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We present the study of radiative tau decay (τ− → π−ντγ), computing the structure dependent
contribution using light cone sum rules. This decay includes the same form factors as the radiative pion
decay with the crucial difference that the momentum transfer squared, t, between the pion-photon system is
positive, which makes these form factors timelike and also as t can now take values up tom2

τ , it can produce
real hadronic resonances. The analytical form for these form factors has been calculated using the light cone
sum rules method and the invariant mass spectrum in the π − γ system and the decay width are presented.
The structure dependent parameter, γ, the ratio of the axial vector to vector form factor is found to be in
good agreement with the experimental determination.
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I. INTRODUCTION

τ is the heaviest lepton with mτ ¼ 1776.86�
0.12 MeV [1] and has numerous decay channels because
of its heavy mass (see for example [2–6] for different
aspects of τ lepton physics). It is the only lepton which
can decay into hadrons. Theoretically, the electroweak
part is reasonably well established while one is still
lacking in developing a proper methodology to under-
stand the strong interactions. The study of hadronic τ
decays helps us to understand the dynamics of strong
interaction involved in the hadronization of QCD currents
in a cleaner environment
In particular, we are interested in the study of radiative

tau decay in the present work, i.e., τ− → π−ντγ. The
branching ratio of τ− → π−ντ is ð10.82� 0.05Þ% [1].
Hence, one expects the branching ratio for radiative tau
decay to be Oð10−3Þ. To get a sense for this expectation,
one can write the branching ratio as a product of
branching ratios of τ → ρντ and ρ → πγ, and using the
values from [1], one gets ∼10−3, which is about 10−2 of
the nonradiative branching ratio. Even though the branch-
ing ratio is not very small, these decays are not observed
experimentally yet which makes the study of this mode
important.

The decay amplitude of this process includes two
contributions [7–11]:

(i) Internal bremsstrahlung (IB): The contribution
coming from the emission from either the incoming
or the outgoing particles. This contribution can be
calculated trivially with the use of scalar QED for
the pointlike charged pion while the emission from
the τ leg is calculated straightforwardly using QED.
Diagrammatically this is shown in (a) and (b)
of Fig. 1.

(ii) Structure dependent (SD): This contribution is
governed by the strong interactions and contains
nontrivial parts. The pion can no longer be taken as a
pointlike particle. The partonic structure will play a
role. This contribution appears because of the
hadronization of JP ¼ 1− (γμ) and 1þðγμγ5Þ inter-
mediate quark-antiquark currents of the matrix
element [(c) of Fig. 1] and hence depends on the
long distance dynamics. Using the Lorentz sym-
metry, it can be parametrized by vector and axial-

vector form factors FðπÞ
V and FðπÞ

A , respectively.
These form factors encode the information of strong
dynamics involved in the hadronization of these
currents and their evaluation requires a nonpertur-
bative treatment such as light cone sum rules
(LCSR), chiral perturbation theory χPT or lattice
QCD. The SD contribution also includes a contact
term (CT), which emerges as a consequence of
gauge invariance and graphically represented in
(d) of Fig. 1.

The explicit form of these contributions will be calculated
in Sec. II where we will see that the IB part consists of two
contributions: one independent of mτ and another propor-
tional to mτ. The mτ independent contribution turns out to
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be equal and opposite to the CT contribution and hence gets
canceled in the total amplitude.
The amplitude for the process of interest is related to that

of the radiative pion decay by crossing symmetry with a
major difference that comes at the level of kinematics as the
square of the momentum transferred between the pion-
photon and leptonic system can now take values up to m2

τ ,
while in the radiative pion decay, it can take values only up
to m2

π which is almost negligible. Also, as both pion and
photon are in the final state, the form factors involved in
this process are timelike, and hence complicated, unlike the
form factors involved in the radiative pion decay which are
spacelike. As a consequence, the light flavored mesons will
be created on shell and give resonant structures in the pion-
photon invariant mass spectrum.
Hence to understand this process, the main task is to

calculate the timelike form factors involved in the process.
These form factors probe the structure of the pion. The
information about the pion structure can be obtained by

determining the ratio of FðπÞ
A ð0Þ to FðπÞ

V ð0Þwhich is defined
as the structure dependent parameter, γ, i.e., γ ¼ FðπÞ

A ð0Þ
FðπÞ
V ð0Þ. We

know the values of FðπÞ
A ð0Þ and FðπÞ

V ð0Þ from the exper-
imental determination of radiative pion decay to be equal to
(0.0119� 0.0001) and (0.0254� 0.0017), respectively [1],
which results in the value of γ equal to (0.4685� 0.0353).
The value of γ, which is the ratio of form factors evaluated
at zero momentum transfer, will be the same for radiative
tau and pion decays. The calculation of radiative tau decay
helps in determining this structure dependent parameter
theoretically in a consistent way. This decay is also useful
to understand the light-by-light hadronic contribution to the

muon anomalous magnetic moment, ðg − 2Þμ [12]. In [13],
the authors have discussed how this decay can provide the
means for the tau neutrino mass determination. These
gauge invariant form factors for the radiative tau decay
have been parametrized using Breit-Wigner–type resonan-
ces [14], light front quark model [10] and resonance χPT
[11] in the past.
The differences in the literature stem from the vastly

different approaches adopted to determine or estimate the
form factors, which affect the predictions for the rate and
spectrum, as well as extraction of γ, including the sign. As
an example, whenever the resonances are included via
the Breit-Wigner method, a suspecting issue always is
the relative phase between the different contributions. The
main aim of this paper is to calculate these form factors
using the method of LCSR in a consistent way.
The rest of the paper is organized as follows; in Sec. II,

we present the amplitude calculation for the process and
explicitly write the forms of different contributions men-
tioned above. In Sec. III, we present the calculation of the
form factors using the method of LCSR and in Sec. IV we
report our results. Finally, in Sec. V we conclude our results
with some remarks. Various definitions and conventions
used are reported in Appendix A. The values of various
parameters used for numerical calculation are collected in
Appendix B and the kinematical details are provided in
Appendix C.

