformations (A1) as follows:

ξ1;2ðπÞ ¼ eiπR � i
2
eiπRπA þOðℏ2Þ

ξ1;2ðπ0Þ ¼ ½eiπR þOðℏ2Þ�

� i
2
eiπR ½πA þ 2e−iπRθeiπR ∓ 2β1;2 þOðℏ3Þ�:

ðA2Þ

Comparing these, we can express the transformation rules
for πR and πA as

π0R ¼ πR þOðℏ2Þ;
π0A ¼ πA þ 2e−iπRθeiπR − 2β1 þOðℏ3Þ

¼ πA þ 2e−iπRθeiπR þ 2β2 þOðℏ3Þ: ðA3Þ

We therefore identify that the pullback β1;2 takes the
following form in our parametrization:

β1 ¼ −β2 ¼ ½e−iπRθeiπR �k; ðA4Þ

where Ak ≡ trðXαAÞXα is the unbroken component of A.
This completes the semiclassical transformation rule of the
NG fields given in Eq. (16).

APPENDIX B: DERIVATION OF THE
MATCHING CONDITION (27) and (28)

Since the first two matching conditions in Eq. (27)
immediately follow from the transformation rule (25), we
here provide the derivation of the others in Eqs. (27) and
(28). By using the retarded Green’s function for NG modes
given in Eq. (24), we can directly evaluate GJ0a;RJ

0
b;A
ðω; kÞ as

follows:

GJ0a;RJ
0
b;A
ðω; kÞ ¼

Z
ddxeiωðt−t0Þ−ik·ðx−x0ÞhFð−iωf−2gac −mI0fI0acÞπcRðxÞFðiωgtdb − ρdbÞπdAðx0Þi

¼ F2ð−iωf−2gac −mI0fI0acÞð−igtω2 þ ρωþ igsk2Þ−1cd ðiωgtdb − ρdbÞ

⟶
k→0

F2ðiωf−2gac þmI0fI0acÞðiωgt − ρÞ−1cd ðiωgtdb − ρdbÞ
1

ω

¼ F2ðif−2gab þ ω−1mI0fI0abÞ; ðB1Þ

which gives the matching condition for f, or the third equation in the matching condition (27).
We can show the remaining ones in Eq. (28) in the similar manner if we notice that the equation of motion for πaR together

with the definition of Jμa;R in Eq. (26) brings about
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∂μJ
μ
a;R ¼ FðζI0t fI0ab∂2

0 − γgab∂0 þ ζI
0
s fI0ab∇2ÞπbR þ iFgabπbA: ðB2Þ

This equation is a manifestation of the nonconserving feature of open systems. Then, we can evaluate the low-frequency/wave
number behavior of Cν

abðω; kÞ in the similar manner with GJ0a;RJ
0
b;A
ðω; kÞ, using the retarded Green’s function of NG modes.

Noting that hπaAðxÞπbAðx0Þi ¼ 0 thanks to the unitarity condition (7a), we can evaluate the time component C0
abðω; kÞ as

C0
abðω; kÞ≡

Z
ddxeiωðt−t0Þ−ik·ðx−x0ÞhFð−ω2ζI

0
t fI0ac þ iωγgac − k2ζI

0
s fI0acÞπcRðxÞFðiωgtdb − ρdbÞπdAðx0Þi

¼ F2ð−ω2ζI
0
t fI0ac þ iωγgac − k2ζI

0
s fI0acÞð−igtω2 þ ρωþ igsk2Þ−1cd ðiωgtdb − ρdbÞ

⟶
k→0

F2ð−ω2ζI
0
t fI0ac þ iωγgacÞðiωgt − ρÞ−1cd ðiωgtdb − ρdbÞ

−i
iω

¼ F2ðωζI0t fI0ab − iγgabÞ; ðB3Þ

whose ω → 0 limit and the derivative with respect to ω give the matching conditions for γ and ζt—the first two equations in
Eq. (28). Also, the spatial component Ci

abðω; kÞ is similarly evaluated as

Ci
abðω; kÞ≡

Z
ddxeiωðt−t0Þ−ik·ðx−x0ÞhFð−ω2ζI

0
t fI0ac þ iωγgac − k2ζI

0
s fI0acÞπcRðxÞFðþikiÞgsdbπdAðx0Þi

¼ iF2ð−ω2ζI
0
t fI0ac þ iωγgac − k2ζI

0
s fI0acÞkið−igtω2 þ ρωþ igsk2Þ−1cd gsdb

⟶
ω→0

− F2ζI
0
s fI0abki; ðB4Þ

which gives the matching condition for ζs—the third equation in Eq. (28).