II. AMPLITUDE COMPUTATION

A photon can be emitted by any charged particle. Hence
in the present case, the photon can be emitted from either
the pion or tau lepton, as shown in Fig. 1. The pion is a
composite object with a quark-antiquark pair. Therefore,
the internal structure of the pion will also contribute to the
process. This gives rise to two nonperturbative form
factors. As mentioned above, the amplitude of radiative
tau decay includes various contributions: internal brems-
strahlung (IB), structure dependent (SD) and contact term
(CT). The IB contribution comes from the emission of the
photon from tau and pion (considering pion to be the point
object). The SD contribution comes from the emission of
the photon from the internal structure of the pion. The
contact term is an interesting effective contribution and has
its origin in the gauge invariance of a QED amplitude [15].
We follow this approach here.
The amplitude of the process τ−ðp1Þ→π−ðp2Þντðp3Þ×

γðkÞ can be written as (employing the low energy four-
Fermi effective Hamiltonian obtained by integrating out the
heavy W boson)

Aðτ− → π−ντγÞ ¼
GFffiffiffi
2

p Vudhπ−ντγjðν̄τΓμτÞðd̄ΓμuÞjτ−i; ð1Þ

where Γμ ¼ γμð1 − γ5Þ.

FIG. 1. Feynman diagrams showing different contributions to
the radiative tau decay. (a) and (b) represent the IB contribution,
(c) represents the SD contribution and (d) represents the CT
contribution.
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This amplitude can be factorized in two parts; one where
the photon is emitted from the final state pion and another
where the photon gets emitted from the initial state tau
lepton:

Aðτ−→π−ντγÞ

¼GFffiffiffi
2

p Vud½hπ−γjðd̄ΓμuÞj0ihντjðν̄τΓμτÞjτ−i

þhντγjðν̄τΓμτÞjτ−ihπ−jðd̄ΓμuÞj0i�

¼GFffiffiffi
2

p Vud

�
−ieϵ�αðūνΓμuτÞ

×
Z

d4xeikxhπ−jTfjαemðxÞd̄Γμuð0Þgj0i

−efπp2μϵ
�
α

Z
d4xeikxhντjTfjαemðxÞν̄τΓμτð0Þgjτ−i

�
; ð2Þ

where jαemðxÞ¼Qψ ψ̄ðxÞγαψðxÞ¼−τ̄γατþQuūγαuþQdd̄γαd
and fπ is the pion decay constant. The conventions and
definitions are given in Appendix A. This factorization of
the amplitude holds for energetic photons and at the leading
order in 1

mτ
and αem.

For the computation of the first term of Eq. (2), define the
hadronic matrix element as

Tαμðp2; kÞ ¼ i
Z

d4xeikxhπ−jTfjαemðxÞd̄Γμuð0Þgj0i: ð3Þ

Using the conservation of electromagnetic current, one can
apply the Ward identity which results in

kαTαμðp2; kÞ ¼ hπ−jd̄ð0ÞΓμuð0Þj0i ¼ ifπp
μ
2 ð4Þ

in the momentum space.
Also, one can write the hadronic matrix element [defined

in Eq. (3)] using the general covariant decomposition in
terms of the pion and photon momentum, i.e., p2 and k
respectively, as

Tαμðp2; kÞ ¼ Agαμ þ Bp2αp2μ þ Cp2αkμ þDkαp2μ

þ Ekαkμ þ iFðπÞ
V ϵαμβνp2βkν; ð5Þ

where A, B, C, D, E, FðπÞ
V are gauge invariant scalar

functions of ðp2 þ kÞ2. Contraction of Eq. (5) with kα
results in (for on-shell photon k2 ¼ 0 and the Levi-Civita
tensor is antisymmetric in α and ν)

kαTαμðp2; kÞ ¼ Akμ þ Bðp2:kÞpμ
2 þ Cðp2:kÞkμ: ð6Þ

On equating Eqs. (4) and (6), we get

C ¼ −A
ðp2:kÞ

; and B ¼ ifπ
ðp2:kÞ

ð7Þ

which results in the final form of hadronic matrix element
to be

Tαμðp2; kÞ ¼ FðπÞ
A ½gαμðP:kÞ − Pαkμ� þ iFðπÞ

V ϵαμβνPβkν

− ifπgαμ þ ifπ
PαPμ

P:k
: ð8Þ

Here, FðπÞ
A ¼ Aþifπ

P:k and P ¼ p1 − p3 ¼ p2 þ k and
p2:k ¼ P:k. Hence, the first term in Eq. (2) reads

hπ−γjd̄Γμuj0ihντjν̄τΓμτjτ−i
¼ ieϵ�α½ūνΓμuτ�½iFðπÞ

A fgαμðP:kÞ−Pαkμg−FðπÞ
V ϵαμβνPβkν�

þ ieϵ�μfπūνΓμuτ− iefπ
ϵ�:P
P:k

ūν=Pð1− γ5Þuτ: ð9Þ

The second term in Eq. (2), using QED Feynman rules,
takes the form

hντγjν̄τΓμτjτ−ihπ−jd̄Γμuj0i
¼−iefπūνðp3Þ=ϵ�ð1−γ5Þuτðp1Þ

þ iefπmτ

2p1:k
fūνðp3Þ½ð2ϵ�:p1Þ−=k=ϵ��ð1þγ5Þuτðp1Þg: ð10Þ

Adding the two, the final form of the amplitude is

Aðτ−→ π−ντγÞ

¼GFffiffiffi
2

p Vud

�
ieϵ�αðūνΓμuτÞfiFðπÞ

A ½gαμðP:kÞ−Pμkα�

−FðπÞ
V ϵαμβνPβkνgþ iefπmτūν

�
ϵ�:p1

p1:k
−

=k=ϵ�

2p1:k
−
ϵ�:p2

p2:k

�

× ð1þ γ5Þuτ
�
: ð11Þ

Here, FðπÞ
A and FðπÞ

V are the gauge invariant axial-vector and
vector form factors, respectively. The contact term appears
explicitly by the use of Ward identity and cancels against
themτ independent contribution of photon emission from τ.
For further simplification, we have divided the full

amplitude as

Aðτ− → π−ντγÞ ¼ AIB þAV þAA ¼ AIB þASD: ð12Þ
Here,

AIB ¼ GFffiffiffi
2

p Vud

�
iefπmτūν

�
ϵ�:p1

p1:k
−

=k=ϵ�

2p1:k
−
ϵ�:p2

p2:k

�

× ð1þ γ5Þuτ
�
; ð13Þ

AV ¼−
GFffiffiffi
2

p Vud½ieϵ�αðūνΓμuτÞðFðπÞ
V ϵαμβνPβkνÞ�; and ð14Þ

AA¼
GFffiffiffi
2

p Vud½ieϵ�αðūνΓμuτÞðiFðπÞ
A ½gαμðP:kÞ−Pμkα�Þ�: ð15Þ
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AV and AA combined gives the structure dependent
contribution, while AIB is the internal bremsstrahlung
contribution.

III. FORM FACTORS IN LCSR FRAMEWORK

In the previous section, we saw that the amplitude of the
radiative tau decay depends on two gauge invariant form

factors; FðπÞ
A and FðπÞ

V . These form factors are the non-
perturbative objects and need a nonperturbative treatment.
In this section, we will calculate these form factors using
the method of LCSR.
The method of sum rules was developed in 1979 by

Shifman, Vainshtein and Zakharov (SVZ) [16,17]. Their
basic idea was to use the analytic properties of a correlation
function [treated in the framework of operator product
expansion (OPE)] to derive the hadronic parameter
involved in a process. Below we briefly outline the method
(for details, see [18–20]).
The important tools for deriving the sum rules are

dispersion relation, operator product expansion (OPE),
quark-hadron duality and the Borel transformation. The
dispersion relation relates the real part of the correlation
function to its imaginary part using Cauchy’s integral
formula. According to OPE, the correlation function can
be written as a sum of products of long distance matrix
elements of operators of increasing dimension and short
distance Wilson coefficients which can be calculated using
perturbation theory. The higher dimension operators cap-
ture the information of QCD vacuum fields in the form of
vacuum condensates. Both dispersion relation and OPE
give the same physics and hence can be equated.
Operationally, quark hadron duality means

q2
Z

∞

sh
0

ds
ρhðsÞ

sðs − q2Þ ≃
q2

π

Z
∞

4m2

ds
ImΠðpertÞðsÞ
sðs − q2Þ : ð16Þ

Here, ρh is the hadronic spectral density function, while
ΠpertðsÞ [or ΠQCDðsÞ] is the perturbatively calculated
correlation function. We will use this duality approximation
below.
As the correlation function has contributions from all the

resonance states as well as the continuum, one performs
Borel transformation to suppress the effect of higher
resonances and continuum. Mathematically, the Borel
transform is given by

ΠðM2Þ≡BM2Πðk2Þ

¼ lim
−k2;n→∞;−k2=n¼M2

ð−k2Þðnþ1Þ

n!

�
d
dk2

�
n
Πðk2Þ; ð17Þ

where M is known as the Borel parameter.
It was noticed that these SVZ sum rules have some

limitations such as the OPE upsets the power counting in
large Q2 and that, even after performing the Borel trans-
formation, practical calculations suffer from unsuppressed
contributions. These limitations can be overcome by using
light cone sum rules (LCSR). In LCSR, one expands the
products of the currents near the light cone. LCSR give
vacuum-to-hadron correlation function while by SVZ sum
rules one gets vacuum-to-vacuum correlation functions. In
LCSR, OPE at short distances is replaced by systematic
expansion in the transverse direction in the infinite momen-
tum frame.
In the light cone limit, the bilocal operator sandwiched

between the pion state and vacuum is expressed as

hπ0ðpÞjūðyÞγμγ5uðxÞj0ix2¼0

¼ −ifπpμ

Z
1

0

dueiðup2:yþūp:xÞϕðu; μÞ; ð18Þ

where ū ¼ 1 − u and ϕðu; μÞ is leading twist-2 distribution
amplitude given by

ϕπðu; μÞ ¼ 6uū

�
1þ

X
n¼2;4;…

anðμÞC3=2
n ðu − ūÞ

�
: ð19Þ

Here, C3=2
n are the Gegenbauer polynomials and an is the

multiplicatively renormalizable coefficient defined as

anðμÞ ¼ anðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γn=β0 ð20Þ

with αs ¼ g2s
4π (gs is the strong coupling constant), β0 is the

leading QCD β function and

γn ¼
4

3

�
−3 −

2

ðnþ 1Þðnþ 2Þ þ 4

�Xðnþ1Þ

k¼1

1

k

��
: ð21Þ

The remaining process for computation is the same as for
SVZ sum rules. We are now ready to derive the form
factors, FðπÞ

V and FðπÞ
A , using this technique.

As we know, these form factors arise from the compu-
tation of the hadronic matrix element defined in Eq. (3), i.e.,

Tαμðp2; kÞ ¼ i
Z

d4xeikxhπ−jTfQuūγαuðxÞd̄Γμuð0Þ þQdd̄γαdðxÞd̄Γμuð0Þgj0i; ð22Þ

whereQu andQd are the charges of up and down quark respectively in units of e. Using the definitions and identities given
in Appendix A, we get
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Tαμðp2; kÞ ¼ ifπ

Z
d4x

eikx

2π2x4

Z
1

0

duϕðu; μÞ½iϵμβαρxβp2ρðQueiūp2x þQdeiup2xÞ

þ ðxμpα
2 − gμαðx:p2Þ þ xαpμ

2ÞðQueiūp2x −Qdeiup2xÞ�; ð23Þ

where, as mentioned above, ϕðu; μÞ is the pion distribution amplitude and ū ¼ 1 − u. The integration over x results in

TαμðP; kÞ ¼ ifπ

�
iϵμβαρ

3
Pρkβ

Z
1

0

du
ϕðu; μÞ

P2ūþ k2u
þ 2fPαPμ − ðP:kÞgμαg

Z
1

0

du
ϕðu; μÞū
P2ūþ k2u

− fgμαðP:kÞ − Pαkμg
�Z

1

0

duϕðu; μÞ
�

1 − 2ū
P2ūþ k2u

���
: ð24Þ

Here, p2 þ k ¼ P and we have used the fact that the distribution amplitude is a symmetric function of u and ū.
A comparison with the general decomposition of the hadronic tensor given in Eq. (8) yields the following forms of vector

and axial-vector form factors from QCD calculation:

FQCD
V ðtÞ ¼ ifπ

3

Z
1

0

du
ϕðu; μÞ
tūþ k2u

⇒
1

π
ImfFQCD

V ðtÞg ¼ ifπ
3

Z
1

0

duϕðu; μÞδðtūþ k2uÞ; and ð25Þ

FQCD
A ðtÞ ¼ −ifπ

Z
1

0

duϕðu; μÞ
�

1 − 2ū
tūþ k2u

�

⇒
1

π
ImfFQCD

A ðtÞg ¼ −ifπ
Z

1

0

duϕðu; μÞð1 − 2ūÞδðtūþ k2uÞ: ð26Þ

Here, t≡ P2 ¼ ðp2 þ kÞ2 ¼ ðp1 − p3Þ2 is the invariant
mass square of the photon-pion system.
Now, after computing the perturbative QCD contribu-

tion, the analytic properties of this hadronic matrix element
are used to derive the contribution of various hadronic
states. It will get contributions from (ρ, ω, a1-mesons)þ
higher resonances and the continuum. In the present case,
contributions coming from ρ, ω, a1-mesons will saturate
the sum rules and thus will be the focus here.1

Considering the matrix element hπ−jTfjαemðxÞjμewð0Þgj0i
and inserting a complete set of states, we get

hπ−jTfjαemðxÞjμewð0Þgj0i ¼ hπ−jjαemðxÞjnihnjjμewð0Þj0i;
ð27Þ

where jni¼jρiþjωiþja1iþ higher resonancesþcontinuum.
(i) ρ and ω-meson contribution: The ρ-meson contri-

bution will come from

hπ−ðp2ÞjjαemðxÞjρðp2 þ kÞihρðp2 þ kÞjjμewð0Þj0i:
ð28Þ

Using the definitions given in Appendix A,

hπ−ðp2ÞjjαemðxÞjρðp2 þ kÞihρðp2 þ kÞjjμewð0Þj0i
¼ imρfρϵαλβνg

μ
λp2βkνFρπðk2Þ; ð29Þ

where mρ and fρ are the mass and decay constant
of the ρ meson respectively. Neglecting the very
small difference between the masses of ρ and ω, the
contribution of ω will be equal to the contribution of
ρ and hence multiplying ρ contribution by a factor of
2 will incorporate the contribution of the ω meson.

(ii) a1-meson contribution: The a1-meson contribution
will come from

hπ−ðp2ÞjjαemðxÞja1ðp2 þ kÞiha1ðp2 þ kÞjjμewð0Þj0i;
ð30Þ

which results in

hπ−ðp2ÞjjαemðxÞja1ðp2 þ kÞiha1ðp2 þ kÞjjμewð0Þj0i
¼ ima1fa1 ½2p2:kgαμ − 2pα

2k
μ�Ga1πðk2Þ ð31Þ

using the definitions given in Appendix A. Here,ma1
and fa1 are the mass and decay constant of the a1
meson respectively.

Here, FρπðGa1πÞ captures the physics of transition of the
ρða1Þ meson to the π meson. Using the optical theorem in
Eq. (3), we get

1The contribution of the higher resonances, at the present level
of accuracy, is roughly 20% of these resonances because of the
Borel suppression.
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2ImfTαμðp2;kÞg
¼
X
n

hπ−jjαemðxÞjnihnjjμewj0idτnð2πÞ4δ4ðk−pnÞ; ð32Þ

and from Cauchy’s theorem,

Tðk2Þ ¼ 1

π

Z
∞

tmin

ds
ImfTðsÞg
s − k2 − iϵ

: ð33Þ

Substituting the contributions of ρ and a1, we get

Tαμðp2; kÞ ¼
2imρfρϵαλβνg

μ
λp2βkνFρπðk2Þ

m2
ρ − ðp2 þ kÞ2 − imρΓρ

þ ima1fa1 ½2p2:kgαμ − 2pα
2k

μ�Ga1πðk2Þ
m2

a1 − ðp2 þ kÞ2 − ima1Γa1

þ 1

π

Z
∞

sh
0

ds
ImfTαμðs; kÞg
s − k2 − iϵ

: ð34Þ

Here, sh0 is the threshold of the lowest continuum state and Γρ

and Γa1 are the decay widths of ρ and a1 mesons,
respectively. This is the dispersion relation which relates
the imaginary part to the real part. Now, the light cone sum

rules can be derived by taking the form of FðπÞ
V ðtÞ from this

dispersion relation and equating it with the form obtained in
Eq. (25), i.e.,

2mρfρFρπðk2Þ
m2

ρ − t − imρΓρ
þ 1

π

Z
∞

sh
0

ds
ImfFVðsÞg
s − t − iϵ

¼ ifπ
3

Z
1

0

du
ϕðu; μÞ
tūþ k2u

: ð35Þ

Using the duality approximation and the Chauchy’s integral,

1

π

Z
∞

s0

ds
ImfFVðs; kÞg
s − t − iϵ

¼ 1

π

Z
∞

sρ
0

ds
ImfFQCD

V ðs; kÞg
s − t − iϵ

¼ ifπ
3

Z
1

u0

du
ϕðuÞ

tūþ k2u
; ð36Þ

with u0 ¼ s0
k2þs0

¼ 1 (as k2 ¼ 0). As a result, the sum rule for

FðπÞ
V ðtÞ turns out to be

2mρfρFρπðk2Þ
m2

ρ − t
¼ ifπ

3

Z
u0

0

du
ϕðuÞ

tūþ k2u
: ð37Þ

Similarly, by equating the form of FðπÞ
A ðtÞ obtained from the

dispersion relation with the form given in Eq. (26) and using

the duality approximation, the sum rule for FðπÞ
A ðtÞ reads

2ima1fa1Ga1πðk2Þ
m2

a1 − t
¼ −ifπ

Z
u0

0

ϕðuÞ
�

1 − 2ū
tūþ k2u

�
: ð38Þ

After Borelization and substituting these sum rules back

in Eq. (34), we get the following analytical forms for FðπÞ
V

and FðπÞ
A :