APPENDIX C: DIFFUSIVE TYPE-A NG MODE IN DRIVEN-DISSIPATIVE
BOSE-EINSTEIN CONDENSATE

We here provide a detailed analysis of the type-A NG mode followed by the presence of the driven-dissipative Bose-
Einstein condensate. Our starting point is the Schwinger-Keldysh Lagrangian

Lopen ¼
�
iϕ†

A∂0ϕR −
1

2m
∇ϕ†

A∇ϕR þ ϕ†
Aðμþ iκ − ðg − iγ0ÞjϕRj2ÞϕR

�
þ ðH:c:Þ þ iðAþ 4γ0jϕRj2Þ

2
jϕAj2; ðC1Þ

where we defined the Keldysh-basis fields ϕR ¼ ðϕ1 þ
ϕ2Þ=2 and ϕA ≡ ϕ1 − ϕ2. We truncated the action at the
quadratic order with respect to A-type field, which is
regarded as the semiclassical approximation to open
quantum systems described by the Lindblad equation
(see, e.g., Ref. [31] for a review). Here ðH:c:Þ represents
the Hermitian conjugate, and κ < 0 and γ0 > 0 denote a
driven particle-injection term and a dissipative term de-
scribing a nonlinear particle loss.
Using infinitesimal parameters ϵ for time-translational

symmetry Rt, and θ for internal Uð1Þ symmetry, we define
infinitesimal GA and GR transformations in the semi-
classical regime as

δAϕR ¼ ϵA∂0ϕR þ iθAϕR;

δAϕA ¼ ϵA∂0ϕA þ iθAϕA; and

δRϕR ¼ 0;

δRϕA ¼ ϵR∂0ϕR þ iθRϕR; ðC2Þ

where only GA symmetry is respected in Eq. (C1).
Let us then investigate a homogeneous symmetry break-

ing solution ϕ̄R and ϕ̄A, on the top of which the type-A
diffusive NG mode appears. Noting ϕ̄A ¼ 0 resulting from
the unitarity condition, we obtain the mean-field equation
of motion for ϕ̄R:

ði∂0 þ μþ iκ − ðg − iγ0Þjϕ̄Rj2Þϕ̄R ¼ 0: ðC3Þ

The driven particle injection κ < 0 makes the trivial
solution ϕ̄R ¼ 0 unstable, and as a result, there appears
a nontrivial solution with a time-oscillating homogeneous
condensate given by

ϕ̄R ¼ ve−iω0t with v2 ¼ −
κ

γ0
; ω0 ¼ gv2 − μ:

ðC4Þ
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Due to the time-oscillating condensate, this solution breaks GA ¼ Rt ×Uð1ÞM symmetry down to HA ¼ Uð1ÞMþt. Here
Uð1ÞMþt denotes the combination of the time translation and Uð1Þ transformation satisfying ω0ϵA − θA ¼ 0, which let the
driven-dissipative condensate (C4) invariant.
Next, we consider the fluctuation on the top of the above symmetry breaking solution and derive the effective Lagrangian

for the diffusive NG mode. The embedding of Nambu-Goldstone mode reads

ϕR ≃ eiπR−iω0t½vþ σR�;
ϕA ≃ eiπR−iω0t½iðvþ σRÞπA þ σA�; ðC5Þ

where πR;A and σR;A represent a phase (Nambu-Goldstone) and gapped amplitude field, respectively. To see the
semiclassical dynamics of those fields, we dropped the higher-order terms including more than two A-type fields.
Substituting the embedding (C5) into Eq. (C1) and focusing on the leading-order quadratic terms, we obtain the following
result:

Lopen ¼ −
2v2

2m
∇πA∇πR þ iĀv2

2
π2A

−
1

2
ð σR σA Þ

�
0 − 1

m∇
2 þ 4gv2

− 1
m∇

2 þ 4gv2 −iĀ

��
σR

σA

�
þ 2vð 2γ0v2πA − ∂0πA −∂0πR Þ

�
σR

σA

�
: ðC6Þ

After integrating out the gapped mode σ and taking the low-energy limit ∇2=m ≪ 4gv2, we obtain the effective
Lagrangian of the NG fields as

Leff ¼ −
2v2

2m
∇πA∇πR þ iĀv2

2
π2A

−
ið2ivÞ2

2
ð 2γ0v2πA − ∂0πA −∂0πR Þ

�
0 − i

m∇
2 þ 4igv2

− i
m∇

2 þ 4igv2 Ā

�−1� 2γ0v2πA − ∂0πA

−∂0πR

�

≃ −
2γ0v2

g
πA∂0πR −

2v2

2m
∇πA∇πR þ iĀv2

2

�
1þ γ20

g2

�
π2A

¼ i
2
ð πR πA Þ

0
B@ 0 ið− γ0v2

g ∂0 − v2
m ∇2Þ

iðγ0v2g ∂0 − v2
m ∇2Þ Āv2ð1þ γ2

0

g2Þ

1
CA� πR

πA

�
; ðC7Þ

where we introduced Ā≡ Aþ 4γ0v2. The derived effective Lagrangian provides the following inverse retarded Green’s
function in the Fourier space:

G−1
R ðω; kÞ ¼ −i

γ0v2

g
ωþ v2

m
k2; ðC8Þ

which results in the expected diffusive dispersion relation for the type-A NG mode

ω ¼ −i
g

mγ0
k2: ðC9Þ

We can also specify the GA;R transformation rules of NG modes as

δAπR ¼ ϵA∂0πR − ω0ϵA þ θA; δAπA ¼ ϵA∂0πA; and δRπR ¼ 0; δRπA ¼ ϵR∂0πR − ω0ϵR þ θR; ðC10Þ

from which one sees that πR=A nonlinearly transforms under the GA=R transformation while linearly transforms under the
GR=A transformation.
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