FðπÞ
V ðtÞ ¼ −i

fπ
3ðm2

ρ − t − imρΓρÞ
Z

1

0

du
ϕðuÞ
ū

e
m2
ρ

M2 ; ð39Þ

FðπÞ
A ðtÞ¼−i

fπ
m2

a1 − t− ima1Γa1

Z
1

0

ϕðuÞ
ū

ð1−2ūÞe
m2
a1

M2 : ð40Þ

Here, M is the Borel parameter and we have used the on-
shell condition for the photon (i.e., k2 ¼ 0).2

For the present calculation, we will use the asymptotic
form (where μ → ∞) and the Chernyak-Zhitnisky form
(where the C2 term will be considered) of the pion
distribution amplitude given in Eq. (19). Explicitly these
forms are given by

ϕasym
π ðu; μÞ ¼ 6uū; and ð41Þ

ϕCZ
π ðu; μÞ ¼ 6uū

�
1þ 3a2ðμÞ

2
f5ðu − ūÞ2 − 1g

�
; ð42Þ

where a2ðμÞ is defined in Eq. (20) with n ¼ 2. All the
structure dependent information of the pion involved in the
radiative tau decay is contained in the ratio of the axial
vector form factor and the vector form factor at zero
invariant mass square of the photon-pion system, i.e.,

γ ¼ FðπÞ
A ð0Þ

FðπÞ
V ð0Þ

; ð43Þ

where γ is known as the structure dependent parameter
(SDP). The vector form factor at t ¼ 0 can be related to the
anomaly term (or Wess-Zumino-Witten term) in the πγγ
vertex [1=ð4π2fπÞ]. Using what is referred to as KSFR-II
relation [21,22],m2

ρ ¼ 2g2ρππf2π , along with the assumptions
of universality of ρ coupling (gρππ ¼ gρNN ¼ gργ ¼ g ¼
2π

ffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p
) and ρ meson dominance of the pion electro-

magnetic form factor, one finds the right form emerging

from FðπÞ
V ð0Þ, up to the overall factor e

m2
ρ

M2 which should tend
to unity. As we see later, the choice of the Borel parameter
that provides a stable window, trivially yields unity for this
factor within a few percent.

2It is to be noted that these form factors have dimension
of inverse mass and there is an extra factor of −i due to the
way initial amplitude is defined: Aðτ− → π−ντγÞ instead of
iAðτ− → π−ντγÞ as is often done.
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Before discussing the results, it may be worthwhile to
ponder over possible duality violations. Such contributions
arise from our use of perturbatively evaluated spectral
functions, imaginary parts of the form factors here, over the
entire kinematical range. It is notoriously difficult to
exactly quantify the magnitude of such duality violating
terms. However, it is rather important to have some estimate
or an educated guess since these would otherwise cause
large uncertainties in the final results. For the case at
hand, the perturbative effects occur at 1=Q, where hard
scale Q ∼mτ while the time scale over which the partons
come together to form final hadrons ∼Q=Λ2

QCD. One
possible way to evaluate the duality violations could be
to use an instanton model, where the light quark amplitudes
will be suppressed. A rough calculation yields a quantity
that in the Euclidean domain has the form Exp½−Qρ�=Qn,
where ρ denotes the mean instanton size. Analytically
continued to the Minkowski space, this would have an
oscillating factor multiplied by negative powers of the
energy released in the hard process mτ. Alternatively, one
could assume a comb of hadronic resonances that would
contribute and carry out the algebra. Both lead to similar
conclusions that the violations are ∼10% [23] (also see
[24,25] for detailed analyses for inclusive tau decays). This
is the typical duality violation contribution that we expect,
though a more detailed calculation can reveal the actual
amount of such violations.

IV. RESULTS

The analytic expressions for the vector and axial-vector
form factors calculated using LCSR are given in Eqs. (39)
and (40). Both of these form factors have the asymptotic 1

t
dependence on the invariant mass squared, t of the photon
pion system, as expected from QCD in the perturbative
(asymptotic) regime. We have used two forms of pion
distribution amplitude; the asymptotic form and the CZ
form as given in Eqs. (41) and (42), respectively. The
structure dependent parameter defined in Eq. (43) is also
calculated using both forms for pion distribution ampli-
tudes. The values of the various parameters used for the
numerical computation are collected in Appendix B. The
form factors depend on the value of the Borel parameter,
M, and hence also the structure dependent parameter, γ.

Figure 2 shows the variation of FðπÞ
A ð0Þ, FðπÞ

V ð0Þ and SDP
(γ) with the variation in the value of M. The variation of
the observables with M dictates the model dependence
here. As can be seen from the plot, all the observables are
quite stable in the chosen Borel window. The value of γ
for M ¼ 3.35 GeV is 0.469 (using CZ distribution ampli-
tude) which matches well, including the sign, with the
experimental value of γ obtained from the radiative pion
decay [1].
Further, we calculate the decay width contribution for the

radiative tau decay using M ¼ 3.35 GeV and the form

factors given in Eqs. (39) and (40). The differential decay
rate for the radiative tau decay is given by

dΓðτ−→ π−ντγÞ

¼ 1

512π5
Eτδ

ð4Þðkþp2þp3−p1ÞjAj2d
3kd3p2d3p3

EγEπEν
;

ð44Þ

where Eτ, Eπ, Eγ, Eν are the energies of tau lepton, pion,

photon and neutrino, respectively. jAj2 is the spin averaged
square of the amplitude which has been calculated
in Sec. II.
In terms of the functions used in Eq. (12),

jAj2 ¼ jAIBj2 þ jASDj2 þ 2RefA�
IBASDg; ð45Þ

where jASDj2 ¼ jAAj2 þ jAV j2 þ 2RefA�
AAVg.

The kinematical details to compute the decay rate can be
found in Appendix C.
The structure dependent contribution to the photon

spectrum is shown in Fig. 3 using both forms of pion
distribution amplitudes. The IB contribution suffers from
the infrared divergences which can be taken care of by
putting a threshold on the photon energy. Figure 4 shows
the threshold energy dependence of the IB contribution as
well as the full decay width of the radiative tau decay. The
SD contribution is free from any kind of divergences.

FðπÞ
A ðtÞ gets a contribution from the a1 meson while

FðπÞ
V ðtÞ from the ρ (and ω) meson. Figure 5 shows the SD

contribution to the invariant mass spectrum of the π − γ
system. The higher and sharper peak corresponds to the
contribution coming from the vector mesons while the

SDP(asym)

SDP(CZ)

FA (asym)

FA(CZ)

FV(asym)

FV(CZ)

2.0 2.5 3.0 3.5 4.0

0.0

0.1

0.2

0.3

0.4

0.5

M (GeV)

FIG. 2. The dependence of structure dependent parameter
(SDP), FðπÞ

A ð0Þ and FðπÞ
V ð0Þ on the Borel parameter M (in GeV

units) is shown in blue, magenta and green, respectively. In this
plot, form factors have been multiplied by imπ to make them
dimensionless in and take care of the extra −i in the form factors
as noted in footnote 1.
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shorter and broader peak corresponds to the axial vector
contribution. The vector contribution to the total decay
width dominates over the axial-vector contribution.
As ρ and a1-mesons are not very narrow, the effect of

t dependence of the widths is also studied using the
prescription provided in [26]. The t dependence of Γρ

does not have a significant effect as it is not that wide
while the effect of Γa1 is clearly visible as one can see
from Fig. 6. The explicit forms of t dependence of the
decay widths are collected in Appendix A. We have also
computed the effect of decay width of a1-meson Γa1 , as
it has huge uncertainty, and found that the decay
width of the radiative tau decay decreases with an
increase in Γa1 . The results reported here are calculated
using Γa1 ¼ 425 MeV.
Figure 7 represents all the contributions to the invariant

mass spectrum of the π − γ system. The IB contribution
dominates at the low photon energy for which we have used
the minimum energy threshold of 50 MeV.
After integrating over the full phase space and

applying an energy threshold of 50 MeV for the IB
contribution, we get the following values for the different
contributions to the decay width (normalized to the
nonradiative decay width Eq. (C8), i.e., Γ̄ ¼ Γðτ → πνγÞ=
Γðτ → πνÞ]:

(i) Asymptotic pion distribution amplitude:

Γ̄IB¼ 1.36×10−2; Γ̄VV ¼ð1.47�0.06Þ×10−3;

Γ̄AA¼ð3.97�2.45Þ×10−4; Γ̄AV ≈0

Γ̄SD¼ð1.87�0.30Þ×10−3;

Γ̄int¼ð3.82�2.14Þ×10−4;

Γ̄all¼ð1.56�0.04Þ×10−2:

IB

all(asymp)

all(CZ)

0.00 0.02 0.04 0.06 0.08 0.10

0.010

0.015

0.020

0.025

0.030

0.035

0.040

FIG. 4. The dependence of the IB (solid) contribution on the
minimum energy threshold of the photon is shown here. Along
with that, the same dependence for total decay width including
form factors using asymptotic (dashed) and CZ (dotted) pion
distribution amplitude is also shown.

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.001

0.002

0.003

x

FIG. 3. The total structure dependent contribution (blue) to the
photon spectrum is shown along with the individual contributions
from thevector (magenta), axial vector (green) and the interference
(red) of the two are also shown for the two distribution amplitudes.
Solid lines are for asymptotic distribution amplitude while dashed
ones are for Chernyak-Zitnisky distribution amplitude.

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

z

(a)

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

z

(b)

FIG. 5. (a) The structure dependent contribution (blue) to the invariant mass spectrum of the π − γ system is shown here for asymptotic
(solid) and Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution from the vector (magenta), axial vector (green)
and the interference (red) of the two is also shown. (b) Zoomed in version of (a).
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(ii) CZ pion distribution amplitude:

Γ̄IB¼ 1.36×10−2; Γ̄VV ¼ð1.70�0.07Þ×10−3;

Γ̄AA¼ð5.91�3.62Þ×10−4; Γ̄AV ≈0

Γ̄SD¼ð2.29�0.43Þ×10−3;

Γ̄int¼ð4.90�2.60Þ×10−4;

Γ̄all¼ð1.61�0.06Þ×10−2:

Since we consider radiative rate normalized to the non-
radiative one, the uncertainty in IB contribution is neg-
ligible compared to the SD contribution which dominates
the error budget, therefore no uncertainty is shown for the
IB part. The final uncertainties are about 10%. From the
above it is evident that there is a dependence on the form
of the distribution amplitude chosen to evaluate these form
factors. However, the difference is not too large, which is
reassuring.

Having obtained detailed predictions for the pion in the
final state, it is also instructive to have an estimate of the
decay width for the kaon in the final state. Again, normal-
izing to the appropriate nonradiative width, and employing
the asymptotic distribution amplitude (keeping the Borel
parameter, M ¼ 3.35 GeV), we get

Γ̄K ¼ Γðτ → KνγÞ=Γðτ → KνÞ ∼ 8 × 10−3: ð46Þ

This (appropriately normalized) rate is roughly half of
that for the pion.

V. DISCUSSION AND CONCLUSIONS

In the present paper, we have provided detailed pre-
dictions for the rate and photon spectrum for the process
τ− → π−ντγ. Employing Ward identity from the beginning,
the amplitude was written so as to include the contact term
which is necessitated by gauge invariance. The decay
involves two timelike form factors. These have been
calculated in the present work employing the light cone

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

z

(a)

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

z

(b)

FIG. 6. The SD contribution (blue) considering (a) Γρ and Γa1 to be constant and (b) the t dependence of Γρ and Γa1 is shown here for
asymptotic (solid) and Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution from the vector (magenta), axial
vector (green) and the interference (red) of the two is also shown.
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FIG. 7. The invariant mass spectrum of the π − γ system for radiative tau decay is shown here considering (a) asymptotic and (b) CZ
pion distribution amplitude. The contributions from the IB (magenta), SD (green) and the interference (red) of the two is also shown. The
shaded region shows the uncertainties.
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sum rules, to twist-2 accuracy. The form factors, which
automatically via the dispersion relations, encode the
contributions from the vector and axial-vector mesons,
have the right asymptotic behavior expected from pertur-
bative QCD. The ratio of the axial-vector to vector form
factor at zero momentum transfer defines the pion structure
dependent parameter, γ. Our evaluation of this parameter,
along with the sign, matches very well with the exper-
imental value obtained from π → lνγ, where the relevant
pion-photon form factors, unlike the present case, are
spacelike. The obtained values for the normalized rate
and the photon spectrum are similar to those obtained in
[11]. This provides a cross-check on the theoretical
predictions employing a totally different method for com-
puting the nonperturbative quantities. We have also pro-
vided an estimate for the appropriately normalized rate with
kaon in the final state instead of a pion. This normalized
rate is approximately half of that for the pion. The present
study employed distribution amplitudes to twist-2 accuracy.
The uncertainties reported here are the uncertainties asso-
ciated with the uncertainties of the various parameters used.
There will be further uncertainties associated with quark
hadron duality approximation, and higher twist and hight
order contributions. The pion is considered to be massless
here. The effect of such an assumption is less than 1% on
the values of the form factors. The uncertainties associated
with quark hadron duality violation, like in inclusive tau
decays are expected to be at 10% level, and can be
calculated in a particular model to parametrize the spectral
density. Precise calculations of these duality violations is
indeed an important missing piece but is out of the scope of
the present work. It would be interesting to consider both
higher twist contributions as well as contributions higher
order in αs. These can have a significant impact on the
phenomenology of radiative one meson tau decays.

APPENDIX A: CONVENTIONS, DEFINITIONS
AND IDENTITIES

Here, we are reporting the various conventions and
definitions used for the sake of completeness,

1. The matrix element of the pion is defined as

hπ−ðp2Þjðd̄γμð1 − γ5ÞuÞj0i ¼ ifπp
μ
2; ðA1Þ

where fπ is the pion decay constant.
2. The outgoing photon state can be obtained by the

use of a creation operator on the vacuum which
results in

hντγjν̄τγμð1 − γ5Þjτ−i

¼ −ieϵ�μ
Z

d4xeikxhντjTfjαemðxÞν̄τΓμτð0Þgjτ−i;

ðA2Þ

where jαemðxÞ¼Qψ ψ̄ðxÞγαψðxÞ¼−τ̄γατþQuūγαuþ
Qdd̄γαd is the electromagnetic current. Qu and Qd
are the electromagnetic charges of u and d quarks,
respectively in the units of e.

3. The commutator of the electromagnetic charge oper-
ator and electroweak current of the pion is given by

½j0emðxÞ; d̄Γμuð0Þ�
¼ −Quδ

3ðxÞd̄ð0ÞΓμuðxÞ þQd∂3ðxÞd̄ðxÞΓμuð0Þ:
ðA3Þ

4. The propagator of the massless fermions in position
space is given by,

iS0ðxÞ ¼ h0jTfuðxÞūð0Þgj0i

¼ i=x
2π2x4

¼ −h0jTfuð0ÞūðxÞgj0i: ðA4Þ

5. γμγβγα ¼ gμβγβ − gμαγβ þ gβαγμ − iϵμβαργργ5.
6. The leading order expansion (twist-2) of the matrix

element hπ−ðp2Þjd̄ðyÞγμγ5uðxÞj0i in the light cone
limit (x2 ¼ 0) is given by

hπ−ðp2Þjd̄ðyÞγμγ5uðxÞj0i

¼ ifπp2μ

Z
1

0

dueiðup2yþūp2xÞϕðu; μÞ; ðA5Þ

where ū ¼ 1 − u and ϕðu; μÞ is pion distribution
amplitude of twist-2.

7. The matrix elements of ρ and a1 mesons are
defined as

hVðp2 þ kÞjd̄γμuj0i ¼ −imVfVϵ
ðVÞ�
μ ðA6Þ

hπ−ðp2ÞjjαemðxÞjρðp2 þ kÞi ¼ ϵαλβνϵðρÞλ p2βkνFρπðk2Þ
ðA7Þ

hπ−ðp2ÞjjμemðxÞja1ðp2 þ kÞi
¼ ½ð2p2 − kÞ:kgμλ − ð2p2 − kÞμkλ�ϵða1Þ�λ Ga1πðk2Þ;

ðA8Þ

whereV can beρora1meson,mV andfV are themass

and decay constant of the V meson, respectively. ϵðρÞλ

and ϵða1Þ�λ are the polarization vectors of ρ and a1
meson, respectively. Fρπðk2Þ and Ga1πðk2Þ are the
scalar functions of k2 which contains the information
of ρ → π and a1 → π transitions, respectively.

8. The sum over polarization of ρ or a1 meson is
given by

ϵðVÞλ ϵðVÞ�ν ¼ −gλν þ
ðp2 þ kÞλðp2 þ kÞν

m2
V

: ðA9Þ
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9. The t dependence of the decay widths of ρ and a1
mesons are given by [26]

ΓρðtÞ ¼ Γρ
m2

ρ

p3
ρ

p3

t
ðA10Þ

with 2p ¼ ðt − 4m2
πÞ1=2 and 2pρ ¼ ðm2

ρ − 4m2
πÞ1=2:

Γa1ðtÞ ¼
ma1Γa1ffiffi

t
p gðtÞ

gðm2
a1Þ

ðA11Þ

with

gðtÞ ¼

8>><
>>:

4.1ðt − 9m2
πÞ3ð1 − 3.3ðt − 9m2

πÞ þ 5.8ðt − 9m2
πÞ2Þ if t < ðmρ þmπÞ2

t

�
1.623þ 10.38

t
−
9.38
t2

þ 0.65
t3

�
else:

APPENDIX B: VALUES OF
PARAMETERS USED

Here, we tabulate the values of the various parameters
used for numerical calculation.

S.No. Parameter Symbol Value

1. Fine structure
constant

α 1
133.6

2. Fermi’s constant GF 1.166 × 10−5 GeV−2 [1]
3. Mass of τ lepton mτ (1776.86� 0.12) MeV [1]
4. Pion decay constant fπ (130.41� 0.23) MeV
5. CKM matrix

element
Vud (0.9745� 0.0001) [1]

6. Mass of ρ meson mρ (775.26� 0.25) MeV [1]
7. Decay width

of ρ meson
Γρ (149.1� 0.8) MeV [1]

8. Mass of a1 meson ma1 (1230� 40) MeV [1]
9. Decay width

of a1 meson
Γa1 (425� 175) MeV [1]

10. Vector form factor FðπÞ
V ð0Þ 0.0254� 0.0017 [1]

11. Axial-vector
form factor

FðπÞ
A ð0Þ 0.0119� 0.0001 [1]

12. αsð1 GeVÞ αsð1 GeVÞ ∼0.7
13. αsðmτÞ αsðmτÞ 0.325
14. a2ð1 GeVÞ a2ð1 GeVÞ 0.12

The value of the fine structure constant is taken at the
scalemτ and the decay width of the a1 meson is taken to the
central value of the range given in [1].

APPENDIX C: KINEMATICS AND
DECAY WIDTH

The differential decay width can be written as a sum of
different components [14]: ΓIB coming from jAIBj2, ΓSD

coming from jASDj2 and Γint coming from 2ReðA�
IBASDÞ.

ΓSD is further divided into three parts: ΓVV coming from
jAvj2, ΓAA coming from jAAj2 and ΓAV coming from
2ReðAVA�

AÞ:

Γall ¼ ΓIB þ Γint þ ΓSD;

ΓSD ¼ ΓVV þ ΓAV þ ΓAA;

Γint ¼ ΓIB−A þ ΓIB−V: ðC1Þ

For convenience, we use the dimensionless variables x and
y defined as

x ¼ 2p1:k
m2

τ
; y ¼ 2p1:p2

m2
τ

: ðC2Þ

In the rest frame of tau, x and y are simply the energies of
photon and pion respectively in units of mτ

2
. The kinematical

boundaries of x and y are given by

0 ≤ x ≤ 1 − r2p; 1 − xþ r2p
1 − x

≤ y ≤ 1þ r2p; ðC3Þ

where r2p ¼ m2
π

m2
τ
. We have considered pion to be massless for

form factor calculations and hence we will use rp → 0 in
our final answers.
The variable t, the invariant mass square of the pion-

photon system, can be written in terms of x and y as

t ¼ P2 ¼ ðp2 þ kÞ2 ¼ m2
τðxþ y − 1Þ

⇒ P:k ¼ m2
τ

2
ðxþ y − 1 − r2pÞ: ðC4Þ

In terms of variables x and y, the differential decay width
in the rest frame of tau is

d2Γ
dxdy

¼ mτ

256π3
jAj2; ðC5Þ

where different contributions to the differential decay width
are (calculated using FeynCalc [27])
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d2ΓIB

dxdy
¼ α

2π
fIBðx; y; r2pÞ

Γτ−→π−ντ

ð1 − r2pÞ2
;

d2ΓSD

dxdy
¼ α

8π

m4
τ

f2π
fjFðπÞ

V j2fVVðx; y; r2pÞ þ 2ReðFðπÞ�
A FðπÞ

V ÞfAVðx; y; r2pÞ þ jFðπÞ
A j2fAAðx; y; r2pÞg

Γτ−→π−ντ

ð1 − r2pÞ2
;

d2Γint

dxdy
¼ α

2π

m2
τ

fπ
½fIB−Vðx; y; r2pÞReðFðπÞ

V Þ þ fIB−Aðx; y; r2pÞReðFðπÞ
A Þ� Γτ−→π−ντ

ð1 − r2pÞ2
; ðC6Þ

with α ¼ e2
4π, being the fine structure constant,

fIBðx; y; r2pÞ ¼
½r4pðxþ 2Þ − 2r2pðxþ yÞ þ ðxþ y − 1Þð2 − 3xþ x2 þ xyÞ�ðr2p − yþ 1Þ

ðr2p − x − yþ 1Þ2x2 ;

fVVðx; y; r2pÞ ¼ −½r4pðxþ yÞ þ 2r2pð1 − yÞðxþ yÞ þ ðxþ y − 1Þð−xþ x2 − yþ y2Þ�;
fAVðx; y; r2pÞ ¼ −½r2pðxþ yÞ þ ð1 − x − yÞðy − xÞ�ðr2p − x − yþ 1Þ;
fAAðx; y; r2pÞ ¼ fVVðx; y; r2pÞ;

fIB−Vðx; y; r2pÞ ¼ −
ðr2p − x − yþ 1Þðr2p − yþ 1Þ

x
;

fIB−Aðx; y; r2pÞ ¼ −
½r4p − 2r2pðxþ yÞ þ ð1 − xþ yÞðxþ y − 1Þ�ðr2p − yþ 1Þ

ðr2p − x − yþ 1Þx ; ðC7Þ

and Γτ−→π−ντ is the nonradiative decay width given by

Γτ−→π−ντ ¼
G2

FjVudj2f2π
8π

m3
τð1 − r2pÞ2: ðC8Þ

The photon spectrum is obtained by integrating over y.
Integration over x will give the total decay width for
radiative tau decay. The IB contribution has the infrared
divergences which can be fixed by putting a threshold on
the minimum energy of the emitted photon. The SD
contribution does not face any such divergence and hence
can be integrated over the full phase space:

Γðτ− → π−ντγÞ ¼
Z

1−r2p

x0

dx
Z

1þr2p

1−xþ r2p
1−x

dy
d2Γ
dxdy

; ðC9Þ

where x0 is the minimum energy cut for the photon energy
in the unit of mτ

2
.

To get the invariantmass spectrumof theπγ system, define
another dimensionless variable z (as used in Ref. [14]) as

z ¼ t
m2

τ
¼ xþ y − 1: ðC10Þ

The kinematical boundaries for the new variable are

z − r2p ≤ x ≤ 1 −
r2p
z
; r2p ≤ z ≤ 1: ðC11Þ

The πγ spectrum can be obtained by substituting y in terms of
z in d2Γ

dxdy and integrating it over x, i.e.,

dΓ
dz

¼
Z

1−
r2p
z

z−r2p
dx

d2Γ
dxdy

ðx; y ¼ z − xþ 1Þ: ðC12Þ
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